Un estudio de la dinámica del péndulo no lineal
Fecha
Autor corporativo
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Distrital Francisco José de Caldas
Compartir
Director
Altmetric
Resumen
Descripción
En este trabajo estudiamos la dinámica del péndulo no lineal, el cual consta de una partícula de masa m unida al extremo de una cuerda inextensible de longitud l. Graficamos tanto la variación de la energía potencial del péndulo en función del ángulo, como su correspondiente diagrama de fase. Las condiciones que se imponen determinan el comportamiento del péndulo para que exista un movimiento de oscilación y rotación, dependientes con el valor de la energía y el máximo de energía potencial. Como un caso particular estudiamos el movimiento oscilatorio, para ello resolvemos analíticamente de la ecuación diferencial de segundo orden, tomando como referencia el trabajo de Beléndez, generalizamos los resultados cuando el sistema inicialmente presenta una velocidad angular diferente de cero. Las soluciones obtenidas para el desplazamiento angular en función del tiempo se encuentra en términos de las funciones elípticas de Jacobi sn(u, m), graficamos el desplazamiento angular cuando la velocidad angular inicial es igual y diferente de cero . Los resultados obtenidos coinciden con los reportados en Beléndez. Este problema puede ser utilizado para introducir conceptos de integrales elípticas y motivar así al estudiante el uso de software computacional para analizar las soluciones obtenidas.
We study the dynamics of nonlinear pendulum, which consists of a particle of mass m attached to the end of a light inextensible string of length l. Therefore we plot the variation of pendulum potential energy function of angle , as the corresponding phase diagram. The conditions imposed determine the behavior of the pendulum so that there is an oscillating movement and rotation, dependent on the value the maximum energy and potential energy is determined. As a case study the oscillator movement, analytically solve the differential equation of second order with reference Beléndez et al. paper, we get results when the system initially presents a nonzero angular velocity, The solutions obtained for the angular displacement versus time is in terms of the Jacobi elliptic functions sn (u, m ), we plot the angular displacement when the initial angular velocity is equal and non-zero . The results agree with those reported in Beléndez et al. The problem can be used to introduce concepts of elliptic integrals and motivate students to using computer software to analyze the solutions obtained.
We study the dynamics of nonlinear pendulum, which consists of a particle of mass m attached to the end of a light inextensible string of length l. Therefore we plot the variation of pendulum potential energy function of angle , as the corresponding phase diagram. The conditions imposed determine the behavior of the pendulum so that there is an oscillating movement and rotation, dependent on the value the maximum energy and potential energy is determined. As a case study the oscillator movement, analytically solve the differential equation of second order with reference Beléndez et al. paper, we get results when the system initially presents a nonzero angular velocity, The solutions obtained for the angular displacement versus time is in terms of the Jacobi elliptic functions sn (u, m ), we plot the angular displacement when the initial angular velocity is equal and non-zero . The results agree with those reported in Beléndez et al. The problem can be used to introduce concepts of elliptic integrals and motivate students to using computer software to analyze the solutions obtained.
Palabras clave
Angular displacement, phase diagrams, equations of Hamilton, elliptic integrals, period, desplazamiento angular, diagramas de fase, ecuaciones de Hamilton, integrales elípticas, periodo