Modelo Computacional Cognitivo para la predicción de preferencias de usuario, basado en análisis de emociones y preclasificación de contenido,orientado a la visualización de datos
| dc.contributor.advisor | Gaona García, Paulo Alonso | |
| dc.contributor.author | Gélvez Garcia, Nancy Yaneth | |
| dc.contributor.orcid | Gaona García, Paulo Alonso [0000-0002-8758-1412] | |
| dc.date.accessioned | 2025-12-02T17:29:25Z | |
| dc.date.available | 2025-12-02T17:29:25Z | |
| dc.date.created | 2025-11-19 | |
| dc.description | El crecimiento acelerado del ecosistema digital ha intensificado la exposición de las personas a volúmenes masivos de contenido, dificultando la selección informada y oportuna de aquello realmente relevante. Esta tesis aborda ese desafío desde la personalización afectiva: se propone y valida un modelo computacional cognitivo capaz de anticipar preferencias de usuario a partir del análisis de emociones medidas con señales cerebrales (electroencefalografía, EEG) e integradas con autoinforme estandarizado (SAM). El enfoque articula tres componentes: (i) preclasificación reproducible de estímulos visuales mediante un pipeline de MLOps, (ii) transformación EEG→SAM bajo una heurística formalizada y controlada por sincronía temporal, y (iii) predicción personalizada con Gaussian Process Regression(GPR), todo ello operado en el prototipo web EPRA y respaldado por APIs y una base experimental trazable. La validación empírica se realizó mediante un caso de estudio con imágenes informativas de alta carga afectiva relacionadas con el conflicto armado en Colombia, presentadas en un entorno controlado. Participaron 15 estudiantes (16–25 anos) a lo largo de 5 sesiones, con 5 estímulos por sesión (375 observaciones en total). El protocolo temporal por estimulo (5,s basal, 30,s de exposición y 15,s para SAM) garantizo la alineación determinista entre EEG y autoinforme. Los resultados muestran una concordancia positiva entre rutas: correlación global EEG–SAM de r ≈0,53 en valencia y r ≈0,36 en activación, con discrepancias absolutas medias MAE ≈ 1,6 en escala 1–9. Se observo heterogeneidad Inter sujeto compatible con perfiles afectivos individuales, lo que respalda el uso de modelos GPR por usuario. Además, se evidencio una adaptación temprana (mejora entre las primeras sesiones), manteniendo la trazabilidad de datos y la reproducibilidad del flujo extremo a extremo. Los aportes de la tesis se sintetizan en: (i) integración conceptual de rutas neurofisiológica (EEG) y subjetiva (SAM) en un modelo orientado a preferencias; (ii) formalización metodológica de la heurística EEG→SAM, diagnóstico de sesgo y evaluación longitudinal con métricas robustas; (iii) materialización técnica en EPRA (MLOps, Clean Architecture, frontend por componentes, APIs y esquema de datos); y (iv) evidencia empírica con un conjunto de datos documentado y replicable. En conjunto, el modelo y su prototipo demuestran viabilidad y utilidad para personalizar la experiencia de visualización de información con base en estados emocionales, y sientan una base transferible hacia dominios como analítica visual, educación y neuromarketing. | |
| dc.description.abstract | The rapid expansion of the digital ecosystem has intensified people’s exposure to massive volumes of content, complicating the timely selection of what is truly relevant. This thesis addresses that challenge through affective personalization: it proposes and validates a cognitive computational model able to anticipate user preferences from emotion analysis measured with electroencephalography (EEG) and integrated with standardized selfreport (SAM). The approach articulates three components: (i) reproducible preclassification of visual stimuli via an MLOps pipeline,(ii) a formalized and time synchronized EEG→SAM transformation heuristic, and (iii) personalized prediction with Gaussian Process Regression (GPR). All of this runs in the EPRA web prototype, backed by APIs and a traceable experimental database. Empirical validation was conducted using a case study of information-rich images with high affective load related to the Colombian armed conflict, presented in a controlled web environment. A total of 15 students (16–25 years) completed 5 sessions each, with 5 stimuli per session (375 observations in total). The timing per stimulus (5s baseline, 30s exposure, 15s SAM) guaranteed deterministic alignment between EEG and self-report. The results show positive concordance between measurement routes: global EEG–SAM correlation of r ≈ 0,53 for valence and r ≈0,36 for arousal, with mean absolute discrepancies MAE≈1,6 (1–9 scale). We observed inter-subject heterogeneity consistent with individualized affective profiles, supporting user-specific GPR models. In addition, there was evidence of early adaptation (improvement across the first sessions), while maintaining end-to end data traceability and reproducibility. The thesis contributions are fourfold: (i) a conceptual integration of neurophysiological (EEG) and subjective (SAM) routes within a preference oriented model; (ii) methodological formalization of the EEG→SAM heuristic, bias diagnostics, and longitudinal evaluation with robust metrics; (iii) technical materialization in EPRA (MLOps, Clean Architecture, component-based frontend, APIs, and data schema); and (iv) empirical evidence with a documented, replicable dataset. Taken together, the model and prototype demonstrate feasibility and utility for personalizing information visualization based on emotional state, and provide a transferable foundation for domains such as visual analytics, education, and neuromarketing. | |
| dc.format.mimetype | ||
| dc.identifier.uri | http://hdl.handle.net/11349/100019 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Distrital Francisco José de Caldas | |
| dc.relation.references | [1] H. O’Brien, User Engagement Research and Practice (Synthesis Lectures on Information Concepts, Retrieval, and Services). Cham: Springer, 2025, ISBN: 978-3-031-80915-6. DOI: 10.1007/978-3-031-80916-3. | |
| dc.relation.references | [2] M. A. Anderson, C. A. Carnagey y J. Eubanks, ((Exposure to violent media: The effects on aggressive behavior, cognition, and affect)), Journal of Clinical Child & Adolescent Psychology, vol. 39, n.o 3, págs. 282-292, 2020. DOI: 10.1080/15374416.2020.1712356. | |
| dc.relation.references | [3] L. M. McLaughlin y K. Nolen-Hoeksema, ((Violent media and cognitive control: Neural and behavioral ef- fects)), Cognitive, Affective, & Behavioral Neuroscience, vol. 21, n.o 4, págs. 745-757, 2021. DOI: 10.3758/ s13415-021-00891-2. | |
| dc.relation.references | [4] P. Fanti, C. Demetriou y A. Georgiou, ((Emotional and cognitive responses to violent and non-violent visual stimuli: Evidence from event-related potentials)), Frontiers in Human Neuroscience, vol. 15, pág. 624 395, 2021. DOI: 10.3389/fnhum.2021.624395. | |
| dc.relation.references | [5] F. Ricci, L. Rokach y B. Shapira, eds., Recommender Systems Handbook, 3rd ed. Springer, 2022. DOI: 10. 1007/978-1-0716-2197-4. | |
| dc.relation.references | [6] T. Hasan y R. Bunescu, ((A Survey of Affective Recommender Systems: Modeling Attitudes, Emotions, and Moods for Personalization)), arXiv, 2025. | |
| dc.relation.references | [7] H. Tran, T. Le, A. Do, T. Vu, S. Bogaerts y B. Howard, ((Emotion-Aware Music Recommendation)), en Procee- dings of the AAAI Conference on Artificial Intelligence, jul. de 2024. | |
| dc.relation.references | [8] E. Jing, Y. Liu, Y. Chai et al., ((Emotion-aware Personalized Music Recommendation with a Heterogeneity- aware Deep Bayesian Network)), arXiv, 2024. | |
| dc.relation.references | [9] Z. Zhao, J. Yang, Y. Zhao y K. Xu, ((Deep Emotion Recognition and Affective Computing in Big Data Era)), IEEE Transactions on Multimedia, vol. 24, págs. 3439-3460, 2022. DOI: 10.1109/TMM.2022.3143429. | |
| dc.relation.references | [10] R. Pillalamarri y U. Shanmugam, ((A review on EEG-based multimodal learning for emotion recognition)), Artificial Intelligence Review, vol. 58, 2025. DOI: 10.1007/s10462-025-11126-9. | |
| dc.relation.references | [11] W.-L. Zheng y B.-L. Lu, ((Advances in EEG-based Emotion Recognition: Deep Learning Perspectives)), IEEE Transactions on Cognitive and Developmental Systems, vol. 12, n.o 3, págs. 574-587, 2020. DOI: 10.1109/ TCDS.2020.2999054. | |
| dc.relation.references | [12] H. Luo, H. Li, W. Tao, Y. Yang, C.-I. Ieong y F. Wan, ((A Portable and Affordable Four-Channel EEG System for Emotion Recognition with Self-Supervised Feature Learning)), Mathematics, vol. 13, n.o 10, pág. 1608, 2025. | |
| dc.relation.references | [13] J. Xiong, Y. Li, W. Zhang, R. Chen, L. Gao y J. Sun, ((A Portable EEG Signal Acquisition Platform Using Dry Electrode Device with ROS Integration)), Frontiers in Neurorobotics, vol. 18, 2024. DOI: 10.3389/fnbot. 2024.1502560. | |
| dc.relation.references | [14] A. C. B. Wearables, ((A Personalized Earbud for Non-invasive, Long-term EEG Monitoring)), Journal of Neural Engineering, 2024. | |
| dc.relation.references | [15] Y. Li, W. Zeng, W. Dong, D. Han y L. Chen, ((A Tale of Single-channel Electroencephalogram: Devices, Datasets, Signal Processing, Applications, and Future Directions)), arXiv, 2024. | |
| dc.relation.references | [16] J. Xiong, Y. Li, W. Zhang, R. Chen, L. Gao y J. Sun, ((A Portable EEG Signal Acquisition Platform Using Dry Electrode Device with ROS Integration)), Frontiers in Neurorobotics, vol. 18, 2024. DOI: 10.3389/fnbot. 2024.1502560. | |
| dc.relation.references | [17] T.-Y. Kim, H. Ko, S.-H. Kim y H.-D. Kim, ((Modeling of recommendation system based on emotional infor- mation and collaborative filtering)), Sensors, vol. 21, n.o 6, pág. 1997, 2021. DOI: 10.3390/s21061997. | |
| dc.relation.references | [18] J. Han, C. Niu et al., ((Quantum Cognition-Inspired EEG-based Recommendation via Graph Neural Net- works)), en Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM), 2024. DOI: 10.1145/3627673.3679564. | |
| dc.relation.references | [19] R. Li, T. Song, W. Zhang, Z. Yu y B. Hu, ((EEG-based Emotion Recognition with Graph Convolutional Neural Networks)), IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, págs. 2223-2233, 2023. DOI: 10.1109/TNSRE.2023.3290105. | |
| dc.relation.references | [20] H. Liu, Y. Zhang, Y. Li y X. Kong, ((Review on Emotion Recognition Based on Electroencephalography)), Frontiers in Computational Neuroscience, vol. 15, pág. 758 212, 2021. DOI: 10 . 3389 / fncom . 2021 . 758212. | |
| dc.relation.references | [21] M. Li, Q. Zhou, X. Wang e Y. Yang, ((Emotion-aware recommendation: EEG-based preference modeling with deep learning techniques)), Information Fusion, vol. 91, págs. 101-113, 2023. DOI: 10.1016/j.inffus. 2022.09.014. | |
| dc.relation.references | [22] S. Bhatia, ((Cognitive Models of Decision Making and Preference)), Trends in Cognitive Sciences, vol. 25, n.o 6, págs. 481-495, 2021. DOI: 10.1016/j.tics.2021.03.002. | |
| dc.relation.references | [23] P. Golnar-Nik, S. Farashi y M. S. Safari, ((The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study)), Physiology and Behavior, vol. 207, págs. 90-98, 2019. DOI: 10.1016/j.physbeh.2019.04.025. | |
| dc.relation.references | [24] B. Gopaluni, A. Tulsyan, B. Chachuat et al., ((Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey)), IEEE Control Systems Magazine, vol. 42, n.o 4, págs. 75-105, 2022. DOI: 10.1109/MCS.2022.3154306. | |
| dc.relation.references | [25] M. Petrelli, ((Machine Learning Workflow)), en Machine Learning for Earth Sciences, ép. Springer Textbooks in Earth Sciences, vol. 1723, Springer, Cham, 2023, págs. 29-58. DOI: 10.1007/978-3-031-35114-3_3. | |
| dc.relation.references | [26] J. Zhao, R. Chen, Y. Gao y L. Li, ((Emotion-Aware Machine Learning in Recommender Systems: A Survey)), IEEE Transactions on Affective Computing, 2023. DOI: 10.1109/TAFFC.2023.3256891. | |
| dc.relation.references | [27] S.-Y. Jeong e Y.-K. Kim, ((Deep Learning-Based Context-Aware Recommender System Considering Contex- tual Features)), Applied Sciences, vol. 12, n.o 1, pág. 45, 2022. DOI: 10.3390/app12010045. | |
| dc.relation.references | [28] G. Adomavicius y A. Tuzhilin, ((Toward the Next Generation of Recommender Systems: A Survey of the State of the Art and Possible Extensions)), IEEE Transactions on Knowledge and Data Engineering, vol. 17, n.o 6, págs. 734-749, 2005. DOI: 10.1109/TKDE.2005.99. | |
| dc.relation.references | [29] M. Polignano, F. Narducci, M. de Gemmis y G. Semeraro, ((Towards Emotion aware Recommender Systems: an Affective Coherence Model)), en Advances in Intelligent Systems and Computing, ép. AISC, vol. 207, Sprin- ger, 2020, págs. 141-150. | |
| dc.relation.references | [30] O. A. S. Ibrahim, E. M. G. Younis, E. A. Mohamed y W. N. Ismail, ((Revisiting recommender systems: an investigative survey)), Soft Computing, 2025. DOI: 10.1007/s00521-024-10828-5. | |
| dc.relation.references | [31] B. Kolb e I. Q. Whishaw, Fundamentals of Human Neuropsychology, 8th. Worth Publishers, 2021. | |
| dc.relation.references | [32] P. A. Kragel, L. J. Chang, K. S. LaBar y T. D. Wager, ((Emotion schemas are embedded in the human visual system)), Science Advances, vol. 7, n.o 24, eabf1211, 2021, ISSN: 2375-2548. DOI: 10 . 1126 / sciadv . abf1211. | |
| dc.relation.references | [33] P. Kumar, S. Singh y R. Sharma, ((Emotion Recognition Using EEG Signals: A Comprehensive Review and Future Perspectives)), IEEE Access, vol. 10, págs. 112 122-112 138, 2022. DOI: 10.1109/ACCESS.2022. 3224567. | |
| dc.relation.references | [34] S. Xue, Y. Lin, X. Li, M. Saleem y R. C. H. Chen, ((Alpha and beta power in EEG as biomarkers of relaxation and stress: A systematic EEG band analysis in emotional states)), Psychophysiology, vol. 59, n.o 7, e14012, 2022. DOI: 10.1111/psyp.14012. | |
| dc.relation.references | [35] M. M. Bradley y P. J. Lang, ((Measuring emotion: The self-assessment manikin and the semantic differential)), Journal of Behavior Therapy and Experimental Psychiatry, vol. 25, n.o 1, págs. 49-59, 1994. DOI: 10.1016/ 0005-7916(94)90063-9. | |
| dc.relation.references | [36] L. Betella y P. F. M. J. Verschure, ((The Affective Slider: A Digital Self-Assessment Scale for the Measurement of Human Emotions)), IEEE Transactions on Affective Computing, vol. 7, n.o 3, págs. 310-323, 2016. DOI: 10.1109/TAFFC.2016.2581688. | |
| dc.relation.references | [37] Y. Geng, S. Shi y X. Hao, ((Deep learning-based EEG emotion recognition: a comprehensive review)), Neural Computing and Applications, vol. 35, págs. 1919-1950, 2023. DOI: 10.1007/s00521-023-08023-y. | |
| dc.relation.references | [38] W. Lu, H. Liu, H. Ma, T.-P. Tan y L. Xia, ((Hybrid Transfer Learning Strategy for Cross-Subject EEG Emotion Recognition)), Frontiers in Human Neuroscience, vol. 17, 2023. DOI: 10.3389/fnhum.2023.1280241. | |
| dc.relation.references | [39] R. Sun, The Cambridge Handbook of Computational Psychology. Cambridge University Press, 2008. | |
| dc.relation.references | [40] I. Kotseruba y J. K. Tsotsos, ((40 years of cognitive architectures: core cognitive abilities and practical applica- tions)), Artificial Intelligence Review, vol. 53, págs. 17-94, 2020. DOI: 10.1007/s10462-018-9646-y. | |
| dc.relation.references | [41] I. Kotseruba y J. K. Tsotsos, ((The Computational Evolution of Cognitive Architectures)), en The Oxford Hand- book of Computational Cognitive Sciences, R. Sun, ed., Oxford University Press, 2023. DOI: 10 . 1093 / oxfordhb/9780198756810.013.3. | |
| dc.relation.references | [42] J. R. Busemeyer y Z. Wang, ((Computational models of decision-making: From behavioral to neural levels of analysis)), Current Directions in Psychological Science, vol. 28, n.o 5, págs. 484-491, 2019. DOI: 10.1177/ 0963721419855657. | |
| dc.relation.references | [43] N. Garg, R. Garg, A. Anand y V. Baths, ((Decoding the neural signatures of valence and arousal from portable EEG headset)), Frontiers in Human Neuroscience, vol. 16, pág. 1 051 463, 2022. DOI: 10.3389/fnhum. 2022.1051463. | |
| dc.relation.references | [44] V. G. M. Murillo, D. E. P. Avendano, F. R. Lopez y J. M. G. Calleros, ((A Systematic Literature Review on the Hybrid Approaches for Recommender Systems)), Computación y Sistemas, vol. 26, n.o 1, 2022. DOI: 10.13053/cys-26-1-4180. | |
| dc.relation.references | [45] A. R. Damasio, Descartes’ Error: Emotion, Reason, and the Human Brain. G.P. Putnam’s Sons, 1994. | |
| dc.relation.references | [46] H. Liu, Y. Zhang, Y. Li y X. Kong, ((Review on Emotion Recognition Based on Electroencephalography)), Frontiers in Computational Neuroscience, vol. 15, 2021. DOI: 10.3389/fncom.2021.758212. | |
| dc.relation.references | [47] J. R. Busemeyer y J. T. Townsend, ((Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in an Uncertain Environment)), Psychological Review, vol. 100, n.o 3, págs. 432-459, 1993. DOI: 10. 1037/0033-295X.100.3.432. | |
| dc.relation.references | [48] N. A. Taatgen, ((Cognitive Models in Human-Computer Interaction)), Annual Review of Human Factors and Ergonomics, vol. 17, págs. 173-197, 2022. DOI: 10.1146/annurev-human-102120-115737. | |
| dc.relation.references | [49] A. Oltramari et al., ((Integrating Cognitive Architectures with Neuro-Symbolic Components for High-Level Reasoning in AI Systems)), Journal of Artificial Intelligence Research, 2023. DOI: 10 . 1162 / jair _ a _ 01234. | |
| dc.relation.references | [50] A. Tusche, C. L. Camerer y C. Ruff, ((Neural mechanisms of preference formation)), Neuron, vol. 109, n.o 19, págs. 3126-3138, 2021. | |
| dc.relation.references | [51] A. B. Authors, ((Economic and social values in the brain: evidence from vmPFC lesion studies)), Frontiers in Neurology, vol. 14, pág. 1 198 262, 2023. | |
| dc.relation.references | [52] A. Authors y B., ((Using synchronized brain rhythms to bias memory-guided decisions)), eLife, e92033, 2024. | |
| dc.relation.references | [53] A. Authors y B., ((Dorsomedial and ventromedial prefrontal cortex lesions differentially affect social influence and temporal discounting)), PLOS Biology, 2025. | |
| dc.relation.references | [54] E. S. Finn y D. S. Bassett, ((Brain connectivity and prediction of individual behavior: Advances and applica- tions)), NeuroImage, vol. 225, pág. 117 429, 2021. DOI: 10.1016/j.neuroimage.2020.117429. | |
| dc.relation.references | [55] M. S. Aldayel, M. Ykhlef y A. Al-Nafjan, ((Recognition of Consumer Preference by Analysis and Classification of EEG Signals)), Frontiers in Human Neuroscience, vol. 14, pág. 604 639, 2021. DOI: 10.3389/fnhum. 2020.604639. | |
| dc.relation.references | [56] M. Soleymani, F. Villaro-Dixon y T. Pun, ((Multimodal physiological emotion recognition and preference pre- diction)), IEEE Transactions on Affective Computing, vol. 12, n.o 4, págs. 1048-1059, 2021. DOI: 10.1109/ TAFFC.2019.2941150. | |
| dc.relation.references | [57] D. Sander y L. Nummenmaa, ((Reward and emotion: an affective neuroscience approach)), Current Opinion in Behavioral Sciences, vol. 39, págs. 161-167, 2021. DOI: 10.1016/j.cobeha.2021.03.016. | |
| dc.relation.references | [58] K. L. Bernacki, J. A. Greene y N. G. Lobczowski, ((A Systematic Review of Research on Personalized Lear- ning: Personalized Learning and the Learning Sciences)), Educational Psychology Review, vol. 33, n.o 4, págs. 1465-1525, 2021. DOI: 10.1007/s10648-021-09615-8. | |
| dc.relation.references | [59] S. Yano, T. Sakatani, C. Yokose, S. Awano, A. Tanaka y K. S. Lawrence, ((Wearable, Integrated EEG–fNIRS Technologies: A Review)), Sensors, vol. 21, n.o 2, pág. 513, 2021. DOI: 10.3390/s21020513. | |
| dc.relation.references | [60] J. I. Glaser, A. S. Benjamin, R. H. Chowdhury, M. G. Perich, L. E. Miller y K. P. Kording, ((Machine Learning for Neural Decoding)), eNeuro, vol. 7, n.o 4, ENEURO.0502-19.2020, 2020. DOI: 10 . 1523 / ENEURO . 0502-19.2020. | |
| dc.relation.references | [61] H. Liu, Y. Zhang, Y. Li y X. Kong, ((Review on Emotion Recognition Based on Electroencephalography)), Frontiers in Computational Neuroscience, vol. 15, pág. 758 212, 2021. DOI: 10 . 3389 / fncom . 2021 . 758212. | |
| dc.relation.references | [62] Y. Zhang, Z. Yin, X. Chen et al., ((Deep learning-based EEG emotion recognition: Current trends and recent advances)), Frontiers in Psychology, vol. 14, pág. 1 126 994, 2023. DOI: 10.3389/fpsyg.2023.1126994. | |
| dc.relation.references | [63] S. Koelstra, M. Soleymani e I. Patras, ((Unsupervised Clustering of EEG Signals for Emotion Recognition)), IEEE Transactions on Affective Computing, vol. 12, n.o 2, págs. 432-445, 2021. DOI: 10.1109/TAFFC. 2018.2871636. | |
| dc.relation.references | [64] A. Craik, Y. He y J. L. Contreras-Vidal, ((Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review)), Journal of Neural Engineering, vol. 16, n.o 3, pág. 031 001, 2019. DOI: 10 . 1088 / 1741 - 2552/ab0ab5. | |
| dc.relation.references | [65] W. Zheng, W. Liu e Y. Song, ((Emotion-aware recommender systems: A survey and future directions)), Infor- mation Fusion, vol. 72, págs. 85-102, 2021. DOI: 10.1016/j.inffus.2021.01.008. | |
| dc.relation.references | [66] D.-Y. Choi, D.-H. Kim y B. C. Song, ((Multimodal Attention Network for Continuous-Time Emotion Recog- nition Using Video and EEG Signals)), IEEE Access, vol. 8, págs. 203 814-203 826, 2020. DOI: 10.1109/ ACCESS.2020.3036877. | |
| dc.relation.references | [67] M. Jafari, A. Shoeibi, M. Khodatars et al., ((Emotion recognition in EEG signals using deep learning methods: A review)), Computers in Biology and Medicine, vol. 157, pág. 107 450, 2023. DOI: 10.1016/j.compbiomed. 2023.107450. | |
| dc.relation.references | [68] R. A. Ramadan y A. V. Vasilakos, ((Brain–Computer Interface: Control Signals Review)), Neurocomputing, vol. 426, págs. 1-18, 2021, ISSN: 0925-2312. DOI: 10.1016/j.neucom.2020.10.091. | |
| dc.relation.references | [69] Y. Liu, O. Sourina, M. K. Nguyen, L. Wang y D. D. Nguyen, ((Real-Time EEG-Based Human Emotion Re- cognition and Visualization)), Frontiers in Neuroscience, vol. 14, pág. 594, 2020. DOI: 10.3389/fnins. 2020.00594. | |
| dc.relation.references | [70] R. Sharma y H. K. Meena, ((Emerging Trends in EEG Signal Processing: A Systematic Review)), SN Computer Science, vol. 5, n.o 415, págs. 1-34, 2024. DOI: 10.1007/s42979-024-02773-w. | |
| dc.relation.references | [71] J. A. Uriguen y B. Garcia-Zapirain, ((EEG Artifact Removal—State-of-the-Art and Guidelines)), Journal of Neural Engineering, vol. 12, n.o 3, pág. 031 001, 2015. DOI: 10.1088/1741-2560/12/3/031001. | |
| dc.relation.references | [72] M. Chaumon, D. V. M. Bishop y N. A. Busch, ((A practical guide to the selection of independent components of the electroencephalogram for artifact correction)), Journal of Neuroscience Methods, vol. 250, págs. 47-63, 2015. DOI: 10.1016/j.jneumeth.2015.02.025. | |
| dc.relation.references | [73] W. Mumtaz, S. Rasheed y A. Irfan, ((Review of challenges associated with the EEG artifact removal methods)), Biomedical Signal Processing and Control, vol. 68, pág. 102 741, 2021. DOI: 10.1016/j.bspc.2021. 102741. | |
| dc.relation.references | [74] S. Coelli, A. Calcagno, C. M. Cassani et al., ((Selecting methods for a modular EEG pre-processing pipeline: An objective comparison)), Biomedical Signal Processing and Control, vol. 90, pág. 105 830, 2024. DOI: 10. 1016/j.bspc.2023.105830. | |
| dc.relation.references | [75] M. K. Islam, A. Rastegarnia y Z. Yang, ((Electroencephalography Signal Processing: A Comprehensive Review and Analysis)), Sensors, vol. 23, n.o 14, pág. 6434, 2023. DOI: 10.3390/s23146434. | |
| dc.relation.references | [76] H. Banville, S. U. N. Wood, C. Aimone, D.-A. Engemann y A. Gramfort, ((Robust learning from corrup- ted EEG with dynamic spatial filtering)), NeuroImage, vol. 251, pág. 118 994, 2022. DOI: 10 . 1016 / j . neuroimage.2022.118994. | |
| dc.relation.references | [77] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk y J. Faubert, ((Deep learning-based electroen- cephalography analysis: A systematic review)), Journal of Neural Engineering, vol. 16, n.o 5, pág. 051 001, 2019. DOI: 10.1088/1741-2552/ab260c. | |
| dc.relation.references | [78] G. Niso, L. R. Krol, E. Combrisson, A.-S. Dubarry, M. A. Elliott et al., ((Good scientific practice in EEG and MEG research: Progress and perspectives)), NeuroImage, vol. 257, pág. 119 056, 2022. DOI: 10.1016/j. neuroimage.2022.119056. | |
| dc.relation.references | [79] S. Lee y J. Yoon, ((Recent advancements in EEG preprocessing and artifact removal techniques)), Sensors, vol. 22, n.o 9, pág. 3330, 2022. DOI: 10.3390/s22093330. | |
| dc.relation.references | [80] H. Zhang, X. Li y M. Xu, ((Hybrid recommendation systems: Recent advances and applications)), IEEE Transac- tions on Cybernetics, vol. 53, n.o 4, págs. 2347-2359, 2023. DOI: 10.1109/TCYB.2022.3155678. | |
| dc.relation.references | [81] C.-B. Kuo y C.-W. Li, ((Applying particle swarm optimization algorithm-based collaborative filtering recom- mender systems)), Applied Soft Computing, vol. 135, pág. 110 038, 2023. DOI: 10.1016/j.asoc.2023. 110038. | |
| dc.relation.references | [82] Y. Wei, P. Chen, Q. Wang, K. Zhou, X. Wang y J.-R. Wen, ((MoCo4SRec: Momentum Contrastive Learning for Sequential Recommendation)), Expert Systems with Applications, vol. 226, pág. 119 911, 2023. DOI: 10. 1016/j.eswa.2023.119911. | |
| dc.relation.references | [83] A. L. Zanon, L. C. D. d. Rocha y M. G. Manzato, ((Balancing the trade-off between accuracy and diversity in re- commender systems with personalized explanations based on Linked Open Data)), Knowledge-Based Systems, vol. 252, pág. 109 333, 2022. DOI: 10.1016/j.knosys.2022.109333. | |
| dc.relation.references | [84] Y. Liu, W. Zhang y L. Chen, ((Personalized Emotion Recognition using Gaussian Processes with EEG Signals)), IEEE Transactions on Affective Computing, vol. 14, n.o 2, págs. 789-803, 2023. DOI: 10.1109/TAFFC. 2021.3056789. | |
| dc.relation.references | [85] Y. Wang, Z. Ma y X. Gao, ((Graph embedding approaches for recommendation systems)), Information Sciences, vol. 584, págs. 537-552, 2022. DOI: 10.1016/j.ins.2021.11.010. | |
| dc.relation.references | [86] A. García Fernández, C. A. Gómez Uribe, J. Sánchez y F. Díaz, ((Exploring the effects of different clustering methods on a news recommender system)), Expert Systems with Applications, vol. 183, pág. 115 341, 2021. DOI: 10.1016/j.eswa.2021.115341. | |
| dc.relation.references | [87] X. Meng, Y. Du, Y. Zhang y X. Han, ((A Survey of Context Aware Recommender Systems: From an Evaluation Perspective)), IEEE Transactions on Knowledge and Data Engineering, vol. 35, n.o 7, págs. 6575-6594, 2023. DOI: 10.1109/TKDE.2021.3137016. | |
| dc.relation.references | [88] L. Wu, P. Sun, C. Zhang y J. Tang, ((Graph Neural Networks in Recommender Systems: A Survey)), ACM Computing Surveys, vol. 55, n.o 5, 97:1-97:37, 2022. DOI: 10.1145/3535101. | |
| dc.relation.references | [89] C. D. Fink, G. E. Newman y U. Haran, ((Let me decide: Increasing user autonomy increases acceptance of recommendations)), Computers in Human Behavior, vol. 150, pág. 108 244, 2024. DOI: 10.1016/j.chb. 2024.108244. | |
| dc.relation.references | [90] T. L. Griffiths y N. Chater, ((Modeling human cognition with computational frameworks: progress, prospects, and challenges)), Nature Reviews Psychology, vol. 1, n.o 5, págs. 343-356, 2022. DOI: 10.1038/s44159- 022-00047-3. | |
| dc.relation.references | [91] J. A. Lapso, G. L. Peterson y M. E. Miller, ((A Hybrid Cognitive Model for Machine Agents)), Cognitive Systems Research, vol. 81, pags. 1-10, 2023. DOI: 10.1016/j.cogsys.2023.02.007. | |
| dc.relation.references | [92] T. L. Griffiths y N. Chater, ((Modeling the Mind: From Rationality to Computation)), Trends in Cognitive Sciences, vol. 26, n.o 7, págs. 538-550, 2022. DOI: 10.1016/j.tics.2022.04.007. | |
| dc.relation.references | [93] M. Fintz, M. Osadchy y U. Hertz, ((Using deep learning to predict human decisions and using cognitive models to explain deep learning models)), Scientific Reports, vol. 12, pág. 4736, 2022. DOI: 10.1038/s41598- 022-08863-0. | |
| dc.relation.references | [94] M. Miller, A. Clark y T. Schlicht, ((Editorial: Predictive Processing and Consciousness)), Review of Philosophy and Psychology, vol. 13, n.o 4, págs. 797-808, 2022. DOI: 10.1007/s13164-022-00666-6. | |
| dc.relation.references | [95] B. M. Lake y M. Baroni, ((Human-like systematic generalization through a meta-learning neural network)), Nature, vol. 623, 2023. DOI: 10.1038/s41586-023-06668-3. | |
| dc.relation.references | [96] A. Bhutoria, ((Personalized Education and Artificial Intelligence in the United States and China: A Critical Re- view of the Role of AI in Personalization)), Computers & Education: Artificial Intelligence, vol. 3, pág. 100 068, 2022. DOI: 10.1016/j.caeai.2022.100068. | |
| dc.relation.references | [97] M. Kummerer, T. S. A. Wallis y M. Bethge, ((Predicting Visual Fixations)), Annual Review of Vision Science, vol. 9, p´ags. 269-291, 2023. DOI: 10.1146/annurev-vision-120822-072528. | |
| dc.relation.references | [98] A. Stocco, C. Sibert, Z. Steine-Hanson et al., ((Analysis of the Human Connectome Data Supports the Notion of a Common Model of Cognition for Human and Human-Like Intelligence Across Domains)), NeuroImage, vol. 235, pág. 118 035, 2021. DOI: 10.1016/j.neuroimage.2021.118035. | |
| dc.relation.references | [99] H. S. Hake, C. Sibert y A. Stocco, ((Inferring a Cognitive Architecture from Multitask Neuroimaging Data: A Data-Driven Test of the Common Model of Cognition Using Granger Causality)), Topics in Cognitive Science, vol. 14, n.o 4, págs. 845-859, 2022. DOI: 10.1111/tops.12623. | |
| dc.relation.references | [100] T. Zaki y M. N. Islam, ((Neurological and Physiological Measures to Evaluate the Usability and User-Experience (UX) of Information Systems: A Systematic Literature Review)), Computer Science Review, vol. 40, pág. 100 375, 2021. DOI: 10.1016/j.cosrev.2021.100375 | |
| dc.relation.references | [101] A. Martinovici, R. Pieters y T. Erdem, ((Attention Trajectories Capture Utility Accumulation and Predict Brand Choice)), Journal of Marketing Research, vol. 60, n.o 4, págs. 625-645, 2023. DOI: 10.1177/00222437221141052. | |
| dc.relation.references | [102] R. W. Picard, B. W. Schuller, E. Andr´e, J. Gratch y J. Tao, ((Intelligent Signal Processing for Affective Com- puting [From the Guest Editors])), IEEE Signal Processing Magazine, vol. 38, n.o 6, págs. 9-11, 2021. DOI: 10.1109/MSP.2021.3119103. | |
| dc.relation.references | [103] S. Brdnik, T. Hericko y B. Sumak, ((Intelligent User Interfaces and Their Evaluation: A Systematic Mapping Study)), Sensors, vol. 22, n.o 15, pág. 5830, 2022. DOI: 10.3390/s22155830. | |
| dc.relation.references | [104] C. Cheng y O. V. Ebrahimi, ((A meta-analytic review of gamified interventions in mental health enhancement)), Computers in Human Behavior, vol. 141, pág. 107 621, 2023. DOI: 10.1016/j.chb.2022.107621. | |
| dc.relation.references | [105] H. L. O’Brien, I. Roll, A. Kampen y N. Davoudi, ((Rethinking (Dis)engagement in Human–Computer Inter- action)), Computers in Human Behavior, vol. 128, pág. 107 109, 2022. DOI: 10 . 1016 / j . chb . 2021 . 107109. | |
| dc.relation.references | [106] P. Kuppens, K. R. Scherer y B. de Gelder, ((Emotion measurement in neuroscience: From lab to real world applications)), Journal of Neuroscience Methods, vol. 371, pág. 109 500, 2022. DOI: 10.1016/j.jneumeth. 2022.109500. | |
| dc.relation.references | [107] A. Grady, N. Pearson, H. Lamont et al., ((The Effectiveness of Strategies to Improve User Engagement With Digital Health Interventions Targeting Nutrition, Physical Activity, and Overweight and Obesity: Systematic Review and Meta-Analysis)), Journal of Medical Internet Research, vol. 25, e47987, 2023. DOI: 10.2196/ 47987. | |
| dc.relation.references | [108] D. Lopez Paz, C. Molnar y G. Varoquaux, ((Choosing and Reporting Validation Strategies in Predictive Mo- deling: Best Practices and Common Pitfalls)), Analytica Chimica Acta, vol. 1275, pág. 341 532, 2023. DOI: 10.1016/j.aca.2023.341532. | |
| dc.relation.references | [109] B. Efron, ((Resampling Plans and the Estimation of Prediction Error)), Stats, vol. 4, n.o 4, págs. 1091-1115, 2021. DOI: 10.3390/stats4040063. | |
| dc.relation.references | [110] A. Saltelli y D. Borgonovo, ((Sensitivity Analysis: A Review and Recent Advances)), Reliability Engineering & System Safety, vol. 215, pág. 107 789, 2021. | |
| dc.relation.references | [111] Y. Li, T. Zhang, Y. Wang, C. Xu y B. Zhang, ((A Comprehensive Evaluation Framework for Deep Model Ro- bustness)), Pattern Recognition, vol. 139, pág. 109 434, 2023. DOI: 10.1016/j.patcog.2023.109434. | |
| dc.relation.references | [112] M. Feurer y F. Hutter, ((Hyperparameter Optimization: Foundations, Algorithms, and Applications)), Journal of Machine Learning Research, vol. 24, n.o 86, págs. 1-59, 2023. | |
| dc.relation.references | [113] A. Vehtari, J. Gabry, Y. Yao, D. Simpson y A. Gelman, ((Pareto Smoothed Importance Sampling Leave-One- Out Cross-Validation)), Journal of Machine Learning Research, vol. 25, n.o 160, págs. 1-41, 2024. | |
| dc.relation.references | [114] J. Pineau, P. Vincent-Lamarre et al., ((Improving Reproducibility in Machine Learning Research: A Report from the NeurIPS 2019 Reproducibility Program)), Journal of Machine Learning Research, vol. 22, n.o 164, págs. 1-20, 2021. | |
| dc.relation.references | [115] V. Chen, J. Li, J. S. Kim, G. Plumb y A. Talwalkar, ((Interpretable Machine Learning: Moving from Mythos to Diagnostics)), Communications of the ACM, vol. 65, n.o 8, págs. 43-50, 2022. DOI: 10.1145/3511299. | |
| dc.relation.references | [116] S. Zhang, L. Yao y L. Sun, ((Personalized emotion-aware recommendation: A deep learning perspective)), Information Fusion, vol. 81, págs. 16-27, 2022. DOI: 10.1016/j.inffus.2021.11.003. | |
| dc.relation.references | [117] M. Salminen, S. Jarvela, I. Kosunen et al., ((Meditating in a neurofeedback virtual reality: effects on sense of presence, meditation depth and brain oscillations)), Behaviour & Information Technology, vol. 43, n.o 12, págs. 2750-2764, 2024. DOI: 10.1080/0144929X.2023.2258231. | |
| dc.relation.references | [118] B. Pester, B. Russig, O. Winke, C. Ligges, R. Dachselt y S. Gumhold, ((Understanding multi-modal brain network data: An immersive 3D visualization approach)), Computers & Graphics, vol. 106, págs. 88-97, 2022. DOI: 10.1016/j.cag.2022.05.024. | |
| dc.relation.references | [119] K. Koonsanit, T. Tsunajima y N. Nishiuchi, ((Evaluation of Strong and Weak Signifiers in a Web Interface Using Eye-Tracking Heatmaps and Machine Learning)), en Computer Information Systems and Industrial Ma- nagement (CISIM 2021), ép. Lecture Notes in Computer Science, vol. 12883, Springer, 2021, págs. 203-213. DOI: 10.1007/978-3-030-84340-3_16. | |
| dc.relation.references | [120] A. Martinez y S. Behrens, ((3D brain network visualizations in cognitive neuroscience)), NeuroImage, vol. 227, pág. 117 621, 2021. DOI: 10.1016/j.neuroimage.2021.117621. | |
| dc.relation.references | [121] V. Mikheev, R. Skukies y B. V. Ehinger, ((The Art of Brainwaves: A Survey on Event-Related Potential Visua- lization Practices)), Aperture Neuro, vol. 4, 2024. DOI: 10.52294/001c.116386. | |
| dc.relation.references | [122] D. Arney, Y. Zhang, L. R. Kennedy-Metz, R. D. Dias, J. M. Goldman y M. A. Zenati, ((An Open-Source, Inter- operable Architecture for Generating Real-Time Surgical Team Cognitive Alerts from Heart-Rate Variability Monitoring)), Sensors, vol. 23, n.o 8, pág. 3890, 2023. DOI: 10.3390/s23083890. | |
| dc.relation.references | [123] Y. Chen y P. Zhang, ((Adaptive learning mechanisms in user-centered AI systems)), IEEE Access, vol. 10, págs. 47 189-47 201, 2022. DOI: 10.1109/ACCESS.2022.3173670. | |
| dc.relation.references | [124] B. Shang, F. Duan, R. Fu et al., ((EEG-based investigation of effects of mindfulness meditation training on state and trait by deep learning and traditional machine learning)), Frontiers in Human Neuroscience, vol. 17, pág. 1 033 420, 2023. DOI: 10.3389/fnhum.2023.1033420. | |
| dc.relation.references | [125] E. Cioffi, A. Hutber, R. Molloy et al., ((EEG-based sensorimotor neurofeedback for motor neurorehabilitation in children and adults: A scoping review)), Clinical Neurophysiology, vol. 167, p´ags. 143-166, 2024. DOI: 10.1016/j.clinph.2024.08.009. | |
| dc.relation.references | [126] G. Ciccarelli, G. Federico, G. Mele et al., ((Simultaneous real-time EEG-fMRI neurofeedback: A systematic review)), Frontiers in Human Neuroscience, vol. 17, pág. 1 123 014, 2023. DOI: 10.3389/fnhum.2023. 1123014. | |
| dc.relation.references | [127] X. Lan, Y. Wu y N. Cao, ((Affective Visualization Design: Leveraging the Emotional Impact of Data)), IEEE Transactions on Visualization and Computer Graphics, vol. 30, n.o 1, págs. 1-11, 2024. DOI: 10 . 1109 / TVCG.2023.3327385. | |
| dc.relation.references | [128] J. Li y H. Sun, ((Long-term user loyalty in adaptive recommendation systems)), International Journal of Human- Computer Studies, vol. 144, pág. 102 488, 2021. DOI: 10.1016/j.ijhcs.2020.102488. | |
| dc.relation.references | [129] X. Lan, Y. Wu y N. Cao, ((Affective Visualization Design: Leveraging the Emotional Impact of Data)), IEEE Transactions on Visualization and Computer Graphics, vol. 30, n.o 1, págs. 1-11, 2024. DOI: 10 . 1109 / TVCG.2023.3327385. | |
| dc.relation.references | [130] A. P. Cavalcanti, A. Barbosa, R. Carvalho et al., ((Automatic feedback in online learning environments: A systematic literature review)), Computers and Education: Artificial Intelligence, vol. 2, pág. 100 027, 2021. DOI: 10.1016/j.caeai.2021.100027. | |
| dc.relation.references | [131] D. Shah, Q. Xie y Z. Xu, ((Online Learning for Personalized Decision-Making)), Proceedings of the IEEE, vol. 109, n.o 5, págs. 765-789, 2021. DOI: 10.1109/JPROC.2021.3066603. | |
| dc.relation.references | [132] D. Di Mitri, J. Schneider y H. Drachsler, ((Keep Me in the Loop: Real-Time Feedback with Multimodal Data)), International Journal of Artificial Intelligence in Education, vol. 32, n.o 4, págs. 1093-1118, 2022. DOI: 10. 1007/s40593-021-00281-z. | |
| dc.relation.references | [133] P. Ren, Y. Xiao, X. Chang, P. Huang, Z. Li et al., ((A Survey of Deep Active Learning)), ACM Computing Surveys, vol. 54, n.o 9, págs. 1-40, 2022. DOI: 10.1145/3472291. | |
| dc.relation.references | [134] X. Wang y M. Yin, ((Effects of Explanations in AI-Assisted Decision Making: Principles and Comparisons)), ACM Transactions on Interactive Intelligent Systems, vol. 12, n.o 4, nov. de 2022. DOI: 10.1145/3519266. | |
| dc.relation.references | [135] X. Meng, Y. Du, Y. Zhang y X. Han, ((A Survey of Context-Aware Recommender Systems: From an Evaluation Perspective)), IEEE Transactions on Knowledge and Data Engineering, vol. 35, n.o 7, págs. 6575-6594, 2023. DOI: 10.1109/TKDE.2022.3187434. | |
| dc.relation.references | [136] U. Noppeney, ((Perceptual Inference, Learning, and Attention in a Multisensory World)), Annual Review of Neuroscience, vol. 44, págs. 449-473, 2021. DOI: 10.1146/annurev-neuro-100120-085519. | |
| dc.relation.references | [137] E. Zangerle, C. Bauer y A. Said, ((Evaluating Recommender Systems: Survey and Framework)), ACM Compu- ting Surveys, vol. 55, n.o 8, 2023. DOI: 10.1145/3556536. | |
| dc.relation.references | [138] R. Tibon, L. Geerligs y K. L. Campbell, ((Bridging the Big (Data) Gap: Levels of Control in Small- and Large- Scale Cognitive Neuroscience Research)), Trends in Neurosciences, vol. 45, n.o 7, págs. 507-516, 2022. DOI: 10.1016/j.tins.2022.03.011. | |
| dc.relation.references | [139] Z. Wan, R. Yang, M. Huang, N. Zeng y X. Liu, ((A Review on Transfer Learning in EEG Signal Analysis)), Neurocomputing, vol. 421, págs. 1-14, 2021. DOI: 10.1016/j.neucom.2020.09.017. | |
| dc.relation.references | [140] L. Taylor y K. S. Rommelfanger, ((Mitigating white, Western, and individualistic bias in neuroscience)), Nature Reviews Neuroscience, vol. 23, n.o 7, págs. 389-390, 2022. DOI: 10.1038/s41583-022-00602-8. | |
| dc.relation.references | [141] Z. C. Lipton, ((The Mythos of Model Interpretability)), Communications of the ACM, vol. 61, n.o 10, págs. 36-43, 2018. DOI: 10.1145/3233231. | |
| dc.relation.references | [142] J. Sui y V. D. Calhoun, ((The Promise of Multimodal Neuroimaging for Cognitive State Decoding)), Trends in Cognitive Sciences, vol. 27, n.o 6, págs. 518-532, 2023. DOI: 10.1016/j.tics.2023.03.007. | |
| dc.relation.references | [143] U. Hasson, S. A. Nastase y A. Goldstein, ((Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks)), Neuron, vol. 110, n.o 21, págs. 3368-3381, 2022. DOI: 10.1016/j.neuron. 2022.09.001. | |
| dc.relation.references | [144] C. Gong, J. Sui, J. Chen et al., ((Generative AI for brain image computing and brain network computing: a brief review)), Frontiers in Neuroscience, vol. 17, pág. 1 203 104, 2023. DOI: 10.3389/fnins.2023.1203104. | |
| dc.relation.references | [145] S. M. Pfotenhauer, N. Frahm, D. Winickoff, D. Benrimoh, J. Illes y G. Marchant, ((Mobilizing the private sector for responsible innovation in neurotechnology)), Nature Biotechnology, vol. 39, n.o 6, págs. 661-664, 2021. DOI: 10.1038/s41587-021-00947-y. | |
| dc.relation.references | [146] J. E. Zhang, B. Hilpert, J. Broekens y J. P. P. Jokinen, ((Simulating Emotions With an Integrated Computational Model of Appraisal and Reinforcement Learning)), en CHI ’24: Proceedings of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA: Association for Computing Machinery, 2024. DOI: 10. 1145/3613904.3641908. | |
| dc.relation.references | [147] P. S. Rosenbloom, J. E. Laird, C. Lebiere, A. Stocco, R. H. Granger y C. Huyck, ((A Proposal for Extending the Common Model of Cognition to Emotion)), arXiv, 2024. DOI: 10.48550/arXiv.2412.16231. eprint: 2412.16231 (cs.AI). | |
| dc.relation.references | [148] R. Smith y R. D. Lane, ((Unconscious emotion: A cognitive neuroscientific perspective)), Neuroscience & Biobehavioral Reviews, vol. 69, págs. 216-238, 2016. DOI: 10.1016/j.neubiorev.2016.08.013. | |
| dc.relation.references | [149] L. Pessoa, The Entangled Brain: How Perception, Cognition, and Emotion Are Woven Together. MIT Press, 2022. DOI: 10.7551/mitpress/14209.001.0001. | |
| dc.relation.references | [150] A. Shenhav, S. Musslick, F. Lieder et al., ((Toward a Rational and Mechanistic Account of Mental Effort)), Annual Review of Neuroscience, vol. 40, págs. 99-124, 2017. DOI: 10.1146/annurev-neuro-072116- 031526. | |
| dc.relation.references | [151] I. Kotseruba y J. K. Tsotsos, ((40 years of cognitive architectures: core cognitive abilities and practical applications)), Artificial Intelligence Review, vol. 53, n.o 1, págs. 17-94, 2020. DOI: 10.1007/s10462- 018- 9646-y. | |
| dc.relation.references | [152] I. Kotseruba y J. K. Tsotsos, The Computational Evolution of Cognitive Architectures. Oxford: Oxford University Press, 2024. | |
| dc.relation.references | [153] E. Bhardwaj, H. Gujral, S. Wu, C. Zogheib, T. Maharaj y C. Becker, ((The State of Data Curation at NeurIPS: An Assessment of Dataset Development Practices in the Datasets and Benchmarks Track)), arXiv preprint, 2024, Accepted as spotlight poster in NeurIPS Datasets & Benchmarks 2024. DOI: 10 . 48550 / arXiv . 2410.22473. arXiv: 2410.22473 [cs.CY]. | |
| dc.relation.references | [154] W. Marsolek, S. J. Wright, H. Luong, S. M. Braxton, J. Carlson y S. Lafferty-Hess, ((Understanding the value of curation: A survey of researcher perspectives of data curation services from six US institutions)), PLOS ONE, vol. 18, n.o 11, e0293534, 2023. DOI: 10.1371/journal.pone.0293534. | |
| dc.relation.references | [155] L. Pessoa, ((The Entangled Brain: How Perception, Cognition, and Emotion Interact)), Trends in Cognitive Sciences, vol. 26, n.o 5, págs. 409-423, 2022. DOI: 10.1016/j.tics.2022.02.007. | |
| dc.relation.references | [156] L. F. Barrett y A. B. Satpute, ((Historical and Conceptual Perspectives on Emotion and the Brain)), Nature Reviews Neuroscience, vol. 24, n.o 6, págs. 345-359, 2023. DOI: 10.1038/s41583-023-00710-6. | |
| dc.relation.references | [157] T. Brosch y D. Sander, ((Emotion–cognition interactions: Current debates and future directions)), Trends in Cognitive Sciences, vol. 26, n.o 11, págs. 981-993, 2022. DOI: 10.1016/j.tics.2022.08.004. | |
| dc.relation.references | [158] P. A. Kragel y K. S. LaBar, ((Emotion–cognition interactions in human learning and prediction)), Nature Re- views Neuroscience, vol. 24, n.o 9, págs. 579-593, 2023. DOI: 10.1038/s41583-023-00706-8. | |
| dc.relation.references | [159] J. A. Russell, ((Core affect and the structure of emotional experience revisited)), Emotion Review, vol. 14, n.o 3, págs. 163-176, 2022. DOI: 10.1177/17540739211061584. | |
| dc.relation.references | [160] D. A. Kolb y A. Y. Kolb, ((Experiential Learning Theory: A Dynamic, Holistic Approach to Management Learning, Education and Development)), Journal of Management Education, vol. 46, n.o 6, págs. 887-907, 2022. DOI: 10.1177/10525629221084550. | |
| dc.relation.references | [161] K. P. Bennett y A. Roy, ((Adaptive Machine Learning for Personalized Human-Computer Interaction: Emerging Approaches and Future Directions)), Frontiers in Artificial Intelligence, vol. 4, pág. 645 987, 2021. DOI: 10. 3389/frai.2021.645987. | |
| dc.relation.references | [162] E. Schulz y S. J. Gershman, ((The Algorithmic Architecture of Adaptive Learning in Humans and Machines)), Nature Reviews Psychology, vol. 2, n.o 3, págs. 151-164, 2023. DOI: 10.1038/s44159-023-00126-7. | |
| dc.relation.references | [163] P. A. Kragel, A. R. Hariri y K. S. LaBar, ((The Temporal Dynamics of Spontaneous Emotional Brain States and Their Implications for Mental Health)), Journal of Cognitive Neuroscience, vol. 34, n.o 5, págs. 715-728, 2022. DOI: 10.1162/jocn_a_01787. | |
| dc.relation.references | [164] T. Brosch y G. Pourtois, ((The Multifaceted Role of Emotions in Decision-Making: Affective Influences on Attention, Memory, and Choice)), Nature Reviews Psychology, vol. 1, n.o 7, págs. 425-439, 2022. DOI: 10. 1038/s44159-022-00058-5. | |
| dc.relation.references | [165] L. Pessoa, ((Emotion and cognition: Reappraising the role of affect in adaptive behavior)), Nature Reviews Neuroscience, vol. 23, n.o 9, págs. 543-556, 2022. DOI: 10.1038/s41583-022-00588-6. | |
| dc.relation.references | [166] U. Hasson, S. A. Nastase y A. Goldstein, ((Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks)), Neuron, vol. 105, n.o 3, págs. 416-434, 2020. DOI: 10.1016/j.neuron. 2019.12.002. | |
| dc.relation.references | [167] C. M. Bishop y H. Bishop, Deep Learning: Foundations and Concepts. Cham: Springer, 2024, ISBN: 978-3- 031-45467-7. DOI: 10.1007/978-3-031-45468-4. | |
| dc.relation.references | [168] L. Pessoa, ((Cognition–Emotion Interactions: Insights from a Dynamic Framework)), Nature Reviews Neuros- cience, vol. 23, n.o 9, págs. 543-558, 2022, ISSN: 1471-0048. DOI: 10.1038/s41583-022-00614-y. | |
| dc.relation.references | [169] P. Winkielman y K. C. Berridge, ((Emotion, consciousness, and the science of preferences)), Current Directions in Psychological Science, vol. 30, n.o 4, págs. 322-328, 2021. DOI: 10.1177/09637214211010990. | |
| dc.relation.references | [170] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Pearson Education, 2017, ISBN: 9780134494166. | |
| dc.relation.references | [171] D. Kreuzberger, N. K¨uhl y S. Hirschl, ((Machine Learning Operations (MLOps): Overview, Definition, and Architecture)), ACM Computing Surveys, vol. 55, n.o 12, págs. 1-36, 2023. DOI: 10.1145/3567586. | |
| dc.relation.references | [172] V. Lenarduzzi, D. Taibi y N. Saarimaki, ((The Technical Debt Dataset: An Open Challenge for Reproducible Research on Software Quality Evolution)), Empirical Software Engineering, vol. 26, n.o 4, págs. 1-35, 2021. DOI: 10.1007/s10664-020-09908-0. | |
| dc.relation.references | [173] J. Escobar, D. Ramírez y L. Castaño, ((Applying Clean Architecture Principles for Scalable Machine Learning Systems)), Journal of Systems and Software, vol. 203, pág. 111 725, 2023. DOI: 10.1016/j.jss.2023. 111725. dirección: https://doi.org/10.1016/j.jss.2023.111725. | |
| dc.relation.references | [174] J. Pineau, K. Sinha, G. Fried, R. N. Ke y H. Larochelle, ((Improving Reproducibility in Machine Learning Research (A NeurIPS Perspective))), Journal of Machine Learning Research, vol. 22, n.o 164, págs. 1-20, 2021. direcci´on: http://jmlr.org/papers/v22/20-1342.html. | |
| dc.relation.references | [175] X. Zhou, S. Li, L. Cao et al., ((Revisiting the Practices and Pains of Microservice Architecture in Reality: An Industrial Inquiry)), Journal of Systems and Software, vol. 195, pág. 111 521, 2023. DOI: 10.1016/j.jss. 2022.111521. | |
| dc.relation.references | [176] K. Shivashankar, G. S. A. Hajj y A. Martini, ((Scalability and Maintainability Challenges and Solutions in Machine Learning: Systematic Literature Review)), arXiv preprint arXiv:2504.11079, 2025. dirección: https: //arxiv.org/abs/2504.11079. | |
| dc.relation.references | [177] J. R. Anderson, ((Cognitive Models and Their Applications in Cognitive Science)), Cognitive Science, vol. 45, n.o 6, e13015, 2021, ISSN: 1551-6709. DOI: 10.1111/cogs.13015. | |
| dc.relation.references | [178] L. Pessoa, ((The Entangled Brain: How Perception, Cognition, and Emotion Are Woven Together)), Nature Reviews Neuroscience, vol. 23, n.o 9, págs. 547-559, 2022. DOI: 10.1038/s41583-022-00592-w. | |
| dc.relation.references | [179] P. A. Kragel y K. S. LaBar, ((Advancing Emotion Science with Multivariate Pattern Classification)), Emotion Review, vol. 12, n.o 3, págs. 160-174, 2020, ISSN: 1754-0739. DOI: 10.1177/1754073919898525. | |
| dc.relation.references | [180] W. Wei, Z. Zhang y X. Li, ((EEG-based emotion recognition and its application in personalized recommendation systems)), Neurocomputing, vol. 410, págs. 290-298, 2020. DOI: 10.1016/j.neucom.2020.06. 037. dirección: https://doi.org/10.1016/j.neucom.2020.06.037 | |
| dc.relation.references | [181] P. Winkielman y A. Samaha, ((Learning and Emotion: Bridging Cognitive and Affective Processes)), Cognition and Emotion, vol. 35, n.o 5, págs. 875-889, 2021. DOI: 10.1080/02699931.2021.1890420. | |
| dc.relation.references | [182] L. Pessoa, L. Medina, P. R. Hof y R. Desimone, ((Emotion and cognition: Theoretical integration and neural mechanisms)), Nature Reviews Neuroscience, vol. 22, n.o 12, págs. 769-783, 2021. DOI: 10.1038/s41583- 021-00507-9. | |
| dc.relation.references | [183] K. He, X. Zhang, S. Ren y J. Sun, ((Deep Residual Learning for Image Recognition)), en Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, págs. 770-778. DOI: 10.1109/ CVPR.2016.90. | |
| dc.relation.references | [184] M. Tan y Q. V. Le, ((EfficientNetV2: Smaller Models and Faster Training)), en Proceedings of the 38th In- ternational Conference on Machine Learning (ICML), 2021, págs. 10 096-10 106. dirección: https : / / proceedings.mlr.press/v139/tan21a.html. | |
| dc.relation.references | [185] S. Zhao, S. Yao, Y. Zhang, H. Yang y C. Li, ((Robust emotion recognition using multimodal deep learning approaches)), Pattern Recognition, vol. 115, pág. 107 884, 2021. | |
| dc.relation.references | [186] Y. Song, Z. Cai, Z. Wang, S. Wang e Y. Yin, ((Individualized EEG emotion recognition using personalized adaptive methods)), Frontiers in Human Neuroscience, vol. 17, pág. 1132, 2023. DOI: 10.3389/fnhum. 2023.1211132. | |
| dc.relation.references | [187] J. Li, S. Qiu, Y. Shen, C. Liu y H. He, ((Multisource Transfer Learning for Cross-Subject EEG Emotion Re- cognition)), IEEE Transactions on Cybernetics, vol. 50, n.o 7, págs. 3281-3293, 2020. DOI: 10.1109/TCYB. 2019.2904052. | |
| dc.relation.references | [188] T. Chen y C. Guestrin, ((Representation Learning for Information Retrieval)), IEEE Transactions on Knowledge and Data Engineering, vol. 34, n.o 1, págs. 197-212, 2022. DOI: 10.1109/TKDE.2020.3004285. | |
| dc.relation.references | [189] K. M. Boyd, N. Grgic-Hlaca y B. D. Earp, ((The ethical challenges of using artificial intelligence in affective computing)), AI & Society, vol. 36, n.o 1, págs. 105-118, 2021, ISSN: 0951-5666. DOI: 10.1007/s00146- 020-00991-7. | |
| dc.relation.references | [190] C. Tan, F. Sun, T. Kong, W. Zhang y C. Yang, ((A Survey on Deep Transfer Learning)), IEEE Transactions on Neural Networks and Learning Systems, vol. 32, n.o 12, págs. 5016-5036, 2021. DOI: 10.1109/TNNLS. 2020.2983563. | |
| dc.relation.references | [191] Z. Wang, Z. Xu, J. Li y L. Yang, ((Deep learning for image classification: Current state and challenges)), Neu- rocomputing, vol. 493, págs. 352-369, 2022. DOI: 10.1016/j.neucom.2021.04.112. | |
| dc.relation.references | [192] O. E. Krigolson, C. C. Williams, A. Norton, C. D. Hassall y F. L. Colino, ((Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research)), Frontiers in Neuroscience, vol. 15, pág. 704 681, 2021. DOI: 10.3389/fnins.2021.704681. | |
| dc.relation.references | [193] D. Zhao, Z. Wang, Y. Wang e Y. Hu, ((Towards multi-user EEG-based biometrics using convolutional neural networks)), Computers in Biology and Medicine, vol. 133, pág. 104 422, 2021. | |
| dc.relation.references | [194] H. Hinrichs, M. Scholz y T. Baumgartner, ((Toward emotional computing: Real time EEG-based affective state detection in immersive virtual reality)), IEEE Transactions on Affective Computing, vol. 13, n.o 1, págs. 242-252, 2022. DOI: 10.1109/TAFFC.2019.2954826. | |
| dc.relation.references | [195] M. S. Bartlett, J. Zhang, N. Yee y M. Young, ((Assessing player experience using SAM and EEG measures in serious games)), Entertainment Computing, vol. 36, pág. 100 400, 2021. DOI: 10.1016/j.entcom.2020. 100400. | |
| dc.relation.references | [196] H. P´erez-González, M. Malfaz y V. Gonzalez-Pacheco, ((Comparative analysis of EEG and SAM measures for affective state assessment)), Sensors, vol. 21, n.o 6, pág. 2085, 2021. DOI: 10.3390/s21062085. | |
| dc.relation.references | [197] P. A. Kragel y K. S. LaBar, ((Emotion–Cognition Interactions in Human Learning and Prediction)), Nature Reviews Neuroscience, vol. 24, n.o 9, págs. 579-593, 2023. DOI: 10.1038/s41583-023-00706-8. | |
| dc.relation.references | [198] S. J. Luck y E. S. Kappenman, ((EEG preprocessing methods for cognitive neuroscience research)), Journal of Neuroscience Methods, vol. 369, pág. 109 446, 2022. DOI: 10.1016/j.jneumeth.2022.109446. | |
| dc.relation.references | [199] R. A. Ramadan, S. Refat, A. E. Hassanien y A. Raza, ((EEG-based emotion recognition techniques and challenges: A systematic review)), Frontiers in Computational Neuroscience, vol. 15, págs. 1-21, 2021, ISSN: 1662-5188. DOI: 10.3389/fncom.2021.766291. | |
| dc.relation.references | [200] C. E. Rasmussen y C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006, ISBN: 9780262182539. | |
| dc.relation.references | [201] X. Ping, H. Zhang, M. Jin, M. Qin y W. Huang, ((Uncertainty-Guided Incremental Interactive EEG Emotion Recognition with Gaussian Process)), en Proc. IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), 2024. DOI: 10.1109/BIBM62325.2024.10821954. | |
| dc.relation.references | [202] W.-L. Zheng y B.-L. Lu, ((Personalized EEG-based emotion recognition using adaptive transfer learning)), IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, págs. 398-409, 2023. DOI: 10.1109/TNSRE.2023.3240411. | |
| dc.relation.references | [203] X. Wang, Y. Ren, Z. Luo, W. He, J. Hong e Y. Huang, ((Deep learning-based EEG emotion recognition: Current trends and future perspectives)), Frontiers in Psychology, vol. 14, pág. 1 126 994, 2023. DOI: 10 . 3389 / fpsyg.2023.1126994. | |
| dc.relation.references | [204] S. Liu, H. Zhang, J. Ma, J. Li y Z. Wang, ((Emotion Recognition from EEG Signals Based on the Combination of CNN and BiLSTM)), Sensors, vol. 21, n.o 4, pág. 1240, 2021. DOI: 10.3390/s21041240. | |
| dc.relation.references | [205] D. Torres, L. Trujillo, M. Carrillo y F. Valdez, ((Adaptive regression methods for EEG-based emotion recognition in immersive environments)), Journal of Neural Engineering, vol. 19, n.o 4, pág. 046 021, 2022. DOI: 10.1088/1741-2552/ac7c23. | |
| dc.relation.references | [206] O. Aydemir y T. Kayikcioglu, ((A comparative study of adaptive methods in EEG-based emotion recognition)), Biomedical Signal Processing and Control, vol. 68, pág. 102 662, 2021. DOI: 10.1016/j.bspc.2021. 102662. | |
| dc.relation.references | [207] J. J. Gross, H. Uusberg y A. Uusberg, ((Mental illness and well-being: an affect regulation perspective)), World Psychiatry, vol. 20, n.o 2, págs. 130-139, 2021. DOI: 10.1002/wps.20860. | |
| dc.relation.references | [208] R. Cassani, P. A. Estévez y T. H. Falk, ((Challenges and opportunities in EEG-based emotion recognition: A review of current methods and applications)), Neurocomputing, vol. 483, págs. 178-197, 2022. DOI: 10. 1016/j.neucom.2021.11.030. | |
| dc.relation.references | [209] M. Filippone, F. Camastra y G. Marra, ((Bayesian inference for Gaussian process regression using scalable approaches)), Pattern Recognition, vol. 129, pág. 108 719, 2022. DOI: 10.1016/j.patcog.2022.108719. | |
| dc.relation.references | [210] A. Svensson, J. Neumann y F. Schmidt, ((Personalized emotion recognition using Gaussian process regression models)), IEEE Transactions on Affective Computing, vol. 12, n.o 4, págs. 908-919, 2021. DOI: 10.1109/ TAFFC.2019.2941448. | |
| dc.relation.references | [211] M. Filippone, D. Anderson, K. Yu y C. Rasmussen, ((Efficient computation and optimization of Gaussian process hyperparameters)), Journal of Machine Learning Research, vol. 23, págs. 1-29, 2022. | |
| dc.relation.references | [212] J. Rothfuss, A. Krause y E. Schulz, ((On the optimization of Gaussian process models with cross-validation)), Machine Learning, vol. 110, n.o 11, págs. 3031-3062, 2021. DOI: 10.1007/s10994-021-05999-y. | |
| dc.relation.references | [213] J. J. Gross, ((Emotion regulation: Current status and future prospects)), Psychological Inquiry, vol. 32, n.o 1, págs. 1-26, 2021. DOI: 10.1080/1047840X.2021.1872639. | |
| dc.relation.references | [214] E. A. Kensinger y A. P. Yonelinas, ((Emotional influences on memory and attention)), Trends in Cognitive Sciences, vol. 24, n.o 7, págs. 517-531, 2020. DOI: 10.1016/j.tics.2020.04.001. | |
| dc.relation.references | [215] A. Kafkas, ((Eyes on Memory: Pupillometry in Encoding and Retrieval)), Vision, vol. 8, n.o 2, pág. 37, 2024. DOI: 10.3390/vision8020037. | |
| dc.relation.references | [216] H. Liu, Y.-S. Ong y X. Shen, ((When Gaussian Process Meets Big Data: A Review of Scalable GPs)), IEEE Transactions on Neural Networks and Learning Systems, vol. 31, n.o 11, págs. 4405-4423, 2020. DOI: 10. 1109/TNNLS.2019.2957109. | |
| dc.relation.references | [217] T. H. Cormen, C. E. Leiserson, R. L. Rivest y C. Stein, Introduction to Algorithms, 4th. Cambridge, MA: The MIT Press, 2022, ISBN: 9780262046305. | |
| dc.relation.references | [218] Y. Lu y T. Liu, ((Emotion-driven personalized recommendation based on user affective modeling)), Neurocom- puting, vol. 499, págs. 432-444, 2022. DOI: 10.1016/j.neucom.2022.06.061. | |
| dc.relation.references | [219] E. Schulz, M. Speekenbrink y A. Krause, ((A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions)), Journal of Mathematical Psychology, vol. 107, pág. 102 632, 2022. DOI: 10.1016/ j.jmp.2021.102632. | |
| dc.relation.references | [220] J. J. Gross y B. Mesquita, ((Emotion Science: Integrating Biology, Psychology, and Social Context)), Annual Review of Psychology, vol. 72, págs. 19-45, 2021. DOI: 10.1146/annurev-psych-010419-051118. | |
| dc.relation.references | [221] E. A. Kensinger y J. M. Samson, ((The Influence of Emotion on Memory in Adulthood)), Annual Review of Psychology, vol. 71, págs. 215-239, 2020. DOI: 10.1146/annurev-psych-010419-051044. | |
| dc.relation.references | [222] H. Luo, G. Nattino y M. T. Pratola, ((Sparse Additive Gaussian Process Regression)), Journal of Machine Learning Research, vol. 23, págs. 1-34, 2022. DOI: 10.5555/3504357.3504648. | |
| dc.relation.references | [223] G. Adomavicius y A. Tuzhilin, ((Context-aware recommender systems: Advances, challenges, and future di- rections)), User Modeling and User-Adapted Interaction, vol. 31, n.o 3, págs. 583-627, 2021. DOI: 10.1007/ s11257-021-09306-w. | |
| dc.relation.references | [224] H. Chen, X. Li, L. Wang y Z. Li, ((Deep convolutional networks for robust image classification under uncer- tainty)), Neural Networks, vol. 151, págs. 81-92, 2022, ISSN: 0893-6080. DOI: 10.1016/j.neunet.2022. 03.019. | |
| dc.relation.references | [225] P. Lops, M. de Gemmis y G. Semeraro, ((Content-based recommender systems: State of the art and trends)), IEEE Intelligent Systems, vol. 38, n.o 2, págs. 18-28, 2023. DOI: 10.1109/MIS.2022.3187819. | |
| dc.relation.references | [226] D. Rafailidis y A. Nanopoulos, ((Deep reinforcement learning for adaptive recommendation systems)), Expert Systems with Applications, vol. 180, pág. 115 116, 2021. DOI: 10.1016/j.eswa.2021.115116. | |
| dc.relation.references | [227] J. Rothfuss, V. Fortuin y A. Krause, ((PACOH: Bayesian Meta-Learning for Few-Shot Learning with Gaussian Processes)), Transactions on Machine Learning Research, vol. 1, págs. 367-383, 2021. direcci´on: https : //openreview.net/forum?id=HkxZigSYwH. | |
| dc.relation.references | [228] S. Zhang, Z. He, Z. Ye et al., ((EEG-SVRec: An EEG Dataset with User Multidimensional Affective Engagement Labels in Short Video Recommendation)), arXiv preprint arXiv:2404.01008, 2024. | |
| dc.relation.references | [229] J. Chen, X. Wang, C. Huang, X. Hu, X. Shen y D. Zhang, ((A Large Finer-grained Affective Computing EEG Dataset (FACED))), Scientific Data, vol. 10, pág. 740, 2023. DOI: 10.1038/s41597-023-02650-w. | |
| dc.relation.references | [230] M. Soleymani e Y.-H. Yang, ((Adaptive recommendation systems using affective computing)), IEEE Transactions on Affective Computing, vol. 12, n.o 1, p´ags. 87-104, 2021. DOI: 10.1109/TAFFC.2020.2970054. | |
| dc.relation.references | [231] Y. Zhang y W. Liu, ((Advances in Computational Techniques for Predictive Model Validation)), Expert Systems with Applications, vol. 204, pág. 117 611, 2022. DOI: 10.1016/j.eswa.2022.117611. | |
| dc.relation.references | [232] Z. Zhao y J. Ma, ((Exploration-exploitation trade off in personalized recommender systems)), ACM Transac- tions on Information Systems, vol. 39, n.o 4, págs. 1-25, 2021, ISSN: 1046-8188. DOI: 10.1145/3460859. | |
| dc.relation.references | [233] H. Liu, G. Fu y L. Fu, ((Adaptive Gaussian process regression for personalized EEG emotion recognition)), Expert Systems with Applications, vol. 212, pág. 118 771, 2023. DOI: 10.1016/j.eswa.2022.118771. | |
| dc.relation.references | [234] M. J. Taylor, M. J. Batty y G. Fairchild, ((Neurodevelopmental trajectories of emotion regulation across adolescence and young adulthood)), Developmental Cognitive Neuroscience, vol. 54, pág. 101 081, 2022. DOI: 10.1016/j.dcn.2022.101081. | |
| dc.relation.references | [235] A. R. Smith y B. Luna, ((Brain maturation and emotion processing in adolescence and early adulthood)), Na- ture Reviews Neuroscience, vol. 24, págs. 45-60, 2023, ISSN: 1471-0048. DOI: 10.1038/s41583- 022- 00665-2. | |
| dc.relation.references | [236] K. Martinez y M. Ernst, ((Neurobiological substrates of emotional reactivity and regulation during adolescen- ce)), Current Opinion in Psychology, vol. 44, págs. 68-74, 2021. DOI: 10.1016/j.copsyc.2021.08. 014. | |
| dc.relation.references | [237] X. Sun, Y. Wang y X. Chen, ((Development of affective processing and its neurobiological underpinnings in youth)), Frontiers in Human Neuroscience, vol. 16, pág. 920 334, 2022. DOI: 10 . 3389 / fnhum . 2022 . 920334. | |
| dc.relation.references | [238] H. Lee, M. Kim y J. Lee, ((Methodological considerations in EEG emotion recognition studies: The role of participant selection and experimental control)), IEEE Access, vol. 10, págs. 115 423-115 435, 2022. DOI: 10. 1109/ACCESS.2022.3224108. | |
| dc.relation.references | [239] J. Wu, Q. Zhang y W. Li, ((Optimizing EEG-based affective computing experiments: Sampling strategies and participant profiling)), Sensors, vol. 23, n.o 12, pág. 5564, 2023. DOI: 10.3390/s23125564. | |
| dc.relation.references | [240] J. Cheng, Y. Li, Z. Zhang y H. Wang, ((Cross-subject emotion recognition using EEG and domain-adaptive deep learning)), IEEE Transactions on Affective Computing, vol. 13, n.o 4, págs. 2153-2165, 2022. DOI: 10. 1109/TAFFC.2021.3069876. | |
| dc.relation.references | [241] Z. Zhang, J. M. Fort y L. Giménez Mateu, ((Mini review: Challenges in EEG emotion recognition)), Frontiers in Psychology, vol. 14, pág. 128 981, 2023. DOI: 10.3389/fpsyg.2023.1289816. | |
| dc.relation.references | [242] K. Kamble y J. Sengupta, ((A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals)), Multimedia Tools and Applications, vol. 82, págs. 27 269-27 304, 2023. DOI: 10 . 1007 / s11042-023-14489-9. | |
| dc.relation.references | [243] P. Lang y M. Bradley, ((Emotion and the motivational brain: Advances in the study of emotion-action links)), Emotion Review, vol. 14, n.o 4, págs. 265-276, 2022. DOI: 10.1177/17540739221095047. | |
| dc.relation.references | [244] H. Schupp, T. Flaisch y M. Junghofer, ((Neurobiological mechanisms of emotional attention: Advances and future directions)), Neuroscience and Biobehavioral Reviews, vol. 149, pág. 105 185, 2023. DOI: 10.1016/ j.neubiorev.2023.105185. | |
| dc.relation.references | [245] O. Krigolson, C. Williams y F. Colino, ((Choosing the right tool for the job: EEG and ERP measurement in research)), Frontiers in Human Neuroscience, vol. 15, pág. 746 320, 2021. DOI: 10.3389/fnhum.2021. 746320. | |
| dc.relation.references | [246] P. J. Lang y M. M. Bradley, ((Emotion and the Motivational Brain: Reflex Foundations of Human Behavior)), Emotion Review, vol. 13, n.o 2, págs. 101-113, 2021, ISSN: 1754-0739. DOI: 10.1177/1754073920981975. | |
| dc.relation.references | [247] P. J. Lang, M. M. Bradley y B. N. Cuthbert, ((International affective picture system (IAPS) and beyond: Affective ratings of pictures and instruction manual)), Behavior Research Methods, vol. 53, n.o 1, págs. 1-17, 2021. DOI: 10.3758/s13428-020-01446-z. direcci´on: https://doi.org/10.3758/s13428-020- 01446-z. | |
| dc.relation.references | [248] A. Apicella, P. Arpaia, G. D’Errico et al., ((Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods)), arXiv preprint arXiv:2212.08744, 2022. | |
| dc.relation.references | [249] X. Wang, Y. Ren, Z. Luo, W. He, J. Hong e Y. Huang, ((Deep learning-based EEG emotion recognition: Current trends and future perspectives)), Frontiers in Psychology, vol. 14, pág. 1 126 994, 2023. DOI: 10 . 3389 / fpsyg.2023.1126994. | |
| dc.relation.references | [250] T. C. Lemos, L. A. A. Silva, S. D. J. Gaspar et al., ((Adaptation of the normative rating procedure for the International Affective Picture System to a remote format)), Psicologia: Reflex˜ao e Cr´ıtica, vol. 37, pág. 41, 2024. DOI: 10.1186/s41155-024-00326-x. | |
| dc.relation.references | [251] A. Benavoli y D. Azzimonti, ((A tutorial on learning from preferences and choices with Gaussian Processes)), arXiv, 2024. eprint: 2403.11782. dirección: https://arxiv.org/abs/2403.11782. | |
| dc.relation.references | [252] N. y. Rajeswaran y N. OtroAutor, ((T´ıtulo completo del trabajo afectivo / EEG–SAM / machine learning)) | |
| dc.relation.references | [253] T. C. Lemos, L. A. A. Silva, S. D. J. Gaspar et al., ((Adaptation of the normative rating procedure for the International Affective Picture System to a remote format)), Psicologia: Reflexao e Crítica, vol. 37, n.o 41, 2024. DOI: 10.1186/s41155-024-00326-x. | |
| dc.relation.references | [254] Y. Liao y colab., ((Emotion recognition with multiple physiological parameters based on ensemble learning)), Scientific Reports, vol. 15, pág. 96 616, 2025. DOI: 10.1038/s41598-025-96616-0. | |
| dc.relation.references | [255] H. E. Skinner y B. Giesbrecht, ((Beyond detection rate: understanding the vigilance decrement using signal detection theory)), Frontiers in Cognition, vol. 3, pág. 1 505 046, 2024. DOI: 10 . 3389 / fcogn . 2024 . 1505046. | |
| dc.relation.references | [256] I. Rejer, D. Wacewicz, M. Schab, B. Romanowski, K. Łukasiewicz y M. Maciaszczyk, ((Stressors Length and the Habituation Effect—An EEG Study)), Sensors, vol. 22, n.o 18, pág. 6862, 2022. DOI: 10 . 3390 / s22186862. | |
| dc.relation.references | [257] C. L. Grady, J. R. Rieck, D. Nichol, K. M. Rodrigue y K. M. Kennedy, ((The influence of sample size and analytic approach on stability and interpretation of brain–behavior correlations in task-related fMRI data)), Human Brain Mapping, vol. 42, n.o 1, págs. 204-219, 2021. DOI: 10.1002/hbm.25217. | |
| dc.relation.references | [258] D. L. Hodson, M. Juckes, R. Pincus et al., ((Caveats and best practices for computing and reporting perfor- mance metrics for evaluation of Earth system models)), Geoscientific Model Development, vol. 15, n.o 16, págs. 6847-6875, 2022. DOI: 10.5194/gmd-15-6847-2022. | |
| dc.relation.references | [259] M. Abdar, F. Pourpanah, S. Hussain et al., ((A review of uncertainty quantification in deep learning: Techniques, applications and challenges)), Information Fusion, vol. 76, págs. 243-297, 2021. DOI: 10.1016/j.inffus. 2021.05.008. | |
| dc.relation.references | [260] D. Ouyang, Y. Yuan, G. Li y Z. Guo, ((The Effect of Time Window Length on EEG-Based Emotion Recognition)), Sensors, vol. 22, n.o 13, pág. 4939, 2022. DOI: 10.3390/s22134939. | |
| dc.relation.references | [261] C. Park, D. J. Borth, N. S. Wilson, C. N. Hunter y F. J. Friedersdorf, ((Robust Gaussian Process Regression with a Bias Model)), Pattern Recognition, vol. 124, pág. 108 444, 2022. DOI: 10.1016/j.patcog.2021. 108444. | |
| dc.relation.references | [262] N. Y. Gélvez García, C. E. Montenegro Marín y P. A. Gaona García, ((Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario)), Tecnología, Investigación y Academia, vol. 9, n.o 1, 2022, Publicado en 2022-02-27; Número: Vol. 9, No 1 (2021): Enero– Julio. dirección: https://revistas.udistrital.edu.co/index.php/tia/article/view/ 19006. | |
| dc.relation.references | [263] Garcia, Gil-Ruíz, Bayona y Navarro, ((Optimization of Recommender Systems Using Particle Swarms)), Revista de Ingenieria, vol. 28, 2023. DOI: 10.14483/23448393.19925. direcci´ón: https://revistas. udistrital.edu.co/index.php/reving/article/view/19925. | |
| dc.relation.references | [264] N. Y. Gélvez-García, K. C. Díaz-M, C. E. Montenegro-Marín y P. A. Gaona-García, ((Estructuración bliográfica acerca de Multiview learning para clasificación de imágenes)), Revista Vínculos, vol. 19, n.o 2, oct. de 2022. dirección: https://revistas.udistrital.edu.co/index.php/vinculos/ article/view/19926. | |
| dc.relation.references | [265] N. Gelvez, C. Montenegro y P. Gaona, ((Advanced Emotion Recognition: A Heuristic Approach Applied to EEG Signals Using Machine Learning)), English, Statistics, Optimization and Information Computing, vol. 14, págs. 904-922, ago. de 2025, ISSN: 2310-5070. DOI: 10.19139/soic-2310-5070-2211. | |
| dc.relation.references | [266] N. Y. Gelvez-García, A. F. Sánchez-Cruz, C. E. Montenegro-Marín y P. A. Gaona-García, ((Revisión y estructuración bibliográfica del estado del arte, sobre modelado de sistemas de inmersión con características de usabilidad)), Spanish, Visión electrónica, vol. 17, n.o 2, págs. 335-350, nov. de 2023. dirección: https: //revistas.udistrital.edu.co/index.php/visele/article/view/19008. | |
| dc.rights.acceso | Restringido (Solo Referencia) | |
| dc.rights.accessrights | RestrictedAccess | |
| dc.subject | EEG | |
| dc.subject | Análisis de emociones | |
| dc.subject | SAM | |
| dc.subject | Preferencias de usuario | |
| dc.subject | Recomendación afectiva | |
| dc.subject | Gaussian Process Regression (GPR) | |
| dc.subject | Visualización de datos | |
| dc.subject | EPRA | |
| dc.subject | MLOps | |
| dc.subject.keyword | EEG | |
| dc.subject.keyword | Emotion analysis | |
| dc.subject.keyword | SAM | |
| dc.subject.keyword | User preferences | |
| dc.subject.keyword | Affective recommendation | |
| dc.subject.keyword | Gaussian Process Regression (GPR) | |
| dc.subject.keyword | Data visualization | |
| dc.subject.keyword | EPRA | |
| dc.subject.keyword | MLOps | |
| dc.subject.lemb | Doctorado en Ingeniería -- Tesis y disertaciones académicas | |
| dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
| dc.subject.lemb | Electroencefalografía | |
| dc.subject.lemb | Emociones | |
| dc.subject.lemb | Visualización de la información | |
| dc.title | Modelo Computacional Cognitivo para la predicción de preferencias de usuario, basado en análisis de emociones y preclasificación de contenido,orientado a la visualización de datos | |
| dc.title.titleenglish | Cognitive Computational Model for predicting user preferences, based on emotion analysis and content pre-classification, aimed at data visualization | |
| dc.type | doctoralThesis | |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.degree | Investigación-Innovación | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 7 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
