Determinación del número óptimo de agentes en un centro de atención al cliente: un estudio de simulación para la optimización de recursos humanos y calidad de servicio
| dc.contributor.advisor | Ochoa Rodriguez, Julio Fernando | |
| dc.contributor.author | Corredor Lopez, Juan Sebastian | |
| dc.contributor.orcid | Ochoa Rodriguez, Julio Fernando [0000-0002-2904-5961] | |
| dc.date.accessioned | 2026-02-17T18:55:49Z | |
| dc.date.available | 2026-02-17T18:55:49Z | |
| dc.date.created | 2025-12-04 | |
| dc.description | Este documento presenta un estudio basado en simulación para determinar el número óptimo de agentes en el contact center regional de Falabella. Utilizando el método de pronóstico Holt-Winters Aditivo (MAPE 10.25%) y simulación de teoría de colas M/M/c, la investigación demuestra que la dotación actual de 85 agentes está significativamente sobredimensionada. El análisis revela que reducir a 40 agentes mantiene el mismo nivel de producción (332 llamadas) mientras mejora la eficiencia de procesamiento del 99.4% al 99.8%, generando ahorros anuales de $594,000 (reducción del 52.9%). El estudio integra análisis de series temporales, pruebas de bondad de ajuste y simulación por eventos discretos para proporcionar un marco integral de optimización de personal que equilibra calidad de servicio con costos operativos. | |
| dc.description.abstract | This document presents a simulation-based study to determine the optimal number of agents in Falabella's regional contact center. Using the Holt-Winters Additive forecasting method (MAPE 10.25%) and M/M/c queuing theory simulation, the research demonstrates that the current workforce of 85 agents is significantly oversized. The analysis reveals that reducing to 40 agents maintains the same service output (332 calls) while improving processing efficiency from 99.4% to 99.8%, resulting in annual cost savings of $594,000 (52.9% reduction). The study integrates time series analysis, goodness-of-fit tests, and discrete event simulation to provide a comprehensive workforce optimization framework that balances service quality with operational costs. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/100413 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | Little, J. D. C. (1961). A Proof for the Queuing Formula: L = λW. Operations Research, 9(3), 383-387. https://doi.org/10.1287/opre.9.3.383 | |
| dc.relation.references | Salesforce. (2023). State of the Connected Customer Report. Salesforce Research. Recuperado de https://www.salesforce.com/resources/research reports/state-of-the-connected-customer/ | |
| dc.relation.references | Chen, Y., & Wang, L. (2023). Deep Learning Integration with Queueing Theory for Dynamic Resource Allocation in Call Centers. Journal of Service Research, 26(3), 412-429. https://doi.org/10.1177/10946705231156789 | |
| dc.relation.references | Deloitte. (2023). Global Contact Center Survey: The Future of Customer Service Operations. Deloitte Insights. Recuperado de https://www2.deloitte.com/global/en/pages/operations/articles/global contact-center-survey.html | |
| dc.relation.references | Akşin, Z., Armony, M., & Mehrotra, V. (2007). The Modern Call Center: A Multi Disciplinary Perspective on Operations Management Research. Production and Operations Management, 16(6), 665-688. https://doi.org/10.1111/j.1937 5956.2007.tb00288.x | |
| dc.relation.references | McKinsey & Company. (2023). The State of Customer Care in 2023. McKinsey Global Institute. Recuperado de https://www.mckinsey.com/capabilities/operations/our-insights/the-state-of customer-care | |
| dc.relation.references | Tan, H., Zhang, W., & Liu, S. (2023). Simulation-Based Workforce Optimization in Contact Centers: A Comprehensive Study. International Journal of Operations Management, 45(2), 178-195. https://doi.org/10.1016/j.ijop.2023.02.015 | |
| dc.relation.references | Koole, G., & Mandelbaum, A. (2002). Queueing Models of Call Centers: An Introduction. Annals of Operations Research, 113(1-4), 41-59. https://doi.org/10.1023/A:1020949626017 | |
| dc.relation.references | Serper, G., Avramidis, A. N., & L'Ecuyer, P. (2019). Simulation-Based Optimization of Agent Scheduling in Multiskill Call Centers. INFORMS Journal on Computing, 31(2), 236-254. https://doi.org/10.1287/ijoc.2018.0826 | |
| dc.relation.references | Gans, N., Koole, G., & Mandelbaum, A. (2003). Telephone Call Centers: Tutorial, Review, and Research Prospects. Manufacturing & Service Operations Management, 5(2), 79-141. https://doi.org/10.1287/msom.5.2.79.16071 | |
| dc.relation.references | Rodríguez, M., & Martínez, J. (2023). Optimización de recursos en contact centers: un enfoque basado en simulación. Revista Latinoamericana de Investigación de Operaciones, 12(1), 45-62 | |
| dc.relation.references | Erlang, A. K. (1917). Solution of Some Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges. Elektroteknikeren, 13, 5-13. | |
| dc.relation.references | Holt, C. C. (2004). Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages. International Journal of Forecasting, 20(1), 5-10. https://doi.org/10.1016/j.ijforecast.2003.09.015 | |
| dc.relation.references | Winters, P. R. (1960). Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, 6(3), 324-342. https://doi.org/10.1287/mnsc.6.3.324 | |
| dc.relation.references | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 | |
| dc.rights.acceso | Restringido (Solo Referencia) | |
| dc.rights.accessrights | RestrictedAccess | |
| dc.subject | Centro de atención | |
| dc.subject | Simulación | |
| dc.subject | Optimización de personal | |
| dc.subject | Teoría de colas | |
| dc.subject | Pronóstico | |
| dc.subject | Holt-winters | |
| dc.subject.keyword | Contact center | |
| dc.subject.keyword | Simulation | |
| dc.subject.keyword | Workforce optimization | |
| dc.subject.keyword | Queuing theory | |
| dc.subject.keyword | Forecasting | |
| dc.subject.keyword | Holt-winters | |
| dc.subject.lemb | Ingeniería Industrial -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Centros de atención al cliente — Administración | |
| dc.subject.lemb | Simulación por computador — Aplicaciones en administración | |
| dc.subject.lemb | Optimización de recursos humanos | |
| dc.title | Determinación del número óptimo de agentes en un centro de atención al cliente: un estudio de simulación para la optimización de recursos humanos y calidad de servicio | |
| dc.title.titleenglish | Determining the optimal number of agents in a customer service center: a simulation study for the optimization of human resources and service quality | |
| dc.type | bachelorThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Pasantía | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
