ANÁLISIS DE LOS ESCENARIOS DE RIESGO POR FENÓMENOS AMENAZANTES PARA EL MUNICIPIO DE CHÍA CUNDINAMARCA, COMO HERRAMIENTA DE PLANIFICACIÓN TERRITORIAL.

ANYI LORENA BURGOS

SANDRA XIMENA REINA CUERVO

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

FACULTAD DE MEDIO AMBIENTE Y RECURSOS NATURALES

INGENIERIA AMBIENTAL

BOGOTA

2015
ANÁLISIS DE LOS ESCENARIOS DE RIESGO POR FENÓMENOS AMENAZANTES PARA EL MUNICIPIO DE CHÍA CUNDINAMARCA, COMO HERRAMIENTA DE PLANIFICACIÓN TERRITORIAL

ANYI LORENA BURGOS
SANDRA XIMENA REINA CUERVO

Informe de Pasantía presentada para optar al título de Ingenieras Ambientales

Director Interno
Olga Isabel Palacios, Ingeniera Forestal

Director Externo
Rafael Iván Robles, Ingeniero Forestal

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS
FACULTAD DE MEDIO AMBIENTE Y RECURSOS NATURALES
INGENIERIA AMBIENTAL

BOGOTA
2015
Nota de aceptación

Director Interno

Revisor

Bogotá, 20 de Octubre de 2015
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLA DE CONTENIDO</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCCION</td>
<td>3</td>
</tr>
<tr>
<td>1. JUSTIFICACIÓN</td>
<td>5</td>
</tr>
<tr>
<td>2. ALCANCE</td>
<td>7</td>
</tr>
<tr>
<td>3. OBJETIVO GENERAL</td>
<td>8</td>
</tr>
<tr>
<td>4. OBJETIVOS ESPECÍFICOS</td>
<td>8</td>
</tr>
<tr>
<td>5. MARCO REFERENCIAL</td>
<td>9</td>
</tr>
<tr>
<td>5.1. MARCO TEORICO</td>
<td>9</td>
</tr>
<tr>
<td>5.2. MARCO CONCEPTUAL</td>
<td>11</td>
</tr>
<tr>
<td>5.3. MARCO NORMATIVO</td>
<td>14</td>
</tr>
<tr>
<td>6. DIAGNOSTICO</td>
<td>16</td>
</tr>
<tr>
<td>6.1. ASPECTOS GENERALES DEL MUNICIPIO</td>
<td>16</td>
</tr>
<tr>
<td>6.1.1. Componente abiótico</td>
<td>17</td>
</tr>
<tr>
<td>6.1.2. Componente biótico</td>
<td>23</td>
</tr>
<tr>
<td>6.1.3. Componente económico</td>
<td>23</td>
</tr>
<tr>
<td>6.1.4. Componente social</td>
<td>23</td>
</tr>
<tr>
<td>6.2. GESTION DEL RIESGO EN EL MUNICIPIO DE CHIA</td>
<td>24</td>
</tr>
<tr>
<td>6.2.1. Antecedentes</td>
<td>24</td>
</tr>
<tr>
<td>6.2.2. Identificación de puntos críticos</td>
<td>26</td>
</tr>
<tr>
<td>6.2.3. Instituciones</td>
<td>28</td>
</tr>
<tr>
<td>6.2.4. Inclusión de la Gestión del Riesgo dentro del Plan de Ordenamiento Territorial</td>
<td>29</td>
</tr>
<tr>
<td>7. METODOLOGIA</td>
<td>34</td>
</tr>
<tr>
<td>7.1. Determinación de la escala de trabajo</td>
<td>34</td>
</tr>
<tr>
<td>7.2. Definición del sistema de proyección</td>
<td>35</td>
</tr>
<tr>
<td>7.3. Necesidades y Validación de la Información</td>
<td>35</td>
</tr>
<tr>
<td>7.4. Zonificación</td>
<td>38</td>
</tr>
</tbody>
</table>
9.3. RIESGO ... 93
9.3.1. Fenómenos de remoción en masa .. 93
9.3.2. Incendios Forestales ... 94
9.3.3. Inundaciones .. 95
9.4. CONFLICTO ... 95
10. CONCLUSIONES ... 97
11. RECOMENDACIONES ... 100
BIBLIOGRAFIA .. 102
ANEXOS .. 105
INTRODUCCION

La gestión del riesgo como herramienta para la planificación territorial, permite identificar y evaluar las amenazas y riesgos, con el fin de determinar la vulnerabilidad del territorio frente a dichos riesgos y así formular medidas y acciones que permitan controlar y reducir los impactos generados, contribuyendo a la seguridad, el bienestar y calidad de vida de las personas y al desarrollo sostenible. De esta forma, el proceso de planificación del territorio permite y debe incorporar criterios de reducción de riesgos, especificando condiciones sostenibles y seguras de uso y ocupación, en armonía con los objetivos ambientales, sociales y económicos de la entidad territorial correspondiente.

El análisis de riesgos se posiciona como uno de los insumos fundamentales que los planificadores deben incluir en la definición de los planes regionales de ordenamiento territorial, ya que la previsión de los efectos adversos que los fenómenos naturales peligrosos pueden imponer sobre asentamientos humanos o elementos de infraestructura, permiten definir las zonas del territorio donde la ocupación y explotación es más segura. La inclusión de estos análisis en los procesos de ordenamiento territorial, derivan en la protección y mejoramiento de la calidad de vida de los habitantes, y la protección económica, ambiental, social. (Subsecretaría de Desarrollo Regional y Administrativo, 2011). De acuerdo a la Ley 1523 de 2012, la gestión del riesgo es responsabilidad de todas las autoridades y de los habitantes del territorio colombiano y que en cumplimiento de esta responsabilidad, las entidades públicas, privadas y comunitarias desarrollarán y ejecutarán los procesos de gestión del riesgo; de esta manera la Corporación Autónoma de Cundinamarca como máxima autoridad ambiental, debe apoyar a las entidades territoriales de su jurisdicción ambiental en todos los estudios necesarios para el conocimiento y la reducción del riesgo y los integrarán a los planes de ordenamiento de cuencas, de gestión ambiental, de ordenamiento territorial y de desarrollo. Por su parte la Universidad Distrital Francisco José de Caldas, bajo el convenio establecido con la Corporación, busca como academia generar el conocimiento necesario, para proporcionar herramientas hacia la construcción de territorios resilientes.

En este trabajo se presenta una descripción y análisis de la información relevante y disponible para la compresión y socialización de los riesgos y amenazas presentes en el municipio de Chía Cundinamarca, mediante la elaboración de metodologías de identificación de amenaza, riesgo y vulnerabilidad para los
fenómenos de remoción en masa, inundaciones e incendios, basados en un análisis multicriterio por medio de información geográfica y usando la herramienta algebra de mapas, desarrollada en el software ArcGis 10.3, tomando como base el ordenamiento territorial para así establecer un uso adecuado del mismo y generando mapas de conflicto frente a los fenómenos naturales ya mencionados.
1. JUSTIFICACIÓN

Colombia enfrenta grandes retos que amenazan seriamente su desarrollo. Factores la degradación ambiental y el cambio acelerado del uso del suelo amplifican dichos retos, estas condiciones socio – económicas y políticas, aunadas a la propensión del país a la ocurrencia de fenómenos naturales, tales como sismos, inundaciones y deslizamientos, entre otros, exacerbados por las acciones humanas y las condiciones variantes del clima, confirman un proceso continuo de construcción y acumulación de riesgos. La materialización de estos riesgos en desastres, afectan el desarrollo del país e impiden y retrasan el logro de las metas de bienestar social trazadas por el Gobierno. (Banco Mundial Colombia, 2012). Es por esto que la formulación de una Política de Gestión de Riesgo, encadenada a procesos de ordenamiento territorial es de vital importancia para salvaguardar el bienestar de la población y propender por el desarrollo sostenible del territorio. El déficit de la integración de la gestión del riesgo en los procesos de ordenamiento territorial a nivel rural y urbano conduce a aumentar su susceptibilidad a fenómenos tales como inundaciones, deslizamientos entre otros. Por lo tanto la incorporación del enfoque de gestión de riesgos de desastre resulta fundamental para un exitoso proceso de Ordenamiento Territorial pues este es un proceso sistémico, transversal, participativo de formulación y adopción de políticas, estrategias y acciones, orientadas a reducir los riesgos de desastres ante fenómenos naturales frecuentes como inundaciones, terremotos, deslizamientos, heladas, sequías, entre otros. (Rojas 2003)

De acuerdo a la Política Nacional de gestión del riesgo, en el Articulo 31 se manifiesta que las Corporaciones Autónomas como integrantes del sistema nacional de gestión del riesgo, además de las funciones establecidas por la Ley 99 de 1993 y la Ley 388 de 1997, apoyarán a las entidades territoriales de su jurisdicción ambiental en todos los estudios necesarios para el conocimiento y la reducción del riesgo y los integrarán a los planes de ordenamiento de cuencas, de gestión ambiental, de ordenamiento territorial y de desarrollo. (Congreso de Colombia, 2012). De esta manera la CAR Cundinamarca busca apoyar a los entes territoriales en la identificación de los riesgos y amenazas presentes en el territorio, brindando elementos técnicos para la formulación de programas y proyectos destinados a la prevención de desastres y planificación del territorio.

De igual forma, teniendo en cuenta el incremento de los desastres naturales en el país motivados por el Cambio Climático Global, el Gobierno Nacional plantea un
cambio de la estrategia al plantear la necesidad de producir Planes Municipales de Gestión del Riesgo de Desastres, dirigidos a garantizar la efectividad y articulación de los procesos de conocimiento del riesgo, de reducción del riesgo y de manejo de desastres de manera preventiva y no esperar que estos sucedan, aspecto que el Plan de Ordenamiento del Municipio de Chía carece y debe implementar, tal como lo determina el artículo 14, que establece que se deberá integrar en la planificación del desarrollo local, acciones estratégicas y prioritarias en materia de gestión del riesgo de desastres, especialmente, a través de los planes de ordenamiento territorial, de desarrollo municipal o distrital y demás instrumentos de gestión pública.
2. ALCANCE

El presente proyecto tuvo un alcance de tipo predictivo, por medio del cual se realizó un análisis de diversos fenómenos de origen natural y socio natural (fenómenos de remoción en masa, inundaciones e incendios) y las variables de estudio que determinaran los diferentes escenarios de riesgo, permitiendo así generar un mapa de conflicto actual de uso del suelo, dando un panorama general del municipio de Chía frente a esta problemática.

Las diferentes metodologías se implementaron mediante el uso de un sistema de información geográfica, pues este permite realizar procesos analíticos para modelar peligros naturales y se orienta a buscar la evaluación y toma de decisiones en problemas de planificación de obras y gestión de recursos. Los sistemas de información geográfica ofrecen herramientas para estudiar esta información, mediante un entorno de un sistema integrado compuesto por hardware, software, personal, información espacial y procedimientos computarizados, que permite y facilita la recolección, el análisis, gestión o representación de datos espaciales. (SIGOT, 2015)

Cabe resaltar que a pesar que las metodologías aquí planteadas dan información fiable sobre las zonas críticas referentes a amenaza y riesgo, estas se basan en información secundaria en su mayoría, lo que permite dar un panorama general del municipio, pero no reemplazan los estudios detallados, ya que permiten priorizar las áreas para la realización de los mismos. La identificación de las amenazas y riesgos, se realizó de acuerdo a las necesidades normativas para la inclusión de la gestión del riesgo dentro de los planes de ordenamiento territorial, en donde se establecen el tipo de amenazas a estudiar, sin embargo se incluyeron dentro de estas los incendios forestales ya que históricamente se han presentado eventos de esta índole, que han acarreado con pérdidas económicas y han afectado ecosistemas sensibles dentro del municipio. Por lo tanto este informe se basó en la calificación y zonificación de amenazas y riesgos por inundaciones, remoción en masa e incendios forestales dada su recurrencia y afectación al territorio.
3. OBJETIVO GENERAL

Analizar los escenarios de riesgo para el municipio de Chía- Cundinamarca, mediante la identificación y zonificación de amenazas naturales y socio-naturales (Inundaciones, Remoción en masa e Incendios Forestales) para generar herramientas que permitan una adecuada planificación territorial.

4. OBJETIVOS ESPECÍFICOS

- Realizar un diagnóstico del municipio frente a la gestión del riesgo, mediante la captura y organización de la información contenida en los distintos instrumentos de planificación.
- Calcular cartográficamente los porcentajes de área respecto a las amenazas, vulnerabilidades y riesgo en el espacio territorial de referencia, por medio de la implementación de un sistema de información geográfica.
- Identificar la importancia de la gestión del riesgo dentro de la planificación territorial del municipio.
- Identificar las principales causas y consecuencias, que componen los escenarios de riesgo.
- Establecer y analizar el conflicto de uso del suelo, de acuerdo a la ocupación del territorio que se encuentra bajo riesgo por los fenómenos amenazantes estudiados.
5. MARCO REFERENCIAL

5.1. MARCO TEORICO

Gestión del Riesgo

El riesgo se relaciona con el desarrollo de las comunidades, principalmente con la forma cómo se ocupa y administra el territorio y sus recursos, no obstante que los fenómenos peligrosos que actúan como detonantes o desencadenantes sean generados por la naturaleza. En zonas progresivamente más ocupadas, con falta de infraestructura adecuada y deterioro del ambiente, entre otros, los impactos generados sobre la población, sus vidas y bienes, a raíz de la ocurrencia de fenómenos de origen hidrometeorológico, geológico, sísmico, vulcanológico o de otra naturaleza, son cada vez más importantes y dañinos. (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2005)

Este riesgo constituye un subconjunto del riesgo “global” o total y, considerando las interrelaciones entre sus múltiples partes, tendrá estrechas relaciones con las facetas con que se describe el riesgo global, tales como el riesgo financiero, el riesgo de salud, el riesgo tecnológico, etc. Los eventos físicos peligrosos o amenazas y la vulnerabilidad de la población a estas amenazas, se conocen como factores del riesgo, sin los cuales el riesgo de desastre no puede existir. La existencia de estos factores está condicionada por la exposición de la sociedad a los eventos físicos potencialmente peligrosos, es decir la localización en áreas potencialmente afectables. A la vez, es necesario reconocer que no todo nivel de riesgo de daños y pérdidas puede considerarse riesgo de desastre. La noción de desastre exige niveles de daños y pérdidas que interrumpen de manera significativa el funcionamiento normal de la sociedad, que afectan su cotidianeidad. Así, puede haber riesgo sin que haya desastre, sino más bien niveles de daños y pérdidas manejables, no críticas. Bajar el nivel de daños probables a niveles aceptables o manejables es una de las funciones más importantes de la gestión del riesgo de desastre.

La gestión del riesgo admite distintos niveles de intervención que van desde lo global, integral, lo sectorial y lo macro-territorial hasta lo local, lo comunitario y lo familiar. Requiere de la existencia de sistemas o estructuras organizacionales e institucionales que representen estos niveles y que reúne, bajo modalidades de coordinación establecidas y con roles diferenciados acordados, aquellas instancias colectivas de representación social de los diferentes actores e intereses que juegan un papel en proceso de construcción del riesgo y en su reducción, previsión y control. (Comunidad Andina, 2009)

La gestión del riesgo de desastres y la adaptación al cambio climático son estrategias complementarias para enfrentar un clima cambiante. Se enfrentarán
mejor los desafíos que supone el cambio climático si aprovechamos y fortalecemos la capacidad existente para reducir el riesgo de desastres en el corto, mediano y largo plazo. Por ende, es fundamental hacer hincapié en que las capacidades para gestionar los riesgos presentes y futuros son dos caras de la misma moneda: tendremos sociedades con mayor capacidad de adaptación a los riesgos futuros asociados al cambio climático si somos capaces desde ahora de gestionar el riesgo de desastres y la atención de emergencias. (Departamento Nacional de Planeación)

Cambio Climático

Existe una relación estrecha entre el clima, los ecosistemas y el desarrollo. Hay una evidente relación entre el comportamiento del clima, la capacidad de los ecosistemas para proveer bienes y servicios, y la transformación de estos bienes y servicios en bienestar y crecimiento económico. De acuerdo a lo anterior el clima tiene la capacidad de potenciar o limitar el desarrollo económico y social. Así mismo, la intensidad de las exigencias que la población ejerce sobre los ecosistemas puede tener repercusiones sobre la capacidad de estos para aminorar los impactos del cambio y la variabilidad climática. En otras palabras, la forma en la que el hombre interviene los ecosistemas determina su vulnerabilidad frente a los fenómenos climáticos. La mayoría de los desastres en Colombia se deben a las variaciones del clima. El 90% de las emergencias reportadas por la UNGRD para el periodo 1998-2011 en el país (13.624 en total), se relacionan con fenómenos hidroclimatológicos y otros asociados. Entre 1950 y 2007 los desastres asociados con lluvias se incrementaron un 16,1% durante el fenómeno “La Niña” en relación con las condiciones normales. Reportes de desastres asociados con las sequías presentaron un incremento de cerca de 2,2 veces durante los periodos de “El Niño”. Así mismo, este fenómeno ha generado la escasez del recurso hídrico conduciendo a racionamientos de agua y electricidad. (Departamento Nacional de Planeación)

Ordenamiento y Planificación Territorial

El ordenamiento del territorio es mucho más que una planificación física del suelo, un conjunto de normas urbanísticas o la determinación de unos límites o actuaciones político-administrativos que “definen” un territorio. Tiene que ver, por su naturaleza misma, con los procesos conformadores del espacio; donde la compatibilización entre estilos, objetivos, estrategias y alcances en los procesos de ocupación y explotación del territorio con las potencialidades y restricciones presentes en el mismo, así como la cada vez mayor participación ciudadana en la toma de decisiones y en los beneficios sociales y políticos que reporta el Estado y la Sociedad, deben ser las premisas fundamentales. (Díez, 2009)

Una medida de prevención de los desastres y que permite la gestión efectiva del riesgo debido a fenómenos naturales, es la planeación adecuada del desarrollo
socioeconómico y la regulación del uso del suelo. Para ello, resulta de gran importancia la incorporación en el proceso de ordenamiento ecológico regional y municipal de un análisis de los niveles de riesgo que presentan las diferentes áreas de un territorio hacia los diferentes peligros naturales, y de un programa de adaptación al incremento de los peligros naturales como forma de evitar o mitigar los daños que pueden causar inundaciones, terremotos, erupciones volcánicas y otros eventos naturales catastróficos. Una planificación adecuada, puede reducir significativamente los daños que producen estos eventos. (Diez, 2009)

5.2. MARCO CONCEPTUAL
A continuación se presentan las definiciones relacionadas con la gestión del riesgo:

Amenaza
El concepto de amenaza se define en la Ley 1523 de 2012 como: “Peligro latente de que un evento físico de origen natural, o causado, o inducido por la acción humana de manera accidental, se presente con una severidad suficiente para causar pérdida de vidas, lesiones u otros impactos en la salud, así como también daños y pérdidas en los bienes, la infraestructura, los medios de sustento, la prestación de servicios y los recursos ambientales” (artículo 4, numeral 3).

Análisis del riesgo
El análisis de riesgo se basa en la conciencia de que el riesgo es el resultado de la concurrencia de una amenaza y de la vulnerabilidad de elementos amenazados (elementos expuestos). Por consiguiente, tomando en cuenta esta combinación de factores, el análisis de riesgos apunta a estimar y evaluar las posibles consecuencias de fenómenos naturales en un determinado grupo poblacional y en sus bases de vida. Se trata tanto de efectos o consecuencias a nivel social, como también económico y ambiental. La evaluación de la amenaza y el análisis de la vulnerabilidad forman parte del análisis de riesgos y deben entenderse como acciones inseparables.
De esta manera, partiendo del conocimiento de que las personas y las bases de vida potencialmente afectadas por un determinado fenómeno natural son vulnerables a éste y sabiendo que, por lo tanto, dicho fenómeno se convierte en una amenaza, el análisis de riesgos estudia los posibles daños.

Conocimiento del riesgo
Proceso de la gestión del riesgo está compuesto por la identificación de escenarios de riesgo, el análisis y evaluación del riesgo, el monitoreo y seguimiento del riesgo y sus componentes y la comunicación para promover una mayor conciencia del mismo que alimenta los procesos de reducción del riesgo y de manejo de desastre (Ley 1523 de 2012 artículo 4, numeral 7).
Exposición (Elementos Expuestos)
De acuerdo a la Ley 1523 de 2012 exposición se refiere a la presencia de personas, medios de subsistencia, servicios ambientales y recursos económicos y sociales, bienes culturales e infraestructura que por su localización pueden ser afectados por la manifestación de una amenaza (artículo 4, numeral 10).

Gestión del riesgo
La gestión del riesgo es el proceso social de formulación, ejecución, seguimiento y evaluación de políticas, estrategias, planes, programas, regulaciones, instrumentos, medidas y acciones permanentes para el conocimiento y la reducción del riesgo y para el manejo de desastres, con el propósito explícito de contribuir a la seguridad, el bienestar, la calidad de vida de las personas y al desarrollo sostenible. (Ley 1523 de 2012 artículo 4, numeral 11)

Susceptibilidad
La susceptibilidad en los estudios de análisis y evaluación de amenazas, constituye la base inicial, el primer paso para el análisis y zonificación de amenazas. Se entiende como la predisposición de un territorio a presentar determinados fenómenos amenazantes. De acuerdo con la naturaleza de los eventos amenazantes, cada uno de ellos tiene una fuente y una forma como se materializa en un espacio geográfico.

Por lo tanto, se plantea que no se puede configurar un evento de origen natural si no existen determinadas condiciones ya sean geológicas, geográficas, meteorológicas, atmosféricas, ambientales y sociales para que se puedan materializar. Los mapas de susceptibilidad para cada evento deben delimitar áreas de acuerdo con unas características específicas que dan lugar a uno de los tipos de eventos determinados.

Reducción del riesgo
Proceso de la gestión del riesgo que está compuesto por la intervención dirigida a modificar o disminuir las condiciones de riesgo existentes, entiéndase: mitigación del riesgo, y a evitar nuevo riesgo en el territorio, entiéndase: prevención del riesgo. Son medidas de mitigación y prevención que se adoptan con antelación para reducir la amenaza, la exposición y disminuir la vulnerabilidad de las personas, los medios de subsistencia, los bienes, la infraestructura y los recursos ambientales, para evitar o minimizar los daños y pérdidas en caso de producirse los eventos físicos peligrosos. La reducción del riesgo la componen la intervención correctiva del riesgo existente, la intervención prospectiva de nuevo riesgo y la protección financiera. (Ley 1523 de 2012 artículo 4, numeral 21)
Riesgo de desastres
El riesgo de desastres corresponde a los daños o pérdidas potenciales que pueden presentarse debido a los eventos físicos peligrosos de origen natural, en un período de tiempo de específico, que son determinados por la vulnerabilidad de los elementos expuestos. (Ley 1523 de 2012 artículo 4, numeral 25)

Vulnerabilidad
La vulnerabilidad es definida en la Ley 1523 de 2012 como la: “Susceptibilidad o fragilidad física, económica, social, ambiental o institucional que tiene una comunidad de ser afectada o de sufrir efectos adversos en caso de que un evento físico peligroso se presente. Corresponde a la predisposición a sufrir pérdidas o daños de los seres humanos y sus medios de subsistencia, así como de sus sistemas físicos, sociales, económicos y de apoyo que pueden ser afectados por eventos físicos peligrosos” (artículo 4, numeral 27).

Evaluación de amenazas
La evaluación de amenazas se realiza a través de inventarios de fenómenos, hechos de forma participativa con las entidades territoriales, los líderes comunales y la población localizada en la cuenca; observaciones y mediciones de campo; análisis y revisión de información técnica - científica disponible (mapas, fotos aéreas, informes, etc.), con el fin de conocer la probable ubicación y severidad de los fenómenos naturales peligrosos, así como la probabilidad de que ocurran en un tiempo y área específicos. Tiene como resultado la elaboración de un mapa de amenazas, el cual representa un elemento clave para la planificación del uso del territorio de la cuenca y constituye un insumo imprescindible para el análisis de los riesgos actuales y potenciales.

Análisis de elementos expuestos y de la vulnerabilidad
Mediante este proceso se determinan el nivel de exposición y de susceptibilidad de los elementos expuestos a ser afectados por el evento amenazante que podrá generar daños y pérdidas de los elementos expuestos ante una amenaza específica. Consiste en la identificación de los elementos expuestos y el análisis de vulnerabilidad.
La susceptibilidad a que se presenten daños en las actividades productivas, la localización de asentamientos humanos y la infraestructura estratégica y de la sostenibilidad ambiental del territorio y de sus recursos naturales; como expresión de la relación entre la magnitud de un evento específico y la respuesta de las áreas expuestas a éste en la cuenca hidrográfica, hacen parte de este análisis.

Escenario de Riesgo
Un escenario de riesgo se representa por medio de la caracterización de los factores de riesgo, sus causas, la relación entre causas, los actores causales, el tipo y nivel de daños que se pueden presentar, más la identificación de los
principales factores que requieren intervención así como las medidas posibles a aplicar y los actores públicos y privados que deben intervenir.

5.3. MARCO NORMATIVO

A continuación se presentan las principales normas del orden nacional que reglamentan y orientan la gestión del riesgo:

Decreto 1807 de 2014 (Septiembre 19); por el cual se reglamenta el artículo 189 del Decreto Ley 019 de 2012 en lo relativo a la incorporación de la gestión del riesgo en los planes de ordenamiento territorial y se dictan otras disposiciones.

Ley 1575 de 2012 (21 Agosto) Se establece la ley general de Bomberos de Colombia y se crea una estructura bomberil a nivel nacional, departamental y distrital.

Ley 1523 de 2012 (Abril 24). Por la cual se adopta la política Nacional de Gestión del Riesgo de Desastre y se establece el Sistema Nacional de Gestión del Riesgo de Desastres y se dictan otras disposiciones.

Ley 019 de 2012 (Enero 10). Artículo 189. Incorporación de la gestión del riesgo en la revisión de los Planes de Ordenamiento Territorial

Ley 1454 de 2011. Por la cual se dictan normas orgánicas sobre ordenamiento territorial y se dictan otras disposiciones

Decreto 926 de 2010 (Marzo 19). Por el cual se establecen los requisitos de carácter técnico y científico para construcciones sismo resistentes NSR-10.

Decreto 4550 de 2009 (Noviembre 23). Reglamenta la adecuación, reparación y/o reconstrucción de edificaciones, con posterioridad a la declaración de una situación de desastre o calamidad pública.

Decreto 4002 de 2004 (Noviembre 30). Por el cual se reglamentan los artículos 15 y 28 de la Ley 388 de 1997.

Documento CONPES 3146 de 2001 (Diciembre 20). Estrategia para consolidar la ejecución del Plan Nacional de Prevención y Atención de Desastres en el corto y mediano plazo.

Decreto 879 de 1998 (Mayo 13). Por el cual se reglamentan las disposiciones referentes al ordenamiento del territorio municipal y distrital y a los POT.
Decreto 93 de 1998 (Enero 13). Por el cual se adopta el Plan Nacional para la Prevención y Atención de Desastres.

Decreto 2340 de 1997 (Septiembre 19). Por el cual se dictan unas medidas para la organización en materia de prevención y mitigación en incendios forestales.

Ley 400 de 1997 (Agosto 19). Por el cual se adoptan normas sobre construcciones sismo resistente.

Ley 388 de 1997 (Julio 18). Por la cual se modifica la Ley 9 de 1989, y la Ley 2 de 1991 y se dictan otras disposiciones. "Ley de Ordenamiento Territorial".

Ley 99 de 1993 (Diciembre 22). Por medio de la cual se crea el Ministerio del Medio Ambiente, se reordena el sector público encargado de la gestión y conservación del medioambiente y los recursos naturales renovables, se organiza el Sistema Nacional Ambiental -SINA- y se dictan otras disposiciones.

Decreto-Ley 919 de 1989 (Mayo 1). Por el cual se organiza el Sistema Nacional para la Prevención y Atención de Desastres y se dictan otras disposiciones.

Ley 9 de 1989 (Enero 11). Por la cual se dictan normas sobre planes de desarrollo municipal, compraventa y expropiación de bienes y se dictan otras disposiciones. Inventarios de zonas de alto riesgo y la reubicación de población en zonas de alto riesgo.

Ley 46 de 1988 (Noviembre 2). Por la cual se crea y organiza el Sistema Nacional para la Prevención y Atención de Desastres, se otorgan facultades extraordinarias al Presidente de la República y se dictan otras disposiciones.

Decreto 1547 de 1984 (Junio 21). Por el cual se crea el Fondo Nacional de Calamidades y se dictan normas para su organización y funcionamiento.

Resolución 511 de 2012, por medio de la cual se establece el procedimiento para la realineación de la Reserva Forestal Protectora Productora de la Cuenca Alta del río Bogotá y se adoptan otras determinaciones

Resolución 755 de 2012, por medio de la cual se establecen determinaciones respecto al uso y funcionamiento de la Reserva Forestal Protectora Productora de la Cuenca Alta del Río Bogotá y se modifica la Resolución número 511 de 2012.

Acuerdo 16 de 2008 CAR, Por la cual se expiden determinantes ambientales para la elaboración de los planes de ordenamiento territorial Municipal
6. DIAGNÓSTICO

A partir de la revisión bibliográfica y de los expedientes del municipio presentados ante la Corporación Autónoma Regional de Cundinamarca, se realizó un diagnóstico que busca identificar los principales aspectos físicos, ambientales y sociales, que permitan caracterizar al municipio y brinden herramientas para la planificación del territorio teniendo como base la gestión del riesgo.

6.1. ASPECTOS GENERALES DEL MUNICIPIO

Ubicación geográfica.
El Municipio de Chía hace parte de los 116 municipios del Departamento de Cundinamarca, su cabecera Urbana principal está localizada entre las siguientes coordenadas: Al norte a los 4°52´26.4” Latitud Norte y 74°03´10.8” Longitud Oeste, al sur a los 4°50´42” Latitud Norte y 74°03´10.8” Longitud Oeste, al oeste a los 4°51´46.8” Latitud Norte y 74°04´12” Longitud Oeste, al este a los 4°51´46.8” Latitud Norte y 74°02´9.6” Longitud Oeste. Su altura sobre el nivel medio del mar es de 2.550 metros.

División Política-Administrativa.
El Municipio de Chía tiene una extensión de 79,38 kilómetros cuadrados aproximadamente, limita por el Norte con el Municipio Cajicá, por el Oriente con Municipio Sopó, por el Sur con el Distrito Capital Bogotá y con el Municipio de Cota, por el Occidente con los Municipios Tenjo y Tabio. La mayor parte de su territorio corresponde a la estructura orográfica de sus Cerros Orientales y Occidentales y en menor proporción a la zona del Valle con terrenos planos, donde se enmarcan ocho veredas; Bojacá, Yerbabuena, Fusca, la Balsa, Cerca de Piedra, Fonquetá, Tíquiza, Fagua, y dos zonas urbanas.
El Municipio de Chía es una sección política y administrativa, creada como Municipio mediante la Ordenanza 36 de 1954 y el Decreto Nacional 1510 de 1951 que aprueba el Decreto Departamental 441 de 1950.

Descripción fisiográfica
Chía está delimitada por un sistema montañoso en el que se destacan los cerros de la Valvanera y Pan de Azúcar, al occidente y oriente respectivamente. Su topografía se caracteriza por pendientes que oscilan entre 0 y 15% en el valle de los ríos Bogotá y Río Frío, y, mayores al 50% en los cerros orientales y occidentales, donde la cota máxima de altura sobre el nivel del mar se encuentra a los 3230 msnm aproximadamente.

6.1.1. Componente abiótico

Geología

- Formación Guaduas

La Formación Guaduas aflora en fajas irregularmente distribuidas en la Sabana de Bogotá, desde el norte en los municipios de Lenguazaque, Suesca y Coquía, hasta el sur en los municipios de Silvania y Cabrera (IGAC, 2000), y en la zona de estudio aflora en el sinclinal de Teusacá, puntualmente en la zona de Tibitó y la Vereda Yerbabuena del municipio de Chía; hacia el sur y el occidente aflora en zonas de montaña de los municipio de Facatativá y Soacha. Se compone en general de arcillolitas laminares de color gris claro, con intercalaciones de limolitas.
y areniscas de grano fino, además de la presencia de algunos lentes de carbón (IGAC, 2000).

- Depósitos de origen aluvial y lacustre recientes.

- Formación Chía

La componen sedimentos aluviales de grano fino que se encuentran a lo largo de la red fluvial que cruza la Sabana de Bogotá. Se compone principalmente de arcillas; en algunas partes hay presencia de limos y en áreas fangosas se observan arcillas diatomíticas. El área tipo de esta formación se encuentra en la llanura de inundación del río Bogotá en el municipio de Chía; está compuesta por varios metros de arcillas moteadas de colores gris y naranja.

- Estructuras Sinclinales

- Sinclinal de Checua

Esta estructura está localizada entre las localidades de Zipaquirá y Lenguazaque, aunque realizando un análisis regional se puede extender hacia los municipios de Cajicá y Chía. Es una estructura asimétrica con el flanco oriental más inclinado y en algunos sectores invertido por efecto de la falla de Cucunubá, y hacia el sur está cubierto con depósitos cuaternarios, sin influencia de lineamientos de fallas importantes. El núcleo de este sinclinal está conformado por rocas de la Formación Bogotá y en los flancos afloran rocas de las formaciones Cacho y Guaduas.

Geomorfología

- Sedimentación de origen lacustre y aluvial

La etapa más importante en la configuración morfogenética de la Sabana es la depositación de sedimentos de origen lacustre, originados por la denominada Laguna de Bogotá. Cuando finalizó la última época glacial hace aproximadamente 12.000 años, la laguna se desecó progresivamente, dejando sedimentos finos (arcillas y limos) con alta cobertura de materia orgánica.

La sedimentación aluvial activa se caracteriza por depósitos de grano fino a muy fino, con gran cantidad de materia orgánica y la ocurrencia de inundaciones en periodos de pluviosidad alta.

- Unidades geomorfológicas
- **Paisaje estructural de montaña**

Cordillera Oriental, son de tipo estructural con plegamientos y en general configuran el borde de la planicie fluvio-lacustre. Su dirección varía entre Suroeste - Noreste (en los municipios de acatativá, Gachancipá y Tocancipá) y Sur-Norte (en los municipios de Sopó y Soacha). Por procesos erosivos y denudacionales, y en algunas zonas por influencia de movimientos gravitatorios, se encuentran depósitos de material coluvial y coluvio-aluvial hacia el contacto con la zona plana. Dentro de este paisaje se definen dos unidades de relieve: la unidad de lomas y colinas, y los glacis de acumulación.

- **Cuesta (MK)**

Son estructuras rocosas que han sufrido plegamiento y erosión, están compuestas por arcillolitas y areniscas con diferentes grados de alteración. La diferencia altitudinal entre la base y el tope es superior a 300m. Está caracterizado por plegamientos expresados en anticlinales y sinclinales, influenciados por actividad tectónica tanto antigua como reciente. Se encuentra en las zonas altas de los municipios de Facatativá, Bojacá, Sopó, Chía, Tocancipá y Gachancipá.

Clasificación Suelo

En el año 2007 la Corporación Autónoma Regional obtuvo por parte del gobierno Colombiano un instrumento jurídico que le permitiría: controlar la decisión sobre el cambio de uso de la tierra que se llevaría a cabo durante la organización del espacio municipal; facilitar la toma de decisiones sobre la protección de ambientes vulnerables y especialmente, promover políticas de control relacionadas con la seguridad alimentaria mediante la conservación de los suelos con alto potencial agrícola.

A partir de esto, el Instituto Geográfico Agustín Codazzi, elabora un estudio detallado de suelos en las áreas planas de 14 municipios de la Sabana de Bogotá en el año 2011; a partir del cual se basa el municipio de Chía para definir las principales características de los suelos que hacen parte del municipio, las cuales son indispensables para conocer las limitaciones y potencialidades que ellos poseen para el uso agrícola. Hacen parte del municipio de Chía cinco zonas agrologicas, las cuales se presentan en la siguiente imagen.
- Grupo De Manejo 2C-1
Esta zona agrologica compone 800 Has equivalente al 19,26 % del suelo, se ubican a una altura comprendida entre 2.565 y 2.583 msnm; el material parental lo conforman las cenizas volcánicas y materiales aluviales medios, los suelos son profundos, bien drenados, texturas medias y moderadamente finas. Estos suelos tienen limitaciones ligeras para el uso y manejo como reacciones fuerte y moderadamente acida, bajos contenidos de fosforo en algunos horizontes, frecuente ocurrencia de heladas en los dos semestres del año que ocasiona pérdidas parciales e incluso totales de cosecha y pasturas, se encuentran en pastos dedicados a la ganadería intensiva y comercial, donde se encuentran algunas especies arbóreas introducidas; Esta zona agrologica se encuentra dentro de las siguientes zonificaciones establecidas por el POT; Zona Agropecuaria, Zona Rural de Granjas, Zona Rural Suburbana, Área de Uso Múltiple y Área de Vivienda de Interés Social.

- Grupo De Manejo 3sc-1
Esta zona agrologica compone 445 Has, equivalente al 10,71 %, se ubica a una altura de 2683 msnm; Son suelos profundos de texturas medias y moderadamente
finas, las limitaciones para el uso y manejo de estos suelos son la ocurrencia de heladas en los dos semestres del año y la alta saturación de aluminio. La vegetación natural ha sido reemplazada por pastos principalmente kikuyo para desarrollar actividades ganaderas; se encuentran algunas especies arbóreas introducidas como el eucalipto común y el pino patula, se encuentra en Zona Rural de Granjas.

- Grupo De Manejo4hs-2
 Esta zona agrologica compone 836Has, equivalente al 20,12 %, se ubica a una altura que varía entre 2.586 y 2.590 msnm; El material parental está compuesto por aluviones finos, medios y cenizas volcánicas. Los suelos son superficiales y muy superficiales, muy pobre y pobremente drenados. Estos suelos tienen limitación para el uso y manejo principalmente por exceso de humedad presentan heladas en los dos semestres del año, fuerte acidez y bajos contenidos de fósforo y potasio. Se encuentra en ZJME y ZAP.

- Grupo De Manejo5hs-1
 Esta zona agrologica compone 157 Has, equivalente a 3,78%, se localizan a alturas que varían entre 2.566 y 2.600 msnm; El material parental lo conforman las cenizas volcánicas y aluviones finos. Las limitaciones de uso y manejo para este tipo de suelos son la poca profundidad Efectiva debido a la fluctuación del nivel freático, drenaje pobre y encharcamientos. Se encuentran en ZJM y Zona Rural de Granjas.

- Grupo De Manejo7S-1
 Esta zona agrologica compone 103 Has, equivalente a 2,47%, se localizan a alturas que varían entre 2.550 y 2.620 msnm; los suelos se formaron a partir de materiales coluvio- aluviales, son afectados parcialmente por erosión en grado moderado; se encuentra en Zona Rural de Granjas y Zona Agropecuaria.

Clima

La temperatura media mensual multianual es igual a 13.4ºC, con un máximo promedio de 14.0ºC para el mes de abril y un mínimo promedio de 13.1ºC para el mes de enero. Los valores máximos promedio absolutos de temperatura del aire corresponden a 27.5ºC mientras que los mínimos promedio absolutos son del orden de –2.5ºC se presentan respectivamente estos valores de temperatura a nivel media, máximo y mínimo mensual multianual.

El análisis de las tendencias de largo plazo en los registros históricos climatológicos, tomados en diferentes regiones del país, muestra evidencias de cambio climático, en las cuales la temperatura media estuvo aumentando a una
tasa de cambio de 0.13°C por década para el periodo 1971-2000 con afectación en el Departamentos de Cundinamarca y por ende el municipio de Chía. (Alcaldía de Chía, 2015)

Existen dos períodos lluviosos de septiembre a noviembre y de abril a junio. De diciembre hasta principios de abril, la región está dominada por el sistema tropical del alisio del noreste, lo que define un período más seco con poca ocurrencia de aguaceros. Adicionalmente, en los meses de junio y julio ocurre un verano menos acentuado que el mencionado anteriormente. Los meses más lluviosos del año corresponden a abril a octubre, con 101 mm para cada mes, mientras el más seco ocurre en enero con unos 27 mm.

En relación con el número de días de lluvia multianual en la zona, se encuentra que 182 días del año presentan precipitación, con valor máximo mensual de 20 días para el mes de mayo y mínimo mensual para el mes de enero. Adicionalmente, las lluvias con intensidad más corta son moderadas. Se registran lluvias históricas de hasta 65 mm para períodos de 24 horas.

La humedad relativa media anual multianual del aire es igual al 77%, con un máximo promedio multianual de 80% para el mes de octubre y un mínimo promedio multianual del 74% para el mes de enero. (Alcaldía de Chía, 2006)

Clasificación climática de Holdridge

Según la clasificación climática de Holdridge para el municipio de Chía, hay solo tres zonas de vida, que se describirán a continuación:

- **Bosque seco montano bajo (bs-MB)**
 Ésta zona de vida se caracteriza por precipitaciones anuales menores a 1000 mm anuales, una altura sobre el nivel del mar menor a 2700 m.s.n.m. y temperatura promedio anual de 13.1 °C. Su ubicación en el área de estudio abarca la totalidad de los cerros occidentales del municipio de Chía.

- **Bosque húmedo montano bajo (bh-MB)**
 Ésta zona de vida se caracteriza por presentar precipitaciones anuales iguales ó superiores a 1000 mm anuales, altura sobre el nivel del mar inferior a 2700 msnm y temperatura media anual de 13.1 °C. Su ubicación dentro del área de estudio se constituye por una gran área de los cerros orientales del municipio de Chía.

- **Bosque húmedo montano (bh-M)**
 Ésta zona de vida se caracteriza por presentar precipitaciones anuales iguales ó superiores a 1000 mm anuales, altura sobre el nivel del mar menor a 3000 msnm y una temperatura de 13.1 °C. Su ubicación dentro del área de estudio se constituye
por un área mediana en los cerros orientales, en una de las partes más altas del municipio.

6.1.2. Componente biótico

Vegetación

Las principales coberturas vegetales del municipio son producto de la antropogenización de los paisajes debido a un acelerado proceso de urbanización. En los cerros se encuentran bosques secundarios y arbustales, en las zonas rurales del municipio priman los pastos y herbazales con fines agrícolas.

6.1.3. Componente económico

Actividades Económicas Principales del Municipio

A diferencia de otros municipios de la Sabana, Chía ya no centra su economía en actividades relacionadas con sector agropecuario, pues, su economía se ha diversificado en muchas actividades económicas no tradicionales, entre las cuales logra sobresalir la actividad de la Construcción, el Turismo, y los Servicios de Educación, Salud y Comercio, permitiendo el desarrollo de una nueva gran diversidad de sectores.

Estas actividades se han ubicado principalmente a lo largo de la Autopista Norte, sobre la Autopista Chía- Cajicá, así como sobre la carretera Central del Norte y sobre la vía Chía y Cota, estableciendo una nueva zona de desarrollo Industrial, Comercial y de Servicios. Mientras que sobre el resto del territorio ha proliferado la actividad de la Construcción con Proyectos Residenciales. La actividad Agropecuaria prácticamente ha desaparecido quedando tan solo los desarrollo agroindustriales de flores de exportación. (Alcaldía de Chía, 2005)

6.1.4. Componente social

Aspectos demográficos

Chía como centro receptor de población migrante de municipios de la sabana presenta uno de los crecimientos a de población más altos del país. Analizando la población censada en los últimos 50 años, podemos observar como en la década de los ochenta llega a un crecimiento del 88% y en el último censo duplica su población.

De igual forma a partir de los años setenta su crecimiento en el perímetro urbano aumenta considerablemente teniendo en cuenta que en la década de los
cincuenta, la población se concentraba en la zona rural en un 71.64%, con los datos del censo del año 2005 su distribución geográfica se distribuye en un 75% en el suelo urbano y el resto en el suelo rural.

La población proyectada y certificada para el municipio de Chía al año 2013 es de 120.719, con un comportamiento creciente del 2.59% sobre los 97896 habitantes censados en el año 2005.

6.2. GESTION DEL RIESGO EN EL MUNICIPIO DE CHIA

Para determinar los aspectos que permiten incorporar la gestión del riesgo en la planeación territorial, se identificaron los puntos críticos donde se han presentado eventos significativos y los principales actores dentro del municipio, encargados de la gestión. Finalmente se presenta un diagnóstico sobre la incorporación de la gestión del riesgo en los planes de ordenamiento territorial desde el año 2000, teniendo en cuenta los lineamientos del Decreto 1807 de 2014.

6.2.1. Antecedentes

En el año 2000 se hizo un estudio de riesgos urbanos y rurales por parte de Coy asesores consultores, mediante contrato 156 de 2000. En él se identificaron causas posibles de los riesgos que se presentan en el municipio y se elaboró el mapa de riesgos urbanos y rurales. Los riesgos identificados en el mapa son:

- Inundación
- Avalancha
- Derrumbe o deslizamiento
- Hundimiento del terreno
- Incendio o explosión industrial
- Incendio Forestal
- Propagación de enfermedades respiratorias o gástricas
- Incendios domésticos
- Accidentabilidad en planteles educativos
- Accidentabilidad en sitios de concentración masiva
- Accidentabilidad vehicular
- Explosiones
- Accidentes con productos químicos peligrosos
- Accidentes aéreos
- Sequías prolongadas
- Heladas prolongadas
- Conflictos armados que involucran a la población civil
Para cada uno de estos riesgos se identificaron varias causas posibles y los sitios en donde se presentan, tanto en la zona urbana como en la rural. Si bien se hizo un mapa de riesgos, el estudio no contiene información acerca de la probabilidad de ocurrencia de las amenazas, ni de los niveles de vulnerabilidad de los sitios identificados, información que es importante conocer para lograr enfocar acciones de gestión del riesgo, priorizándolas con base en el grado de afectación que pueda tener un riesgo dado.

Ahora bien, en cuanto a las causas identificadas, hay algunas que se destacan como las más comunes dentro de cada riesgo, pero no hay un análisis estadístico sobre esto, ni tampoco un análisis espacial que permita identificar patrones o tendencias sobre la localización de los riesgos. (Alcaldía de Chía, 2015)

Este mapa ha sido actualizado a medida que se han presentado eventos que han afectado la comunidad y el sistema ambiental del municipio. No obstante la pasada ola invernal del año 2011, prendió las alertas sobre la gestión del riesgo en el municipio, ya que se generaron pérdidas económicas importantes y se empezó a definir las directrices para mitigar el riesgo presente en el municipio.

Dentro de los eventos más representativos se destaca la ola invernal del año 2011, la cual generó cuantiosas pérdidas y afectaciones, no solo al municipio sino a la región:

Imagen 3. Afectaciones Ola Invernal 2010-2011

Fuente: Alcaldía de Chía
6.2.2. Identificación de puntos críticos

La tipificación de puntos críticos, permite identificar espacialmente los lugares que son más susceptibles por fenómenos amenazantes, por lo tanto son lugares que presentan mayor riesgo para la comunidad. En el municipio de Chía, se han identificado puntos críticos donde se han generado eventos de inundaciones, incendios forestales y deslizamientos; la Corporación Autónoma Regional de Cundinamarca lleva un control de estos puntos críticos, siendo las inundaciones los eventos que con mayor frecuencia ocurren.

Tal como se ilustra en el Anexo Nº 1, los principales eventos ocurridos en el municipio son inundaciones provocadas por la ola invernal 2010-2011, donde varios predios fueron afectados por el debilitamiento de los jarillones. De igual manera el casco urbano se vio seriamente afectado por el rebose del Río Bogotá y Río Frío, deteriorando infraestructura, vías e instituciones.

Con menor recurrencia se presentan incendios forestales en épocas secas, afectando principalmente zonas rurales con vegetación nativa y bosques secundarios. Así mismo, los deslizamientos se presentan en zonas rurales en épocas de lluvias intensas, afectando viviendas y predios circundantes.
Imagen 4. Mapa de Puntos Críticos del Municipio de Chía-Cundinamarca

Fuente: Corporación Autonoma de Cundinamarca-CAR
6.2.3. Instituciones

Es de conocerse que la responsabilidad en la Gestión del Riesgo recae sobre todos y cada uno de los habitantes del territorio colombiano, y, en cumplimiento de esta responsabilidad, las entidades pertenecientes al sistema ejecutarán los procesos de Gestión del Riesgo, entendidos como: Conocimiento del Riesgo, Reducción del Riesgo y Manejo de Desastres. Por su parte, los demás habitantes actuarán con precaución y autoprotección bajo lo dispuesto por las autoridades correspondientes.

Para lo cual es creado a partir de la Ley 1523 de 2012 por sanción presidencial el Sistema Nacional de Gestión del Riesgo de Desastre, que es el conjunto de entidades nacionales del orden público, privado y comunitario que, articuladas con las políticas, normas y recursos, tiene como objetivo llevar a cabo el proceso social de la gestión del riesgo con el propósito de ofrecer protección a la población en todo el territorio nacional en busca de mejorar la calidad de vida, la seguridad y el bienestar de todas las comunidades colombianas.

Actualmente está compuesto por 6 instancias de orientación y coordinación, quienes optimizan el desempeño y la gestión de las distintas entidades en la ejecución de acciones. Estas son:

- Consejo Nacional para la Gestión del Riesgo
- Unidad Nacional para la Gestión del Riesgo de Desastres
- Comité Nacional para el Conocimiento del Riesgo
- Comité Nacional para la Reducción del Riesgo
- Comité Nacional para el Manejo de Desastres
- Consejos Departamentales, distritales y municipales para la Gestión del Riesgo

Puntualmente el municipio de Chía crea el consejo municipal para la Gestión del riesgo mediante el Decreto 030 del 6 de julio de 2012, como la instancia superior de coordinación, asesoría, planeación y seguimiento, destinado a garantizar la efectiva articulación de los procesos de conocimiento, reducción y el manejo de desastre, calamidades públicas y emergencias que se generen por fenómenos de origen natural, o por la acción del hombre de manera involuntaria.

Este consejo municipal está integrado por:

- El Alcalde municipal quien lo preside y modera
- Secretario de Gobierno quien será el coordinador general del consejo municipal para la gestión del riesgo
- Secretario de Planeación
- Secretario de Obras publicas
- Secretario de Desarrollo Económico
- Secretario de Desarrollo Social
- Secretario de Tránsito y Transporte
- Director de Ambiente y Desarrollo Agropecuario
- Director de Infraestructura
- Director de Orden Público y Convivencia Ciudadana
- Inspector de Policía urbanística y ambiental
- Jefe Asesor de Prensa
- Gerente de Emserchia
- Comandante de Brigada o Unidad Militar
- Comandante de Estación de Policía
- Comandante del Distrito
- El Presidente o Representante de la Defensa Civil del municipio
- Comandante Cuerpo de Bomberos
- El coordinador o representante de la Cruz Roja
- Un delegado de la Corporación Autónoma Regional (C.A.R) – Sabana Centro (Dcto 030 de 2012)

6.2.4. Inclusión de la Gestión del Riesgo dentro del Plan de Ordenamiento Territorial

Teniendo en cuenta la información presentada por el municipio ante la Corporación Autónoma Regional de Cundinamarca CAR, para la inclusión de la gestión del riesgo en los planes de ordenamiento territorial, se evaluó la conformidad y el cumplimiento con el Decreto 1807 del 2014 de acuerdo al Anexo Nº 2, para dar continuidad con la revisión y actualización del POT. En la revisión realizada se realizaron las siguientes observaciones:

- Dentro de los documentos entregados para revisión no se presentan los estudios pertinentes donde se especifican los insumos, metodologías y productos para la elaboraron de los estudios en los suelos urbanos, de expansión urbana y rural para los fenómenos de inundación, avenidas torrenciales y movimientos en masa contemplados en el Decreto 1807 de 2014.

- Para a la delimitación y zonificación de las áreas de amenaza, el municipio presenta mapas de zonificación para amenazas de inundación y deslizamientos. De igual manera se presenta mapa de identificación de áreas susceptibles a avenidas torrenciales. Sin embargo en el municipio se han presentado incendios forestales en épocas de sequía, por lo que se recomienda tener en cuenta esta amenaza dentro de la zonificación. Teniendo en cuenta que el Decreto 1807 de 2014 solo contempla de
manera obligatoria la zonificación de amenaza por inundación, remoción en masa y avenidas torrenciales, también contempla en su artículo 3 parágrafo 2 y 3 que si el municipio está expuesto a otro tipo de amenaza deberán realizarse los estudios pertinentes para su zonificación y delimitación. En el Documento técnico soporte presentado para revisión ante la Corporación, se identifican los incendios forestales como una amenaza, sin embargo en la cartografía presentada no se anexa el mapa enunciado, igualmente se identifican áreas por amenaza sísmica, las cuales son extraídas del POMCA, en la documentación anexa no se encuentra la cartografía citada.

- En cuanto a la determinación de las medidas de intervención, orientadas a establecer restricciones y condicionamientos mediante la determinación de normas urbanísticas, el municipio presenta las medidas de intervención para cada tipo de suelo, sin embargo para suelo urbano se recomienda realizar estudios detallados, teniendo en cuenta los múltiples eventos de inundación presentados durante fenómenos climáticos extremos.

- Para los estudios necesarios para realizar el análisis pertinente para las diferentes amenazas se encontró lo siguiente:

 - Fenómenos de remoción en masa

En el documento técnico soporte, presentado para revisión en el presente año, se describe la topografía del municipio, donde identifica zonas montañosas caracterizadas por sus altas pendientes, sin embargo se recomienda realizar mapa de pendientes, para facilitar el análisis de dicho fenómeno. De igual manera el municipio ha presentado cartografía que cuenta con curvas de nivel, drenajes, red vial, infraestructura y equipamientos, y asentamientos humanos dentro de la plancha 2A del POT de Chía, elaborada en enero de 1999 por la Universidad Nacional bajo el contrato 089 de 1998, este presenta un mapa base con curvas de nivel y drenajes y en la plancha 25 del mismo estudio se presenta el mapa de equipamiento municipal. Esta información puede servir como insumo para la elaboración de los diversos estudios sin embargo se recomienda actualizarla a la fecha. En la revisión del año en curso, se presenta en la plancha D-01 el diagnostico vial del municipio, este estudio fue elaborado en septiembre del 2014 a una escala 1:20.000.

En cuanto al inventario de procesos morfo dinámicos que solicita el decreto 1807 de 2014, el municipio ha presentado cartografía que cuenta con estos elementos, la plancha 3 del POT de Chía, elaborado en enero de 1999 elaborado por la universidad Nacional bajo el contrato 089 de 1998 presenta el Mapa Geológico. La plancha Nº 4 del mismo documento, presenta el Mapa Geomorfológico (Basado en
la interpretación de aerofotografías de 1994-1995) el cual presenta las formas de origen aluvial, denudacional y de origen coluvial. Como se mencionó anteriormente esta información puede utilizarse como insumo, siempre y cuando esta sea actualizada según los requerimientos del Decreto 1807 de 2014. Además presenta cartografía que cuenta con estos elementos; la Plancha 6 del POT de Chía, elaborado en enero de 1999 presenta el mapa de Usos y cobertura del suelo.

De manera general para la elaboración del estudio no se presenta memoria técnica, en la cual se detalle la metodología utilizada, por lo tanto se desconoce si tuvieron en cuenta agentes detonantes, análisis estadísticos, entre otros para la elaboración de la zonificación.

En términos de cartografía definitiva de zonificación, el municipio presenta el Mapa FG-14 de Mayo de 2015 con zonificación de amenazas por deslizamientos a escala 1:20.000. De acuerdo al artículo 5 del decreto 1807 del 2014, la escala para zonificación de amenazas en suelo urbano y de expansión urbana debe ser 1:5000, por lo tanto se sugiere trabajar a esta escala para este tipo de suelos, además de incluir la leyenda con sus respectivas características físicas de las unidades según la categoría establecida, los tipos de procesos predominantes y los posibles daños que se pueden generar.

- Inundaciones

En el Documento técnico de soporte año 2015 (DTS 07052015) en el ítem 7 de gestión de riesgo, artículo 83 y 88 del documento Articulado revisión POT post. RAD.CAR (10-02-2015) y el Estudio incorporación gestión del riesgo en la revisión del POT, se menciona que las zonas de riesgo por inundación, están ubicadas en las rondas de río Frío sector urbano (Puente de Tíquiza) y el río Bogotá.

No se presenta cartografía de las diferentes subunidades geomorfológicas asociadas a los paisajes aluviales, con especial énfasis en las geoformas correspondientes a la llanura de inundación, sin embargo como se mencionó anteriormente en el año 1999 la Universidad Nacional de Colombia bajo el contrato N° 089 de 1998, realizó un mapa geomorfológico para la Oficina de planeación de la Alcaldía Municipal de Chía, el cual puede ser actualizado y utilizado como insumo si cumple con los requerimientos del Decreto 1807 de 2014.

Para el año 2011 se realizó un Modelo Digital de Terreno para determinar el polígono y volumen de la inundación de la ola invernal que afecto al municipio, teniendo en cuenta la cota de altura de la superficie del agua y las cotas de altura encontradas en los lechos de los ríos. Para el año 2007 se realizó el estudio hidrológico del Rio Frío en donde se encuentra consignada información básica de
los parámetros físicos de la Hoya del Río Frío, los análisis de las precipitaciones medias y máximas, caudales promedio mensuales y extremos anuales. Esta información puede utilizarse como insumo en la elaboración de los estudios básicos, siempre y cuando cumpla con los requerimientos expuestos en el Decreto 1807 de 2014.

En cuanto a cartografía de zonificación se presenta en la última revisión del POT la plancha FG-13 "Riesgo por Inundación", en la cual zonifica las áreas susceptibles a inundación, en Alta, media y baja. Esta cartografía fue elaborada en Mayo de 2015, a escala 1:20.000. Sin embargo en el artículo 5 del decreto 1807 de 2015, especifica las escalas de trabajo para los diferentes tipo de suelo, se recomienda trabajar de acuerdo a estas escalas.

Finalmente no se presenta un documento técnico que contenga la metodología empleada ni los resultados obtenidos.

- Avenidas torrenciales

El municipio presenta cartografía que cuenta con cauces presentes o con influencia en el municipio o distrito, sin embargo no se especifica si sus condiciones topográficas pueden tener un comportamiento torrencial. En la plancha 7 del POT de Chía, elaborado en enero de 1999, mediante contrato 089 de 1998, presenta un mapa Hidrológico, el cual puede servir como insumo, para la realización de este análisis, siempre y cuando esta sea actualizada bajo los parámetros del decreto 1807 de 2014.

No se presenta memoria técnica que especifique la metodología utilizada para la realización de la zonificación, por lo tanto se desconoce si te realizaron análisis estadísticos, probabilísticos o determinísticos.

En cuanto a cartografía de zonificación, en la última revisión del POT, se presenta la plancha FG-15 "Amenaza por Avenidas Torrenciales", donde se identifican las áreas susceptibles a este fenómeno, sin embargo no se realiza ninguna zonificación. La cartografía fue realizada en Mayo de 2015 a escala 1:20.000.

Finalmente no se presenta un documento técnico que contenga la metodología empleada ni los resultados obtenidos.

- Según lo estipulado en el Decreto 1807 de 2014 para las medidas de intervención se encontró lo siguiente:
En el documento Articulado revisión POT post. RAD.CAR (10-02-2015), se presenta el Artículo 94. Condicionamientos y restricciones al uso del suelo por amenaza y/o riesgo, el Artículo 95. Restricción del uso del suelo por amenaza y riesgo, el Artículo 97. Prohibición de Localización de Infraestructuras de Servicios Públicos Domiciliarios en Zona de Amenaza y el Artículo 100. Suelo de protección por riesgo.

En los documentos enviados para revisión se presenta el PLANO No. F-3 RIESGOS el cual en realidad es un mapa de amenazas pues según la definición de riesgo es el daño potencial que, sobre la población y sus bienes, la infraestructura, el ambiente y la economía pública y privada, pueda causarse por la ocurrencia de amenazas de origen natural, socio-natural o antrópico, y para la determinación de este debe realizarse un análisis en el que se relaciona amenaza y vulnerabilidad. Por lo tanto no se presenta el mapa con la delimitación y zonificación de las áreas con condición de riesgo ni se establecen los criterios para la caracterización y delimitación de las unidades de análisis que dependen del fenómeno a estudiar y la priorización para la realización de los estudios detallados que permitirán categorizar el riesgo, establecido en el Decreto 1807 de 2014.

- En cuanto a las medidas de mitigación no estructurales orientadas a establecer el modelo de ocupación del territorio y las restricciones o condicionamientos para el uso del suelo cuando sea viable, mediante la determinación de normas urbanísticas, se mencionan en el documento Articulado revisión POT post. RAD.CAR (10-02-2015), Artículo 93.2 las medidas no estructurales para reducir el riesgo de inundación, sin embargo no se mencionan para remoción en masa y avenidas torrenciales.

Dentro del documento Articulado revisión POT post. RAD.CAR (10-02-2015) se menciona que se deben realizar estudios detallados para fenómenos de remoción en masa e inundaciones, sin embargo no se establecen los criterios para la caracterización y delimitación de las unidades de análisis en las áreas que serán objeto de este tipo de estudios.
7. METODOLOGIA

Un mapa de zonificación de riesgos de desastre muestra de forma gráfica las posibles zonas en que pueden presentarse diferentes niveles de consecuencias que pueden afectar al territorio, la población, la economía y todos aquellos aspectos relevantes y que se consideren de importancia, por a la ocurrencia de un fenómeno natural o antrópico. (IDEAM, 2014), para el municipio de Chía se zonificaron las amenazas y riesgos por fenómenos amenazantes naturales y socio-naturales, los cuales son requeridos normativamente dentro de la inclusión de la gestión del riesgo en los planes de ordenamiento territorial, de esta manera la zonificación permitirá establecer prioridades y mecanismos de planeación.

La metodología se fundamenta en evaluación de cada uno de los componentes del riesgo, esto es la amenaza y la vulnerabilidad, a través de una metodología paramétrica, con enfoque espacial apoyada en sistemas de información geográfica, aproximación metodológica que se basa en la ponderación y calificación secuencial de los diversos factores generadores de amenaza y vulnerabilidad, para así llegar a la identificación del riesgo. (IDEAM, 2011)

La aplicación de la metodología está condicionada a la utilización de un programa informático de sistema de información geográfica (SIG). Para el caso de esta investigación, es utilizado el ArcGis 10.3 como herramienta base para realizar el álgebra de mapas y relacionar en todos los mapas índices de susceptibilidad y los factores detonantes

7.1. Determinación de la escala de trabajo

- Escala Espacial

De acuerdo al Decreto 1807 de 2014, para la presentación de estudios básicos para la inclusión de la gestión del riesgo dentro de los planes de ordenamiento territorial, la escala de trabajo de los estudios básicos es de 1:25.000 para zonas rurales y 1:5000 para zona urbana. Sin embargo de acuerdo a la disponibilidad de la información suministrada por la Corporación Autónoma Regional de Cundinamarca, se trabajó una escala de 1:100.000.
• Escala Temporal

Se definió un periodo de estudio del año 2000 hasta el 2012, la identificación de riesgos e incorporación de estos dentro de los planes de ordenamiento territorial y para realizar el análisis de fenómenos tanto climáticos como sociales que permitan entender la susceptibilidad del territorio frente a las amenazas que temporalmente van cambiando de acuerdo a dinámicas globales.

7.2. Definición del sistema de proyección

La cartografía está basada en un sistema geodésico de referencia y en una proyección cartográfica. En la cartografía oficial del país, el IGAC adoptó en 2005 el sistema geodésico de referencia denominado Magna-Sirgas (Marco Geocéntrico Nacional de Referencia, densificación del Sistema de Referencia Geocéntrico para las Américas).

Siguiendo esta directriz, la cartografía se realiza con base en coordenadas geográficas Magna-Sirgas y coordenadas planas, proyección Gauss-Krüger, Colombia (Transversa de Mercator). El sistema de coordenadas a utilizar, por lo tanto, se basa en los siguientes parámetros:

- Tipo de proyección: Geográfica (Lat/Lon)
- Esferoide: GRS 1980
- Datum: SIRGAS

Para el traslado de la información existente en coordenadas planas, los parámetros utilizados son los siguientes:

- Sistema de proyección: Transverse Mercator
- Esferoide: GRS 1980
- Datum: SIRGAS
- Factor de Escala: 1.0
- Longitud del meridiano central: -74°04'39.028500 W
- Latitud de origen de la proyección: 4°35'46.321500 N
- Falso este: 1000000
- Falso norte: 1000000

7.3. Necesidades y Validación de la Información

Recopilación de la información secundaria y terciaria referente a la gestión del riesgo del municipio de Chía-Cundinamarca, a través de la revisión cartográfica existente avalada por las autoridades correspondientes; del registro histórico de ocurrencia de eventos amenazantes ocurridos en la zona de estudio y demás estudios correspondientes. Teniendo en cuenta las directrices establecidas en la metodología general para la realización de estudios ambientales.
Para ello se tuvo en cuenta la información brindada por la Corporación Autónoma Regional de Cundinamarca CAR, y la información presentada por el municipio de Chía para revisión del Plan de Ordenamiento Territorial.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Inundación</th>
<th>Remoción en Masa</th>
<th>Incendios Forestales</th>
<th>Información Requerida</th>
<th>Descripción</th>
<th>Fuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Mapa de pendientes</td>
<td>Mapa obtenido a partir del procesamiento (generación del Modelo digital del terreno), del mapa de curvas de nivel</td>
<td>IGAC, CIAT, Cartografía POT, EOT o PBOT. Elaboración propia</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Mapa de Cobertura y uso actual de la tierra, según clasificación CORINE LAND COVER</td>
<td>Cartografía de la cobertura y uso actual de la tierra según la clasificación Corine Land Cover hasta el tercer nivel para escalas 1:250000 y 1:100000 y el cuarto o quinto nivel para escalas 1:50000.</td>
<td>IGAC, IDEAM, IAVH, IIAP, SINCHI, UAESPNN, INVEMAR, CARs, Cartografía POT, EOT o PBOT</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Mapa Precipitación</td>
<td>Realización de isoyetas con información meteorológica</td>
<td>IDEAM, CAR</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>Mapa Geología</td>
<td>Cartografía de las unidades geológicas de la zona de estudio</td>
<td>IGAC, SGC, Cartografía POT, EOT o PBOT</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Mapa Sismicidad</td>
<td>Establecer el Factor de sismicidad de acuerdo a la aceleración de pico efectiva de la zona de estudio, estos valores se encuentran a nivel municipal</td>
<td>Estudio general de amenaza sísmica de Colombia desarrollado en 2009 por la Asociación Colombiana de Ingeniería Sísmica (AIS).</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Mapa de Temperatura media multianual</td>
<td>Mapa de isoterms que permiten obtener la variación espacial y temporal de la temperatura</td>
<td>IDEAM, CAR</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Mapa de Brillo Solar</td>
<td>Mapa de Brillo Solar (media anual multianual), obtenido a partir de registros de las estaciones meteorológicas</td>
<td>IDEAM, CAR</td>
</tr>
<tr>
<td>Análisis de Vulnerabilidad</td>
<td></td>
<td>Mapa Dirección y Velocidad de vientos predominantes (media anual multianual)</td>
<td>Mapa Dirección y Velocidad de vientos predominantes (media anual multianual), obtenido a partir de registros climáticos</td>
<td>IDEAM, CAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Mapa de Accesibilidad</td>
<td>Mapa elaborado a partir del mapa de vías del municipio, calculando la densidad vial</td>
<td>Elaboración propia del organismo a cargo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Mapa de Geomorfología</td>
<td>Cartografía de las unidades y Sub unidades geomorfológicas</td>
<td>IGAC, SGC, Cartografía POT, EOT o PBOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Mapa de densidad de población urbana y rural</td>
<td>Mapa obtenido a partir de la información del censo nacional de población y de la cartografía de centros poblados y distribución espacial de la población (N° habitantes/área)</td>
<td>DANE, IGAC, Elaboración propia del organismo que esté a cargo de la construcción del mapa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Mapa de Estratificación</td>
<td>Mapa obtenido a partir de la reclasificación, y posterior calificación de acuerdo a estrato socioeconómico</td>
<td>SISBEN, POT, EOT o PBOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Mapa de Ecosistemas Estratégicos</td>
<td>Mapa obtenido a partir de la reclasificación, y posterior calificación del mapa de los ecosistemas según su vulnerabilidad ante fenómenos naturales</td>
<td>IDEAM, IAVH, IGAC, IIAP, SINCII, INVEMAR, MAVDT (Páramo, 2007). Elaboración propia del organismo que esté a cargo de la construcción del mapa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Mapa de Conflictos de uso de la tierra</td>
<td>Se realiza confrontando los mapas de vocación del suelo Vs uso actual, se califica de acuerdo al uso</td>
<td>IGAC, IDEAM, IAVH, IIAP, SINCII, UAESPNN, Las CAR, Secretarías de ambiente Cartografía POT, EOT o PBOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Mapa Actividad Económica</td>
<td>Se utiliza el mapa de uso actual o coberturas para determinar la vulnerabilidad de las actividades económicas</td>
<td>Elaboración propia del organismo a cargo</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Mapa Infraestructura</td>
<td>Cartografía de vías primarias, secundarias y terciarias, dependiendo de la escala de análisis, además ubicación de infraestructura en general (construcciones, redes eléctricas, aeropuertos, etc. Según disponibilidad de información)</td>
<td>IGAC, DANE, MOOPP, Cartografía POT, EOT o PBOT</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Mapa Densidad de predios</td>
<td>Mapa obtenido de información catastral y su relación espacial (N° Predios/área)</td>
<td>IGAC, Cartografía POT, EOT o PBOT. Elaboración propia del organismo que esté a cargo de la construcción del mapa</td>
<td></td>
</tr>
</tbody>
</table>

| Análisis del Riesgo | X | X | X | Mapa de Zonificación de Amenazas | Mapa de zonificación en categorías Baja, Media y Alta de las zonas expuestas a fenómenos amenazantes naturales o antrópicos | CAR, IDEAM, SGC, POT, EOT o PBOT, Elaboración propia del organismo a cargo |
| X | X | X | Mapa de Zonificación de Vulnerabilidad | Mapa de zonificación en categorías Baja, Media y Alta de las zonas vulnerables social, física y ambientalmente | CAR, IDEAM, SGC, POT, EOT o PBOT, Elaboración propia del organismo a cargo |

Tabla 1. Requerimientos de Información
Fuente: Autores

7.4. Zonificación

Para realizar la zonificación de los riesgos asociados a fenómenos amenazantes, es necesario calificar y ponderar cada factor seleccionado. La calificación de las amenazas se realiza mediante la evaluación multi-criterio, donde se evalúa cada factor y se determina una jerarquía entre los factores seleccionados, asignando un peso de acuerdo a estudios similares.
La forma de ponderación propuesta se realiza mediante el método desarrollado por el matemático Thomas Saaty que consiste en formalizar la comprensión intuitiva de problemas complejos mediante la construcción de un Modelo Jerárquico (AHP- The Analytic Hierarchy Process- Proceso Analítico Jerárquico). El propósito del método es permitir que los agentes decisorios (expertos consultados) estructuren el problema en forma visual, mediante la construcción del modelo. Una vez construido el Modelo Jerárquico, se realizan comparaciones de a pares entre dichos elementos (criterios-subcriterios y alternativas) y se atribuyen valores numéricos a las preferencias señaladas por los expertos, entregando una síntesis de las mismas mediante la agregación de esos juicios parciales. El AHP permite de una manera eficiente y gráfica organizar la información, descomponerla y analizarla por partes, visualizar los efectos de cambios en los niveles y sintetizarla.

El fundamento del proceso de Saaty descansa en el hecho de que permite dar valores numéricos a los juicios dados por las personas, logrando medir cómo contribuye cada elemento de la jerarquía al nivel inmediatamente superior del cual se desprende. Para estas comparaciones se utilizan escalas de razón en términos de preferencia, importancia o probabilidad, sobre la base de una escala numérica propuesta por el mismo Saaty, que va desde 1 hasta 9, como se muestra en el siguiente cuadro. (IDEAM, 2011)

<table>
<thead>
<tr>
<th>1/9</th>
<th>1/7</th>
<th>1/5</th>
<th>1/3</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suavemente</td>
<td>Muy fuertemente</td>
<td>Fuertemente</td>
<td>Moderadamente</td>
<td>Igualmente</td>
<td>Moderadamente</td>
<td>Fuertemente</td>
<td>Muy fuertemente</td>
<td>Suavemente</td>
</tr>
<tr>
<td>Menos importante</td>
<td>Igual importancia</td>
<td>Más importante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Imagen 5. Jerarquías Analíticas Saaty.
Fuente: IDEAM 2011

Esta jerarquización se realizó para la determinación de amenazas de incendios forestales e inundaciones, de igual forma se utilizó para la calificación y ponderación de vulnerabilidades, tal como se muestra a continuación:

- Amenaza por Inundaciones
Tabla 2. Jerarquizacion de Factores para identificacion de amenazas
Fuente: Autores

\[\text{Amenaza por Inundaciones} = (\text{Geomorfología} \times 0.3) + (\text{Pendientes} \times 0.2) + (\text{Precipitacion} \times 0.17) + (\text{Huellas de Inundación} \times 0.15) + (\text{Límites} \times 0.10) + (\text{Escorrentía} \times 0.08) \]

- Vulnerabilidad

<table>
<thead>
<tr>
<th>D predios</th>
<th>Infraestructura</th>
<th>D población</th>
<th>Estratificación</th>
<th>A. Económica</th>
<th>Conflicto</th>
<th>Ecosistemas</th>
<th>% Importancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>D predios</td>
<td>1</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>6.27</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>6.42</td>
</tr>
<tr>
<td>D población</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>30.81</td>
</tr>
<tr>
<td>Estratificación</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>5.72</td>
</tr>
<tr>
<td>A. Económica</td>
<td>5</td>
<td>1/3</td>
<td>3</td>
<td>1</td>
<td>1/3</td>
<td>1/3</td>
<td>11.5</td>
</tr>
<tr>
<td>Conflicto</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1/3</td>
<td>16.04</td>
</tr>
<tr>
<td>Ecosistemas</td>
<td>3</td>
<td>3</td>
<td>1/3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>21.04</td>
</tr>
</tbody>
</table>

Tabla 3. Jerarquizacion de factores para identificacion de Vulnerabilidad.
Fuente: Autores

\[\text{Vulnerabilidad} = 0.12(\text{V. Actividad Económica}) + 0.08(\text{V. Infraestructura}) + 0.06(\text{V. Densidad de predios}) + 0.31(\text{V. Densidad de Población}) + 0.06(\text{V. Estratificación}) + 0.16(\text{V. Conflicto de uso}) + 0.21(\text{V. Ecosistemas estratégicos}) \]

7.4.1. Amenazas

De acuerdo al alcance del proyecto, se seleccionaron los fenómenos amenazantes naturales y socio naturales, con mayor incidencia dentro del municipio para dar cumplimiento al Decreto 1807 de 2014, e incorporar dichas amenazas dentro de la planificación territorial y así minimizar el riesgo de desastres.

7.4.1.1. Fenómenos de remoción en masa

Para la realización de la zonificación de amenaza por fenómenos de remoción en masa del municipio de Chía Cundinamarca se decide adaptar la metodología Mora
& Vahrson, debido a que después de una revisión bibliográfica exhaustiva, se concluyó que es la que más se adapta al tipo y calidad de datos disponibles.

Esta metodología fue desarrollada en Costa Rica por Sergio Mora y Wilhelm-Guenther Vahrson en el año 1991 con el propósito de clasificar la amenaza por deslizamientos en determinada zona o región utilizando indicadores morfodinámicos del terreno. La información se basa en la interacción de los llamados factores de susceptibilidad (pendientes, geología, geomorfología, cobertura vegetal y usos de suelo) y los factores detonantes (actividad sísmica, precipitación). A nivel general, se puede expresar a través de la siguiente relación matemática:

$$ H = SUSC \times DET $$

Donde:

H: Amenaza

SUSC: Producto entre los elementos intrínsecos (Factores de Susceptibilidad)

DET: Sumatoria entre los elementos extrínsecos (Factores detonantes)

La combinación de los elementos intrínsecos, que incluye geología (Sg), la geomorfología en específico pendientes (Sr), coberturas vegetales y uso del suelo (Sc), adicionalmente, la sismicidad (Ds) y la intensidad de la precipitación (Dp) son incorporados como factores detonantes o factores externos. De tal forma que la combinación de estos factores da como resultado que la ecuación anterior se pueda expresar como sigue:

$$ H = (Sg \times Sr \times Sc) \times (Ds + Dp) $$

Factores de Susceptibilidad

a. Geología

La geología es un factor muy importante a la hora de evaluar amenazas de remoción en masa ante fenómenos geológicos, ya que las estructuras tectónicas y controles estructurales se asocian en muchos casos a zonas de alta inestabilidad en las laderas.
b. Geomorfología:
Los rasgos geomorfológicos que condicionan eventos de remoción en masa son principalmente la topografía, pendientes de las laderas, cambios fuertes de pendientes de las laderas y la extensión y altura de las laderas. Estas características inciden en la velocidad, energía y volumen de las remociones que puedan originarse. Así también, cualquier modificación de ellos puede transformar una ladera estable en inestable y generar remociones.

<table>
<thead>
<tr>
<th>Litología</th>
<th>Geología</th>
<th>Calificación</th>
<th>Factor Sg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areniscas (A): Sedimentos clásticos de grado medio a grueso de composición cuarzosa y ocasionalmente subarcoica, estratificadas en capas delgadas a muy gruesas, con intercalaciones de lodo, arcifitas, calizas y limolitas.</td>
<td>Rocas duras</td>
<td>Muy bajo</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rocas intermedias</td>
<td>Bajo</td>
<td>2</td>
</tr>
<tr>
<td>Gravas y Arenas (GA): Sedimentos clásticos, con partículas de tamaño variado y de composición heterogénea, e intercalaciones de limos y arcillas</td>
<td>Suelos residuales</td>
<td>Medio</td>
<td>3</td>
</tr>
<tr>
<td>Aluviales y lacustres (Dal): Depósitos composición heterogénea y tamaño heterométrico de formas subredondeada a redondeada en matriz arenolimosa con niveles de arenas, limos y arcillas</td>
<td>Suelos Transportados</td>
<td>Alto</td>
<td>4</td>
</tr>
<tr>
<td>Coluviales (Dc): Materiales de composición heterogénea tamaño variado y forma en general angular, con matriz arenolimosa y limoarcillosa</td>
<td>Suelos Coluviales</td>
<td>Muy Alto</td>
<td>5</td>
</tr>
</tbody>
</table>
Generación modelo de elevación digital del terreno
(Arctoolbox- 3D Analyst Tools- TIN Management- Create Tin)

Generación mapa de pendientes
(Arctoolbox-Spatial Analyst tools-Surface-Slope)

<table>
<thead>
<tr>
<th>Valor de Pendiente (%)</th>
<th>Calificación</th>
<th>Factor Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>Muy baja</td>
<td>1</td>
</tr>
<tr>
<td>21-40</td>
<td>Baja</td>
<td>2</td>
</tr>
<tr>
<td>41-60</td>
<td>Moderada</td>
<td>3</td>
</tr>
<tr>
<td>61-80</td>
<td>Alta</td>
<td>4</td>
</tr>
<tr>
<td><81</td>
<td>Muy alta</td>
<td>5</td>
</tr>
</tbody>
</table>

Imagen 7. Susceptibilidad Geomorfológica
Fuente: Autores
c. Cobertura vegetal y uso del suelo:

El papel de la vegetación en la estabilidad del suelo radica en el efecto mecánico del sistema radicular de las plantas y arbustos que favorecen la estabilidad de las laderas al incrementar la resistencia del suelo a deslizarse. Además, la vegetación influencia en la estabilidad de las laderas mediante la reducción de la humedad del suelo por evapotranspiración e interceptación.

<table>
<thead>
<tr>
<th>Cobertura</th>
<th>Calificación</th>
<th>Factor Sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nubes</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>Red vial, ferroviaria y terrenos asociados</td>
<td>Muy Baja</td>
<td>1</td>
</tr>
<tr>
<td>Tejido urbano continuo</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tejido urbano discontinuo</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Zonas industriales o comerciales</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Instalaciones recreativas</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Arbustal denso</td>
<td>Baja</td>
<td>2</td>
</tr>
<tr>
<td>Herbazal denso de tierra firme</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mosaico de pastos con espacios naturales</td>
<td>Moderada</td>
<td>3</td>
</tr>
<tr>
<td>Cultivos confinados</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mosaico de cultivos</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mosaico de cultivos, pastos y espacios naturales</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pastos enmalezados</td>
<td>Alta</td>
<td>4</td>
</tr>
<tr>
<td>Pastos limpios</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mosaico de pastos y cultivos</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cultivo de papa</td>
<td>Muy Alta</td>
<td>5</td>
</tr>
<tr>
<td>Zonas de extracción minera</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Imagen 8. Susceptibilidad Coberturas
Fuente:Autores
Factores detonantes

a. Precipitación:
Para realizar el mapa de precipitaciones se identificaron las estaciones climatológicas cercanas al municipio de Chía, tanto en el IDEAM como en la CAR. Una vez seleccionadas, se tomaron los datos de precipitación y se homogenizaron las estaciones, obteniendo la precipitación multianual para cada una de ellas en un periodo comprendido entre 2000 y 2012.

<table>
<thead>
<tr>
<th>CODIGO</th>
<th>NOMBRE</th>
<th>TIPO</th>
<th>ENTIDAD</th>
<th>COORDENADAS</th>
<th>ELEVACION (m.s.n.m)</th>
<th>PRECIPITACION (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21200800</td>
<td>SAN JOSE</td>
<td>PG</td>
<td>CAR</td>
<td>1020065 1042498</td>
<td>2700</td>
<td>744</td>
</tr>
<tr>
<td>21201060</td>
<td>PANTANO REDONDO</td>
<td>PG</td>
<td>IDEAM</td>
<td>1005271 1049122</td>
<td>3160</td>
<td>1163</td>
</tr>
<tr>
<td>21201360</td>
<td>STA INES</td>
<td>PM</td>
<td>CAR</td>
<td>994185 1024065</td>
<td>2550</td>
<td>822</td>
</tr>
<tr>
<td>21205650</td>
<td>TABIO</td>
<td>CP</td>
<td>CAR</td>
<td>1016373 1018538</td>
<td>2620</td>
<td>786</td>
</tr>
<tr>
<td>21206020</td>
<td>SANTILLANA</td>
<td>ME</td>
<td>IDEAM</td>
<td>996965 1034847</td>
<td>2575</td>
<td>796</td>
</tr>
</tbody>
</table>

Teniendo esta información se utiliza el programa ArcGis para interpolar los datos y así obtener las correspondientes isoyetas.

Interpolación de datos de precipitación (Isoyetas)

Arc Toolbox/ Spatial Analyst Tools/ Interpolation/ Spline

Precipitación promedio multianual
b. Sismicidad:

La metodología Mora & Vahrson clasifica el valor del factor Ds en 10 rangos teniendo en cuenta los datos de “aceleración pico efectiva” (Aa) en la zona de estudio. Para el presente proyecto se trabajó con los datos dispuestos en el estudio general de amenaza sísmica de Colombia desarrollado en 2009 por la Asociación Colombiana de Ingeniería Sísmica (AIS).

Chía se encuentra en una zona de amenaza sísmica intermedia enmarcada por el Estudio General de Amenaza Sísmica de Colombia y presenta una aceleración pico efectiva de 0.15. Teniendo en cuenta este valor de Aa de 0.15, se pasa a m/s² multiplicando por la aceleración de la gravedad (9.81 m/s²) para comparar este número con los rangos establecidos por la metodología Mora & Vahrson y así lograr un valor para el factor Ds.

\[
0.15 \times 9.81 \frac{m}{s^2} = 1.47 \frac{m}{s^2}
\]

Al verificar este valor en la tabla N° X, éste se encuentra dentro del rango 0.098-2.011, por lo tanto se clasifica como una intensidad sísmica muy baja con un factor Ds igual a “1".
Reclasificación según categoría de Amenaza

Imagen 10. Factor detonante Sismicidad
Fuente: Autores
Zonificación

Conversión de polígono a raster de acuerdo a la calificación dada

(Arc toolbox- Conversion Tools- To Raster- Polygon to Raster)

Algebra de mapas de acuerdo a la fórmula

\[\text{Amenaza} = (S_g \times S_r \times S_c) \times (D_p + D_s) \]

(Arctoolbox-Spatial Analysis Tools- Map Algebra)

Normalización de totales de la suma ponderada

\[\text{Factor Normalizado} = \frac{z - \text{Min}}{\text{Max} - \text{Min}} \]

Reclasificar según categoría de amenaza

MAPA DE AMENAZAS POR FENOMENOS DE REMOCION EN MASA

*Imagen11. Zonificación de Amenazas por FMR
Fuente:Autores*
7.4.1.2. Incendios Forestales

Los incendios de la cobertura vegetal figuran como uno de los principales motores de transformación del ambiente y sus efectos se extienden sobre todos sus componentes: aire, suelo, agua, seres vivos, infraestructura, entre otros. Para la realización del mapa de zonificación de amenazas y riesgos por incendios forestales, se adoptó la metodológica propuesta por el IDEAM en el año 2011.

a. Susceptibilidad de las coberturas a Incendios Forestales -Susceptibilidad por tipo de combustible (STC)

De acuerdo a las coberturas se clasificaron y calificaron conforme al tipo de combustible que representan, de esta manera coberturas no naturales, no se consideran combustibles y las coberturas como pastos y herbazales son altamente susceptibles a incendios.

<table>
<thead>
<tr>
<th>TIPO DE COMBUSTIBLE</th>
<th>CALIFICACIÓN</th>
<th>CALIFICACIÓN DE SUSCEPTIBILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>No combustible</td>
<td>0</td>
<td>Sin riesgo</td>
</tr>
<tr>
<td>Árboles</td>
<td>1</td>
<td>Moderada</td>
</tr>
<tr>
<td>Árboles/arbustos</td>
<td>2</td>
<td>Alta</td>
</tr>
<tr>
<td>Arbustos</td>
<td>3</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Arbustos/pastos</td>
<td>4</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Pastos</td>
<td>5</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Sin información</td>
<td>0</td>
<td>Sin información</td>
</tr>
</tbody>
</table>

Calificación por tipo de combustible

Reclasificación por tipo de combustible

SUSCEPTIBILIDAD POR TIPO DE COMBUSTIBLE

Imagen 12. Susceptibilidad por tipo de Combustible

Fuente: Autores
- Susceptibilidad por duración del combustible (SDC)

De acuerdo a lo establecido en el protocolo (IDEAM, 2010) se calificaron las coberturas vegetales conforme a la duración del combustible, de esta manera las coberturas de pastos tienen una duración menor que los bosques.

Leyenda

<table>
<thead>
<tr>
<th>Cobertura</th>
<th>Duración de combustible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelos desрушados o degradados, roca, nieves perpetuas, cuerpos de agua, zonas urbanas y todas aquellas coberturas no naturales</td>
<td>No combustibles</td>
</tr>
<tr>
<td>Zonas verdes urbanas / pastos limpios</td>
<td>1 hora</td>
</tr>
<tr>
<td>Herbazales / cultivos herbáceos / pastos almacenados</td>
<td>10 horas</td>
</tr>
<tr>
<td>Arbustales abierto / herbazal con arbustos y arbustos alquilados</td>
<td>100 horas</td>
</tr>
<tr>
<td>Arbustales / mosaicos con espacios naturales</td>
<td></td>
</tr>
<tr>
<td>Bosques fragmentados</td>
<td></td>
</tr>
<tr>
<td>Bosques densos y abiertos, altos y bajos</td>
<td></td>
</tr>
<tr>
<td>Zonas en las que no se tiene información por presencia de tubérculos o setas</td>
<td>Sin información</td>
</tr>
</tbody>
</table>

Calificación por duración de combustible

<table>
<thead>
<tr>
<th>Duración de combustible</th>
<th>Calificación</th>
<th>Categoría de susceptibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>No combustibles</td>
<td>0</td>
<td>Muy baja</td>
</tr>
<tr>
<td>1 hora</td>
<td>1</td>
<td>Baja</td>
</tr>
<tr>
<td>10 horas</td>
<td>2</td>
<td>Moderada</td>
</tr>
<tr>
<td>100 horas</td>
<td>3</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Imagen 13. Susceptibilidad por duración de Combustible

Fuente: Autores
• Susceptibilidad por carga total del combustible (SCTC)

De acuerdo a lo establecido en el protocolo (IDEAM, 2010) se calificaron las coberturas vegetales conforme a la carga total del combustible, así, zonas con pastos y herbazales presentan menor carga total expresada en ton/Ha en comparación a los bosques.

Imagen 14. Susceptibilidad por Carga Total del Combustible
Fuente: Autores
- Susceptibilidad total

Susceptibilidad por tipo de combustible

Susceptibilidad por duración de combustible

Susceptibilidad por carga total del combustible

Suma ponderada de valores de susceptibilidad

a) Conversión de shapes a raster: Arc Toolbox/ Conversion tools/ To Raster/ Polygon to Raster

b) Suma Ponderada

Arc Toolbox/ Spatial Analyst Tools/ Map Algebra/ Raster Calculator

Reclasificación según categorías

Arc Toolbox/ 3D Analyst Tools/ Raster Reclass

Normalización de totales de la suma:

Agrupación de valores normalizados en rangos y categorías de susceptibilidad

<table>
<thead>
<tr>
<th>Ponderación susceptibilidad total</th>
<th>Calificación</th>
<th>Categoría de Susceptibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Sin riesgo</td>
</tr>
<tr>
<td>0,01-0,2</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>0,21-0,4</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>0,41-0,6</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>0,61-0,8</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>0,81-1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Imagen 15. Susceptibilidad Total de Coberturas

Fuente: Autores
b. Temperatura media anual

Al realizar las isotermas para el municipio nos da una variación de un grado centigrado, es por ello que teniendo en cuenta el protocolo se toman los valores tipificados para la jurisdicción de la Corporación y el municipio se encontraría calificado con una categoría de amenaza moderada ya que los rangos de temperatura oscilan entre 13°C y 14°C.

<table>
<thead>
<tr>
<th>Temperatura media anual (°C)</th>
<th>Calificación</th>
<th>Categoría de Amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremadamente frío (1.5-6)</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>Muy Frío (7-12)</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>Frío (13-18)</td>
<td>3</td>
<td>Media</td>
</tr>
<tr>
<td>Templado (19-24)</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>Calido (>24)</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Clasificación en rangos de amenaza

Imagen 16. Amenaza por temperatura
Fuente:Autores

c. Radiación solar

Al no contar con información primaria, se toma en cuenta la información del Atlas de Radiación solar en Colombia, donde el municipio se encuentra calificado bajo una amenaza moderada al presentar valores de radiación entre 4 y 5 KWh/m²/año, de acuerdo a los rangos estipulados en el protocolo. (Ministerio de Minas y Energía-Unidad de Planeación Minero Energética UPME y Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial- Insituto de Hidrología, Metereología y Estudios Ambientales (IDEAM), 2005)

<table>
<thead>
<tr>
<th>Radiación media anual (KWh/m² año)</th>
<th>Calificación</th>
<th>Categoría de amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td><3</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>3.1-4.0</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>4.1- 5.0</td>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>5.1- 6.0</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>>6.1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Clasificación en rangos de amenaza

Imagen 17. Amenaza por radiación Solar
Fuente:Autores
d. Vientos
Al no contar con información primaria, se toma en cuenta la información presentada en el protocolo a nivel de la jurisdicción de la Corporación, donde el municipio se encuentra calificado bajo una amenaza muy baja al presentar velocidades de vientos menores a 2m/s. (IDEAM, 2010)

<table>
<thead>
<tr>
<th>Velocidad multiannual viento (m/s)</th>
<th>Calificación</th>
<th>Categoría de la amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td><2,0</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>2,1-3,0</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>3,1-4</td>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>4,1- 5</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>>5,1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Calificación en rangos de amenaza

Imagen 18. Amenaza por vientos
Fuente: Autores

e. Pendientes
A partir del mapa topográfico se realizó un modelo digital del terreno para delimitar las pendientes del municipio.
f. Accesibilidad

Este factor se considera parte de la amenaza, debido a que es fundamental en la generación de la probabilidad de que la población pueda llegar a las áreas forestales y generar focos de incendio. (IDEAM, 2010). A partir del mapa vial se genera un cálculo de la densidad de vías (km/km²) por vereda, estas zonas se califican de acuerdo a la mayor o menor posibilidad de acceso a las áreas de cobertura predominantes.

<table>
<thead>
<tr>
<th>Valor de Pendiente (%)</th>
<th>Calificación</th>
<th>Categoría de la amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>1</td>
<td>Muy baja</td>
</tr>
<tr>
<td>21-40</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>41-60</td>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>61-80</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td><81</td>
<td>5</td>
<td>Muy alta</td>
</tr>
</tbody>
</table>

Calificación en rangos de amenaza

Imagen 19. Amenaza por pendientes
Fuente:Autores

Imagen 20. Amenaza por accesibilidad
Fuente:Autores
Para realizar el mapa de precipitaciones se identificaron las estaciones climatológicas cercanas al municipio de Chía, tanto en el IDEAM como en la CAR. Una vez seleccionadas, se tomaron los datos de precipitación y se homogenizaron las estaciones, obteniendo la precipitación multianual para cada una de ellas en un periodo comprendido entre 2000 y 2012.

Teniendo esta información se utiliza el programa ArcGis para interpolar los datos y así obtener las correspondientes isoyetas.
Zonificación

Precipitación* 0,25
Vientos* 0,1
Accesibilidad* 0,05
Temperatura* 0,25
Radiación* 0,02
Pendientes* 0,1
Susceptibilidad Coberturas* 0,23

Cálculo de la Amenaza Total (Suma Ponderada)

a. Conversion de shapes a raster
Arc Toolbox/ Conversion tools/To Raster/ Polygon to Raster
b. Suma Ponderada
Arc Toolbox/ Spatial Analyst Tools/ Map Algebra/ Raster Calculator

Normalización de totales de la suma:

Factor normalizado = \frac{(x - K_{min})}{(K_{max} - K_{min})}

Agrupación de valores normalizados en rangos y categorías de amenaza:

\text{Rango} = \frac{(K_{max} - K_{min})}{n}

<table>
<thead>
<tr>
<th>Ponderación amenaza total</th>
<th>Calificación</th>
<th>Categoría de Amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.08</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>0.091-0.3</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>0.31-0.6</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>0.61-0.7</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>0.71-1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

MAPA DE AMENAZAS POR INCENDIOS FORESTALES

Imagen 22. Zonificación de amenazas por Incendios Forestales
Fuente:Autores
7.4.1.3. **Inundaciones**

a. **Geomorfología**

Esta variable se extrae del mapa geomorfológico realizado por el Instituto Geográfico Agustín Codazzi (IGAC) a escala 1:25.000 en el cual para el municipio de Chía predominan las geoformas de origen fluviar y estructural denudativo, con diferentes características, en dónde los relieves planos encharcables tienen una mayor susceptibilidad a la ocurrencia de inundaciones.

Tabla 1: Calificación de amenaza por sub unidades geomorfológicas

<table>
<thead>
<tr>
<th>Sub Unidad Geomorfológica</th>
<th>Calificación</th>
<th>Calificación de la amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promontorios de desechos de cantera</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>Ladera estructural de sierra homoclinal denudada</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>Cerros residuales</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>Cuestas</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>Ladera de contrapendiente de sierra homoclinal</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Ladera estructural denudada y residual</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Coros de talus</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Colinas estructurales</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Espor de línea de falla</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Ladera de contrapendiente estructural</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Laderas estructurales anticolinales</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Coro de deslizamiento transicional antiguo</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>Coro de deslizamiento transicional reciente</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>Planchas estructurales denudadas</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>Coros y lóbulos coluviales y colluvio</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>Planicies y ditas litostrínos</td>
<td>4</td>
<td>Alto</td>
</tr>
<tr>
<td>Coros de deyeción</td>
<td>4</td>
<td>Alto</td>
</tr>
<tr>
<td>Planicies o llanuras de inundación</td>
<td>5</td>
<td>Muy Alto</td>
</tr>
<tr>
<td>Meandros abandonados</td>
<td>5</td>
<td>Muy Alto</td>
</tr>
<tr>
<td>Cuencas de decantación fluvial (Racines)</td>
<td>5</td>
<td>Muy Alto</td>
</tr>
</tbody>
</table>

Imagen 23. Amenaza por geomorfología

Fuente: Autores
b. Pendientes
Para esta variable se generó una cobertura de pendientes a partir del DEM, reclasificando la cobertura obtenida en cinco clases de inclinación de pendientes, a cada uno de estos rangos fue asignada una calificación de amenaza.

<table>
<thead>
<tr>
<th>Valor de Pendiente (%)</th>
<th>Calificación</th>
<th>Calificación de la amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>>81</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>61-80</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>41-60</td>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>21-40</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>≤20</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Imagen 24. Amenaza por pendientes
Fuente:Autores

c. Litología
Las características geológicas fueron evaluadas de acuerdo a unidades geológicas y características litológicas, de las cuales se realizó la ponderación de susceptibilidad de acuerdo a parámetros aproximados de permeabilidad según el tipo de roca.
<table>
<thead>
<tr>
<th>Litología</th>
<th>Geología</th>
<th>Permabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areniscas (A): Sedimentos clásticos de grado medio a grueso de composición cuarzosa y ocasionalmente subarcosica, estratificadas en capas delgadas a muy gruesas, con intercalaciones de lodolitas, arcillolitas, calizas y limolitas.</td>
<td>Rocas duras</td>
<td>Semipermeable</td>
</tr>
<tr>
<td>Gravas y Arenas (GA): Sedimentos clásticos, con partículas de tamaño variado y de composición heterogénea, e intercalaciones de limos y arcillas</td>
<td>Rocas intermedias</td>
<td>Semipermeable</td>
</tr>
<tr>
<td>Aluviales y lacustres (Dal): Depositos de composición heterogénea y tamaño heterometrico de formas subredondeada a redondeada en matriz arenolimosa con niveles de arenas, limos y arcillas</td>
<td>Suelos Transportados</td>
<td>Impermeable</td>
</tr>
<tr>
<td>Coluviales (Dc): Materiales de composición heterogénea tamaño variado y forma en general angular, con matriz arenolimosa y limolimosa.</td>
<td>Suelos Coluviales</td>
<td>Impermeable</td>
</tr>
</tbody>
</table>

Clasificación por tipo de permeabilidad

<table>
<thead>
<tr>
<th>Geología</th>
<th>Permeabilidad</th>
<th>Calificación de la amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocas intermedias</td>
<td>Semipermeable</td>
<td>1</td>
</tr>
<tr>
<td>Rocas duras</td>
<td>Semipermeable</td>
<td>2</td>
</tr>
<tr>
<td>Suelos residuales</td>
<td>Semipermeable</td>
<td>3</td>
</tr>
<tr>
<td>Suelos Transportados</td>
<td>Impermeable</td>
<td>4</td>
</tr>
<tr>
<td>Suelos Coluviales</td>
<td>Impermeable</td>
<td>5</td>
</tr>
</tbody>
</table>

Amenaza por permeabilidad de rocas

Imagen 25. Amenaza por permeabilidad de rocas

Fuente: Autores
d. Precipitación

Se tuvieron en cuenta los valores de precipitación media multianual, a partir de las isoyetas realizadas para el municipio, en el periodo de estudio establecido.

<table>
<thead>
<tr>
<th>Precipitación media anual (mm)</th>
<th>Calificación</th>
<th>Categoría de amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>569-766</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>767-842</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>843-939</td>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>940-1050</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>1051-1215</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Clasificación por tipo de amenaza

Imagen 26. Amenaza por Precipitación

Fuente: Autores

e. Cobertura vegetal

El análisis de esta variable se realizó empleando la capa de cobertura vegetal. La importancia de esta variable radica en que determinados tipos de cobertura o ausencia de la misma, pueden provocar el aumento de la escorrentía del agua sobre el terreno.
Imagen 27. Amenaza por aporte de escorrentía

Fuente: Autores
f. Huella de inundación

El municipio de Chía realizó por medio de imágenes satelitales y trabajo de campo, una huella de inundación para la ola invernal 2011 de esta manera se determinó la cota de inundación para eventos máximos. A esta huella de inundación se le calcularon buffer de 100 mts para determinar el grado de amenaza.

Generación de Buffer cada 100 mts

Calificación de la amenaza

<table>
<thead>
<tr>
<th>Distancia mts</th>
<th>Calificación</th>
<th>Calificación de amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>>600</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>400</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>300</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>200</td>
<td>4</td>
<td>Alto</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>Muy Alto</td>
</tr>
</tbody>
</table>

Imagen 28. Amenaza por eventos de inundación
Fuente:Autores
Zonificación

7.4.1

Litología* 0,10 Precipitación* 0,17 Geomorfología * 0,3

Eventos* 0,15 Pendientes* 0,2 Coberturas* 0,08

Cálculo de la Amenaza Total (Suma Ponderada)

a. Conversion de shapes a raster
Arc Toolbox/ Conversion tools/To Raster/ Polygon to Raster
b. Suma Ponderada
Arc Toolbox/ Spatial Analyst Tools/ Map Algebra/ Raster Calculator

Normalización de totales de la suma:

Factor normalizado = \frac{(x - \bar{x})}{(\bar{x} - \bar{x})}

Agrupación de valores normalizados en rangos y categorías de amenaza:

\text{Rango} = \frac{(x - \bar{x})}{\bar{x}}

<table>
<thead>
<tr>
<th>Ponderación amenaza total</th>
<th>Calificación</th>
<th>Categoría de Amenaza</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.23</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>0.24- 0.37</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>0.38- 0.53</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>0.54- 0.69</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>0.7- 1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Imagen 29. Zonificación de amenazas por inundaciones
Fuente: Autores

64
7.4.2. Vulnerabilidad

Para determinar la vulnerabilidad de la zona de estudio se procede a identificar elementos físicos, económicos, sociales y ambientales que pueden ser afectados por un evento de origen natural o antrópico, en este caso inundaciones, incendios y fenómenos de remoción en masa. A continuación se describen los elementos analizados para determinar la vulnerabilidad del municipio de Chía:

Vulnerabilidad Física

De acuerdo a la condición de susceptibilidad que tiene el asentamiento humano y sus elementos de ser afectados por estar en el área de influencia de los fenómenos amenazantes y por su fragilidad física ante los mismos. Para efectos de la propuesta metodológica ésta se evaluará mediante dos componentes: Vulnerabilidad por infraestructura y densidad de predios:

a. Vulnerabilidad por infraestructuras.

Los posibles peligros para instalaciones, edificaciones e infraestructuras que influyen en la mayor o menor gravedad potencial que puede alcanzar un fenómeno amenazante de origen natural (inundaciones, fenómenos de remoción en masa e incendios), se interpretan a través de la presencia o no de determinados elementos tales como vías, zonas de recreación, viviendas, entre otras.

<table>
<thead>
<tr>
<th>Distancia infraestructura</th>
<th>Calificación infraestructura</th>
<th>Categorización vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 100</td>
<td>5</td>
<td>Muy alta</td>
</tr>
<tr>
<td>100 – 200</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>200 – 300</td>
<td>3</td>
<td>Moderada</td>
</tr>
<tr>
<td>300 – 400</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>>500</td>
<td>1</td>
<td>Muy baja</td>
</tr>
</tbody>
</table>

Realizar buffer cada 100, 200, 300, 400 y 500 metros

(Arc toolbox - Analysis Tools - Proximity - Buffer)

Mapa de Infraestructura

Reclasificar según categoría de amenaza

Mapa de Vulnerabilidad por Infraestructura
b. Vulnerabilidad por densidad de predios

Según la distribución predial se puede aproximar los daños ocasionados por fenómenos amenazantes de origen natural (inundaciones, fenómenos de remoción en masa e incendios)

<table>
<thead>
<tr>
<th>Densidad de Predios</th>
<th>Calificación</th>
<th>Categoría Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 - 82</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>83 - 151</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>152 - 219</td>
<td>3</td>
<td>Media</td>
</tr>
<tr>
<td>220 - 298</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>>299</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Mapa Veredal Chia

Reclasificar según categoría de amenaza

Mapa Vulnerabilidad por densidad de predios

Imagen 30. Vulnerabilidad de Infraestructura
Fuente: Autores

Imagen 31. Vulnerabilidad por densidad de predios
Fuente: Autores
Vulnerabilidad Social

Se refiere a la predisposición que surge como resultado del nivel de marginalidad y segregación social del asentamiento humano y sus condiciones de desventaja y debilidad relativa por factores socioeconómicos. Para efectos de la propuesta metodológica ésta se evaluará mediante dos componentes: Vulnerabilidad por densidad poblacional y estratificación.

a. **Vulnerabilidad por densidad poblacional**

Mediante la generación de este mapa se pretende interpretar la vulnerabilidad de la población a partir del indicador de ocupación o grado de presencia de la población. Determina el mayor o menor grado de vulnerabilidad que puede darse en un determinado territorio.

![Mapa veredal de Chía](image)

![Mapa Vulnerabilidad por densidad poblacional](image)

Imagen 32. Vulnerabilidad por densidad poblacional

Fuente: Autores
b. **Vulnerabilidad por estratificación**

Este mapa nos permite identificar población de escasos recursos, que generalmente suele ubicarse en zonas de riesgo, para ello se utilizó el parámetro de estratificación.

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Calificación</th>
<th>Categoría Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin Información</td>
<td>0</td>
<td>No Aplica</td>
</tr>
<tr>
<td>6-6</td>
<td>1</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Baja</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Media</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Mapa Estratificación Chia

Reclasificar según categoría de amenaza

Mapa de Vulnerabilidad por estratificación

Imagen 33. Vulnerabilidad por estratificación

Fuente: Autores

Vulnerabilidad Económica

a. **Vulnerabilidad por Actividad económica**

Expresada como las áreas de importancia en la producción de bienes y servicios que pudiesen ser afectadas por la incidencia de fenómenos amenazantes de origen
natural y antrópica (inundaciones, fenómenos de remoción en masa e incendios) de la cobertura vegetal (áreas de producción agrícola, ganadera, forestal, minera, etc).

Vulnerabilidad ambiental

Vulnerabilidad ambiental es un concepto que se relaciona con la susceptibilidad o del medio y los recursos naturales a sufrir un daño o una pérdida. A continuación se evalúan dos factores importantes para el análisis y evaluación, de dicha susceptibilidad:

Imagen 34. Vulnerabilidad por actividad económica
Fuente: Autores
a. Vulnerabilidad por Conflicto de uso

Generación del mapa de conflicto de uso y calificación

Arc Toolbox/ Analysis Tools/ Overlay/Union

Calificación de la vulnerabilidad

<table>
<thead>
<tr>
<th>Tipo de conflicto</th>
<th>Calificación</th>
<th>Calificación de la vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adecuado</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Sobre uso</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>Sobre uso</td>
<td>4</td>
<td>Alto</td>
</tr>
</tbody>
</table>

Vulnerabilidad por conflicto

Imagen 35. Vulnerabilidad por Conflicto de uso
Fuente:Autores
Zonificación

Conversión de polígono a raster de acuerdo a la calificación dada

(Arc tool box - Conversion Tools - To Raster - Polygon to Raster)

Algebra de mapas de acuerdo a la formula

Algebra de mapas de acuerdo a la formula

(Arc tool box - Spatial Analysis Tools - Map Algebra)

Normalización de totales de la suma ponderada

Reclasificar según categoría de Vulnerabilidad

MAPA DE VULNERABILIDAD

Imagen 36. Zonificación de Vulnerabilidad

Fuente: Autores
7.4.3. Riesgo

7.4.3.1. Fenómenos de Remoción en masa

Multiplicar los raster de amenaza y vulnerabilidad utilizando la herramienta algebra de mapas **Riesgo**

\[\text{Riesgo} = (\text{Vulnerabilidad} \times \text{Amenaza}) \]

Arctoolbox- Spatial Analyst Tools- Map Algebra- Raster calculator

Normalización de totales de la suma ponderada

\[\text{Factor Normalizado} = \frac{x - \text{Min}}{\text{Max} - \text{Min}} \]

Reclasificar según categoría de Vulnerabilidad

MAPA DE RIESGOS POR FENOMENOS DE REMOCION EN MASA

Imagen 37. Zonificacion de Riesgo por Fenomenos de remocion en masa

Fuente: Autores
7.1.1.1. Incendios Forestales

Multiplicar los raster de amenaza y vulnerabilidad utilizando la herramienta algebra de mapas Riesgo = (Vulnerabilidad * Amenaza)

Arctoolbox - Spatial Analyst Tools - Map Algebra - Raster calculator

Normalización de totales de la suma:
Factor normalizado = \frac{(x-\text{Min})}{(\text{Max}-\text{Min})}

Agrupación de valores normalizados en rangos y categorías de amenaza:
Rango = \frac{(x-\text{Min})}{n}

<table>
<thead>
<tr>
<th>Ponderación riesgo total</th>
<th>Calificación</th>
<th>Categoría de Riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.04</td>
<td>1</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>0.041- 0.17</td>
<td>2</td>
<td>Bajo</td>
</tr>
<tr>
<td>0.18- 0.33</td>
<td>3</td>
<td>Moderado</td>
</tr>
<tr>
<td>0.34 – 0.46</td>
<td>4</td>
<td>Alta</td>
</tr>
<tr>
<td>0.47- 1</td>
<td>5</td>
<td>Muy Alta</td>
</tr>
</tbody>
</table>

Imagen 38. Zonificación de Riesgo por Incendios Forestales

Fuente: Autores
7.1.1.2. Inundaciones

Una vez caracterizados y evaluados los riesgos y amenazas, se identifican las zonas de mayor riesgo, y se procede a contrastar con el uso actual de la zona; utilizando el plan de ordenamiento territorial vigente.

7.5. Análisis de conflicto uso del suelo

Una vez caracterizados y evaluados los riesgos y amenazas, se identifican las zonas de mayor riesgo, y se procede a contrastar con el uso actual de la zona; utilizando el plan de ordenamiento territorial vigente.
Imagen 40. Zonificacion de Conflicto de uso por Riesgo
Fuente:Autores
8. RESULTADOS

A partir de la metodología planteada, se obtuvo para cada fenómeno amenazante un mapa de zonificación de amenaza, vulnerabilidad y riesgo:

8.1. AMENAZA

8.1.1. Fenómenos de remoción en masa

*Imagen 41. Mapa de Amenaza por Fenómenos de remoción en masa para el Municipio de Chía-Cundinamarca.
Fuente: Autores*
8.1.2. Incendios forestales

Imagen 42. Mapa de amenaza por Incendios Forestales para el Municipio de Chía-Cundinamarca
Fuente: Autores
8.1.3. Inundaciones

Imagen 43. Mapa de amenaza por Inundaciones para el Municipio de Chía- Cundinamarca
Fuente: Autores
8.2. VULNERABILIDAD

8.2.1. Fenómenos de Remoción en Masa

Imagen 44. Mapa de Vulnerabilidad por Fenómenos de Remoción en masa para el Municipio de Chía-Cundinamarca
Fuente: Autores
8.2.2. Incendios Forestales

Imagen 45. Mapa de Vulnerabilidad por Incendios para el Municipio de Chía- Cundinamarca

Fuente: Autores
8.2.3. Inundaciones

Imagen 46. Mapa de Vulnerabilidad por Inundaciones para el Municipio de Chía- Cundinamarca
Fuente: Autores
8.3. RIESGO
Para el análisis de los escenarios de riesgo se utiliza el álgebra de mapas, como se indica en la metodología. Este procedimiento se debe realizar para cada uno de los fenómenos amenazantes.

\[
\text{Escenario de riesgo} = (\text{Vulnerabilidad} \times \text{Amenaza})
\]

8.3.1. Fenómenos de Remoción en masa

Imagen 47. Mapa de Riesgo por Fenómenos de Remoción en masa para el Municipio de Chía- Cundinamarca
Fuente: Autores
8.3.2. Incendios Forestales

Imagen 48. Mapa de Riesgo por Incendios Forestales para el Municipio de Chía- Cundinamarca

Fuente: Autores
8.3.3. Inundaciones

Imagen 49. Mapa de Riesgo por Inundaciones para el Municipio de Chía- Cundinamarca
Fuente: Autores
8.4. CONFLICTO DE USO

8.4.1. Fenómenos de Remoción en masa

Imagen 50. Mapa de Conflicto de uso por riesgo de fenómenos de remoción en masa

Fuente: Autores
8.4.2. Incendios Forestales

Imagen 51. Mapa de Conflicto de uso por Incendios Forestales
Fuente: Autores
8.4.3. Inundaciones

Imagen 52. Mapa de Conflicto de uso por riesgo de Inundaciones

Fuente: Autores
9. ANALISIS DE RESULTADOS

De acuerdo a la metodología planteada y a los resultados obtenidos, se analizaron cada uno de los escenarios de riesgo por fenómeno amenazante, para determinar causas y posibles consecuencias para el municipio de Chía, para a partir de este análisis proponer acciones y recomendaciones para disminuir el riesgo y la vulnerabilidad.

9.1. AMENAZA

A partir de la cartografía realizada, se analizó para cada fenómeno amenazante las causas y la extensión de territorio afectado, de acuerdo a la zonificación realizada:

9.1.1. Fenómenos de remoción en masa

En los últimos años los asentamientos en Colombia se han localizado en zonas de riesgo de amenazas naturales. Por diversas razones, tales como el crecimiento poblacional, el desplazamiento forzado, la desigualdad socioeconómica y la localización de un número importante de centros poblados en zonas montañosas o de ladera.

Según datos del DANE para el 2010 el 75% de la población colombiana se asienta en la región andina, en zonas donde el relieve, la geomorfología y los procesos tectónicos son recurrentes e influyentes en la caracterización y análisis sobre la amenaza, por lo tanto ha venido cobrando particular interés en materia de riesgo, amenaza y vulnerabilidad ambiental los procesos por remoción en masa. (CEELAT, 2014)

Los resultados, obtenidos mediante la aplicación de la metodología para determinar la amenaza del municipio de Chía frente a los fenómenos de remoción en masa, indican que un 5.2% del área se clasifica como de amenaza alta y muy alta y un 43.4% como de amenaza media; el restante 51.4% se clasifica como de amenaza baja a muy baja.

Las zonas de amenaza alta y muy alta se encuentran en áreas que tienen un grado de susceptibilidad alto a presentar problemas de estabilidad y movimientos en masa, pues son áreas que por sus altas pendientes (mayores a 60%) y bajas condiciones mecánicas del material superficial pues corresponde a suelos coluviales y transportados, favorece la ocurrencia de procesos de remoción, siendo más probables, en las laderas donde se ha remplazado la cobertura boscosa por territorios agrícolas y pasturas y en donde se han delimitado zonas de extracción minera. Se concentran especialmente en las zonas de alta pendiente de la vereda Cerca de piedra, lo cual concuerda con lo establecido en el plan de ordenamiento territorial en donde se manifiesta que la zona que presenta un mayor riesgo de remoción en masa es la que corresponde al Resguardo Indígena localizado en dicha vereda, así como la parte alta de la vereda Yerbabuena, donde se encuentra una zona de extracción minera la cual provoca un alto deterioro del suelo.

En cuanto a las zonas correspondientes a amenaza media, se tienen niveles de estabilidad moderados debido a la posible ocurrencia de eventos de remoción en masa, dependiendo principalmente de la intensidad de las precipitaciones sobre estas zonas y los cambios drásticos en el uso del suelo, se distribuyen especialmente sobre los terrenos de la vereda Fonquetá, Cerca de piedra, Yerbabuena, Fusca y una pequeña área ubicada al oeste de la vereda Fagua. Estas zonas poseen las mismas
características geológicas y de coberturas de las zonas de amenaza alta, sin embargo se catalogan como zonas de amenaza media pues poseen pendientes menores (entre 40 y 60\%).

Finalmente en cuanto a las zonas de amenaza baja y muy baja, son áreas caracterizadas por tener condiciones de estabilidad altas pues en su mayoría son áreas urbanizadas, además por sus condiciones de baja pendiente, escasos procesos erosivos y cobertura dada por áreas construidas, rastrojos y pastos bien manejados que actúan como una barrera ante la acción de los procesos de erosión hídrica. Como se mencionó anteriormente corresponde al 51.4\% por lo tanto se puede decir que el municipio de Chía de manera general presenta una amenaza baja frente a fenómenos de remoción en masa.

Es importante aclarar que los resultados aquí presentados no sustituyen estudios geotécnicos de detalle, principalmente en las áreas de amenaza media, alta y muy alta, simplemente nos permite delimitar estas zonas priorizando así posteriores estudios detallados, para tomar las medidas estructurales y no estructurales más adecuadas.

9.1.2. Incendios forestales

De acuerdo a las variables analizadas, se determinó que el 43\% del municipio se encuentra bajo amenaza alta, mientras que el 20\% se encuentra en una amenaza baja. Estos resultados se dan principalmente por la calificación y el peso dado a cada aspecto físico y ambiental estudiado, de esta manera las variables con mayor ponderación fueron la precipitación y la temperatura ya que estas inciden directamente en el contenido de humedad de la vegetación y el suelo, la cual aumenta su resistencia a arder ante un evento que busque su ignición; seguidamente se dio mayor peso a la susceptibilidad de la cobertura vegetal ya que dependiendo del tipo de cobertura favorecerá o no la propagación del fuego, en este aspecto se evaluó la capacidad de ignición por cobertura, así como su duración, de esta forma se pudo determinar que el 65\% de las coberturas presentan una amenaza alta de acuerdo a sus características.

Se evaluó la velocidad de los vientos como un factor que influye en la propagación y aumento de la intensidad de los incendios de la cobertura vegetal, pues aporta oxígeno a la combustión, sin embargo no fue un factor decisivo ya que la velocidad promedio se calificó con muy baja amenaza de acuerdo a los datos registrados por la corporación.

El factor de amenaza por pendiente representa una gran importancia, pues influye en varios factores que condicionan el comportamiento del fuego, uno de ellos la continuidad vertical de los combustibles (que aumenta con la pendiente), las mayores pendientes dan origen de vientos ascendentes de gran intensidad y al aumentar la fricción del viento se pueden generar remolinos a sotavento (IDEAM, 2014). Adicionalmente la pendiente favorece la cercanía de los combustibles a las llamas. En el caso del municipio, las mayores pendientes se encuentran en los cerros orientales y occidentales, donde a su vez se encuentran coberturas vegetales susceptibles de incendios, sin embargo más del 79\% del municipio se encuentra en pendientes menores al 20\% lo que la caracteriza con un bajo grado de amenaza para este factor.
Con menor peso se evaluó la radiación solar y la accesibilidad; el primero tiene incidencia en la ocurrencia de incendios de la cobertura vegetal debido a que influye en el contenido de humedad de la vegetación, debido a que es la fuente de energía necesaria para que se lleve a cabo el intercambio de humedad en el combustible. Al aumentar la radiación solar aumenta la evapotranspiración y por consiguiente la pérdida de humedad de la vegetación haciéndola más susceptible a sufrir un incendio (Cocero et all, 2002). Esta se calificó con un grado de amenaza media de acuerdo a datos arrojados por la Corporación en estudios previos.

En cuanto a la accesibilidad, se tuvo en cuenta el gran desarrollo que ha sufrido el municipio y por lo tanto la construcción de vías de acceso a las veredas, lo cual favorece la accesibilidad a coberturas vegetales susceptibles de incendios por actividades antropogénicas, de esta forma la vereda con mayor densidad vial fue cerca de piedra que a su vez cuenta con importantes coberturas y donde históricamente se han presentado un mayor número de incendios forestales.

Podemos decir que las zonas catalogadas de amenaza alta y muy alta, son áreas donde predominan coberturas con alta capacidad de ignición, con buenas condiciones de accesibilidad y con bajas precipitaciones que dan a lugar temporadas secas, generalmente estas zonas se encuentran en pendientes mayores al 20%, donde se generan vientos ascendentes de gran intensidad. Estas áreas corresponden en su mayoría a las veredas Fonquetá, Cerca de Piedra, Yerbabuena y Fusca, donde históricamente se han presentado eventos de este tipo en temporadas secas.

Las zonas catalogadas de amenaza baja, son principalmente el casco urbano y la vereda Fagua, que presentan coberturas con baja capacidad de ignición.

9.1.3. Inundaciones

Las inundaciones se producen cuando lluvias intensas o continuas sobrepasan la capacidad de retención e infiltración del suelo, la capacidad máxima de transporte del río o arroyo es superada y el cauce principal se desborda e inunda los terrenos cercanos a los propios cursos de agua. (COSUDE, 2005). La realización de la zonificación de amenaza para inundaciones para el municipio de Chía-Cundinamarca, tuvo como principales factores físicos la geomorfología, las pendientes, litología y las precipitaciones, ya que estas determinan donde se puede depositar el agua de acuerdo al relieve y las formaciones geológicas. Con menor peso se tuvo en cuenta el tipo de cobertura vegetal, ya que esta puede incidir o no en el aumento de la escorrentía superficial.

Analizando y calificando estos factores se determinó que el 30% del municipio se encuentra bajo una amenaza alta y 22% bajo una amenaza muy alta, esto se da principalmente por el tipo de relieve que presenta el municipio y las unidades geomorfológicas que se encuentran, principalmente hacen referencia a valles aluviales susceptibles a inundaciones. De igual forma estas zonas se caracterizan por estar urbanizadas, lo cual favorece que la escorrentía aumente al estar impermeabilizado el suelo, favoreciendo la velocidad de escurrimiento de las precipitaciones. Estas cifras son coherentes al compararlos con la huella de inundación de la pasada ola invernal, ya que
el casco urbano colindante con los ríos (Bogotá y Rio frío) fueron las zonas más afectadas por inundaciones.

El 21% del municipio se catalogó con baja amenaza, debido a que se encuentran en zonas altas y montañosas donde hay poca probabilidad de inundaciones, de igual forma en estos sitios predominan las coberturas boscosas que favorecen la captación de la lluvia y permiten la recarga de acuíferos, realizando un adecuado balance hídrico.

Zonas con amenaza alta y muy alta de inundaciones son áreas caracterizadas con pendientes menores al 20%, constituidas principalmente por depósitos aluviales cercanos a las riveras de los ríos donde las fuertes precipitaciones y el aumento de nivel base de los ríos por la sedimentación ya han causado inundaciones o presentan una alta susceptibilidad a causarlas, estas áreas corresponden al casco urbano y veredas como Fagua, Tiquiza, La balsa y Fonquetá, las cuales son interceptadas por los Ríos Bogotá y Rio Frío.

Zonas de amenaza moderada y baja, hace referencia a zonas de topografía elevada con pendientes superiores al 20%, donde las unidades geológicas y geomorfológicas y la capacidad de drenaje de los suelos presentan una baja susceptibilidad a inundarse o presentar encharcamientos, estas corresponden a las veredas Yerbabuena y Fusca, ubicados en los cerros orientales.

9.2. VULNERABILIDAD
A partir de la cartografía realizada, se analizó la zonificación de vulnerabilidad para cada fenómeno amenazante las causas y la extensión de territorio afectado:

9.2.1. Fenómenos de remoción en masa
La vulnerabilidad global, al igual que la amenaza y el riesgo se calificó en variables que van desde muy baja hasta muy alta y se obtuvieron los siguientes resultados un 57.2% del área del municipio se encuentra zonificado en vulnerabilidad baja y muy baja, el 19.8% se encuentra en vulnerabilidad media y tan solo el 23.04% en vulnerabilidad alta y muy alta, lo que indica que de manera general el municipio de Chía presenta una baja vulnerabilidad ante fenómenos de remoción en masa.

Vulnerabilidad Baja y Muy Baja: Esta categoría es la predominante en la zona de estudio. Hace parte de los predios y las áreas construidas con las mejores condiciones económicas y sociales para afrontar un desastre, se componen de áreas de baja densidad poblacional, zonas naturales y de conservación, además se le da un uso adecuado a los suelos por lo tanto no hay conflicto de uso de la tierra. Los territorios con esta calificación son escasos en la zona urbana, debido a la alta densidad poblacional que allí se encuentra.

Vulnerabilidad Media: La zonificación muestra un patrón de tendencia media hacia en el centro y las márgenes del rio Bogotá y las quebradas. Las condiciones sociales de esta comunidad indican que ante la ocurrencia de un evento, tienen condiciones económicas y sociales moderadas para la superación de una crisis, pues hacen parte de estratos
entre medio y bajo, sin embargo el deterioro de las condiciones de vulnerabilidad se pueden dar debido a que parte de esta zona se encuentra en conflicto de uso del suelo, debido a que las actividades económicas desarrolladas en estas áreas presentan sobreuso del suelo.

Vulnerabilidad Alta y muy alta: Se encuentran ubicadas principalmente en la zona urbana, las veredas Cerca de piedra, Bojacá y Fonquetá. Son las zonas de mayor problemática en donde encontramos mayor concentración de infraestructura y densidad poblacional. En cuanto a condiciones sociales y económicas se encuentran los estratos más bajos de manera dispersa lo que indica que ante una crisis su capacidad de respuesta tiende a ser de baja a moderada.

9.2.2. Incendios Forestales
La vulnerabilidad entendida como la medida de propensión al cambio que tiene un sistema respecto a una amenaza y su capacidad de respuesta ante esta, se evaluó frente a tres factores que permiten determinar la susceptibilidad frente a amenazas como los incendios forestales, al evaluar y analizar dichos factores se logró establecer la vulnerabilidad total, de esta forma el 32,4% del municipio se encuentra en una categoría de baja vulnerabilidad, esto se debe a que por factores sociales las zonas donde se concentra mayor población no presenta coberturas vegetales susceptibles a incendios.

Las zonas donde se presenta menor vulnerabilidad corresponde a los cerros orientales, donde por más que prevalezca las coberturas boscosas, no hay elevada concentración poblacional ni de infraestructura, y no se realizan actividades económicas vitales para el desarrollo del municipio, estas zonas corresponden a las veredas Yerbabuena y Fusca, donde predominan los estratos 5 y 6.

El 18% del municipio es altamente vulnerable a los incendios forestales, esta cifra se ve representada básicamente por las coberturas vegetales que se verían afectadas por algún evento de este tipo, esto afectaría ecosistemas estratégicos que presentan coberturas nativas que constituyen alta importancia para la regulación ambiental del municipio, de igual manera se analizaron las actividades económicas más vulnerables relacionadas con las coberturas vegetales, las cuales se encuentran en los cerros occidentales. Estas zonas con mayor vulnerabilidad se encuentran en el casco urbano y la vereda Cerca de Piedra, ya que predominan socialmente una mayor concentración de personas e infraestructura.

9.2.3. Inundaciones
La vulnerabilidad del municipio frente a la amenaza de inundaciones, analizada desde factores sociales, económicos y ambientales, determinó que el 30% del municipio se encuentra catalogado con vulnerabilidad baja, esto obedece a que las áreas ubicadas hacia los cerros orientales y occidentales no tienen altas densidades poblacionales ni prediales, lo cual determina una baja ocupación del territorio disminuyendo la vulnerabilidad a este tipo de eventos, de igual manera no hay gran cantidad de infraestructura que pueda verse afectada o actividades económicas sensibles.
Dentro de la calificación dada, un 26% del municipio corresponde a una moderada vulnerabilidad, de esta forma si se incrementa la presión sobre el territorio esta cifra puede incrementar súbitamente, aumentando la vulnerabilidad de este frente a fenómenos amenazantes, estas zonas corresponden a veredas como Fagua, Tiquiza y la Balsa, donde se han venido presentando un aumento en la construcción de viviendas y migración de población.

Un 27% del municipio se categorizó con alta y muy alta vulnerabilidad, estas áreas corresponden principalmente al casco urbano del municipio y a las veredas Bojacá y Cerca de Piedra, donde hay mayor densidad poblacional, de infraestructura y actividades económicas susceptibles a inundaciones, de igual forma en estas áreas es donde se acumula mayor población de escasos recursos, lo que incrementa la vulnerabilidad social. Ambientalmente los ecosistemas estratégicos correspondientes a rondas hídricas, son igualmente los más afectados en este tipo de eventos por lo cual incrementa la vulnerabilidad global del territorio frente a las inundaciones.

9.3. RIESGO

El riesgo se entenderá como el número de pérdidas humanas, heridos, danos a las propiedades y efectos sobre la actividad económica debido a la posible ocurrencia de un desastre, es decir el producto del riesgo específico, y los elementos en riesgo. El análisis de este, puede entenderse de manera general como el postulado de que el riesgo es el resultado de relacionar la amenaza y la vulnerabilidad de los sistemas expuestos, con el fin de determinar los posibles efectos y consecuencias sociales, económicas y ambientales asociadas a uno o varios fenómenos peligrosos, cambios en uno o más de estos parámetros modifican el riesgo en sí mismo. (SUBDERE, 2011)

9.3.1. Fenómenos de remoción en masa

Según los resultados obtenidos se observa que el municipio de Chía presenta un bajo riesgo por fenómenos de remoción en masa pues en el territorio predomina la zonificación de bajo y muy bajo riesgo, específicamente el 57.9% del área total del municipio; en riesgo medio o moderado 30.5% y finalmente el 11.6% del municipio presenta riesgo alto y muy alto.

Riesgo bajo y muy bajo: Son las áreas dentro del territorio con baja probabilidad de ocurrencia y afectación a la población y bienes, por movimientos en masa y procesos relacionados. Estas zonas se caracterizan por tener una baja pendiente, hacen parte de unidades geológicas y suelos estables, así mismo son áreas de baja densidad de población. Sin embargo, es posibe la ocurrencia de deslizamientos menores por socavación lateral en las márgenes de las quebradas, además, dependiendo del desarrollo de actividades económicas que causan conflicto de uso del suelo, estas áreas se pueden deteriorar y a futuro generar una calificación de mayor riesgo.

Riesgo medio o moderado: Esta zona se caracteriza por la mediana probabilidad de ocurrencia de desastres relacionados con procesos de remoción en masa que puedan llegar afectar a la población. Estas áreas se encuentran condicionadas al inadecuado
uso del suelo y a las condiciones de vulnerabilidad de la población, como saneamiento básico y educación sobre el riesgo, ya que los asentamientos ilegales, las construcciones sin planificación, el mal tratamiento de las basuras y el inadecuado manejo de las aguas de escorrentía pueden incidir en el aumento del riesgo. No obstante, si se da un cambio positivo en las condiciones tanto de la resiliencia de la población y disminución de la susceptibilidad del terreno, como por ejemplo, buenas prácticas agropecuarias, reforestación e implementación de alertas tempranas, el nivel de riesgo puede disminuir.

Riesgo alto y muy alto: Son segmentos del territorio en donde existe una alta probabilidad de afectación por la ocurrencia de procesos de remoción en masa, debido a la baja resiliencia de los habitantes, las condiciones de ubicación de viviendas y demás bienes en la parte baja de procesos activos o sobre su área de influencia. Son infraestructuras sobre laderas de alta pendiente, en las cuales no existe una cultura de prevención; allí las condiciones de pobreza y vulnerabilidad aceleran la ocurrencia de un desastre. Corresponde a zonas que actualmente presentan procesos de remoción en masa activos o en las cuales se han registrado eventos de remoción en masa como es el caso del resguardo indígena localizado en la vereda Cerca de Piedra.

9.3.2. Incendios Forestales

Al realizar el mapa de riesgo por incendios forestales, a partir del análisis de los factores de amenaza y vulnerabilidad presentes en el territorio, se pudo establecer que el 36% del municipio se encuentra bajo riesgo moderado, lo cual sugiere que aunque se presente un alto grado de amenaza en la mayoría del territorio, la vulnerabilidad de este es baja o moderada, debido a factores poblacionales y ambientales, que permiten disminuir la vulnerabilidad a este tipo de eventos. Las áreas con riesgo moderado se ubican en las veredas Fusca y La Balsa, que aunque tienen coberturas susceptibles a incendios, presentan un grado de vulnerabilidad baja.

El 34% del municipio se categorizó con un riesgo bajo, debido a que presenta alta amenaza por el tipo de coberturas pero baja vulnerabilidad debido a los patrones de ubicación de asentamientos humanos donde la concentración se da en el casco urbano y veredas subyacentes, las áreas bajo esta categoría corresponden a las veredas Yerbabuena y Fagua.

Las zonas categorizadas con riesgo Alto y muy alto, corresponden a un 17% del municipio, estas áreas corresponden a áreas con alta amenaza debido a las coberturas y factores climáticos, que presentan a la vez alta vulnerabilidad debido a las actividades económicas que son sensibles a este tipo de eventos, a la vez que reúnen altas densidades poblacionales. En estas áreas la probabilidad de afectación de población, infraestructura y actividades económicas es alta, lo cual generaría pérdidas humanas y económicas que afectarían al municipio. Estas áreas corresponden al casco urbano y veredas Bojacá y Cerca de Piedra, donde históricamente se han presentado la mayoría de incendios forestales.
9.3.3. Inundaciones

El riesgo de inundaciones del municipio de Chía se estableció en un 43% como alto, esto se debe principalmente a la identificación de altas amenazas por factores físicos como las pendientes y la geomorfología predominante en la zona, de igual manera la población del casco urbano y veredas subyacentes a ríos presentan alta vulnerabilidad debido a los patrones de crecimiento poblacional y ordenación de los mismos. A estas áreas corresponde el casco urbano y las veredas Bojacá, La Balsa, Tiquiza y Fagua, lugares que presentan registros históricos de afectaciones en temporadas de lluvia.

De acuerdo a la calificación de amenaza alta, pero moderada vulnerabilidad un 15% del territorio se estableció con un riesgo moderado, estas áreas corresponden a la vereda Fagua en la parte baja que colinda con el casco urbano. Es importante destacar que históricamente se han presentado inundaciones debido a la cercanía con el Río Frio, por lo tanto es un territorio que requiere intervención para evitar que se presenten pérdidas humanas o económicas debido al incremento del riesgo por inundaciones.

Un 42% del territorio se categorizo con un bajo riesgo a inundaciones, esta cifra obedece principalmente a áreas de los cerros que no son susceptibles a afectaciones por inundaciones, por presentar baja amenaza al estar ubicados en zonas altas, con buenas coberturas que permiten la regulación hídrica, y tener baja vulnerabilidad debido a que en estas zonas no se presentan altas densidades poblacionales ni de predios, al pertenecer a zonas de reservas forestales donde según el POT corresponden a zonas de protección. Estas áreas corresponden a las veredas Yerbabuena y Fusca, y las partes altas de las veredas Fagua y Tiquiza, correspondientes a los cerros orientales y occidentales.

9.4. CONFLICTO

Los conflictos de uso del suelo se presentan cuando hay discrepancia entre el uso que debería tener el suelo, de acuerdo con su oferta ambiental, y aquel al que está expuesto por las actividades humanas (IGAC-CORPOICA, 2002). En este caso se realizó el análisis frente al uso actual del territorio y el conflicto que pueda presentar frente a diversos tipos de riesgo por fenómenos amenazantes naturales y socio naturales (incendios, inundaciones y fenómenos de remoción en masa)

Para la determinación del conflicto se analizó la relación que tiene la actividad frente al riesgo, teniendo en cuenta la probabilidad de pérdidas humanas y económicas, además si estas actividades pueden contribuir al aumento del riesgo en dicha zona.

En cuanto a riesgo por fenómenos de remoción en masa, actualmente en el municipio de Chía, el 50.32% de los usos del municipio son compatibles frente al riesgo, es decir que probablemente si llegase a presentarse un evento de este tipo estas zonas no serán gravemente afectadas, debido a que no están ubicadas en zonas de riesgo altas, tales como zonas de alta pendiente y suelos inestables, el 18.02% es catalogado como de uso
aceptable, en este caso a pesar de que las actividades se encuentran en zonas de riesgo media por la naturaleza de las mismas, no presentaría grandes pérdidas en caso de que hubiera algún evento, entre esas encontramos actividades ganaderas, zonas con espacios naturales, mosaicos de pastos y cultivos, plantaciones forestales entre otras, el 27.45% No compatible correspondiente a las zonas en las que se han registrado eventos, por lo tanto no deben ubicarse en estas zonas asentamientos humanos con desarrollo de infraestructura, zonas industriales o comerciales, ni zonas de extracción minera, como lo muestra actualmente el mapa de coberturas del territorio; finalmente un 4.21% sin información correspondiente a nubes que interfieren con el análisis de coberturas

Frente a los riesgos asociados por incendios forestales, el 62.55% de los usos actuales del municipio se encuentran catalogados como compatibles al riesgo, ya que el municipio se encuentra urbanizado en gran extensión, y estas áreas son poco propensas al desarrollo de incendios forestales

En cuanto al riesgo por inundaciones, el 50.32% compatible hace referencia a usos actuales del suelo que pueden soportar las consecuencias de un evento de inundación, mitigando o compensando las posibles pérdidas económicas; el 27.45% del riesgo no es compatible con los usos actuales del suelo, y que son en su mayoría zonas urbanizadas con una elevada densidad poblacional que puede verse representada en pérdidas humanas y económicas imposibles de reponer en caso tal que se presentara un evento de magnitud considerable.
10. CONCLUSIONES

- A partir del diagnóstico realizado mediante la revisión de los expedientes presentados por el municipio a la Corporación Autónoma Regional, se estableció que desde el año 2000 se ha venido haciendo un proceso de identificación de amenazas y riesgos, dentro de los planes de ordenamiento territorial, sin embargo fue en el 2011, a raíz de los eventos ocurridos en la ola invernal, que se empezó un proceso real de gestión del riesgo, dando lugar a la creación del comité municipal para la gestión del riesgo el cual brinda directrices y medidas para el conocimiento, reducción y mitigación del riesgo. Sin embargo, el municipio presenta falencias en la categorización y zonificación de los riesgos asociados a fenómenos amenazantes, por lo que los procesos de planificación territorial no se realizan con la precisión requerida para salvaguardar los sistemas naturales y sociales.

- Mediante la evaluación multicriterio de los factores de amenaza y vulnerabilidad, se determinaron las categorías de riesgo que permiten identificar las áreas y zonas del municipio que deben intervenirse mediante medidas estructurales y no estructurales, para prevenir desastres y así proteger la integridad de los habitantes del municipio y prevenir el riesgo de desastres.

De esta manera se pudo concluir que en cuanto a amenazas el 5,2% de territorio se encuentra en una categoría alta por fenómenos de remoción en masa, y 51,4% presenta baja amenaza. El 43,2% del municipio se categorizó con alta amenaza por incendios forestales y 20% demuestra baja amenaza; finalmente el 30% del territorio presenta alta amenaza por inundaciones y 21% baja amenaza.

Así mismo se determinó en cuanto a vulnerabilidad que el 23,04% del territorio presenta alta vulnerabilidad a fenómenos de remoción en masa, mientras que el 57,2% evidencia baja vulnerabilidad. El 18% del municipio presenta alta vulnerabilidad a incendios forestales y 32,4% evidencia baja vulnerabilidad a este fenómeno. Por último el 27% demuestra alta vulnerabilidad a inundaciones.

Finalmente al traslapar las áreas de amenazas y vulnerabilidad, se estipuló que por fenómenos de remoción en masa el 11,6% del municipio presenta alto riesgo y 30,5% bajo riesgo. El 17% del territorio evidenció alto riesgo para incendios forestales y 34% bajo riesgo para este fenómeno. Por último se demostró que el 43% del municipio está bajo alto riesgo por inundaciones y 42% presenta bajo riesgo por este fenómeno.

- La inclusión de la gestión del riesgo dentro de los planes de ordenamiento territorial, permite garantizar la identificación oportuna de áreas críticas, donde la población no debe asentarse, ni desarrollar actividades que incremen
ten el riesgo de desastres. La cartografía resultante de este estudio permiten obtener información fiable sobre la amenaza, vulnerabilidad y el riesgo que presenta el
municipio frente a fenómenos de remoción en masa, inundaciones e incendios, lo que resulta de gran utilidad tanto en la fase de planificación de grandes obras públicas como en su fase de ejecución y a la hora de adoptar las oportunas medidas de prevención, mitigación y corrección. De igual forma los principales desafíos en los territorios, actualmente, señalan que los procesos de ordenamiento ambiental y territorial, deben articularse con los procesos de mitigación y adaptación al cambio y a la variabilidad climática; así como también, a los procesos de gestión del riesgo. Abordarlos desde un enfoque sinérgico, para que se logren materializar metas concretas de desarrollo sostenible, en cada porción específica de territorio. Teniendo en cuenta a la comunidad como eje, en las intervenciones que procedan, incrementando sus capacidades y el bienestar humano, con el fin de valorar y afrontar localmente los impactos de las cambiantes realidades del entorno.

- De manera general las características bióticas y abióticas de un territorio, determinan los factores detonantes y de susceptibilidad para la incidencia de fenómenos naturales. Puntualmente el municipio de Chía presenta en su configuración física un relieve de valles aluviales, de baja pendiente en su parte central, por lo cual estas zonas se caracterizan por estar urbanizadas, asimismo favorece a que la escorrentía aumente por impermeabilización del suelo y en consecuencia ocurran eventos de inundaciones, como se evidencio en la pasada ola invernal de 2011; En sus costados se presenta relieve montañoso con altas pendientes, en el que se ha reemplazado la cobertura boscosa por territorios agrícolas, pastos y al norte del municipio zonas de extracción minera, provocando así deterioro del suelo y por lo tanto posibles fenómenos de remoción en masa. En estas zonas montañosas se identificaron coberturas con alta capacidad de ignición y debido a que se encuentran en zonas de alta pendiente, influyen con la continuidad vertical de los combustibles y favorece la cercanía de los mismos al fuego, por lo tanto estas zonas son propensas a que se presenten eventos de incendios forestales. Es importante resaltar que debido a estas características han ido cambiando, no se evaluaron en la planificación territorial del municipio y gran parte de este se encuentra vulnerable a sufrir desastres por este tipo de fenómenos, principalmente para las zonas en donde se encuentra mayor concentración de infraestructura y densidad poblacional con estratos más bajos, que debido a sus condiciones sociales y económicas tendrían menor capacidad de respuesta frente a este tipo de fenómenos. De esta manera, las posibles consecuencias al presentarse un evento desastrosos, están encaminadas a la pérdida de vidas humanas, deterioro en infraestructura principal, afectación a la estructura ecológica principal, pérdidas económicas a lo largo de toda la cadena productiva del municipio, entre otras. Dichas consecuencias, impedirían un desarrollo sostenible y equitativo para los habitantes del municipio.

- Las áreas consideradas en conflicto surgen por la ocupación del territorio que se encuentra en alto riesgo por los fenómenos amenazantes estudiados, estas áreas
deben intervenirse mediante medidas estructurales y no estructurales, como forma de prevención tal como se estipula en el Decreto 1807 de 2014.
11. RECOMENDACIONES

La incorporación del análisis de amenazas, vulnerabilidad y riesgo en los procesos de planeación y ordenamiento territorial, permitirá establecer medidas de prevención y mitigación, que permitan la reducción del riesgo de desastres por fenómenos naturales existentes en el municipio de Chía y en consecuencia evitar la generación de riesgos futuros. A continuación se presentan algunas recomendaciones, orientadas al máximo aprovechamiento de los resultados obtenidos en este proyecto.

- De acuerdo a la zonificación de amenaza y riesgo realizada, se recomienda actualizar los planes de emergencia municipal.
- Para las zonas declaradas como categorías alta y muy alta, se deben realizar los correspondientes estudios detallados, lo que permitirá tomar las medidas adecuadas tanto de mitigación como de prevención, ya sean de carácter estructural o no estructural.
- Deben fortalecerse y estimularse programas educativos para la población y esquemas de capacitación que permitan la socialización de la información aquí recolectada, lo que permitirá disminuir futuros asentamientos en zonas de alta amenaza, además permitirá que los planificadores, técnicos y funcionarios del municipio puedan articular esta información, para el otorgamiento de nuevas licencias urbanísticas, especialmente las rutas hídricas y zonas inestables y así evitar la continuidad del asentamiento de viviendas en zonas no aptas y en general la toma de decisiones.
- En los componentes urbano y rural del POT, se tendrá que definir políticas de mediano y corto plazo para avanzar en el conocimiento de los procesos amenazantes de erosión, remoción en masa e inundación su zonificación y la definición de qué tan vulnerable es la población y/o sus bienes, así como la identificación de qué infraestructura del estado es también vulnerable.
- Reglamentar la no construcción de edificaciones o establecer actividades productivas en zonas tradicionalmente inundables, como son las riberas de los ríos, planicies y las llanuras o el valles de inundación. Estos terrenos es preferible dedicarlos para actividades recreativas o a cultivos de rápida siembra y producción, lo cual se puede hacer con la reglamentación urbana y de las unidades de planeamiento rural para esta clase de suelo.
- Establecer en la definición de actividades del suelo urbano (residencial, comercial, institucional, industrial, espacio público y equipamientos) y en suelo rural (agropecuarias, mineras, residenciales, industriales, equipamientos y espacio público) la ubicación permitida, restringida o denegada de tales actividades e infraestructura, que guarden correlación con respecto a las zonas de amenaza y riesgo identificadas.
- El Municipio de Chía, no debe permitir que continúe el desarrollo de viviendas en las planicies de inundación, exigiendo a toda persona que solicite un
permiso de construcción en áreas cercanas a cauces de agua, el respectivo visado de planos por parte de la Secretaría de Planeación, así como de la oficina de gestión del riesgo de desastres, con el objetivo de que el desarrollo urbano y rural sea compatible con las medidas propuestas por el POT, así mismo se recomienda realizar campañas de sensibilización, recuperación y protección de las riberas y proyectos de espacio público donde se incluya el manejo paisajístico y de mitigación de estas zonas o áreas.

- Establecer las medidas de adaptación al cambio climático que fortalezcan la gestión territorial y el desarrollo y ocupación urbana sostenible del municipio.
- Construir e Instaurar un sistema de indicadores que garantice el adecuado seguimiento de las intervenciones realizadas para reducir el riesgo en el Municipio.
- Establecer mecanismos de gobernanza territorial que posibiliten la participación y coordinación de los diferentes actores implicados en la reducción de riesgos; la adaptación y mitigación al cambio y a la variabilidad climática; y la promoción del desarrollo sostenible, en el Municipio y a nivel regional.
BIBLIOGRAFÍA

Departamento Nacional de Planeación. (s.f.). *Plan Nacional de Adaptacion al cambio Climatico- Resumen ejecutivo*. Bogotá: DNP- IDEAM.

IDEAM. (2011). *Protocolo para la realización de mapas de Zonificación de Riesgos a Incendios de la Cobertura Vegetal a escala 1:100.000*. Bogotá: IDEAM.

Anexos

Anexo № 1

Identificación de Puntos Críticos del Municipio de Chía

Fuente: Corporación Autónoma Regional de Cundinamarca CAR

<table>
<thead>
<tr>
<th>Clase</th>
<th>Evento Detalle</th>
<th>Causas Tipos</th>
<th>Categoría</th>
<th>Fuente Hídrica</th>
<th>Área Afectada</th>
<th>Coordenada Norte</th>
<th>Coordenada Este</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amarilo Fontanar</td>
<td>Inundación</td>
<td>Ruptura del Jarillón</td>
<td>Jarillón irregular</td>
<td>Zonas urbanizadas</td>
<td>Río Bogotá</td>
<td>Conjunto Residencial</td>
<td>1030688</td>
</tr>
<tr>
<td>Avenida 19 Vía Fonqueta</td>
<td>Inundación</td>
<td>El nivel del río Frío superó el nivel del sistema de alcantarillado en este sector y se produjo inundación a través de las alcantarillas y el agua proveniente del sector Teatro Los Ladrillos donde se desbordó el río Frío. El agua alcanzó niveles de 1.5 m</td>
<td>Otros</td>
<td>Zonas urbanizadas</td>
<td>Río Frío</td>
<td>Barrios Sidonia - Portal del Río</td>
<td>1030341</td>
</tr>
<tr>
<td>Club Guaymaral</td>
<td>Inundación</td>
<td>Ruptura del jarillón del costado derecho del río Bogotá en el sector comprendido entre el predio de Flores Mongibello y Club Guaymaral</td>
<td>Jarillón irregular</td>
<td>Áreas industriales y comerciales</td>
<td>Río Bogotá</td>
<td>Club Guaymaral</td>
<td>1026040</td>
</tr>
<tr>
<td>Localidad</td>
<td>Estado</td>
<td>Desastre</td>
<td>Descripción</td>
<td>Zonas Afectadas</td>
<td>Distrito</td>
<td>Código Postal</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Cuernavaca</td>
<td>Inundación</td>
<td>Rebose de agua del Río Bogotá, superando altura de jarillones inundando predios aledaños</td>
<td>Jarillón irregular, Áreas industriales y comerciales</td>
<td>Cultivo de Flores</td>
<td>1004026</td>
<td>1026649</td>
<td></td>
</tr>
<tr>
<td>El Cairo I</td>
<td>Inundación</td>
<td>Desbordamiento del cauce el río Bogotá que afecta varios predios al costado izquierdo del Autopista Norte que conduce de Bogotá a Tunja y viceversa; entre los cuales se cuenta con el predio El Cairo I</td>
<td>Jarillón irregular, Infraestructura estratégica</td>
<td>Río Bogotá, Vía de acceso al Club Rincón</td>
<td>1032484</td>
<td>1006985</td>
<td></td>
</tr>
<tr>
<td>Fernando Hurtado</td>
<td>Inundación</td>
<td>Desbordamiento del río por los dos costados inundando predios aledaños</td>
<td>Jarillón irregular, Áreas agrícolas</td>
<td>Río Bogotá, 500 Metros Cuadrados</td>
<td>1027092</td>
<td>1003972</td>
<td></td>
</tr>
<tr>
<td>Flores Jayvaná</td>
<td>Inundación</td>
<td>El cultivo flores Jayvaná, es colindante con la fuente hídrica Río Frío, se realizó un recorrido en el cual se evidenció la instalación de material bolsas de reforzamiento en la base del jarillón y corona del mismo, margen derecha del río Frío, debido a que</td>
<td>Jarillón irregular, Áreas industriales y comerciales</td>
<td>Río Frío, Cultivo de Flores</td>
<td>1027263</td>
<td>1000130</td>
<td></td>
</tr>
<tr>
<td>Flores Valvanera</td>
<td>Inundación</td>
<td>Inundación de los predios</td>
<td>Jarillón irregular, Áreas industriales y comerciales</td>
<td>Río Bogotá, Cultivo de Flores</td>
<td>1030775</td>
<td>1001790</td>
<td></td>
</tr>
<tr>
<td>Hacienda San Jacinto</td>
<td>Inundación</td>
<td>Ruptura de Jarillón, altura del río Bogotá supero jarillón se presenta inundación del condominio</td>
<td>Jarillón irregular, Zonas urbanizadas</td>
<td>Río Bogotá, 22,93 Hectáreas</td>
<td>1026320</td>
<td>1001120</td>
<td></td>
</tr>
<tr>
<td>Localización</td>
<td>Tipo de Daño</td>
<td>Detalles</td>
<td>Áreas Afectadas</td>
<td>Río</td>
<td>Superficie</td>
<td>Código</td>
<td>Código antiguo</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>Hipódromo de los Andes</td>
<td>Inundación</td>
<td>Se evidencia un vallado costado norte, el cual inicia sobre el autopista norte y descarga en el río a través de compuertas que permanecen cerradas en invierno hoy están abiertas. El nivel de vallado está por encima en 50 cms, del nivel del río</td>
<td>Otros Áreas industriales y comerciales</td>
<td>Río Bogotá</td>
<td>400 Metros Cuadrados</td>
<td>1028353</td>
<td>1004014</td>
</tr>
<tr>
<td>Ibaro I y II</td>
<td>Inundación</td>
<td>Inundación por el sistema de alcantarillado, el nivel del agua alcanzó 1,5m y numerosas viviendas afectadas</td>
<td>Otros Zonas urbanizadas</td>
<td>Río Frío</td>
<td>Numerosas viviendas afectadas</td>
<td>1030341</td>
<td>1001641</td>
</tr>
<tr>
<td>Iglesia La Valvanera</td>
<td>Incendio Forestal</td>
<td>Incendio forestal</td>
<td>Otros</td>
<td>Conservación</td>
<td>5 Kilometros</td>
<td>1030187</td>
<td>0999805</td>
</tr>
<tr>
<td>Inalde</td>
<td>Inundación</td>
<td>En el jarillón de la margen izquierda del río Bogotá, se evidencias boquetes, los cuales inundan los predios colindantes y la vía variante Autopista Norte.</td>
<td>Jarillón irregular Áreas industriales y comerciales</td>
<td>Río Bogotá</td>
<td>Sector de teletón afectado y la Institución INALDE</td>
<td>1028981</td>
<td>1004965</td>
</tr>
<tr>
<td>INTECI</td>
<td>Inundación</td>
<td>Inundación del predio por mal funcionamiento compuerta</td>
<td>Jarillón irregular Zonas urbanizadas</td>
<td>Río Bogotá</td>
<td>Instituto Terapeutico de la Conducta INTECI Ltda y sus predios</td>
<td>1029040</td>
<td>1004190</td>
</tr>
<tr>
<td>Localidad</td>
<td>Condición</td>
<td>Descripción</td>
<td>Zona</td>
<td>Subzona</td>
<td>Regionalización</td>
<td>Código</td>
<td>Código</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>La Chavela</td>
<td>Inundación</td>
<td>Se evidencia el jarillón antiguo parcialmente reforzado con bolsas de arena en 2011 por parte del CLOPAD Chía y por la Universidad de la Sabana con retroexcavadora en algunos puntos.</td>
<td>Jarillón</td>
<td>Áreas agrícolas</td>
<td>Río Bogotá</td>
<td>1028590</td>
<td>1004038</td>
</tr>
<tr>
<td>La Playa Pesebreras</td>
<td>Inundación</td>
<td>jarillón antiguo sin refuerzo, presenta ruptura del mismo en una longitud aproximada de 400 metros, sin reparar. El nivel del jarillón con respecto al costado opuesto (Amarilo), presenta un nivel muy inferior.</td>
<td>Jarillón</td>
<td>Areas agrícolas</td>
<td>Río Bogotá</td>
<td>200 Metros Cuadrados</td>
<td>1030576</td>
</tr>
<tr>
<td>Las Juntas Río Frío</td>
<td>Inundación</td>
<td>Se observa que el río Bogotá en la pasada invernal superó los niveles del cauce para crecientes ordinarias inundando las orillas del sector, adicionalmente en una zona no presenta jarillones sino la presencia de sedimentos retirados del cauce sin conf</td>
<td>Jarillón</td>
<td>Áreas agrícolas</td>
<td>Río Bogotá</td>
<td>1029374</td>
<td>1004572</td>
</tr>
<tr>
<td>Los Ladrillos - Puente Tiquiza</td>
<td>Inundación</td>
<td>Este sector inicia desde la avenida Chilacos hasta el Puente Tejares, conocido también como puente Tiquiza, desbordamiento del Río</td>
<td>Otros</td>
<td>Infraestructura estratégica</td>
<td>Río Frío</td>
<td>Puente Vial - Predios Aledaños</td>
<td>1030341</td>
</tr>
<tr>
<td>Predio</td>
<td>Arrendatario</td>
<td>Inundación</td>
<td>Nivel del río suero altura del jarillón inundando el cultivo de flores en dirección noroccidental, 18 hectáreas inundadas el agua alcanzó niveles de 1,8m</td>
<td>Jarillón irregular</td>
<td>Zonas urbanizadas</td>
<td>Río Bogotá 2 kilómetros-18 has</td>
<td>1025862</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mongibello</td>
<td>Inundación</td>
<td>En la temporada de invierno de fin de 2010, se tapó totalmente de agua el lote y la casa donde habita la señora Gloria Rosero en arriendo.</td>
<td>Jarillón irregular</td>
<td>Infraestructura estratégica</td>
<td>Río Bogotá</td>
<td>Vía variante Chía-Bogotá y predio de 300 metros cuadrados</td>
<td>1029374</td>
</tr>
<tr>
<td>Predio Arrendatario Gloria Rosero</td>
<td>Inundación</td>
<td>Jarillón irregular</td>
<td>Areas agrícolas</td>
<td>Río Bogotá</td>
<td></td>
<td></td>
<td>1029222</td>
</tr>
<tr>
<td>Predio San Antonio Solarte</td>
<td>Inundación</td>
<td>Jarillón irregular</td>
<td>Areas agrícolas</td>
<td>Río Bogotá</td>
<td></td>
<td></td>
<td>1029222</td>
</tr>
<tr>
<td>PTAR Chía</td>
<td>Inundación</td>
<td>Inundación PTAR y predios aledaños por Río Bogotá, supero altura de jarillones</td>
<td>Jarillón irregular</td>
<td>Áreas agrícolas</td>
<td>Río Bogotá</td>
<td>PTAR Chía y predios aledaños</td>
<td>1004025</td>
</tr>
<tr>
<td>Puente El Común</td>
<td>Inundación</td>
<td>Al costado derecho del Puente El Común en dirección de la Universidad de la Sabana se detectó en un punto de aproximadamente dos metros de longitud el desbordamiento del río Bogotá hacia el campus.</td>
<td>Otros</td>
<td>Infraestructura estratégica</td>
<td>Río Bogotá</td>
<td>Puente y red vial variante Bogotá Chía</td>
<td>1029560</td>
</tr>
<tr>
<td>Puente Hacienda San Simón</td>
<td>Inundación</td>
<td>El nivel de la quebrada a menos de un metro de la vía y el lidero que bordea la Hacienda San Simón. Todo el recorrido sobre la vía Guaymaral hacia el Puente de la Balsa se encuentra inundado,</td>
<td>Otros</td>
<td>Areas agrícolas</td>
<td>Río Bogotá 700 Metros Cuadrados y Vía Guaymaral</td>
<td></td>
<td>1023622</td>
</tr>
<tr>
<td>Puente La Balsa</td>
<td>Inundación</td>
<td>Después del puente la Balsa en el tramo hacia la esquina Colegio San Diego en dirección a Chía, la vía está ocupando la ronda de protección del río Bogotá.</td>
<td>Otros</td>
<td>Zonas urbanizadas</td>
<td>Río Bogotá</td>
<td>Puente Vial - Predios Aledaños Guaymaral</td>
<td>1025698</td>
</tr>
<tr>
<td>Puente Peatonal Universidad Sabana</td>
<td>Inundación</td>
<td>En dirección a Bogotá costado derecho, el nivel del río se encuentra por encima del jarillón inundando potreros de INTECI y la arrendataría Gloria Rosero, cuatro boquetes visibles de más de 10 metros de longitudinales cada uno, dos viviendas desalojadas</td>
<td>Jarillón irregular</td>
<td>Infraestructura estratégica</td>
<td>Río Bogotá</td>
<td>Autopista Norte Chía - Bogotá</td>
<td>1029323</td>
</tr>
<tr>
<td>Puente Roldan</td>
<td>Inundación</td>
<td>Agas arriba del puente sobre este, se encuentra represado material vegetal (Buchón) y otros residuos en una longitud de aproximadamente 150 metros lineales por 30 metros de ancho.</td>
<td>Jarillón irregular</td>
<td>Infraestructura estratégica</td>
<td>Río Bogotá</td>
<td>Puente Ferreo</td>
<td>1030647</td>
</tr>
<tr>
<td>Santa Ana I y II</td>
<td>Inundación</td>
<td>Deslizamiento de jarillón en una longitud aproximada de 30 metros</td>
<td>Obstrucción de cauce por movimiento masal</td>
<td>Zonas urbanizadas</td>
<td>Río Bogotá</td>
<td>Conjunto cerrado numerosas viviendas</td>
<td>1030614</td>
</tr>
<tr>
<td>Localización</td>
<td>Evento</td>
<td>Descripción</td>
<td>Ubicación</td>
<td>Nivel de inundación</td>
<td>Vidas</td>
<td>Conjuntos Cerrados y Vidas</td>
<td>Código</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>---</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Teatro Los Ladrillos</td>
<td>Inundación</td>
<td>El río Frío, superó el jarillón construido, e inundó las casas de los conjuntos Altos del río Frío y Conjunto Club Campestre río Frío, sobre la avenida Chilacos y aproximadamente 50 metros hacia el oriente. El agua alcanzó niveles de 1m</td>
<td>Río Frío</td>
<td>Jarillón irregular</td>
<td>Zonas urbanizadas</td>
<td>8 Conjuntos Cerrados y Vidas</td>
<td>1028136</td>
</tr>
<tr>
<td>Universidad de la Sabana</td>
<td>Inundación</td>
<td>El día 25 de abril aproximadamente a las 9:45 a.m. ante el rompimiento del jarillón sobre el sector frente a INALDE, la universidad inició evacuación de los estudiantes y en aproximadamente 1,5 horas se inundó el 90% del campus</td>
<td>Río Bogotá</td>
<td>Jarillón irregular</td>
<td>Areas industriales y comerciales</td>
<td>Campus Universitario</td>
<td>1029060</td>
</tr>
<tr>
<td>Club el Rincón</td>
<td>Inundación</td>
<td>Costado izquierdo del río Bogotá, inundando canchas de tenis y futbol, el nivel del río alcanzó la luz del puente</td>
<td>Río Bogotá</td>
<td>Jarillón irregular</td>
<td>Áreas industriales y comerciales</td>
<td>Canchas futbol y tenis del Club</td>
<td>1032913</td>
</tr>
<tr>
<td>Resguardo Indígena</td>
<td>Incendio</td>
<td>Incendio con un área aproximada de afectación 4,76 hectáreas en inmediaciones del resguardo indígena, ecosistema sub páramo, vegetación nativa y plantaciones forestales</td>
<td>Otros</td>
<td>Conservación</td>
<td>4,76 Hectáreas</td>
<td>1028888</td>
<td>998773</td>
</tr>
<tr>
<td>Plaza de Toros</td>
<td>Inundación</td>
<td>Inundación del predio por desbordamiento del río Bogotá</td>
<td>Río Bogotá</td>
<td>Jarillón irregular</td>
<td>Áreas agrícolas</td>
<td>Predio</td>
<td>1029745</td>
</tr>
<tr>
<td>Cerca de Piedra</td>
<td>Deslizamiento en la vereda cerca de piedra por la saturación del suelo debido a las fuertes e intensas precipitaciones presentados los días anteriores.</td>
<td>Otros</td>
<td>Zonas Urbanizadas</td>
<td>Viviendas del sector</td>
<td>1028413</td>
<td>999294</td>
<td></td>
</tr>
</tbody>
</table>
Anexo Nº 2

Verificación de Cumplimiento del Decreto 1807 de 2014

<table>
<thead>
<tr>
<th>Nº</th>
<th>ACTIVIDAD</th>
<th>SI</th>
<th>NO</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GENERALIDADES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Dentro de la expedición del POT o revisión ¿se elaboraron estudios en los suelos urbanos, de expansión urbana y rural para los fenómenos de inundación, avenidas torrenciales y movimientos en masa?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>¿Se delimitaron y zonificaron las áreas de amenaza?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>¿Se determinaron las medidas de intervención, orientadas a establecer restricciones y condicionamientos mediante la determinación de normas urbanísticas?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>ESTUDIOS BASICOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>MOVIMIENTOS EN MASA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>¿El municipio cuenta con zonas de relieve escarpado, montañoso, o con pendientes superiores al 5%?</td>
<td></td>
<td></td>
<td>Pregunta 2.1.1</td>
</tr>
<tr>
<td>2.1.2</td>
<td>¿Tiene cartografía con curvas de nivel, drenajes, red vial, infraestructura y equipamientos, asentamientos humanos?</td>
<td></td>
<td></td>
<td>Pregunta 2.2.</td>
</tr>
<tr>
<td>2.1.3</td>
<td>¿Tiene inventario de procesos morfo dinámicos?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4</td>
<td>Suelos Urbanos: ¿Tiene estudio de Geología y Geomorfología aplicada a movimientos en masa a nivel de elementos geomorfológicos?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5</td>
<td>Suelos Rurales: ¿Tiene estudio de geología, unidades geológicas superficiales, geomorfología aplicada a movimientos en masa a nivel de subunidades geomorfológicas y cobertura y uso del suelo?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.6</td>
<td>¿En la elaboración del estudio incluyó agentes detonantes como: agua, sismo y procesos antrópicos (cortes, excavaciones, rellenos y construcción en general)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.7. Suelos Urbanos</td>
<td>¿Se realizó análisis estadístico, determinístico o probabilístico? CUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.8. Suelos Rurales</td>
<td>¿Realizó análisis de inventarios, heurísticos o estadísticos? CUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.9. ¿Presenta cartografía de Zonificación de Amenazas (Alta, Media, Baja)?</td>
<td>Pregunta 2.1.9. Pregunta 2.2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿La leyenda incluye la descripción de las características físicas de las unidades según la categoría establecida, los tipos de procesos predominantes y los posibles daños que se pueden generar?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2. INUNDACIONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1. ¿Existen zonas en las cuales exista la posibilidad de presentarse una inundación sean aledañas o no a ríos, caños, quebradas, humedales y otros cuerpos de agua o aquellas que hagan parte de su área de influencia?</td>
<td>Pregunta 2.2.2 Pregunta 2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2. ¿Presenta cartografía de las diferentes subunidades geomorfológicas asociadas a los paisajes aluviales, con especial énfasis en las geo formas correspondientes a la llanura de inundación?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.3. ¿Tiene modelo de elevación digital del terreno?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.4. ¿Tiene identificado las zonas inundables e inundadas y las fechas de los eventos?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.5. ¿Presenta caracterización del comportamiento del régimen hidrológico en la región a la cual pertenece el municipio mediante un análisis de los eventos hidroclimáticos máximos identificando para cuales períodos de retorno se están presentando las afectaciones y las áreas afectadas para los mismos?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿En la elaboración del estudio tuvo en cuenta el registro de eventos, la recurrencia de los mismos y la intensidad (niveles alcanzados) de la inundación?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.6. ¿Realizó análisis de tipo histórico y geomorfológico?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.7. ¿Presenta cartografía de Zonificación (Alta, media, baja)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.8.</td>
<td>¿Presenta documento técnico que contenga la metodología empleada y los resultados obtenidos?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3. AVENIDAS TORRENCIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.1.</td>
<td>¿El municipio presenta cauces presentes o con influencia en el municipio o distrito, que por sus condiciones topográficas puedan tener un comportamiento torrencial?</td>
<td>Pregunta 2.3.2 Pregunta 2.4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.2.</td>
<td>¿Presenta como insumo cartografía de geomorfología y estudio hidrológico de la cuenca, orientado al flujo torrencial, considerando el ciclo de sedimentos y el análisis hidráulico del área a zonificar, teniendo en cuenta factores detonantes como precipitación o movimientos en masa? (Escala 1:2000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.3.</td>
<td>¿Realizó análisis estadísticos, determinísticos o probabilísticos? ¿CUAL?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.4.</td>
<td>¿Presenta cartografía de Zonificación (Alta, Media y Baja)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.5.</td>
<td>¿Presenta documento técnico que contenga la metodología empleada y los resultados obtenidos?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4. MEDIDAS DE INTERVENCION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.1.</td>
<td>¿Se delimitó y zonificó las áreas como de amenaza alta y media sin ocupar del suelo urbano, de expansión urbana, rural suburbana o centros poblados rurales que se consideren como objeto de desarrollo?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.2.</td>
<td>¿Se presenta el mapa con la delimitación y zonificación de las áreas con condición de amenaza? ¿Se establecen los criterios para la caracterización y delimitación de las unidades de análisis en las áreas que serán objeto de estudios detallados?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.3.</td>
<td>¿Se zonifican las áreas con condición de riesgo, a fin de priorizar las áreas en las cuales se deben realizar estudios detallados?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.4.</td>
<td>¿Presenta el mapa con la delimitación y zonificación de las áreas con condición de riesgo? ¿Se establecen los criterios para la caracterización y delimitación de las unidades de análisis que dependen del fenómeno a estudiar y la priorización para la realización de los estudios detallados que permitirán categorizar el riesgo?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.1 ¿Determino las medidas de mitigación no estructurales orientadas a establecer el modelo de ocupación del territorio y las restricciones o condicionamientos para el uso del suelo cuando sea viable, mediante la determinación de normas urbanísticas?

3. ESTUDIOS DETALLADOS

3.1. MOVIMIENTOS EN MASA

3.1.1. ¿Describe el área de estudio el cual corresponde a las áreas con condiciones de riesgo y amenaza, por movimientos en masa delimitadas en el plan de ordenamiento territorial, a partir de los estudios básicos?

3.1.2 Presenta como insumos básicos:

- Geología para Ingeniería
- Geomorfología a nivel de elementos
- Hidrogeología, con énfasis en comportamiento de los niveles freáticos.
- Evaluación del drenaje superficial.
- Sismología.
- Uso del Suelo.
- Exploración del subsuelo.
- Levantamiento topográfico, incluyendo la información predial o catastral.

3.1.3 ¿El análisis realizado a nivel detallado se realizó empleando por lo menos métodos determinísticos y modelos matemáticos, en función de la dinámica del movimiento en masa objeto de análisis?

3.1.4. ¿Tuvo en cuenta dentro del análisis las causas de la inestabilidad del terreno, considerando dentro de los agentes detonantes los siguientes factores: agua, sismo y procesos antrópicos (cortes, excavaciones, rellenos y construcciones en general), mediante el análisis mínimo de tres escenarios?

3.1.5. ¿Presenta cartografía con zonificación de amenaza por movimientos en masa?
3.1.6. ¿Presenta documento técnico que contenga la metodología empleada y los resultados obtenidos?

INUNDACIONES

3.2.1. ¿Describe el área de estudio el cual corresponde a las áreas con condiciones de riesgo y amenaza, por inundaciones delimitadas en el plan de ordenamiento territorial, a partir de los estudios básicos? ¿Tuvo en cuenta el análisis del POMCA?

3.2.2. Presenta como insumos básicos:
 - Información de hidrología e hidráulica
 - Información topográfica y bathimétrica detallada de los tramos de cauce analizados, incluyendo aquellos elementos o tramos que estén asociados con el origen de la inundación

3.2.3. ¿Realizó el análisis teniendo en cuenta criterios históricos, geomorfológicos, hidrológico-hidráulicos empleando métodos asistidos por sensores remotos y sistemas de información geográfica?

3.2.4. Presenta mapa de zonificación de amenaza por inundación por desbordamiento, el cual delimita y caracteriza los diferentes niveles de amenaza que presenta el territorio estudiado?

3.2.5. ¿Presenta documento técnico que contenga la metodología empleada y los resultados obtenidos?

VULNERABILIDAD

3.3.1. ¿Se identificaron y localizaron en la cartografía los elementos expuesto para cada tipo de amenaza dentro de los estudios detallados?

3.3.2. ¿Se establecieron las características de los elementos expuestos a las amenazas identificadas, en cuanto al tipo de elemento, grado de exposición, resistencia que ofrece el elemento y distribución espacial?

3.3.3. ¿Se identificaron los diferentes tipos de daño o efecto esperado sobre los elementos expuestos que se pueden presentar como resultado del fenómeno natural?
3.3.4.	¿Se presenta mapa de zonificación a la misma escala del mapa de amenazas detallados estableciendo categorías de vulnerabilidad alta, media y baja, de acuerdo a las características de los elementos expuestos?
3.4. EVALUACION DEL RIESGO	
3.4.1	Presenta para el estudio de evaluación del riesgo:
	Documento técnico que contenga metodología de evaluación empleada y los resultados.
	Fichas de evaluación de vulnerabilidad
	Mapa de vulnerabilidad categorizada en alta, media y baja
	Mapa de riesgo, categorizado en alto, medio y bajo, señalando para el riesgo alto si es mitigable o no mitigable.
	Mapas de localización y dimensionamiento de las medidas de intervención propuestas.
	Presupuestos estimados de costos de las alternativas planteadas
	Inventario de viviendas en alto riesgo no mitigable
3.5. MEDIDAS DE INTERVENCION	
3.5.1	¿Determina medidas de intervención estructurales y no estructurales?
4. INCORPORACION DE LA GESTION DEL RIESGO EN EL ORDENAMIENTO TERRITORIAL	
4.1.	¿Se integran los estudios básicos, y cuando se disponga de estudios detallados, al Documento Técnico de Soporte?
4.2 COMPONENTE GENERAL	
4.2.1.	¿Se establecieron los objetivos y estrategias de mediano y largo plazo garantizando la incorporación de la gestión del riesgo en el plan de ordenamiento territorial y la definición de medidas para el conocimiento y la reducción (prevención y mitigación) del riesgo?
4.2.2.	En el contenido estructural, ¿se identificaron y se ubicaron en planos las áreas de condición de riesgo y con restricción por amenazas identificadas en los estudios básicos y su priorización para la elaboración de los estudios detallados en el corto, mediano y largo plazo?
4.2.3.	¿Se determinaron y ubicación en planos de las zonas que presenten alto riesgo para la localización de asentamientos humanos, por amenazas o por riesgos naturales, siempre y cuando se cuente con los estudios detallados?
4.2.4.	**Para suelos de Protección:**

| ¿ Se determinaron las áreas sin ocupar zonificadas en los estudios básicos como amenaza alta, en las que la información sobre intensidad y recurrencia f) registros históricos de los fenómenos por movimientos en masa, avenidas torrenciales o inundación evidencian que la determinación de las medidas de reducción son insuficientes en el tiempo para garantizar el desarrollo de procesos de urbanización? |
| ¿ Se determinaron las áreas zonificadas como riesgo alto no mitigable en suelo urbano, de expansión urbana y rural, de acuerdo con los estudios detallados, cuando se cuente con ellos? |
| 4.3. | **COMPONENTE URBANO** |
| 4.3.1 | **Para áreas con condición de amenaza**

| ¿ Se asignó un régimen general de usos y tratamientos que se podrán desarrollar en estas áreas, estableciendo los condicionamientos o restricciones de usos, densidades, ocupación y edificabilidad que eviten la generación de situaciones de riesgo? |
| 4.3.2. | **Para áreas de amenaza media ocupada**

<p>| ¿ Se determinaron las acciones requeridas relacionadas con el manejo de aguas y adecuación de taludes, entre otros, así como de las acciones para realizar seguimiento y monitoreo a fin de garantizar que no se generen condiciones de riesgo? |</p>
<table>
<thead>
<tr>
<th>4.3.3.</th>
<th>Para áreas con condición de riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se definieron las condiciones técnicas que se estimen convenientes para la elaboración de los estudios detallados que permitan establecer la categorización del riesgo?</td>
<td></td>
</tr>
<tr>
<td>¿Se asignó un régimen general de usos y tratamientos, y normas de densidades, ocupación y edificabilidad que se podrán desarrollar condicionados a los resultados de los estudios detallados?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.3.4.</th>
<th>Para áreas de riesgo que cuenten con estudio detallado</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se delimitaron y zonificaron de las zonas de riesgo alto, medio y bajo con la determinación de aquellas zonas de riesgo alto que se consideren como mitigables y no mitigables?</td>
<td></td>
</tr>
<tr>
<td>¿Se definieron las medidas de intervención para el desarrollo de las zonas de riesgo mitigable? ¿Se asignaron usos, tratamientos y normas urbanísticas para el desarrollo de estas áreas?</td>
<td></td>
</tr>
</tbody>
</table>

Zonas de alto riesgo no mitigable: ¿Se establecieron las medidas para su manejo y para evitar la ocupación de estas áreas, de acuerdo con el régimen aplicable al suelo de protección? |

<table>
<thead>
<tr>
<th>4.4.</th>
<th>COMPONENTE RURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Título IV</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.1.</th>
<th>Para las áreas de amenaza alta y media</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se definieron medidas de manejo especial para las zonas calificadas como de amenaza alta y media en los suelos rurales no suburbanos?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.2.</th>
<th>Para las áreas con condición riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se definieron las condiciones técnicas para la elaboración de los estudios detallados que permitan establecer las categorías de riesgo en estas áreas y la asignación del régimen general de usos?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.3.</th>
<th>Para las áreas de riesgo que cuenten con estudios detallados</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se delimitaron y zonificaron de las áreas de riesgo alto, medio y bajo con la determinación de aquellas zonas de riesgo alto que se consideren como mitigables y no mitigables?</td>
<td></td>
</tr>
<tr>
<td>4.5. PROGRAMA DE EJECUCION</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>4.5.1. ¿Se incluyeron los programas y proyectos para el conocimiento y la reducción (prevención y mitigación) del riesgo que se ejecutarán durante el periodo de la administración municipal o distrital correspondiente?</td>
<td></td>
</tr>
<tr>
<td>4.5.2. ¿Se consideraron dentro de los programas y proyectos los estudios detallados en las áreas priorizadas?</td>
<td></td>
</tr>
<tr>
<td>4.5.3. ¿Se plantearon las acciones para adelantar reasentamientos?</td>
<td></td>
</tr>
<tr>
<td>5. DISPOSICIONES GENERALES</td>
<td></td>
</tr>
<tr>
<td>5.1. ¿Los estudios técnicos fueron realizados y firmados por profesionales idóneos?</td>
<td></td>
</tr>
</tbody>
</table>