Modelo de decisión espectral colaborativo para redes de radio cognitiva

dc.contributor.authorHernádez Suárez, César Augusto
dc.contributor.authorLópez Sarmiento, Danilo Alfonso
dc.contributor.authorGiral Ramírez, Diego Armando
dc.contributor.orcidLópez Sarmiento, Danilo Alfonso [0000-0002-6148-3099]spa
dc.contributor.orcidGiral Ramírez, Diego Armando [0000-0001-9983-4555]spa
dc.date.accessioned2023-09-21T17:16:30Z
dc.date.available2023-09-21T17:16:30Z
dc.date.created2020-11
dc.descriptionLa decisión espectral es un aspecto clave para mejorar el desempeño en las redes de radio cognitiva descentralizadas. Los usuarios secundarios deben tomar decisiones inteligentes en función de la variación del espectro y de las acciones adoptadas por otros usuarios secundarios. A partir de esta dinámica, la probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, debido a la externalidad negativa de la red; cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada usuario secundario pueda obtener y el número de interferencias por el acceso simultáneo será mayor. Por esto, para modelar la red bajo parámetros de tráfico realistas, es necesario tener en cuenta la colaboración entre usuarios secundarios. Este libro de investigación presenta una propuesta para mejorar el proceso de toma de decisiones en una red de radio cognitiva descentralizada, y así dotar a los nodos con la capacidad de aprender del entorno, proponiendo estrategias que les permitan a los usuarios secundarios intercambiar información de forma cooperativa o competitiva.spa
dc.description.abstractSpectral decision is a key aspect to improve performance in decentralized cognitive radio networks. Secondary users must make intelligent decisions based on spectrum variation and actions taken by other secondary users. From this dynamic, the probability that two or more secondary users choose the same channel is high, especially when the number of secondary users is greater than the number of available channels, due to the negative externality of the network; The more secondary users select the same channel, the less utility each secondary user can obtain and the greater the number of interferences due to simultaneous access. Therefore, to model the network under realistic traffic parameters, it is necessary to take into account the collaboration between secondary users. This research book presents a proposal to improve the decision-making process in a decentralized cognitive radio network, and thus provide the nodes with the ability to learn from the environment, proposing strategies that allow secondary users to exchange information cooperative or competitive.spa
dc.description.cityBogotáspa
dc.format.mimetypepdfspa
dc.identifier.editorialUniversidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científicospa
dc.identifier.isbn978-958-787-245-3spa
dc.identifier.urihttp://hdl.handle.net/11349/32259
dc.language.isospaspa
dc.relation.ispartofseriesEspaciosspa
dc.relation.references3GPP. (2011). IEEE Approved Draft Standard For Information Technology. Local and metropolitan area networks. Specific requirements. Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands IEEE computer society (vol. 2015). https://standards.ieee.org/standard/802_22-2019.htmlspa
dc.relation.referencesAbass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. En 2017 51st Annual Conference on Information Sciences and Systems (pp. 1-5). IEEE. http://doi.org/10.1109/ CISS.2017.7926128spa
dc.relation.referencesAbbas, N., Nasser, Y. y Ahmad, k. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, (1), 1-20. http://doi.org/10.1186/ s13638-015-0381-7spa
dc.relation.referencesAbdulshahed, A. M., Longstaff, A. P. y Fletcher, S. (2015). The application of Anfis prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing Journal, 27, 158-168. http://doi.org/10.1016/j. asoc.2014.11.01spa
dc.relation.referencesAbonyi, J., Andersen, H., Nagy, L. y Szeifert, F. (1999). Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1-2), 119-132. http://doi.org/10.1016/s0378-4754(99)00142-1spa
dc.relation.referencesAbramson, N. (1981). Teoría de la información y codificación (5.a ed.). Paraninfo. https:// eva.udelar.edu.uy/pluginfile.php/84635/mod_resource/content/0/Teoria_de_ la_Informacion_y_codificacion-Norman_Abramson_ebook-spanish_.pdfspa
dc.relation.referencesAdeel, A., Larijani, H. y Ahmadinia, A. (2014, 13-16 de mayo). Performance analysis of artificial neural network-based learning schemes for cognitive radio systems in LTE-UL [presentación en conferencia]. 2014 28th International Conference on Advanced Information Networking and Applications, Victoria, Estados Unidos. http://doi.org/10.1109/WAINA.2014.116spa
dc.relation.referencesAhmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, 16(2), 776-811. http://doi.org/10.1109/ SURV.2013.082713.00141spa
dc.relation.referencesAhmed, E., Gani, A., Abolfazli, S., Yao, L. J. y khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. http://doi. org/10.1109/COMST.2014.2363082spa
dc.relation.referencesAkin, S. y Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350. http://doi. org/10.1109/TWC.2015.2503272spa
dc.relation.referencesAkter, L., Natarajan, B. y Scoglio, C. (2008, 3-7 de agosto). Modeling and forecasting secondary user activity in cognitive radio networks [presentación en conferencia]. 17th International Conference on Computer Communications and Networks, St. Thomas, Islas Vírgenes, Estados Unidos. http://doi.org/10.1109/ICCCN.2008.ECP.50spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. http://doi.org/10.1016/j.comnet.2006.05.001spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48. http://doi.org/10.1109/MCOM.2008.4481339spa
dc.relation.referencesAkyildiz, I. F., Lee, W.-Y. y Chowdhury, k. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.adhoc.2009.01.001spa
dc.relation.referencesAkyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory technical report. Georgia Institute of Technology.spa
dc.relation.referencesAl-Amidie, M., Al-Asadi, A., Micheas, A. C. e Islam, N. E. (2019). Spectrum sensing based on Bayesian generalised likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305-311. http://doi. org/10.1049/iet-com.2018.5276spa
dc.relation.referencesAli, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials, 19(2), 1277-1304. http://doi.org/10.1109/COMST.2016.2631080spa
dc.relation.referencesAlias, D. M. y Ragesh, G. k. (2016, 23-25 de marzo). Cognitive radio networks: A survey [presentación en conferencia]. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India. http://doi.org/10.1109/WiSPNET.2016.7566489spa
dc.relation.referencesAlmasaeid, H. M. y kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. En 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). IEEE. http://doi.org/10.1109/DYSPAN.2010.5457862spa
dc.relation.referencesAlnwaimi, G., Arshad, k. y Moessner, k. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. http://doi.org/10.1109/ LCOMM.2011.062911.110248spa
dc.relation.referencesAlsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En 2009 Proceedings of 18th Internatonal Conference on Computer Communications and Networks (pp. 1-6). IEEE. http://doi. org/10.1109/ICCCN.2009.5235261spa
dc.relation.referencesAmir, M., El-keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. http://doi.org/10.1109/TIT.2011.2119770spa
dc.relation.referencesAmjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109-122. http://doi.org/10.1016/j.comnet.2016.01.016spa
dc.relation.referencesAzarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2), second quarter, 338-354. http://doi.org/10.1109/SURV.2011.021111.00064spa
dc.relation.referencesBaran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1), 1-9. http://doi.org/10.1109/TCOM.1964.1088883spa
dc.relation.referencesBhowmik, M. y Malathi, P. (2019). Spectrum sensing in cognitive radio using actor-critic neural network with krill herd-whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. http://doi.org/10.1007/s11277-018-6115-5spa
dc.relation.referencesBkassiny, M., Li, Y. y Jayaweera, S. k. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 11361159. http://doi.org/10.1109/SURV.2012.100412.00017spa
dc.relation.referencesBolstad, W. M. (2007). Introduction to Bayesian statistics (2.a ed.). John Wiley & Sons.spa
dc.relation.referencesBrik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. En 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 611-614). IEEE. http://doi.org/10.1109/ DYSPAN.2005.1542680spa
dc.relation.referencesBujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10). http://doi. org/10.1177/1550147717738192spa
dc.relation.referencesBütün, I., Talay, A. Ç., Altilar, D. T., khalid, M. y Sankar, R. (2010, 21-23 de abril). Impact of mobility prediction on the performance of cognitive radio networks [presentación en simposio]. 2010 Wireless Telecommunications Symposium (WTS), Tampa, Estados Unidos. http://doi.org/10.1109/WTS.2010.5479659spa
dc.relation.referencesBüyüközkan, G., kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. http://doi.org/10.1080/03081070310001633581spa
dc.relation.referencesBüyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy Topsis based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j. eswa.2011.08.061spa
dc.relation.referencesByun, S. S., Balasingham, I. y Liang, X. (2008, 21-24 de septiembre). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency [presentación en conferencia]. 2008 IEEE 68th Vehicular Technology Conference, Calgary, Canadá. http://doi.org/10.1109/VETECF.2008.299spa
dc.relation.referencesCao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. En 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (pp. 475-486). IEEE. http://doi.org/10.1109/ SAHCN.2005.1557100spa
dc.relation.referencesCardenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. y Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En 2016 International Conference on Electronics, Communications and Computers (pp. 25-31). IEEE. http://doi.org/10.1109/CONIELECOMP.2016.7438547spa
dc.relation.referencesChang, C.-C. y Lin, C.-J. (2013). Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), artículo 27. http://doi.org/10.1145/1961189.1961199spa
dc.relation.referencesChang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/03772217(95)00300-2spa
dc.relation.referencesChen, D., Zhang, Q. y Jia, W. (2008, 15-17 de mayo). Aggregation aware spectrum assignment in cognitive ad-hoc networks [presentación en conferencia]. 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapur, Singapur. http://doi.org/10.1109/CROWNCOM.2008.4562548spa
dc.relation.referencesChen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A clusterbased cognitive radio network. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). IEEE. http://doi. org/10.1109/DYSPAN.2007.29spa
dc.relation.referencesChen, Y. y Oh, H.-S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. http://doi.org/10.1109/COMST.2014.2364316spa
dc.relation.referencesCheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En 2011 IEEE 13th International Conference on Communication Technology (pp. 161-164). IEEE. http://doi.org/10.1109/ICCT.2011.6157854spa
dc.relation.referencesCho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330. https://doi. org/10.1016/j.eswa.2013.03.038spa
dc.relation.referencesChou, C.-T., Shankar, S., kim, H. y Shin, k. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576588. http://doi.org/10.1109/JSAC.2007.070408spa
dc.relation.referencesChoudhary, D. y Shankar, R. (2012). An Steep-fuzzy AHP-Topsis framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521. https://doi.org/10.1016/j.energy.2012.03.010spa
dc.relation.referencesChristian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. http://doi. org/10.1109/MCOM.2012.6211495spa
dc.relation.referencesCisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021 [white paper]. https://www.ramonmillan.com/documentos/bibliografia/ VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdfspa
dc.relation.referencesCortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [tesis de maestría, Universidad Nacional de Colombia]. BDigital.spa
dc.relation.referencesCruz-Pol, S., Van Zee, L., kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. En 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (pp. 52-56). IEEE. http://doi.org/10.1109/MICRORAD.2018.843072spa
dc.relation.referencesCsurgai-Horváth, L. y Bitó, J. (2011). Primary and secondary user activity models for cognitive wireless network. En Proceedings of the 11th International Conference on Telecommunications (pp. 189-194). IEEE. https://ieeexplore.ieee.org/document/5969948spa
dc.relation.referencesDadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. http://doi. org/10.1109/TVT.2015.2440412spa
dc.relation.referencesDadios, E. P. (ed.). (2012). Fuzzy logic: Algorithms, techniques and implementations. IntechOpen.spa
dc.relation.referencesDarak, S. J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks. Digital Signal Processing, 37(1), 13-23. http://doi.org/10.1016/j.dsp.2014.12.001spa
dc.relation.referencesDarak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. En 2014 11th International Symposium on Wireless Communications Systems (ISWCS) (pp. 271-275). Institute of Electrical and Electronics Engineers. http://doi.org/10.1109/ISWCS.2014.693336spa
dc.relation.referencesDarak, S. J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. http://doi.org/10.1016/j.dsp.2016.08.014spa
dc.relation.referencesDel Ser, J., Matinmikko, M., Gil-Lopez, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. En 2007 7th International Symposium on Wireless Communication Systems (pp. 233-237). IEEE. http://doi.org/10.1109/ISWCS.2010.5624341spa
dc.relation.referencesDelgado, M. y Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610616. http://doi.org/10.1109/TLA.2016.743720spa
dc.relation.referencesDeng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13), artículo e3726. http://doi.org/10.1002/dac.3726spa
dc.relation.referencesDhamodharavadhani, S. (2015). A survey on clustering based routing protocols in mobile ad hoc networks. En 2015 International Conference on Soft-Computing and Networks Security (ICSNS) (pp. 1-6). IEEE. http://doi.org/10.1109/ ICSNS.2015.7292426spa
dc.relation.referencesDing, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Crosslayer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. http://doi. org/10.1109/TVT.2010.2045403spa
dc.relation.referencesDo, C. T., Tran, N. H., Hong, C. S., Lee, S., Lee, J.-J. y Lee, W. (2013). A lightweight algorithm for probability-based spectrum decision scheme in multiple channels cognitive radio networks. IEEE Communications Letters, 17(3), 509-512. http:// doi.org/10.1109/LCOMM.2013.012313.122589spa
dc.relation.referencesDu, k.-L. y Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer.spa
dc.relation.referencesDuan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. http://doi.org/10.4316/aece.2011.03002spa
dc.relation.referencesDunn, J. C. (1973). A fuzzy relative of the Isodata process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32-57. http://doi. org/10.1080/01969727308546046spa
dc.relation.referencesFauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7spa
dc.relation.referencesFauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7spa
dc.relation.referencesFederal Communications Commission (FCC). (2003a). Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1spa
dc.relation.referencesFederal Communications Commission (FCC). (2003b). Notice of proposed rulemaking and order. https://web.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdfspa
dc.relation.referencesFerber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.spa
dc.relation.referencesFlórez-López, R. y Fernández Fernández, J. M. (2008). Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas. Netbiblo.spa
dc.relation.referencesForero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso CDMA [tesis de maestría, Universidad Distrital Francisco José de Caldas].spa
dc.relation.referencesFraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.spa
dc.relation.referencesFudenberg, D. y Tirole, J. (1991). Game theory. MIT Press. https://books.google. com.co/books?id=pFPHkwXro3QCspa
dc.relation.referencesGallardo-Medina, J. R., Pineda-Rico, U. y Stevens-Navarro, E. (2009). Vikor method for vertical handoff decision in beyond 3G wireless networks. En 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. http://doi.org/10.1109/ICEEE.2009.539332spa
dc.relation.referencesGavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113spa
dc.relation.referencesGers, F. A. y Schmidhuber, E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. http://doi.org/10.1109/72.963769spa
dc.relation.referencesGiupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En Proceedings of the Third International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi. org/10.1109/CROWNCOM.2008.4562535spa
dc.relation.referencesGoldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. http://doi.org/10.1023/A:1022602019183spa
dc.relation.referencesGoswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. En 2017 International Conference on Inventive Communication and Computational Technologies (pp. 410-414). IEEE. http://doi. org/10.1109/ICICCT.2017.797523spa
dc.relation.referencesGraves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer. http://doi.org/10.1007/978-3-642-24797-2spa
dc.relation.referencesGraves, A., Mohamed, A.-R. y Hinton, G. (2013). Speech recognition with deep recurrent neural networks. En 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings (pp. 6645-6649). IEEE. http://doi. org/10.1109/ICASSP.2013.6638947spa
dc.relation.referencesGraves, A. y Schmidhuber, J. (2005). Framewise phoneme classification with bidirec tional LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610. http://doi.org/10.1016/j.neunet.2005.06.042spa
dc.relation.referencesGreen, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. SSRN Electronic Journal, 8, 17- 20. http://doi.org/10.2139/ssrn.1153124spa
dc.relation.referencesHan, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier y Morgan Kauffman.spa
dc.relation.referencesHasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimiza tion for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. http://doi.org/10.1109/JPROC.2014.2306255spa
dc.relation.referencesHaykin, S. (1998). Neural networks: A comprehensive foundation (2.a ed.). Prentice Hall.spa
dc.relation.referencesHe, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technol ogy, 59(4), 1578-1592. http://doi.org/10.1109/TVT.2010.204spa
dc.relation.referencesHernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. International Journal of Applied Engineering Research, 10(21), 42.189-42.196.spa
dc.relation.referencesHernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technol ogy, 9(12), 1212-1215. https://publications.waset.org/10002921/hybrid-algo rithm-for-frequency-channel-selection-in-wi-fi-networksspa
dc.relation.referencesHernández, C., Giral, D. y Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engineering and Technolo gy, 9(10), 679-682. https://publications.waset.org/10002749/mcdm-spectrum handover-models-for-cognitive-wireless-networksspa
dc.relation.referencesHernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of predic tion models for forecasting spectral opportunities. International Journal of Engineering and Technology, 9(5), 3775-3782. http://doi.org/10.21817/ijet/2017/ v9i5/170905055spa
dc.relation.referencesHernández, C., Páez, I. y Giral, D. (2015). Modelo AHP-Vikor para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39. http://dx.doi.org/10.14483/ udistrital.jour.tecnura.2015.3.a02spa
dc.relation.referencesHernández, C., Páez, I. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva. Editorial UD.spa
dc.relation.referencesHernández, C., Pedraza, L. F., Páez, I. y Rodríguez-Colina, E. (2015). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186. http://dx.doi.org/10.4067/S0718-07642015000600018spa
dc.relation.referencesHernández, C., Pedraza, L. F. y Martínez, F. H. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. http://www.scielo. org.co/scielo.php?pid=S0123-921X2016000200006&script=sci_abstract&tlng=esspa
dc.relation.referencesHernández, C., Pedraza, L. F. y Rodríguez-Colina, E. (2016). Fuzzy feedback algo rithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia, (81), 47-62. http://doi.org/10.17533/ udea.redin.n81a05spa
dc.relation.referencesHernández, C., Salcedo, O. y Pedraza, L. F. (2009). An Arima model for forecasting Wi Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69. http://www. scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-5609200900020001spa
dc.relation.referencesHernández, C., Salgado, C., López, H. y Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, 2015(1), artículo 216. http:// doi.org/10.1186/s13638-015-0445-8spa
dc.relation.referencesHernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Inge niería de la Universidad de Antioquia, (67), 52-62. http://www.scielo.org.co/scielo. php?script=sci_arttext&pid=S0120-62302013000200005spa
dc.relation.referencesHernández Sampieri, R., Fernández-Collado, C. y Baptista Lucio, P. (2006). Metodo logía de la investigación (4.a ed.). McGraw-Hspa
dc.relation.referencesHernandez-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe Chalke, M. (2012). Cruam-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En 2012 IEEE Latin-American Conference on Communications. IEEE. http://doi.org/10.1109/LATINCOM.2012.6505997spa
dc.relation.referencesHochreiter, S. y Schmidhuber, J. (1997). Long short-term memory. Neural Computa tion, 9(8), 1735-1780. http://doi.org/10.1162/neco.1997.9.8.17spa
dc.relation.referencesHoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive ra dio. Wireless Foundations EECS. https://omidi.iut.ac.ir/SDR/2008/Projects/ Ataei-Game_Theory_Cognitive%20Radios/References/Some%20Fundamen tal%20Limits%20on%20Cognitive%20Radio.pdfspa
dc.relation.referencesHsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural net works and kernels. Cambridge University Presspa
dc.relation.referencesHübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer.spa
dc.relation.referencesIftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Phy sical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002spa
dc.relation.referencesInstitute of Electrical and Electronics Engineers. (2008). IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management (IEEE Standard 1900.1- 2008). https://standards.ieee.org/standard/1900_1-2008.htmspa
dc.relation.referencesIssariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communi cations Magazine, 47(7), 57-63. http://doi.org/10.1109/MCOM.2009.5183spa
dc.relation.referencesJain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. http://doi.org/10.1016/j.patrec.2009.09.011spa
dc.relation.referencesJang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. http://doi. org/10.1109/21.256541spa
dc.relation.referencesJayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and real time reconfigurable antenna designs for autonomous, self-learning future cognitive radios. https://digitalrepository.unm.edu/ece_rpts/36/spa
dc.relation.referencesJi, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access. Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. http://doi.org/10.1109/MCOM.2007.358854spa
dc.relation.referencesJiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Com munications, 13(4), 2176-2188. http://doi.org/10.1109/TWC.2014.02201spa
dc.relation.referencesJoda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary Type-I HARQ process. IEEE Transactions on Com munications, 63(11), 4037-4049. http://doi.org/10.1109/TCOMM.201spa
dc.relation.referencesKalkan, S. (2018). Special topics in deep learning. http://kovan.ceng.metu.edu.tr/~sinan/ DL/spa
dc.relation.referencesKanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportu nistic auto-rate media access protocol for ad hoc networks. En First International Conference on Broadband Networks (pp. 600-610). IEEE. https://ieeexplore.ieee. org/document/1363848?section=abstractspa
dc.relation.referencesKasbekar, G. S. y Sarkar, S. (2010). Spectrum auction framework for access alloca tion in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841-1854. http://doi.org/10.1109/TNET.2010.2051453spa
dc.relation.referencesKaur, A., Kaur, A. y Sharma, S. (2018). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. En 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). IEEE. http://doi. org/10.1109/CIACT.2018.8480298spa
dc.relation.referencesKaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy Vikor & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051spa
dc.relation.referencesKeller, J. M., Liu, D. y Fogel, D. B. (2016). Fundamentals of computational intelligence: Neural networks, fuzzy systems, and evolutionary computation. IEEE y Wiley. http:// doi.org/10.1002/9781119214403spa
dc.relation.referencesKennedy, E. P., Condon, M. y Dowling, J. (2003). Torque-ripple minimisation in swit ched reluctance motors using a neuro-fuzzy control strategy. En Proceedings of the Iasted International Conference on Modelling and Simulation (pp. 106-109). Iasted.spa
dc.relation.referencesKibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three step vertical handoff scheme for 4G/B3G networks. En Globecom ’05. IEEE Global Telecommunications Conference (vol. 5, pp. 2752-2756). IEEE. http://doi. org/10.1109/GLOCOM.2005.157826spa
dc.relation.referencesKim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. http://doi.org/10.1109/TMC.2007.70751spa
dc.relation.referencesKim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distri buted channel assignment in cognitive multi-radio mesh networks. En 2010 IFIP wireless days. IEEE. http://doi.org/10.1109/WD.2010.5657733spa
dc.relation.referencesKondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network se tup without a common control channel. En 2008 IEEE Military Communications Conference. IEEE. http://doi.org/10.1109/MILCOM.2008.4753398spa
dc.relation.referencesKongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high stand-by energy consumption of ad-hoc Wi-Fi. En 2017 IEEE Global Humanitarian Tech nology Conference. IEEE. http://doi.org/10.1109/GHTC.2017.8239229spa
dc.relation.referencesKrishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. En 2005 IEEE Military Communications Conference (vol. 1, pp. 455-460). IEEE. http://doi.org/10.1109/MILCOM.2005.1605725spa
dc.relation.referencesKrogstad, H. E. (2012). TMA 4180. Optimeringsteori karush-kuhn-tucker theorem. https://folk.ntnu.no/hek/Optimering2012/kkttheoremv2012.pdfspa
dc.relation.referencesKumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive ra dio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188. http://doi.org/10.1016/j.jnca.2015.10.008spa
dc.relation.referencesKwok, T.-Y. y Yeung, D.-Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neu ral Networks, 8(3), 630-645. http://doi.org/10.1109/72.572102spa
dc.relation.referencesLahby, M., Leghris, C. y Abdellah, A. (2011). A hybrid approach for network se lection in heterogeneous multi-access environments. En 2011 4th IFIP Interna tional Conference on New Technologies, Mobility and Security. IEEE. http://doi. org/10.1109/NTMS.2011.5720658spa
dc.relation.referencesLee, W.-Y. y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cogni tive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845- 3857. http://doi.org/10.1109/T-WC.2008.070391spa
dc.relation.referencesLee, W.-Y. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive ra dio networks. IEEE Transactions on Mobile Computing, 10(2), 161-174. http://doi. org/10.1109/TMC.2010.147spa
dc.relation.referencesLertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adap tive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793. http://doi.org/10.1109/TMC.2016.2517619spa
dc.relation.referencesLi, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investiga tion for cognitive radio systems. En IEEE Wireless Communications and Network ing Conference (pp. 894-899). IEEE. http://doi.org/10.1109/WCNC.20spa
dc.relation.referencesLi, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. En 2016 IEEE 13th International Conference on Signal Processing (pp. 1146-1151). IEEE. http://doi.org/10.1109/ ICSP.2016.7878007spa
dc.relation.referencesLiu, Y. y Tewfik, A. (2014). Primary traffic characterization and secondary transmis sions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016. http:// doi.org/10.1109/TWC.2014.042914.130861spa
dc.relation.referencesLópez Sarmiento, D. A. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [tesis doctoral, Universidad Dis trital Francisco José de Caldas]. Repositorio de tesis doctoral del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas. https://docto radoingenieria.udistrital.edu.co/index.php/es/inicio/documentos/repositorio de-tesis-doctoral/item/488-implementacion-de-un-modelo-predictor-para-la toma-de-decisiones-en-redes-inalambricas-de-radio-cognitivaspa
dc.relation.referencesLópez Sarmiento, D. A., Rivas, E. y Gualdrón, O. E. (2015). Elementos funda mentales que componen la radio cognitiva y asignación de bandas espectra les. Información Tecnológica, 26(1), 23-40. http://dx.doi.org/10.4067/S0718- 07642015000100004spa
dc.relation.referencesMa, L., Shen, C.-C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. En 2007 2nd IEEE International Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). IEEE. http://doi.org/10.1109/DYSPAN.2007.78spa
dc.relation.referencesMarinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication proto cols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. http://doi.org/10.1007/s11276-011-0392-1spa
dc.relation.referencesMárquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive Bayes. Contemporary Engineering Sciences, 10(12), 593-605. http://doi.org/10.12988/ces.2017.7758spa
dc.relation.referencesMasonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 15(3), 1088- 1107. http://doi.org/10.1109/SURV.2012.111412.0016spa
dc.relation.referencesMasters, T. (1993). Practical neural networks recipes in C++. Morgan Kaufmann.spa
dc.relation.referencesMatinmikko, M., Del Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic ba sed framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. http://doi. org/10.1109/JSAC.2013.131117spa
dc.relation.referencesMatinmikko, M., Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intel ligent wireless communication system. VTT Technical Research Centre of Finlandspa
dc.relation.referencesMeerschaert, M. M. (2013). Mathematical modeling (4.a ed.). Elsevier. http://doi.org/ https://doi.org/10.1016/C2010-0-66940-9spa
dc.relation.referencesMehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ran king approach for vertical mobility in next generation hybrid networks. En IV International Congress on Ultra Modern Telecommunications and Control Systems 2012 (pp. 262-267). IEEE. http://doi.org/10.1109/ICUMT.2012.6459676spa
dc.relation.referencesMelián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J. L., Pérez-Álvarez, I., García Rodríguez, A. y Pérez-Díaz, B. (2013). HF spectrum activity prediction model based on HMM for cognitive radio applications. Physical Communication, 9, 199- 211. http://doi.org/10.1016/j.phycom.2012.09.004spa
dc.relation.referencesMir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En 2011 IEEE Consumer Communications and Networking Conference (pp. 658-663). IEEE. http:// doi.org/10.1109/CCNC.2011.5766563spa
dc.relation.referencesMiranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. http://doi.org/10.1109/52.903173spa
dc.relation.referencesMishra, V., Tong, L. C., Chan, S. y Kumar, A. (2012). Energy aware spectrum de cision framework for cognitive radio networks. En 2012 International Sympo sium on Electronic System Design (ISED 2012) (pp. 309-313). IEEE. http://doi. org/10.1109/ISED.2012.65spa
dc.relation.referencesMitola III, J. (2000). Cognitive radio: An integrated agent architecture for software defined ra dio [tesis de doctorado, Royal Institute of Technology]. http://www.diva-portal. org/smash/get/diva2:8730/FULLTEXT01.pdfspa
dc.relation.referencesNeshat, M., Adeli, A., Masoumi, A. y Sargozae, M. (2011). A comparative study on Anfis and fuzzy expert system models for concrete mix design. International Journal of Computer Science Issues, 8(3), 196-210. https://www.researchgate.net/ publication/260979471_Comparative_Study_on_Anfis_and_Fuzzy_Expert_ System_Models_for_Concrete_Mix_Designspa
dc.relation.referencesNisan, N., Roughgarden, T., Tardos, É. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press.spa
dc.relation.referencesOrmond, O., Murphy, J. y Muntean, G.-M. (2006). Utility-based intelligent net work selection in beyond 3G systems. En 2006 IEEE International Conference on Communications (vol. 4, pp. 1831-1836). IEEE. http://doi.org/10.1109/ ICC.2006.254986spa
dc.relation.referencesOyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Jour nal of Network and Computer Applications, 97, 140-156. http://doi.org/https:// doi.org/10.1016/j.jnca.2017.08.016spa
dc.relation.referencesOzger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cog nitive radio networks. IEEE Communications Letters, 20(1), 157-160. http://doi. org/10.1109/LCOMM.2015.2504103spa
dc.relation.referencesPalangi, H., Ward, R. y Deng, L. (2016). Distributed compressive sensing: A deep learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518. http://doi.org/10.1109/TSP.2016.2557301spa
dc.relation.referencesPankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. En Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp. 620-623). IEEE. http://doi.org/10.1109/EIConRus.2019.8656671spa
dc.relation.referencesPatil, S. K. y Kant, R. (2014). A fuzzy AHP-Topsis framework for ranking the solu tions of Knowledge Management adoption in Supply Chain to overcome its ba rriers. Expert Systems with Applications, 41(2), 679-693. http://doi.org/10.1016/j. eswa.2013.07.093spa
dc.relation.referencesPattanayak, S., Venkateswaran, P. y Nandi, R. (2013). Artificial intelligence based model for channel status prediction: A new spectrum sensing technique for cog nitive radio. International Journal of Communications, Network and System Sciences, 6(3), 139-148. http://doi.org/10.4236/ijcns.2013.63017spa
dc.relation.referencesPedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10(19), 127-143. http:// www.scielo.org.co/pdf/ince/v10n19/v10n19a07.pdfspa
dc.relation.referencesPedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.a ed.). Editorial UD.spa
dc.relation.referencesPetrova, M., Mähönen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machines. En 2017th International Symposium on Wireless Communication Systems (pp. 986-990). IEEE. http://doi.org/10.1109/ISWCS.2010.562450spa
dc.relation.referencesPetter. (2013). Matlab mex support for Visual Studio 2013. MathWorks. https://www. mathworks.com/matlabcentral/fileexchange/44408-matlab-mex-support-for visual-studio-2013-and-mbuildspa
dc.relation.referencesPham, C., Tran, N. H., Do, C. T., Moon, S. I. y Hong, C. S. (2014). Spectrum han doff model based on hidden Markov model in cognitive radio networks. En In ternational Conference on Information Networking (pp. 406-411). IEEE. http://net working.khu.ac.kr/layouts/net/publications/data/Spectrum%20Handoff%20 Model%20Based%20on%20Hidden%20Markov%20Model%20in%20Cogniti ve%20Radio%20Networks.pdfspa
dc.relation.referencesPinto, L. R. M. y Correia, L. H. A. (2018). Analysis of machine learning algo rithms for spectrum decision in cognitive radios. En 2018 15th International Sym posium on Wireless Communication Systems (ISWCS) (pp. 1-6). IEEE. http://doi. org/10.1109/ISWCS.2018.849106spa
dc.relation.referencesPla, V., Vidal, J.-R., Martinez-Bauset, J. y Guijarro, L. (2010). Modeling and cha racterization of spectrum white spaces for underlay cognitive radio networks. En 2010 IEEE International Conference on Communications. IEEE. http://doi. org/10.1109/ICC.2010.5501788spa
dc.relation.referencesPowell, V. y Lehe, L. (s.f.). Principal component analysis explained visually. https:// setosa.io/ev/principal-component-analysis/spa
dc.relation.referencesRahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspec tives. IEEE Transactions on Wireless Communications, 13(1), 356-369. http://doi. org/10.1109/TWC.2013.120213.130658spa
dc.relation.referencesRamírez Pérez, C. y Ramos Ramos, V.-M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico (Ciindet) (pp. 727-733).spa
dc.relation.referencesRamírez Pérez, C. y Ramos Ramos, V.-M. (2013). On the effectiveness of multi-cri teria decision mechanisms for vertical handoff. En IEEE 27th International Confer ence on Advanced Information Networking and Applications (pp. 1157-1164). IEEE. http://doi.org/10.1109/AINA.2013.114spa
dc.relation.referencesRamzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio net works: A review. Pervasive and Mobile Computing, 41, 106-131. http://doi.org/ https://doi.org/10.1016/j.pmcj.2017.07.01spa
dc.relation.referencesRizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514- 529. http://doi.org/10.1109/TCDS.2018.2840971spa
dc.relation.referencesRodriguez, A. B., Ramirez, L. J. y Chahuan, J. (2015). Nueva generación de heurísti cas para redes de fibra óptica WDM (wavelength división multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142. http://dx.doi.org/10.4067/ S0718-07642015000500017spa
dc.relation.referencesRodríguez-Colina, E., Ramirez, P. y Carrillo, C. E. (2011). Multiple attribute dyna mic spectrum decision making for cognitive radio networks. En 2011 8th Interna tional Conference on Wireless and Optical Communications Networks. IEEE. http:// doi.org/10.1109/WOCN.2011.587296spa
dc.relation.referencesRoy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of two-tier multi user cognitive radio network: A game theoretic approach. Computer Networks, 123, 1-18. http://doi.org/10.1016/j.comnet.2017.05.002spa
dc.relation.referencesSaaty, T. L. (1990). How to make a decision: The analytic hierarchy process. Euro pean Journal of Operational Research, 48(1), 9-26. http://doi.org/10.1016/0377- 2217(90)90057-Ispa
dc.relation.referencesSadanandan, A. (2011). CSVIMPORT. https://www.mathworks.com/matlabcen tral/fileexchange/23573-csvimpospa
dc.relation.referencesSafavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodo logy. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http:// doi.org/10.1109/21.97458spa
dc.relation.referencesSalcedo, D. (2006). Predicción del IBC utilizando redes neuronales con wavelets [tesis de pregrado, Universidad de los Andes (Venezuela)]. http://bdigital.ula.ve/stora ge/pdftesis/pregrado/tde_arquivos/8/TDE-2007-05-30T05:58:36Z-288/Publi co/Dulmar%20Salcedo.pdfspa
dc.relation.referencesSaleem, Y. y Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1-16. https://doi.org/10.1016/j.jnca.2014.04.001spa
dc.relation.referencesSalgado, C. (2014). Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process [tesis de maestría, Universidad Distrital Francisco José de Caldas].spa
dc.relation.referencesSalgado, C., Márquez, H. y Gómez, V. (2016). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Tecnura, 20(49), 135- 153. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09spa
dc.relation.referencesSalgado, C., Mora, S. y Giral, D. (2016). Collaborative algorithm for the spec trum allocation in distributed cognitive networks. International Journal of Engi neering and Technology, 8(5), 2288-2299. http://doi.org/10.21817/ijet/2016/ v8i5/160805091spa
dc.relation.referencesSamui, P. (2015). Handbook of research on advanced computational techniques for simula tion-based engineering. IGI Globaspa
dc.relation.referencesSarmiento, D. A. L., Rivas, E. y García, N. Y. G. (2016). Implementing a simulator of wireless cognitive radio network primary users. International Journal of Applied Engineering Research, 11(2), 967-975.spa
dc.relation.referencesSiddique, N. y Adeli, H. (2013). Computational intelligence: Synergies of fuzzy logic, neural networks and evolutionary computing. Wiley. http://doi. org/10.1002/9781118534823spa
dc.relation.referencesSong, Q. y Jamalipour, A. (2005). A network selection mechanism for next genera tion networks. En 2005 IEEE International Conference on Communications (vol. 2, pp. 1418-1422). IEEE. http://doi.org/10.1109/ICC.2005.1494578spa
dc.relation.referencesSoto, J., Castillo, O. y Soria, J. (2010). Chaotic time series prediction using ensem bles of Anfis. En O. Castillo, J. Kacprzyk y W. Pedrycz (eds.), Soft computing for intelligent control and mobile robotics (pp. 287-301). Springer. http://doi. org/10.1007/978-3-642-15534-5_18spa
dc.relation.referencesSriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in pac ket multiplexers for voice and data. IEEE Journal on Selected Areas in Communica tions, 4(6), 833-846. http://doi.org/10.1109/JSAC.1986.11464spa
dc.relation.referencesStevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U. y Acosta-Elias, J. (2012). Application of MADM method Vikor for vertical handoff in heterogeneous wi reless networks. Ieice Transactions on Communications, 95(2), 599-602. http://doi. org/10.1587/transcom.E95.B.599spa
dc.relation.referencesStevens-Navarro, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Ve hicular Technology, 57(2), 1243-1254. http://doi.org/10.1109/TVT.2007.907072spa
dc.relation.referencesStevens-Navarro, E., Martinez-Morales, J. D. y Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods forheterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548. https://core.ac.uk/download/pdf/27220545.pdfspa
dc.relation.referencesStevens-Navarro, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En 2006 IEEE 63rd Ve hicular Technology Conference (vol. 2, pp. 947-951). IEEE. http://doi.org/10.1109/ VETECS.2004.138897spa
dc.relation.referencesSun, B., Feng, H., Chen, K. y Zhu, X. (2016). A deep learning framework of quanti zed compressed sensing for wireless neural recording. IEEE Access, 4, 5169-5178. http://doi.org/10.1109/ACCESS.2016.2604397spa
dc.relation.referencesSundermeyer, M., Ney, H. y Schlüter, R. (2015). From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Transactions on Au dio, Speech, and Language Processing, 23(3), 517-529. http://doi.org/10.1109/ TASLP.2015.2400218spa
dc.relation.referencesSutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. http://doi.org/10.1109/ TNN.1998.712192spa
dc.relation.referencesTabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cogniti ve radio networks: Coexistence perspective. En 2012 IEEE Symposium on Wire less Technology and Applications (ISWTA 2012) (pp. 177-181). IEEE. http://doi. org/10.1109/ISWTA.2012.6373837spa
dc.relation.referencesTahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU: International Journal of Electronics and Communications, 77, 139-148. http:// doi.org/https://doi.org/10.1016/j.aeue.2017.04.033spa
dc.relation.referencesTaj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. En 17th Eu ropean Wireless 2011. Sustainable Wireless Technologies. VDE. https://ieeexplore. ieee.org/document/5898018spa
dc.relation.referencesTanino, T., Tanaka, T. e Inuiguchi, M. (eds.). (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer.spa
dc.relation.referencesTragos, E. Z., Zeadally, S., Fragkiadakis, A. G. y Siris, V. A. (2013). Spectrum as signment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys & Tutorials, 15(3), 1108-1135. http://doi.org/10.1109/ SURV.2012.121112.00047spa
dc.relation.referencesTrigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems ne gotiation approach for handoff in mobile cognitive radio networks. En 2012 5th International Conference on New Technologies, Mobility and Security (NTMS 2012). IEEE. http://doi.org/10.1109/NTMS.2012.6208687spa
dc.relation.referencesTripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. http://doi.org/10.1007/s11277-018-6075-9spa
dc.relation.referencesTsiropoulos, G. I., Dobre, O. A., Ahmed, M. H. y Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. http://doi. org/10.1109/COMST.2014.2362796spa
dc.relation.referencesTumuluru, V. K., Wang, P. y Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. En 2010 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2010.5502348spa
dc.relation.referencesUyanik, G. S., Canberk, B. y Oktug, S. (2012). Predictive spectrum decision mecha nisms in cognitive radio networks. En 2012 IEEE Globecom Workshops. http:// doi.org/10.1109/GLOCOMW.2012.6477703spa
dc.relation.referencesValenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and obser vations. En 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/ ICST.CROWNCOM2010.922spa
dc.relation.referencesValero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no supervisado a la clasificación de consumidores eléctricos. Club Universitario.spa
dc.relation.referencesVásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research, 10(21), 42.259-42.264.spa
dc.relation.referencesVasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wire less ad hoc networks. Journal of Network and Computer Applications, 120, 78-118. http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006spa
dc.relation.referencesVeeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks for action recognition. En 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46spa
dc.relation.referencesVelmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011spa
dc.relation.referencesWang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/ JSTSP.2010.209321spa
dc.relation.referencesWang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. En 2009 IEEE International Confer ence on Communications. IEEE. http://doi.org/10.1109/ICC.2009.51991spa
dc.relation.referencesWang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/ MCOM.2011.5723803spa
dc.relation.referencesWang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408spa
dc.relation.referencesWang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spec trum handoffs in cognitive radio networks. IEEE Transactions on Mobile Comput ing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.15spa
dc.relation.referencesWang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j. comcom.2015.09.016spa
dc.relation.referencesWang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Net works, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175spa
dc.relation.referencesWei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855- 2872. http://doi.org/10.1016/j.comnet.2005.11.002spa
dc.relation.referencesWei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En Interna tional Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi. org/10.1109/ICNC.2008.504spa
dc.relation.referencesWillkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. En 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi. org/10.1109/DYSPAN.2008.48spa
dc.relation.referencesWinston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network for TV idle channel prediction in cognitive radio using particle swarm optimiza tion. En Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/ CICSYN.2013.68spa
dc.relation.referencesWoods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634spa
dc.relation.referencesWooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.spa
dc.relation.referencesWu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal trans mission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/ TCOMM.2016.2561936spa
dc.relation.referencesXenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analy sis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4spa
dc.relation.referencesXing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http:// doi.org/10.1109/MWC.2013.6507399spa
dc.relation.referencesXing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE In focom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941spa
dc.relation.referencesXu, G. y Lu, Y. (2006). Channel and modulation selection based on support vec tor machines for cognitive radio. En 2006 IEEE International Conference on Wireless Communications, Networking and Mobile Computing. IEEE. http://doi. org/10.1109/WiCOM.2006.181spa
dc.relation.referencesYang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS pro vision across WLAN and WMAN. En 2008 International Conference on Commu nications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC CAS.2008.4657833spa
dc.relation.referencesYang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of multiple attri butes scheme to enhance handoff efficiency in heterogeneous wireless net works. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j. comcom.2013.06.005spa
dc.relation.referencesYao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets, data mining, and granular computing (vol. 2639). Tianjin, China: Springer.spa
dc.relation.referencesYarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563- 1567). IEEE. http://doi.org/10.1109/VETECF.2007.332spa
dc.relation.referencesYifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning ener gy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. http://doi. org/10.1109/CC.2013.6723882spa
dc.relation.referencesYonghui, C. (2010). Study of the Bayesian networks. En 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). IEEE. http://doi.org/10.1109/EDT.2010.5496612spa
dc.relation.referencesYoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage.spa
dc.relation.referencesYoussef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient coopera tive spectrum detection in cognitive radio systems using wavelet fusion. En 2018 International Conference on Computing, Electronic and Electrical Engineering. IEEE. http://doi.org/10.1109/ICECUBE.2018.8610981spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi. org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analyti cal hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/ view/28521/33581spa
dc.relation.referencesZapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://reposi tory.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdfspa
dc.relation.referencesZhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communi cations, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821spa
dc.relation.referencesZhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous net works. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4, pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263spa
dc.relation.referencesZhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spec trum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). IEEE. https://sigport.org/documents/opportunistic-spectrum-access-tempo ral-spatial-reuse-cognitive-radio-networksspa
dc.relation.referencesZhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cogni tive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658. http://doi.org/10.1109/JPROC.2009.2013017spa
dc.relation.referencesZheng, H. y Cao, L. (2005). Device-centric spectrum management. En IEEE Inter national Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56- 65). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542617spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accessrightsOpenAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDecisión espectralspa
dc.subjectRedes de radiospa
dc.subjectRedes de radio cognitivaspa
dc.subjectSimulaciónspa
dc.subjectAlgoritmos colaborativospa
dc.subject.keywordSpectral decisionspa
dc.subject.keywordRadio networksspa
dc.subject.keywordCognitive radio networksspa
dc.subject.keywordSimulationspa
dc.subject.keywordCollaborative algorithmsspa
dc.subject.lembRedes de radio cognitivaspa
dc.subject.lembEspectro radioeléctricospa
dc.titleModelo de decisión espectral colaborativo para redes de radio cognitivaspa
dc.title.titleenglishCollaborative spectral decision model for cognitive radio networksspa
dc.typebookspa
dc.type.driverinfo:eu-repo/semantics/bookspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
INTERNAS_modelo_decision_IMPRESION.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
7 KB
Formato:
Item-specific license agreed upon to submission
Descripción: