Modelado de estructuras FSS mediante resonadores sublambda para el diseño de filtros y antenas integrados en guías de onda
| dc.contributor.advisor | Suarez Fajardo, Carlos Arturo | |
| dc.contributor.author | Diaz Pardo, Ivan Eduardo | |
| dc.contributor.orcid | Suarez Fajardo, Carlos Arturo [0000-0002-1460-5831] | |
| dc.date.accessioned | 2025-11-29T19:06:29Z | |
| dc.date.available | 2025-11-29T19:06:29Z | |
| dc.date.created | 2025-11-05 | |
| dc.description | Esta tesis presenta el desarrollo, modelado y validación de superficies selectivas en frecuencia (FSS), filtros de microondas basados en estructuras metamateriales y antenas en guías de onda. Se propone un modelo teórico para la implementación de filtros en guías de onda, empleando el control del ancho de banda mediante el uso de capas metálicas con celdas de tipo CSRR y Omega, así como el aprovechamiento de la simetría espejo para el acoplamiento y mejora de la selectividad. El estudio analiza la polarizabilidad eléctrica y magnética de los elementos metamateriales y su impacto en la transmisión y reflexión de las ondas, integrando estos parámetros en el diseño de dispositivos compactos y altamente selectivos. A partir de la descripción matemática de los parámetros de dispersión, se establecen modelos que permiten predecir y ajustar la respuesta resonante de las celdas, optimizando la selectividad y el rendimiento de los filtros y el control del haz de radiación en antenas. Lavalidación del modelo se realiza con simulaciones electromagnéticas, fabricación y caracterización experimental de filtros y antenas en guía de onda WR340, en el caso de las antenas se incluyo arreglos de seis celdas CELC para control del haz de radiación y en filtros se empleo celdas CSRR y Omega con simetría espejo en una y dos capas. Los resultados experimentales y numéricos obtenidos demuestran la viabilidad del enfoque propuesto para controlar el ancho de banda y la dirección del haz de radiación en dispositivos de microondas. El uso de la simetría espejo y la optimización de la polarizabilidad de las celdas permiten un ajuste robusto de la respuesta en frecuencia y el diseño eficiente de filtros y antenas compactos. En conclusión, el trabajo realizado constituye una herramienta avanzada para el diseño y optimización de filtros y antenas, aportando soluciones innovadoras para el desarrollo de dispositivos de microondas, con validación experimental y aplicaciones en sistemas de comunicaciones, radares y sensores avanzados. | |
| dc.description.abstract | This thesis presents the development, modeling, and validation of frequency-selective surfaces (FSS), microwave filters based on metamaterial structures, and waveguide antennas. A theoretical model is proposed for the implementation of filters in waveguides, employing bandwidth control through the use of metallic layers with CSRR and Omega-type cells, as well as leveraging mirror symmetry for coupling and enhanced selectivity. The study analyzes the electric and magnetic polarizability of the metamaterial elements and their impact on the transmission and reflection of waves, integrating these parameters into the design of compact and highly selective devices. Based on the mathematical description of scattering parameters, models are established that allow for the prediction and adjustment of the resonant response of the cells, optimizing both the selectivity and performance of the filters, as well as beam control in antennas. The model validation is carried out through electromagnetic simulations, fabrication, and experimental characterization of filters and antennas in WR340 waveguide. For antennas, arrays of six CELC cells were implemented for beam steering, and for filters, CSRR and Omega cells with mirror symmetry were employed in both single-layer and double-layer configurations. The experimental and numerical results obtained demonstrate the viability of the proposed approach for controlling bandwidth and beam direction in microwave devices. The use of mirror symmetry and the optimization of the cell polarizability enable robust tuning of the frequency response and efficient design of compact filters and antennas. In conclusion, the work presented constitutes an advanced tool for the design and optimization of filters and antennas, providing innovative solutions for the development of microwave devices, with experimental validation and applications in communication systems, radars, and advanced sensors. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/99990 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | R. Marqués, J. Baena, J. Martel, F. Medina, F. Falcone, M. Sorolla, and F. Martín, “Novel small resonant electromagnetic particles for metamaterial and filter design,” Proc. ICEAA, vol. 3, pp. 439–442, 2003. | |
| dc.relation.references | I. Diaz, C. A. Suarez Fajardo, J. D. Baena Doello, and H. Guarnizo, “Subwavelength resonator for the design of a waveguide-fed metasurface antenna,” Progress In Electro- magnetics Research C, vol. 156, pp. 113–120, 2025. | |
| dc.relation.references | F. G. L. Bueno, J. S. Gutiérrez, G. S. Gutiérrez, and J. T. Dondé, La regulación de las telecomunicaciones, 1st ed. Miguel Ángel Porrúa, 2007. | |
| dc.relation.references | A. Beléndez et al., “La unificación de luz, electricidad y magnetismo: la "síntesis elec- tromagnética"de maxwell,” 2008. | |
| dc.relation.references | J. W. Prados, G. D. Peterson, and L. R. Lattuca, “Quality assurance of engineering education through accreditation: The impact of engineering criteria 2000 and its global influence.” JOURNAL OF ENGINEERING EDUCATION -WASHINGTON-, no. 1, p. 165, 2005. | |
| dc.relation.references | D. M. Pozar, Microwave engineering, 4th ed. John Wiley & Sons, 2012. | |
| dc.relation.references | J. M. M. Pantoja, Ingeniería de microondas: técnicas experimentales, 1st ed. Pearson Educación, 2002. | |
| dc.relation.references | C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, 2005. | |
| dc.relation.references | D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science, vol. 305, no. 5685, pp. 788–792, 2004. [Online]. Available: http://science.sciencemag.org/content/305/5685/788 | |
| dc.relation.references | D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Applied Physics Letters, vol. 88, no. 4, p. 041109, 2006. [Online]. Available: https://doi.org/10.1063/1.2166681 | |
| dc.relation.references | A. C. Escobar Fajardo, “Control of electromagnetic waves using metamaterials and metasurfaces based on huygens’ sources,” 2022. [Online]. Available: https: //repositorio.unal.edu.co/handle/unal/82098 | |
| dc.relation.references | L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B, vol. 96, p. 235402, Dec 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.96.235402 | |
| dc.relation.references | P. Sakyi, J. Dugan, D. Kundu, T. J. Smy, and S. Gupta, “Waveguide-floquet mapping using surface susceptibilities for passive and active metasurface unit cell characteriza- tion,” IEEE Transactions on Antennas and Propagation, vol. 72, no. 9, pp. 7110–7121, 2024. | |
| dc.relation.references | M. Albooyeh and S. A. Tretyakov, “Robust technique for the polarizability matrix retrie- val of bianisotropic scatterers via their reflection and transmission coefficients,” Physical Review B, vol. 94, no. 24, p. 245428, 2016. | |
| dc.relation.references | E. Kuester, M. Mohamed, M. Piket-May, and C. Holloway, “Averaged transition con- ditions for electromagnetic fields at a metafilm,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2641–2651, 2003. | |
| dc.relation.references | K. Achouri, M. A. Salem, and C. Caloz, “Metasurface synthesis using reduced susceptibi- lity tensors,” in 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 2014, pp. 4–6. | |
| dc.relation.references | S. Tretyakov, Analytical Modeling in Applied Electromagnetics. Artech House, 2003. | |
| dc.relation.references | C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equiva- lents of metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, 2012. | |
| dc.relation.references | J. D. Baena and L. M. Pulido-Mancera, “Controlling the cross-polarization effects of metasurfaces from the lowest to the highest possible value,” in 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (META- MATERIALS). IEEE, 2015, pp. 367–369. | |
| dc.relation.references | C. Huygens, Traité de la Lumiére (Leyden, 1690), 1st ed. vol. 1. Marchad Libraire, 1912, | |
| dc.relation.references | S. R. Rengarajan and Y. Rahmat-Samii, “The field equivalence principle: illustration of the establishment of the non-intuitive null fields.” IEEE Antennas and Propagation Magazine, Antennas and Propagation Magazine, IEEE, IEEE Antennas Propag. Mag, no. 4, p. 122, 2000. [Online]. Avai- lable: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx? direct=true&db=edseee&AN=edseee.868058&lang=es&site=eds-live | |
| dc.relation.references | J. García-García, F. Martín, J. D. Baena, R. Marqués, and L. Jelinek, “On the resonances and polarizabilities of split ring resonators,” Journal of Applied Physics, vol. 98, no. 3, p. 033103, 2005. [Online]. Available: https://doi.org/10.1063/1.2006224 | |
| dc.relation.references | J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Tech- niques, vol. 47, no. 11, pp. 2075–2084, 1999. | |
| dc.relation.references | L. M. P. Mancera and J. D. B. Doello, “Equivalent circuit model for thick split ring resonators and thick spiral resonators,” 2014. [Online]. Available: https://arxiv.org/abs/1403.5144 | |
| dc.relation.references | R. MarquÃ, F. MartÃn, M. Sorolla et al., Metamaterials with negative parameters: theory, design, and microwave applications, 1st ed. John Wiley & Sons, 2011, vol. 183. | |
| dc.relation.references | R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative per- meability and left-handed metamaterials,” Physical Review B, vol. 65, no. 14, p. 144440, 2002. | |
| dc.relation.references | J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo et al., “Equivalent-circuit models for split- ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE transactions on microwave theory and techniques, vol. 53, no. 4, pp. 1451– 1461, 2005. | |
| dc.relation.references | I. E. D. Pardo, C. A. S. Fajardo, and G. A. P. Leguizamón, “A study of the ground plane effect in passband filters using osrr cells,” DYNA, vol. 82, no. 193, pp. 9–15, Septiembre 2015. [Online]. Available: http://bdigital.unal.edu.co/58970/ | |
| dc.relation.references | W. J. Padilla, “Group theoretical description of artificial electromagnetic metama- terials,” Opt. Express, vol. 15, no. 4, pp. 1639–1646, Feb 2007. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-15-4-1639 | |
| dc.relation.references | T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Applied Physics Letters, vol. 93, no. 21, p. 212504, 2008. [Online]. Available: https://doi.org/10.1063/1.3037215 | |
| dc.relation.references | M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 103–106, 2003. | |
| dc.relation.references | F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, “Effective negative-/spl epsiv/ stopband microstrip lines based on complementary split ring reso- nators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280–282, June 2004. | |
| dc.relation.references | J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marques, “Spurious passband suppression in microstrip coupled line band pass filters by means of split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 9, pp. 416–418, Sep. 2004. | |
| dc.relation.references | M. A. Antoniades and G. V. Eleftheriades, “A broadband wilkinson balun using micros- trip metamaterial lines,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 209–212, 2005. | |
| dc.relation.references | F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett., vol. 93, p. 197401, Nov 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.93.197401 | |
| dc.relation.references | H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express, vol. 15, no. 3, pp. 1084–1095, Feb 2007. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-15-3-1084 | |
| dc.relation.references | J. D. Jackson, Classical electrodynamics., 3rd ed. [s.n.], 1962. [Online]. Avai- lable: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx? direct=true&db=cat02229a&AN=med.000031794&lang=es&site=eds-live | |
| dc.relation.references | M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or omega medium,” Microwave and Optical Technology Letters, vol. 5, no. 4, pp. 184– 188, 1992. | |
| dc.relation.references | S. S. Karthikeyan and R. S. Kshetrimayum, “Composite right/left handed transmission line based on open slot split ring resonator,” Microwave and Optical Technology Letters, vol. 52, no. 8, pp. 1729–1731, 2010. | |
| dc.relation.references | G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design. Prentice Hall New Jersey, 1997, vol. 2. | |
| dc.relation.references | L. M. Pulido-Mancera and J. D. Baena, “Theoretical constraints on reflection and trans- mission through metasurfaces,” in 2014 8th International Congress on Advanced Elec- tromagnetic Materials in Microwaves and Optics, 2014, pp. 37–39. | |
| dc.relation.references | S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed. John Wiley & Sons, 1994. | |
| dc.relation.references | C. Poole and I. Darwazeh, Microwave Active Circuit Analysis and Design. Academic Press, 2015. | |
| dc.relation.references | D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett., vol. 85, pp. 2933–2936, Oct 2000. [Online]. Available: https: //link.aps.org/doi/10.1103/PhysRevLett.85.2933 | |
| dc.relation.references | R. E. Collin, Field theory of guided waves. John Wiley & Sons, 1990. | |
| dc.relation.references | N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explora- tions. Wiley, 2006. | |
| dc.relation.references | R. Zhao, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Comparison of chiral metamaterial designs for repulsive casimir force,” Phys. Rev. B, vol. 81, p. 235126, Jun 2010. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.81.235126 | |
| dc.relation.references | J. D. Baena, R. Marqués, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B, vol. 69, p. 014402, Jan 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.69.014402 | |
| dc.relation.references | N. Ortiz, J. D. Baena, M. Beruete, F. Falcone, M. A. G. Laso, T. Lopetegi, R. Marqués, F. Martín, J. García-García, and M. Sorolla, “Complementary split-ring resonator for compact waveguide filter design,” Microwave and Optical Technology Letters, vol. 46, no. 1, pp. 88–92, 2005. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/mop.20909 | |
| dc.relation.references | R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experi- ments,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2572– 2581, 2003. | |
| dc.relation.references | Y. D. Dong, T. Yang, and T. Itoh, “Substrate integrated waveguide loaded by com- plementary split-ring resonators and its applications to miniaturized waveguide filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 9, pp. 2211–2223, 2009. | |
| dc.relation.references | H. Bahrami, M. Hakkak, and A. Pirhadi, “Using complementary split ring resonators (csrr) to design bandpass waveguide filters,” in 2007 Asia-Pacific Microwave Conference, 2007, pp. 1–4. | |
| dc.relation.references | S. D. Amit Bage, “A compact, wideband waveguide bandpass filter using complementary loaded split ring resonators,” Progress In Electromagnetics Research C, vol. 64, pp. 51– 59, 2016. | |
| dc.relation.references | A. Oliva Aparicio, J. Hinojosa Jiménez, F. D. Quesada Pereira, and A. Álvarez Melcón, “Design of rectangular waveguide bandpass filters with transmission zeros using high- qu complementary split-ring resonators with irises,” IEEE Transactions on Microwave Theory and Techniques, vol. 73, no. 2, pp. 1073–1084, 2025. | |
| dc.relation.references | D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65, p. 195104, Apr 2002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.65.195104 | |
| dc.relation.references | D. R. Smith, M. Sazegar, and I. Yoo, “Equivalence of polarizability and circuit mo- dels for waveguide-fed metamaterial elements,” IEEE Transactions on Antennas and Propagation, vol. 73, no. 1, pp. 7–21, 2025. | |
| dc.relation.references | C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett., vol. 110, p. 197401, May 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.110.197401 | |
| dc.relation.references | M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, “Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system at ambient pressure,” Phys. Rev. Lett., vol. 58, pp. 908–910, Mar 1987. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.58.908 | |
| dc.relation.references | R. E. Collin, Foundations for microwave engineering. John Wiley & Sons, 2007. | |
| dc.relation.references | N. Mohamed Mohamed-Hicho, E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Bataller, “Designing slot antennas in finite platforms using characteristic modes,” IEEE Access, vol. 6, pp. 41 346–41 355, 2018. | |
| dc.relation.references | C. A. Balanis, Antenna theory: analysis and design, john wiley & sons ed. John wiley & sons, 2016. | |
| dc.relation.references | D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a waveguide-fed metasurface antenna,” Phys. Rev. Appl., vol. 8, p. 054048, Nov 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.8.054048 | |
| dc.relation.references | M. Boyarsky, M. F. Imani, and D. R. Smith, “Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer,” Opt. Express, vol. 28, no. 16, pp. 23 991–24 004, Aug 2020. [Online]. Available: https://opg.optica.org/oe/abstract.cfm? URI=oe-28-16-23991 | |
| dc.relation.references | I. Yoo, M. F. Imani, T. Sleasman, and D. R. Smith, “Efficient complementary metamaterial element for waveguide-fed metasurface antennas,” Opt. Express, vol. 24, no. 25, pp. 28 686–28 692, Dec 2016. [Online]. Available: https://opg.optica.org/oe/ abstract.cfm?URI=oe-24-25-28686 | |
| dc.rights.acceso | Abierto (Texto Completo) | |
| dc.rights.accessrights | OpenAccess | |
| dc.subject | Antena | |
| dc.subject | Campo Electromagnético | |
| dc.subject | Celda Sublambda | |
| dc.subject | Filtro de Microondas | |
| dc.subject | Frecuencia Selectiva | |
| dc.subject | Guía de Onda | |
| dc.subject | Metamateriales | |
| dc.subject | Resonador Complementario (CSRR) | |
| dc.subject.keyword | Antenna | |
| dc.subject.keyword | Waveguide | |
| dc.subject.keyword | Metamaterials | |
| dc.subject.keyword | Microwaves | |
| dc.subject.keyword | Sublambda Resonator | |
| dc.subject.keyword | Polarizability | |
| dc.subject.keyword | Selective Frequency | |
| dc.subject.lemb | Doctorado en Ingeniería -- Tesis y disertaciones académicas | |
| dc.title | Modelado de estructuras FSS mediante resonadores sublambda para el diseño de filtros y antenas integrados en guías de onda | |
| dc.title.titleenglish | Modeling of FSS structures using subwavelength resonators for the design of integrated waveguide filters and antennas | |
| dc.type | doctoralThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis |
Archivos
Bloque original
1 - 2 de 2
No hay miniatura disponible
- Nombre:
- DiazPardoIvanEduardo2025.pdf
- Tamaño:
- 28.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento de Tesis Doctoral
No hay miniatura disponible
- Nombre:
- Formato Licencia de Uso y Publicación.pdf
- Tamaño:
- 688.13 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
