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 ABSTRACT 

 Organizing  the  generation,  storage,  and  management  of  electrical  energy  from  the 
 perspective  of  renewable  energies,  as  well  as  the  parameterization  of  the  energy 
 consumption  characteristics  of  communities  with  limited  access  to  the  interconnected 
 electricity  supply,  has  taken  more  relevance  in  recent  years  due  the  demands  that  define  the 
 social  welfare  of  this  century.  Complementary  to  the  demand  increase,  other  factors  require 
 the  improvement  and  updating  of  the  utility  grid  infrastructure  and  its  opening  to  other 
 technologies  that  meet  the  needs  of  end  users.  The  interest  in  renewable  energy  sources, 
 the  evolution  of  energy  storage  technologies,  the  continuous  research  in  microgrid 
 management  systems,  and  the  massification  of  technologies  and  tools  available  in  cloud 
 computing,  machine  learning,  big  data,  and  the  internet  of  things  environment  motivated 
 the development of this doctoral research. 

 This  doctoral  research  focuses  on  three  tasks  linked  to  the  operation  of  a  cluster  of 
 microgrids.  The  first  task  is  the  fluctuating  integration  of  heterogeneous  energy  generation 
 devices  and  objects  whose  mobility  and  distribution  characteristics  are  particular  over 
 various  geographical  areas.  The  second  is  the  need  for  real-time  operation  and  extensive 
 information  processing  and  storage  capabilities.  Finally,  the  third  task  considers  the 
 conservation  factors  for  critical  applications  linked  to  advanced  optimization  techniques, 
 especially  the  operational  cost  and  the  battery's  lifespan.  An  autonomous  and  scalable 
 energy  management  model  that  follows  the  hierarchical  control  structure  and  bases  its 
 operation  on  cloud  computing,  the  internet  of  things,  machine  learning,  and  big  data  solves 
 the aforementioned tasks. 

 This  research  defines  the  elements  considered  by  the  real-time  autonomous  and  scalable 
 energy  management  system  framework  in  a  cluster  of  microgrids.  For  this,  it  is  necessary  to 
 emulate  the  behavior  of  a  group  of  interconnected  microgrids  and  test  the  framework  under 
 real  scenarios  with  the  assistance  of  power-hardware-in-the-loop  platforms  connected  to  a 
 cloud  server.  The  server  programming  must  include  the  implementation  of  the  framework 
 management  protocol  that  exploits  the  optimization  algorithm  and  state  of  charge 
 equalization.  Also,  the  framework  takes  advantage  of  machine  learning  and  big  data  tools 
 available  in  a  cloud  computing  environment,  ensuring  the  scalability  of  the  framework's 
 operation  based  on  the  fluctuation  of  the  available  resources  in  a  microgrid  or  extending  its 
 operation  to  a  cluster  microgrids  in  a  transparent  way  by  the  incorporation  of  IoT  sensors  or 
 other  tools.  This  doctoral  thesis  summarizes  the  framework  research  results  and  the 
 published  evidence  released  in  one  book,  two  journal  papers,  two  international  conferences, 
 and one national conference. 
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 1.  Introduction 

 The  microgrid  (MG)  concept  is  a  systematic  approach  for  dealing  with  the  distribution  grid 
 challenges,  and  this  is  considered  an  essential  component  of  the  new  Smart  Grids  [1]  .  The 
 successful  implementation  of  policies  to  stimulate  the  integration  of  Renewable  Energy 
 Sources  (RES)  and  the  decreasing  cost  of  Battery  Energy  Storage  Systems  (BESS)  [2]  have 
 boosted  the  role  of  new  energy  system  components  that  includes  the  concepts  of 
 Microgrids,  Clusters,  Hierarchical  Control  and  Energy  Management  System.  Integrating 
 these  concepts,  a  Microgrid  Cluster  (MGC)  defines  a  collection  of  microgrids  with 
 capacities  for  energy  generation,  load  control,  and  autonomous  operation.  The  MGC  will  be 
 able  to  configure  new  types  of  local  energy  markets  and  energy  systems  [2]  .  In  this  context, 
 efficiency  is  the  main  objective  for  the  planning,  design,  and  operation  of  the  MGC  [3]  , 
 where operation cost minimization is an essential control task  [4]  . 

 Conventionally,  the  control  approach  to  managing  the  power-sharing  within  the  microgrids 
 uses  a  droop  control  technique  [5],  [6]  under  safe  operating  conditions  discarding  economic 
 operation  criteria.  In  this  research,  the  proposed  energy  management  system  (EMS)  joins 
 up  maximum  capacity  generation,  power  consumption,  and  optimal  economic  operation 
 under  a  machine  learning  (ML)  perspective  running  in  real-time,  using  cloud  [7]  resources, 
 and  supporting  its  functionality  on  the  Internet  of  things  (IoT).  There  is  a  need  to  improve 
 the  method  to  coordinate  the  generation,  storage,  and  management  of  data  coming  from 
 distributed  RES.  It  is  also  relevant  to  determine  the  procedure  of  incorporating  ML  and  IoT 
 tools  to  predict  energy  generation  capabilities  and  load  consumption  features  of  the  related 
 areas  of  interest.  These  methodologies  have  become  more  relevant  in  recent  years  to 
 improve  the  requirement  that  defines  the  social  welfare  of  this  century  [8]  .  In  addition  to 
 the  demand  increase,  other  factors  require  improvement,  continuous  upgrade  of  the  utility 
 grid  and  openness  to  other  technologies  that  meet  the  end-user  needs  and  energy  markets. 
 The  relevant  interest  in  RES  [9]  ,  [10]  ,  the  evolution  of  BESS,  the  continuous  research  in 
 EMS,  the  dissemination  of  cloud-computing  (CC),  the  improvement  of  ML  capabilities,  the 
 new  availability  of  IoT  sensors,  the  possibility  of  the  real-time  analysis  and  processing  for 
 large  amounts  of  data  and  the  need  to  improve  the  security  and  efficiency  of  the  systems, 
 motivates  this  doctoral  research  suggesting  a  complementary  interaction  with  the 
 technology available nowadays. 

 Several  initiatives  are  referent  of  this  doctoral  research  and  support  its  development:  Firstly, 
 the  initiatives  of  the  Aalborg  University  in  Denmark,  which  plays  a  consistent  role  in  the 
 development  of  autonomous  microgrids  allowing  safe  and  efficient  distribution  of 
 sustainable  energy  [11]  ,  the  contribution  of  the  Distrital  University  “Francisco  José  de 
 Caldas”  in  Colombia,  who  continuously  leads  its  application  in  the  Colombian  market  [12]  , 
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 the  leadership  of  the  Puerto  Rico  University  Recinto  Mayagüez,  who  constantly  invest  in  its 
 intelligent  microgrid  lab  [13]  .  Secondly,  the  investigations  of  private  organizations  such  as 
 Navigant  Research  [14]  focus  on  the  coverage  of  microgrids,  nanogrids,  virtual  power 
 plants,  and  direct  current  distribution  networks  and  associate  them  with  a  complex 
 evaluation  of  deployment  strategies,  enabling  technologies,  regulatory  factors,  financial  and 
 business  models  and  applications  of  these  grids  in  vertical  industries.  Finally,  efforts  made 
 by  international  financial  organizations  such  as  the  IADB  [15]  and  governmental 
 organizations  such  as  UPME  [16]  ,  through  technical  cooperation,  defined  the  most 
 appropriate framework to carry out the implementation of microgrids in Colombia  [17]  . 

 As  stated  in  [18]  ,  from  the  scientific  point  of  view,  it  is  interesting  to  know  the  context  and 
 significance  of  CC,  ML,  and  IoT  to  the  value  of  the  research,  theories,  approaches,  and 
 applicability  in  a  cloud-based  real-time  EMS  (CREMS)  applied  to  an  MGC;  there  may  be 
 gaps  between  the  theoretical  results,  though  limited,  and  the  empirical  verification  or,  if 
 desired,  between  its  degree  of  applicability  and  the  actual  result.  Tasks  related  to  the  MGC 
 operation,  such  as  consumer  consumption  forecast,  resource  allocation  prediction,  advanced 
 optimization  techniques,  power  flow  analysis,  and  core  knowledge,  among  other  activities, 
 could  be  performed  by  a  self-trained  cloud-based  real-time  EMS  model  with  a  hierarchical 
 and  scalable  structure  [19]  .  Despite  the  above,  and  considering  the  consulted,  not  many 
 studies  verifies  the  advantages  and  benefits  of  using  a  cloud-based  real-time  EMS  under  an 
 ML and IoT perspective. 

 1.1.  Problem statement 

 Many  questions  arise  about  MGC  management  and  the  association  of  ML  and  IoT 
 technologies  with  the  proposed  CREMS.  Below,  this  document  presents  various 
 components  of  this  doctoral  research  that  support  its  relevance:  justification,  problem 
 formulation, major inquiry, objectives, methodological framework and hypothesis. 

 1.2.  J  ustification 

 All  the  technological  advances  defined  for  ML,  CC,  IoT,  dedicated  systems,  software,  and 
 network  technologies  have  contributed  positively  to  the  emergence  of  many  intelligent 
 applications.  These  new  technologies  offer  an  unprecedented  opportunity  to  develop  a  wide 
 range  of  disruptive  applications  that  integrate  various  physical  objects  and  devices 
 incorporated under the term Cloud of Things (CoT)  [20]  . 

 In  the  CoT,  applications  span  multiple  domains.  Sensors,  actuators,  vehicles,  buildings, 
 electronic  commerce,  logistics  management,  banking,  health,  social  networks,  and  other 
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 physical  objects  communicate  through  a  processing  systems  network  under  a  CC 
 environment  that  operates  intelligent  software  and  self-managing  applications.  The 
 processing  service  delivery  performs  as  the  public  service,  where  service  providers  take 
 responsibility  for  building  the  IT  infrastructure,  and  end  users  use  the  service  through  an 
 on-demand service  [21]  . 

 CoT  processing  is  demanding  due  to  many  reasons  and  has  been  analyzed  from  different 
 perspectives because it favors: 

 ●  The use of a considerable number of devices and heterogeneous objects. 
 ●  The use of highly mobile devices. 
 ●  The distribution of components over large geographical areas. 
 ●  Operation in challenging areas such as forests, deserts, mountains, or underwater 

 locations. 
 ●  Real-time support. 
 ●  The processing capacity and extensive storage of information, as well as its 

 scalability. 
 ●  Consideration of critical applications that need to be protected. 
 ●  The management of advanced optimization techniques that improve the operation of 

 the systems. 

 Due  to  this,  and  seeking  to  take  advantage  of  these  CoT  potentialities  in  microgrid 
 management  systems,  it  is  necessary  to  identify  the  essential  elements  of  a  scalable  and 
 autonomous  architecture  of  the  energy  management  system  to  manage  a  cluster  of 
 microgrids  under  a  CoT  environment.  At  the  same  time,  after  considering  that  the  MGC 
 could  accommodate  several  resources  with  heterogeneous  characteristics,  it  is  necessary  to 
 coordinate  the  registration,  storage,  and  processing  of  a  considerable  amount  of 
 information.  This  attribute  facilitates  the  parameterization  of  the  determining  elements  in 
 the  performance  of  MGC,  such  as  energy  demand,  generation,  availability,  location  and 
 number  of  integrated  resources,  optimization  adapted  to  the  system,  energy  flow  analysis, 
 application  of  economies  of  scale,  and  consideration  of  maintenance  cycles.  Additionally,  it 
 is  necessary  to  consider  that  the  MGC  will  have  to  support  exponential  growth  regarding 
 energy  demand  from  many  devices  and  users  depending  on  the  application's  influence  area. 
 This  situation  constantly  forces  adequate  management  of  all  the  resources  associated  with 
 the MGC to promote the minimization of administration costs. 
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 1.3.  Problem formulation 

 According  to  the  justification  presented  and  the  revised  information,  it  is  necessary  to 
 propose  an  energy  management  system  framework  that  contemplates  the  possibility  of 
 managing  a  cluster  of  interconnected  microgrids  in  an  autonomous  and  scalable  manner 
 and,  in  parallel,  tends  to  optimize  the  administration  through  a  real-time  cloud-based 
 operation. 

 1.4.  Mayor inquiry 

 What  elements  should  incorporate  the  automated  and  scalable  real-time  cloud-based  energy 
 management  system  framework  to  ensure  the  appropriate  administration  of  a  cluster  of 
 microgrids? 

 1.5.  Objectives 

 After  considering  the  precision  of  the  EMS  components  and  carrying  out  a  detailed  analysis 
 of  the  possible  strategies  to  be  incorporated  into  its  development,  this  doctoral  research 
 considers the following objectives: 

 1.5.1.  General objective 

 Develop  a  scalable  and  autonomous  framework  of  the  EMS  to  administer  an  MGC  under  a 
 CC environment. 

 1.5.2.  Specific objectives 

 1.  Generate  an  MG  model  for  complex  electrical  systems  supported  on  a  real-time 
 power-hardware-in-the-loop platform. 

 2.  Implement a cloud-based autonomous management protocol in the EMS of an MG. 

 3.  Verify  the  management  framework  scalability  considering  the  fluctuation  of  the 
 resources available in the MG and the MGC. 

 4.  Validate  the  performance  of  the  defined  framework  according  to  the  delineated  by 
 the  IEEE  STD  2030.7  -  2017  [22]  and  other  research  results  that  consider  the 
 management of an MGC using a local server. 
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 1.6.  Methodological framework 

 The  methodological  framework  of  this  doctoral  research  contemplates  guiding  the 
 theoretical  position  toward  specific  procedures  to  achieve  the  objectives  previously 
 mentioned. 

 1.6.1.  Methodological design 

 This  research  uses  a  quantitative  methodological  approach  to  achieve  the  objectives.  This 
 methodology  makes  it  possible  to  explain  the  different  technical-dynamic  scenarios  in 
 which  the  management  framework  should  run  to  operate  in  different  MG  topologies  and 
 how  to  incorporate  it  into  a  CC  environment  following  the  provisions  of  the  IEEE 
 2030.7-2017 standard that specifies the most relevant properties in the management of MG. 

 For  this  purpose,  it  is  necessary  to  incorporate  the  parameterized  MG  model  into  the 
 simulation  platform  of  complex  electrical  systems  available  in  the  laboratory  of  the 
 Universidad  Distrital  -  OPAL  RT  [23]  ,  improve  the  management  protocol  from  the  cloud, 
 and  scale  it  to  an  MGC  in  a  controlled  laboratory  environment.  In  this  way,  the  research 
 process  guarantees  rigor,  authenticity,  and  validity.  In  addition,  it  satisfies  various  criteria: 
 integrity  -  since  the  management  of  an  MGC  includes  the  CC  application,  applicability  - 
 extending  the  use  of  the  proposed  model  to  different  MG  topologies,  consistency  -  allowing 
 the  adjustment  of  available  resources  in  the  cloud  according  to  the  needs  of  the  application, 
 and neutrality - guaranteeing the objectivity of the results. 

 1.6.2.  Design of experiments 

 This  doctoral  research  considers  three  phases.  Each  phase  presents  the  activities  considered 
 to  achieve  the  assigned  objective  that  allows  empirical  verification  and  validation  of  the 
 proposed model. 

 1.6.2.1.  First phase (permanent): documentary review 

 A  bibliographic  and  documentary  review  of  the  relevant  information  related  to  the  elements 
 that  constitute  the  different  MG  and  their  integration  in  the  cloud  is  performed,  classifying 
 them  according  to  their  dynamic  characteristics  that  determine  considerations  for  their 
 management  and  operation.  The  following  highlights  are  used  in  this  research:  Connection 
 topologies  of  the  energy  conversion  equipment,  mechanisms  for  operation  in  network  and 
 island  mode,  resource  management  mechanisms,  strategies  or  techniques  at  the  different 
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 control  levels,  coordination  between  the  control  levels,  coordination  between  MG,  and 
 implementation of routing and new technologies. 

 This  phase  allows  us  to  propose  the  different  technical-dynamic  scenarios  in  which  the 
 management  framework  must  be  developed,  operated  in  different  topologies  of  MG,  and 
 incorporated into a CC environment. 

 1.6.2.2.  Second  phase:  obtaining  the  architecture,  simulations,  and  initial 
 implementation 

 From  the  previous  phase,  the  obtained  scenarios  define  the  technical-dynamic  framework 
 characteristics  necessary  for  the  different  MG  topologies  implementation.  In  addition,  this 
 process  allows  the  characterization  of  the  required  simulation  and  implementation  tools 
 where  the  operation  of  the  proposed  architecture  can  perform.  The  framework,  simulation, 
 and  implementation  tools  definition,  according  to  the  established  technical-dynamic 
 scenarios,  allow  us  to  complete  the  operation,  integration,  and  response  analysis  in  both  the 
 MG  and  the  MGC  mode.  Supported  by  the  results  obtained  in  this  phase,  it  is  necessary  to 
 adjust the framework along with its characterization, limitations, restrictions, and scope. 

 Next,  the  first  physical  implementation  of  the  framework  runs  in  the  "MG  Prototype  at  the 
 District  University  Francisco  José  de  Caldas  PME-UD  OPAL-RT  ''  approved  by  the  CIDC 
 to  the  LIFAE  and  GECEM  research  group.  This  process  considers  the  MG 
 technical-dynamic  conditions  review  and  purchasing  of  the  necessary  elements  and 
 equipment  to  condition  the  implementation  of  the  control,  operation,  coordination,  and 
 integrated  system  of  the  PME-UD.  This  action  permits  the  framework  operation  validation 
 at  its  isolated  and  integrated  levels,  under  safe  operating  conditions,  integrating  the 
 controllers,  the  energy  conversion  equipment,  the  test  loads,  and  the  coordination  of  the 
 MG  resources  and  their  comparison  to  the  established  in  the  IEEE  standard  defined  for  the 
 MG  control.  In  this  phase,  the  need  to  propose  technical  and  electronic  changes  in  the 
 controllers  and  the  conventional  energy  converter  devices  takes  place  so  that  they  respond 
 to the cloud environment framework. 

 1.6.2.3.  Third phase: final implementation 

 This  last  phase  focuses  on  testing  the  framework  in  a  real-life  power-hardware-in-the-loop 
 environment.  The  doctoral  internship  contemplated  this  process  at  the  Sustainable  Energy 
 Center  at  the  University  of  Puerto  Rico  -  Recinto  Universitario  Mayaguez  (SEC)  [24]  . 
 This phase develops through the following stages: 
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 Control  verification  stage  in  a  CC  environment  in  grid-connected  operation  mode  .  This 
 stage  regards  verifying  the  power  quality  and  stability  requirements  under  centralized  cloud 
 control  in  a  grid-connected  condition.  In  this  stage,  the  controller  reacts  to  disturbances  and 
 adjusts  the  active  rejection  to  them.  The  cloud-deployment  system  using  Amazon  Web 
 Services  (AWS)  [25]  verifies  the  low-power,  control,  and  operation  signals.  This  system 
 monitors  the  controllers'  signal  indicators.  It  is  necessary  to  mention  that  the  selection  of 
 this  cloud  service  provider  originates  from  the  maturity  exhibited  by  its  platform  and  the 
 compatibility with the components associated with MATLAB. 

 Control  verification  stage  in  a  CC  environment  in  island  operation  mode.  This  stage 
 consists  of  verifying  the  same  power  quality  and  stability  requirements  under  centralized 
 control  in  the  cloud  at  each  control  point,  but  now  the  verification  performs  when  the 
 microgrid  operates  in  island  mode.  This  stage  tests  the  controllers'  response  to  changes  in 
 load and induced disturbances. 

 Control  verification  stage  for  coordination  in  a  scalable  CC  environment  .  This  stage 
 regards  verifying  the  coordination  between  the  previously  adjusted  control  levels  that 
 operate  in  either  grid-connected  or  island  mode  but,  at  this  time,  change  dynamically 
 compared  to  the  setpoint  values  resulting  in  a  scalable  response.  The  cloud-based  EMS 
 interacts  with  a  power-hardware-in-the-loop  platform  and  integrates  IoT  tools  by  using 
 JSON  [26]  and  MQTT  [27]  protocols  which  permit  the  validation  of  the  system  operation 
 in  real-time  concerning  the  behavior  of  the  energy  market  and  other  reference  variables. 
 This stage contemplates the operational extension to multiple MGs. 

 Project  documentation  and  disclosure  stage  .  Finally,  the  collected  results  are  analyzed  to 
 formulate  recommendations  and  conclusions  in  this  thesis.  Likewise,  this  document 
 summarizes  the  research  results  and  the  published  evidence  consigned  in  one  book,  two 
 journal papers, two international conferences, and one national conference. 

 1.7.  Hypothesis 

 The  proposal  of  a  management  framework  for  the  energy  management  system  in  a  cloud 
 computing  environment  for  a  cluster  of  microgrids  will  allow  additional  automation  and 
 scalability mechanisms for energy generation and storage resources improvement. 
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 2.  Research chapters 

 An  innovative  MG's  EMS  demands  many  features  under  a  hierarchical  structure 
 perspective.  This  doctoral  thesis  chapter  revises  most  of  them  before  integrating  and 
 deploying  the  proposed  CREMS  architecture  in  a  real-life  scenario  to  verify  its 
 performance.  The  chapter  includes  theoretical  sustentation  for  the  ML  and  simulation 
 results  to  validate  its  procedure.  It  also  covers  the  mathematical  model  for  solar  PV,  wind 
 energy,  and  the  BESS  systems.  The  chapter  introduces  the  implemented  framework  and 
 describes  its  control.  Next,  section  2.9  summarizes  the  CREMS  framework  and  depicts  its 
 appeals  and  differentiators.  Finally,  the  last  section  of  the  chapter  illustrates  the 
 performance verification of the CREMS framework under two optimization perspectives. 

 2.1.  Machine learning 

 2.1.1.  Section introduction 

 The  results  presented  in  this  section  are  available  in  Applied  Energy  in  the  following  paper 
 [28]  ,  [29]  . 

 The  essential  concept  in  ML  [30]  is  to  estimate  a  set  of  parameters  that  describe  the  model 
 using  the  available  data  and  to  make  predictions  based  on  low-level  information  and 
 signals.  It  is  possible  to  argue  that  there  are  not  much  intelligence  built-in  such  approaches, 
 but  it  is  an  acceptable  approach  to  optimize  the  representation  of  the  low-level  input 
 information  to  the  computer.  The  representation  term  refers  to  how  related  information 
 hidden  in  the  input  data  is  quantified/coded  to  allow  a  computer  to  process  it.  In  more 
 technical  terminology,  each  piece  of  such  information  determines  a  feature,  irradiance, 
 wind  speed,  and  load  energy,  in  this  case.  This  section's  outcomes  will  facilitate  the 
 inclusion  of  autonomous  capabilities  in  the  EMS  as  defined  in  the  second  specific 
 objective. 

 2.1.2.  ML contextualization 

 It  is  necessary  to  emphasize  that  data  lie  on  the  heart  of  ML  systems.  Data  are  the 
 beginning.  It  is  the  information  hidden  in  the  data,  as  underlying  regularities,  correlations, 
 or  structure,  which  a  machine  learning  system  tries  to  “learn.”  Thus,  regardless  of  how 
 intelligent  a  software  algorithm  suggests,  it  cannot  learn  more  than  the  data  used  for 
 training.  Depending  on  the  information  type  needed  considering  a  specific  task,  different 
 types of ML are available  [30], [31]  : 
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 2.1.2.1.  Supervised learning 

 Supervised  learning  (SL)  refers  to  the  type  of  ML  where  all  the  available  data  have  a  label. 
 All  the  data  separates  into  a  pair  of  observations,  e.g.,  (  y  n  ,  x  n  ),  n  =  1,  2,  N  ,  where  each  x  n  is 
 a  vector  or,  in  general,  a  set  of  variables.  The  variables  in  x  n  are  called  the  input  variables, 
 also  known  as  the  independent  variables  or  features,  and  the  respective  vector  is  known  as 
 the  feature  vector.  The  variables  y  n  represent  the  output  or  dependent  or  target  or  label 
 variables.  In  some  cases,  y  n  can  also  be  a  vector.  The  objective  of  learning  is  to 
 obtain/estimate  a  functional  mapping  to,  given  the  value  of  the  input  variables,  predict  the 
 value  of  the  respective  output  one.  Two  main  tasks  of  SL  are  the  classification  and  the 
 regression tasks. 

 2.1.2.1.1.  Classification 

 The  goal  in  classification  is  to  assign  a  pattern  to  one  of  a  set  of  possible  classes  whose 
 number  could  be  known.  The  first  step  in  designing  any  ML  task  is  to  decide  how  to 
 represent  each  pattern  in  the  computer.  The  preprocessing  stage  achieves  this  by  encoding 
 related information that resides in the raw data in an efficient and information-rich way. 

 It  is  usually  done  by  transforming  the  raw  data  into  a  new  space  and  representing  each 
 pattern  by  a  vector,  x  ∈  R  l  ,  which  comprises  the  feature  vector  and  its  l  feature  values.  Each 
 arrangement  becomes  a  unique  point  in  an  l  -dimensional  space,  the  input  space.  The  raw 
 data  transformation  is  the  feature  extraction  stage.  The  stage  starts  with  generating  some 
 extensive  value,  K  ,  of  possible  features  and  eventually  selects  the  l  most  informative  ones 
 via an optimizing procedure known as the feature selection stage. 

 After  deciding  the  input  space  for  representing  the  data,  the  system  has  to  train  a  classifier, 
 which  is  a  predictor.  This  classifier  evolves  by  selecting  a  class-known  set  with  N  data 
 points/samples/examples  that  comprises  the  training  set.  It  defines  the  set  of  observation 
 pairs,  (y  n  ,  x  n  ),  n  =  1,  2,  .  .  .  ,  N  ,  where  y  n  is  the  (output)  variable  denoting  the  class  in  which 
 x  n  belongs,  and  it  is  known  as  the  corresponding  class  label.  Based  on  the  training  data,  the 
 system  designs  a  function,  f  ,  which  is  used  to  predict  the  output  label,  given  the  input 
 feature vector,  x  . 

 Once  the  function,  f  ,  has  been  designed,  the  system  is  ready  to  make  predictions.  Given  a 
 pattern  whose  class  is  unknown,  the  raw  data  helps  to  obtain  the  corresponding  feature 
 vector,  x  .  Depending  on  the  value  of  f  (  x  )  ,  the  pattern  classifies  into  one  of  the  two  classes. 
 If  the  function  f  is  linear  (nonlinear),  the  respective  classification  task  is  linear  (nonlinear). 
 For  a  given  set  of  points,  each  representing  a  pattern  in  the  two-dimensional  space  (two 
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 features  used,  x  1  ,  x  2  ).  For  instance,  stars  belong  to  one  class,  and  the  crosses  to  the  other,  in 
 a  two-class  classification  task.  These  are  the  training  points  used  to  obtain  a  classifier.  For 
 this case, a linear function achieves this, 

 (1)  𝑓 ( 𝑥 ) = θ 1  𝑥  1 + θ 2  𝑥  2 + θ 0 
 whose  graph,  for  all  the  points  such  that  f  (  x  )  =  0  ,  is  the  straight  line.  The  values  of  the 
 parameters  θ  1  ,  θ  2  ,  and  θ  0  came  from  an  estimation  method  based  on  the  training  set.  This 
 phase, where a classifier is estimated, is also known as the training or learning phase. 

 Once  a  classifier  has  been  “learned,”  the  system  is  ready  to  perform  predictions,  that  is,  to 
 predict  the  class  label  of  a  pattern  x  .  The  discussion  about  the  classification  task  considers 
 features  that  take  numeric  values.  Classification  tasks  where  they  are  of  categorical  type 
 “do” exist and are of considerable importance, too. 

 2.1.2.1.2.  Regression 

 Regression  shares  to  a  large  extent  the  feature  generation/selection  stage,  as  described 
 before;  however,  now  the  output  variable,  y  ,  is  not  discrete,  but  it  takes  values  in  an  interval 
 in  the  real  axis  or  a  region  in  the  complex  numbers’  plane.  Generalizations  to  vector-valued 
 outputs  are  possible,  but  this  research  concentrates  on  real  variables.  The  regression  task  is 
 a function (curve/surface) fitting problem. 

 For  a  set  of  training  samples,  (y  n  ,  x  n  ),  y  n  ∈  R,  x  n  ∈  R  l  ,  n  =  1,  2,  .  .  .  ,  N  ,  the  task  is  to  estimate 
 a  function  f  ,  whose  graph  fits  the  data.  After  having  this  function,  when  a  new  sample  x  , 
 outside the training set, arrives, the system can predict its output value. 

 2.1.2.2.  Unsupervised learning 

 In  the  antipode  of  SL  lies  unsupervised  learning  (UL),  where  the  known  variables  are  the 
 input  ones.  No  output  or  label  information  is  available.  UL  aims  to  unravel  the  structure 
 that  underlies  the  given  data  set.  It  is  a  relevant  part  of  data  learning  methods  but  this 
 doctoral research does not consider this part of the ML. 

 UL  comes  under  several  facets.  One  of  the  most  critical  types  of  UL  is  clustering.  The  goal 
 of  any  clustering  task  is  to  unravel  how  the  points  in  a  data  set  are  grouped,  assuming  that 
 such  a  group  structure  exists.  At  the  heart  of  any  clustering  algorithm  lies  the  similarity 
 concept  since  patterns  that  belong  to  the  same  group  (cluster)  are  assumed  to  be  more 
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 similar  than  patterns  that  belong  to  different  ones.  One  of  the  most  classical  clustering 
 schemes  is  the  so-called  k-means  clustering.  However,  clustering  is  not  the  main  topic  of 
 this  thesis,  and  the  interested  reader  may  look  at  more  specialized  references  [32]  .  Another 
 type  of  UL  is  dimensionality  reduction.  The  goal  is  also  to  reveal  a  particular  data  structure 
 different  from  the  grouping  structure.  For  instance,  although  a  high-dimensional  space 
 represents  the  data,  it  may  lie  around  a  lower-dimensional  subspace  or  a  manifold.  Such 
 methods  are  relevant  in  ML  for  compressed  representations  or  computational  reduction 
 reasons.  [30]  presents  dimensionality  reduction  methods  in  detail.  Probability  distribution 
 estimation can also be considered a particular case of UL. 

 2.1.2.3.  Reinforcement learning 

 Finally,  another  type  of  learning,  which  is  increasingly  gaining  importance,  is  the  so-called 
 reinforcement  learning  (RL).  This  is  also  an  old  field  with  origins  in  automatic  control.  At 
 the  heart  of  this  learning  type  lies  a  set  of  rules,  and  the  goal  is  to  learn  sequences  of  actions 
 that  will  lead  an  agent  to  achieve  its  purpose  or  to  maximize  its  objective  function.  RL 
 attempts  to  determine  the  behavior  by  trial  and  error.  In  contrast  to  SL,  optimal  actions  are 
 not  learned  from  labels  but  from  what  is  known  as  a  reward.  This  scalar  value  informs  the 
 system  whether  the  outcome  of  whatever  it  did  was  right  or  wrong.  Taking  actions  that 
 maximize the award is the goal of RL. 

 2.1.3.  Section conclusion 

 Based  on  the  contextualization  and  the  available  data  features,  this  doctoral  research 
 considers  an  SL  model  for  this  CREMS  as  it  involves  equivalent  steps  to  the  statistical 
 modeling  technique  for  developing,  validating,  and  implementing  the  solution  as  stated  in 
 [29], [33]  and following the established in the second specific objective. 

 2.2.  SL model development and deployment 

 2.2.1.  Section introduction 

 The  results  presented  in  this  section  are  available  in  the  IEEE  in  the  following  conference 
 paper  [29]  and in the Editorial UD in the book  [34]  . 

 The  development  and  deployment  of  SL  models  involve  a  series  of  steps  [33]  that  are 
 almost  similar  to  the  statistical  modeling  process  to  develop,  validate,  and  implement  ML 
 models: 
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 1.  Collection of data. Directly from structured source data, web scraping, API, and 
 chat interaction, to mention a few. 

 2.  Data preparation and missing/outlier treatment. Data formats as per the chosen ML 
 algorithm. Additionally, missing value treatment performs by replacing missing and 
 outlier values with the mean/median technique. 

 3.  Data analysis. All data goes through scrutiny to find hidden patterns and relations 
 between variables. 

 4.  Train algorithm on training and validation data. Data divides into three chunks: 
 train, validation, and test data. ML applies to train data, and the model's 
 hyperparameters are tuned based on validation data to avoid overfitting. 

 5.  Test the algorithm on test data. Once the model has shown good performance on 
 train and validation data, its performance evaluates against unseen test data. The 
 algorithm is ready for deployment if the performance is still good enough. 

 6.  Deploy the algorithm. Deploy trained ML algorithms on live streaming data to 
 classify the outcomes. 

 In  this  doctoral  research,  ML  compiles  the  input-output  variables  interrelation,  and  the 
 autonomous  model  uses  empirical  data  to  estimate  the  statistical  dependencies  of  the 
 mentioned  variables.  This  probabilistic  interpretation  emerged  because  it  is  essential  to 
 gather  usable  patterns  from  actual  logs,  in  special,  the  CREMS'  non-existing  connection 
 with  public  irradiance  and  wind  speed  data,  and  measured  energy  utilization.  This 
 improves  the  framework's  autonomy  and  adaptation  to  the  resource  fluctuations  looking  to 
 satisfy specific objectives two and three. 

 2.2.2.  The ML procedure 

 The  computational  techniques  set  and  tools  to  support  the  modeling  of  a  large  number  of 
 data  groups  under  the  more  general  label  of  data  science.  This  science  deals  with  the  idea  of 
 extracting  knowledge  from  volumes  of  data  and  the  autonomous  design  of  models  from 
 them.  ML  [35]  is  postulated  here  as  a  problem  of  statistical  estimation  of  the  dependencies 
 between  variables  based  on  empirical  data.  In  this  research,  SL  corresponds  to  modeling  the 
 relationship  between  a  set  of  input  variables  and  one  or  more  output-dependent  variables,  as 
 presented  in  figure  1.  Correspondingly,  the  relevance  of  statistical  analysis  arises  when 
 there  is  a  need  to  extract  useful  information  from  data  records  obtained  by  repeatedly 
 measuring  an  observed  phenomenon,  in  this  case,  the  relationship  between  two  quantitative 
 variables,  irradiance  and  wind  speed,  with  a  MG’s  energy  generation.  As  there  is  not  an 
 adequate  theoretical  relationship  between  the  variables,  we  have  used  a  repeated 
 measurement  of  them.  There  are  two  reasons  for  addressing  this  problem  in  this  way:  first, 
 the  more  complex  is  the  input/output  relationship,  the  less  effective  will  be  the  contribution 
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 of  a  human  expert  in  extracting  a  model  of  the  relation,  and  second,  data-driven  modeling 
 may  be  a  valuable  support  for  the  designer.  Likewise,  the  knowledge  extracting  process 
 from observations lies at the root of modern scientific development, the notion of truth. 

 Figure 1.  Supervised learning setting.  Source: Authors 

 The  modeling  process  consists  of  a  preliminary  phase  (PP),  and  a  learning  phase  (LP),  as 
 stated  in  figure  2.  The  first  one,  which  brings  the  data  from  their  original  form  to  a 
 structured configuration, called training set, can be decomposed in  [35]  : 

 ●  Problem formulation. Selection of a particular application domain, several 
 descriptive variables, and hypothesization of the relation between the measurable 
 variables. 

 ●  Experimental design. Delivery of a dataset made of samples that represent the 
 phenomenon to maximize the performance of the model, 

 ●  Pre-processing  [36]  . Raw data cleaning actions like noise filtering, outlier removal, 
 missing data treatment, and feature selection, to mention a few. 

 The  LP  begins  with  the  training  set,  used  by  ML  to  formalize  and  optimize  the  procedure 
 bringing  data  to  a  model  and  predictions.  A  LP  procedure  requires  both  a  search  space, 
 which  includes  possible  solutions,  and  an  assessment  criterion,  which  measures  the  quality 
 of  the  solution  to  choose  the  best  one  [37]  .  The  goal  of  learning  is  to  attain  good  statistical 
 generalization.  This  means  that  the  selected  model  will  return  an  accurate  prediction  of  the 
 dependent  (output)  variable  when  values  of  the  independent  (input)  variable,  which  are  not 
 part  of  the  training  set,  are  presented.  Any  SL  algorithm  has  two  loops  denoted  as  the 
 structural  loop  and  parametric  loop.  The  first  one  seeks  the  model  structure  with  the  best 
 accuracy  by  assessing  each  model  structure  in  the  validation  phase  and  returning  it  to  the 
 selection  phase.  The  second  returns  the  best  model  for  a  fixed  model  structure.  Parametric 
 modeling  is  a  theme  that  runs  across  the  spine  of  this  doctoral  research.  Various  issues 
 related  to  the  parameter  estimation  task,  such  as  regression,  estimator  efficiency, 
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 bias-variance  dilemma,  ill-conditioning  and  overfitting,  and  the  curse  of  dimensionality,  are 
 introduced and discussed. 

 Figure 2.  The modeling process.  Source: Authors 
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 2.2.2.1.  Preliminary phase 

 In  this  research,  the  PP  considers  downloading,  aggregating,  and  cleaning  data  for  two 
 cases:  meteorological  data,  primarily  irradiance  and  wind  speed,  and  energy  consumption. 
 After  having  a  clean  version  of  the  data,  a  dataset  merging  process  completes  steps  1  and  2 
 mentioned  in  section  2.2.1  -  data  preparation  and  missing/outlier  treatment.  The  detailed 
 algorithms used in each case are present hereafter  [38]  . 

 2.2.2.1.1.  Model development - Downloading meteorological data 

 The  scripts  developed  in  Matlab  [39]  depend  on  the  meteorological  information  available 
 and  the  format  obtainable.  In  this  case,  scripts  will  download  the  irradiance  and  wind  data 
 from  the  National  Solar  Radiation  Database  (NSRDB  )  [40]  .  The  NSRDB  is  a  serially 
 complete  collection  of  hourly  and  half-hourly  values  of  meteorological  data  and  the  three 
 most  common  measurements  of  solar  radiation:  global  horizontal,  direct  normal,  and 
 diffuse  horizontal  irradiance.  It  covers  the  USA  and  a  growing  subset  of  international 
 locations.  These  data  have  been  collected  at  convenient  locations  with  temporal  and  spatial 
 scales  to  represent  regional  solar  radiation.  For  a  particular  area  covered  by  the  dataset,  it  is 
 possible  to  see  the  amount  of  solar  energy  in  a  given  time  and  predict  the  potential  future 
 availability  of  solar  energy  based  on  past  conditions.  The  algorithm  (1)  presents  the  detailed 
 steps for meteorological data downloading. 

 Algorithm 1  DOWNLOAD METEOROLOGICAL DATA 

 1:  procedure  NSRDB download 

 2:  input  starting and ending points range to download  per year 

 3:  Create a range of months 

 4:  If some files have already been downloaded, should they be redownloaded? 

 5:  if  redownloaded is not admitted  do 

 6:  get the months for existing zips 

 7:  find  which  zips  exist  in  the  list  to  download  the  ones  do  not 
 exist in zip directory 

 8:  filter out dates that have already been downloaded 
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 9:  end if 

 10:  Scrape NSRDB website and download meteorological data 

 11:  parfor  loop through dates to download in parallel  do 

 12:  name of the zip file 

 13:  location of the zip file 

 14:  destination on server 

 15:  end parfor 

 16:  Unzip files 

 17:  Location to unzip contents to 

 18:  Create directory if it does not exist 

 19:  parfor  loop through dates to unzip files in parallel  do 

 20:  unzip files on the server’s selected location 

 21:  end parfor 

 22:  end procedure 

 2.2.2.1.2.  Model development - Aggregating meteorological data 

 The  script  reads  in  the  separate  files  for  each  day  and  combines  them  into  a  single  table.  As 
 the  amount  of  data  could  be  massive,  this  script  could  take  a  few  minutes  (three  minutes  in 
 this  case).  The  algorithm  (2)  presents  the  detailed  steps  for  the  meteorological  data 
 aggregating. 

 Algorithm 2  AGGREGATE METEOROLOGICAL DATA 

 1:  procedure  NSRDB aggregate 

 2:  input  List the weather stations of interest and their  ID 

 3:  Select ID stations 
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 4:  Create table used for filtering out unwanted stations 

 5:  Create datastore to access data 

 6:  for  stations available  do 

 7:  setup  datastore  options  including  file  locations,  variables  to 
 use, and how to read data 

 8:  read all data 

 9:  end for 

 10:  Accommodate the table information creating a datetime variable 

 11:  Create table “DataRaw” and bring irradiance and wind speed as main variables 

 12:  Organize  “DataRaw”  with  common  timestamps  on  each  row,  columns  containing 
 irradiance, wind speed and other readings for each station in that time 

 13:  Save aggregated data for later use 

 14:  end procedure 

 2.2.2.1.3.  Model development - Cleaning meteorological data 

 The  development  of  this  script  focuses  on  getting  the  raw  data  aggregated  in  the  previous 
 step  into  a  clean  and  usable  form.  The  algorithm  (3)  presents  the  detailed  steps  for 
 meteorological data cleaning. 

 Algorithm 3  CLEANING METEOROLOGICAL DATA 

 1:  procedure  NSRDB cleaning 

 2:  input  load in raw weather data 

 3:  Use timetable function to associate every point with a timestamp 

 4:  Use  retime  function  to  move  the  data  into  the  time  needed  by  using  a  linear 
 interpolant 

 5:  Use movmedian function to smooth the data behavior 

 30 



 6:  Use  ismissing  function  to  find  any  missing  values  and  plot  the  location  of  missing 
 values by the weather station using a local function. 

 7:  Use fillmissing function to interpolate the missing values 

 8:  if  station is within the convex hull of the data points  do 

 9:  Use  scatteredInterpolant  function  to  interpolate  the  data  as 
 Data = F(Latitude, Longitude, Time) 

 10:  end if 

 11:  Use machine learning to perform extrapolation 

 12:  Save aggregated data for later use 

 13:  end procedure 

 The  figures  presented  next  show  a  look  at  the  data  readings  obtained  after  performing  the 
 cleaning  process  on  the  aggregated  data.  As  a  reference,  figure  3  displays  the  location  of 
 the  selected  weather  stations  available  at  the  NSRDB  for  Puerto  Rico  (PR).  This  selection 
 considers  the  data  availability  and  updates  to  proceed  with  this  doctoral  research.  The 
 figure  shows  five  cities:  San  Juan  (SJU),  Aguadilla  (AGU),  Mayagüez  (MAZ),  Ponce 
 (PON), and Fajardo (FAJ). 

 Figure 3  .  Data Readings - Location of the weather stations.  Source:  [29] 
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 Figures  4  and  5  present  the  smoothing  result  for  the  irradiance  and  wind  speed  data  in  the 
 PRMAZ  station.  The  image  exhibits  a  comparison  between  the  measured  data  against  the 
 processed  data,  in  this  case,  the  smoothed  data,  and  considering  different  time  frames.  The 
 smoothing  process  is  a  powerful  technique  used  across  data  analysis  and  responds  to  other 
 names  like  curve  fitting  and  low  pass  filtering  .  It  helps  to  detect  trends  in  the  presence  of 
 noisy data in cases in which the shape of the tendency is unknown  [41]  . 

 Figure 4  .  Data readings - Smoothed irradiance.  Source:  [29] 

 Figure 5  .  Data Readings - Smoothed wind speed.  Source:  Authors 
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 Figure  6  shows  the  sparsity  of  the  missing  meteorological  data.  Some  weather  stations  have 
 a  considerable  number  of  small  gaps,  and  it  is  necessary  to  handle  them  by  utilizing  a 
 fill-missing  algorithm  to  interpolate  the  missing  values.  In  this  case,  the  stations  PRAGU 
 and PRSJU exhibit a low percentage of missing data points (0.0%). 

 Figure 6  .  Data Readings - Missing data sparsity.  Source: Authors 

 Figures  7,  8,  and  9  show  the  results  for  interpolating  missing  values  geographically.  It  is  an 
 alternative  to  fill-missing,  which  isolates  some  data  to  interpolate  the  missing  values  based 
 on  the  weather  stations  around  them.  Using  the  station  latitude,  longitude,  and  timestamp  at 
 each  point  to  interpolate  based  on  the  data  available  using  the  form  Data  =  F(Latitude, 
 Longitude,  Time).  The  station  must  be  within  the  convex  hull  of  the  data  points  obtainable 
 to  interpolate.  If  they  are  not  within  the  convex  hull,  it  is  still  possible  to  extrapolate,  but 
 the  results  may  be  poor.  This  is  the  case  for  the  PRMAZ  station  (figure  7).  It  is  necessary 
 to  extrapolate  the  results  because  the  missing  values  aren't  within  the  convex  hull  of  the 
 available  data  points,  and  the  plot  of  the  interpolated  results  (same  timeframe)  don't  look 
 that  reasonable  (figure  8)  due  to  the  peak  presence.  This  means  that  extrapolation,  its 
 simple  method,  does  not  do  well  (same  timeframe).  To  fill-missing  more  accurately,  it  is 
 necessary to turn to more sophisticated techniques like ML or first principles modeling. 
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 Figure 7  .  Data Readings - Convex hull of data points.  Source: Authors 

 Figure 8  .  Data Readings - Irradiance data extrapolated  for PRMAZ.  Source: Authors 

 Figure  9  visualizes  how  the  interpolation  does  on  one  of  the  missing  areas  for  the  PRAGU 
 station.  This  station  is  within  the  convex  hull,  and  considering  the  available  data,  the 
 values  for  the  PRAGU  station  after  interpolation  with  the  missing  values  perform 
 reasonably. 
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 Figure 9  .  Data Readings - Irradiance data interpolated  for PRAGU.  Source: Authors 

 2.2.2.1.4.  Model development - Downloading load energy data 

 The  load  energy  data  comes  from  the  Emporia  energy  monitoring  system  [42]  connected  to 
 residential  houses  in  the  Mayagüez  area.  The  data  collection  started  in  March  2020  with  24 
 samples  during  the  day.  As  the  service  provided  by  Emporia  limits  the  access  to  the 
 recollected  data  to  one  link  sent  to  an  email  address,  it  is  necessary  to  develop  a  script  to 
 centralize  the  downloaded  information  as  a  cloud  object  storage  in  an  S3  bucket  [43]  , 
 facilitating  real-time  access  to  the  data.  The  algorithms  (4)  and  (5)  present  the  detailed  steps 
 for writing and reading data from S3, respectively. 

 Algorithm 4  WRITING DATA TO S3 

 1:  procedure  Writing to S3 

 2:  input  S3 credentials and bucket configuration 

 3:  Specify full path to the files or folders using a uniform resource locator 

 4:  Write to S3 

 5:  end procedure 

 Algorithm 5  READING DATA FROM S3 

 1:  procedure  Reading from S3 
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 2:  input  S3 credentials and bucket configuration 

 3:  Specify full path to the files or folders using a uniform resource locator 

 4:  Read from S3 

 5:  end procedure 

 2.2.2.1.5.  Model development - Aggregating load energy data 

 This  script  will  read  in  separate  files  for  each  day  and  combine  them  into  a  single  table. 
 Depending  on  the  amount  of  data  aggregated,  the  process  could  take  a  considerable  time 
 (10  minutes  in  this  case).  The  algorithm  (6)  presents  the  detailed  steps  for  load  data 
 aggregating. 

 Algorithm 6  AGGREGATE LOAD DATA 

 1:  procedure  LOAD aggregate 

 2:  input  Data collection 

 3:  Create datastore to access data 

 4:  Accommodate the table information creating a datetime variable 

 5:  Create table “LoadRaw” 

 6:  Organize “LoadRaw” with common timestamps on each row for each region 

 13:  Save aggregated data for later use 

 14:  end procedure 

 2.2.2.1.6.  Model development - Cleaning load energy data 

 This  script  focuses  on  getting  the  raw  data  aggregated  explained  in  the  previous  section  in  a 
 clean  and  usable  form.  The  algorithm  (7)  presents  the  detailed  steps  for  the  load  data 
 cleaning. 
 Algorithm 7  CLEANING LOAD DATA 

 1:  procedure  LOAD cleaning 
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 2:  input  load in raw load data 

 3:  Use timetable function to associate every point with a timestamp 

 4:  Use  retime  function  to  move  the  data  into  the  time  needed  by  using  a  linear 
 interpolant 

 5:  Use movmedian function to smooth the data behavior 

 6:  Use ismissing function to find any missing values 

 7:  Use fillmissing function to interpolate the missing values 

 8:  Save aggregated data for later use 

 9:  end procedure 

 The  figures  presented  below  exhibit  a  look  at  the  data  readings  obtained  after  performing 
 the  cleaning  process  on  the  aggregated  load  energy  data.  The  energy  monitoring  systems 
 identify  according  to  the  installation  city  and  a  sequence  number.  For  instance,  MAZ1 
 represents  the  first  device  installed  in  the  first  house  in  Mayagüez.  Figure  10  displays  an 
 energy load data sample for the MAZ1 device. 

 Figure 10  .  Data Readings - Load data raw.  Source: Authors 

 Figure  11  shows  the  sparsity  of  the  missing  energy  load  data.  Similarly  to  the  weather  case, 
 some  energy  monitoring  devices  could  have  a  considerable  number  of  small  gaps,  and  it  is 
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 necessary  to  handle  them  by  utilizing  a  fill-missing  algorithm  to  interpolate  the  missing 
 values.  In  this  case,  the  devices  MAZ2  and  MAZ3  display  a  low  percentage  of  missing  data 
 points (0.0%). 

 Figure 11  .  Data Readings - Missing load data sparsity.  Source: Authors 

 Figure  12  shows  a  zoomed-in  portion  of  the  signal,  with  some  of  the  spikes  identified.  This 
 process  uses  a  local  find-spikes  function  that  uses  a  distribution-based  approach  to  the 
 slopes  to  identify  multipoint  outliers.  There  are  several  positions  where  multipoint  spikes 
 in the signal appear. 

 It  is  necessary  to  consider  some  way  to  identify  these  automatically.  There  are  many 
 possibilities, including: 

 ●  Simple thresholding based on signal value or rate of change. 
 ●  Construct distributions of the values or slopes to recognize outliers in the 

 distribution. 
 ●  Smoothing data with a spline. 
 ●  Find peaks, the Hampel filter, and other filters from Signal Processing. 
 ●  Training an ML model to recognize outliers 
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 Figure 12  .  Data Readings - Spikes on load data.  Source: Authors 

 Figure  13  presents  the  smoothing  result  for  the  energy  load  data  in  the  MAZ1  device.  The 
 picture  exhibits  a  comparison  between  the  measured  data  against  the  processed  data,  in  this 
 case, the smoothed data, considering different time frames. 

 Figure 13  .  Data Readings - Smoothed load data.  Source:  [29] 
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 2.2.2.1.7.  Model development - Merging meteorological and load data 

 This  script  merges  the  weather  and  loads  data  sets  together.  The  algorithm  (8)  presents  the 
 detailed steps for the meteorological and load-data merging. 

 Algorithm 8  MERGING METEOROLOGICAL AND LOAD DATA 

 1:  procedure  DATA MERGING 

 2:  input  load in cleaned load and meteorological data 

 3:  Revise whether the data set are sampled and sampling rates 

 4:  Synchronize timetables 

 5:  Double check 

 6:  if  data is not sorted  do 

 7:  sort data 

 8:  end if 

 9:  if  exists duplicate  do 

 10:  locate and eliminate duplicates 

 11:  end if 

 12:  if  dates are missing  do 

 13:  locate gaps 

 14:  end if 

 15:  Save merged data 

 16:  end procedure 

 2.2.2.2.  Learning phase 

 The  learning  phase  begins  with  the  merged  data  set  used  by  ML  to  formalize  and  optimize 
 the procedure bringing data to a model and data to predictions. 

 40 



 2.2.2.2.1.  Linear regression 

 Generally,  the  term  regression  defines  the  task  of  modeling  the  relationship  of  a  dependent 
 random  variable  y  when  a  set  of  random  variables  x  1  ,  x  2  ,  …  x  l  ,  manage  the  relationship  and 
 considers  an  unobserved  additive  disturbance  𝜂.  The  goal  of  the  regression  task  is  to 
 estimate  the  training  data  set  or  parameter  vector  𝜽,  given  a  set  of  available 
 measurements/observation  (y  n  ,  x  n  ),  n  =  1,  2,  ..,  N.  The  dependent  variable  is  known  as  the 
 output variable and the vector  x  as the input vector and linearly combined is written as  [35]  : 

 y = 𝜭  0  + 𝜭  1  x  1  + … + 𝜭  l  x  l  + 𝜼 = 𝜭  0  + 𝜭  T  x  +  𝜼  (2) 

 The  parameter  𝜃  0  is  known  as  the  bias.  The  parameter  vector  𝜃  usually  absorbs  it.  This 
 absorption  implies  a  simultaneous  increase  in  the  dimension  of  x  by  adding  the  constant  1 
 as its last element. With this consideration, the regression model writes as: 

 y = 𝜭  T  x +  𝜼  (3) 

 Because  the  noise  variable  is  unobserved,  it  is  necessary  to  be  able  to  predict  the  output 
 value  of  y,  given  an  observed  value  (x)  of  the  random  vector  x.  In  linear  regression,  given 

 an estimate  of 𝜃, it is possible to adopt the  following prediction model θ
 (4)  𝑦 = θ 𝑜 + θ 1  𝑥  1 +    ...    + θ 𝑙  𝑥  𝑙    = θ 𝑇     𝑥    

 By  using  the  squared  error  loss  function,  the  estimate  is  set  equal  to  𝜃,  which  minimizes θ
 the square difference  and  over the  set of variable observations, namely:  𝑦  𝑛  𝑦  𝑛 

 (5)  𝑛 = 1 
 𝑁 ∑  𝑥  𝑛  𝑥  𝑛  𝑇 ( )θ =  𝑛 = 1 

 𝑁 ∑  𝑦  𝑛  𝑥  𝑛 
 Considering  the  input  matrix  X,  defined  as  N  x  (  l  +  1)  matrix,  which  has  as  rows  the 

 extended regressor vectors  , equation (5) can be written as  𝑥  𝑛  𝑇 ,     𝑛    =     1 ,  2 ,...,  𝑁 
 (6)  𝑋  𝑇  𝑋 ( )θ =  𝑋  𝑇  𝑦 

 and, assuming that  exists,  the LS  estimate is given by  𝑋  𝑇  𝑋 ( )− 1 

 41 

https://paperpile.com/c/Bz3IqF/uTRC


 (7) θ =  𝑋  𝑇  𝑋 ( )− 1  𝑋  𝑇  𝑦 
 In  other  words,  a  linear  set  of  equations  represents  the  obtained  estimate  of  the  parameter 
 vector.  This  is  a  major  advantage  of  the  squared  error  loss  function  when  applied  to  a  linear 

 model.  Moreover,  this  solution  is  unique,  provided  that  the  (  l  +  1)  x  (  l  +  1)  matrix  is  𝑋  𝑇  𝑋 
 invertible. 

 2.2.2.2.1.1.  Model development - initial considerations 

 Using  this  script  allows  us  to  train  different  models  and  check  its  response.  The  algorithm 
 (9)  presents  the  detailed  steps  for  the  model  development.  The  algorithm  presented  is 
 general and applies to all the data sets available. 

 Algorithm 9  MODEL DEVELOPMENT 

 1:  procedure  MODEL development 

 2:  input  Merged data 

 3:  Revise how similarly the different regions behave. 

 4:  if  regions don’t behave similarly  do 

 5:  model each zone separately 

 6:  else  regions behave similarly  do 

 7:  create one model that understands all the zones 

 8:  end if 

 9:  Create temporal predictors 

 10:  Transform 24 hours spot into a cyclical behavior 

 11:  Define lagged predictors 

 12:  Split into training and testing datasets 

 13:  Train different models using Regression Learner App 

 14:  Improve regression performance 
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 15:  Compare performance of the models on the test set 

 16:  Compare  the  measure  data  with  the  24  hour  ahead  prediction  using  Mean  Absolute 
 Percent Error (MAPE) metric 

 It  is  necessary  to  determine  how  to  model  the  interest  zone.  There  are  two  possibilities: 
 create  one  model  that  understands  all  the  zones  or  model  each  region  separately.  The 
 selection  depends  on  how  similarly  the  different  zones  behave.  If  they  exhibit  similar 
 behavior,  it  is  possible  to  use  one  model.  Figure  14  displays  that  the  magnitudes  and  ranges 
 presented  by  the  energy  demand  are  comparable  in  the  stipulated  zones,  so  one  model 
 considers all the zones. 

 Figure 14  .  Data Readings - Similar behavior in zones.  Source: Authors 

 Sometimes,  the  impact  of  a  predictor  included  in  a  model  is  not  simple  and  immediate.  In 
 some  situations,  it  is  necessary  to  allow  lagged  effects  of  the  predictor.  This  allows  the 
 incorporation  of  changed  amounts  of  recent  history  into  the  forecast  [44]  .  Also,  the 
 lagging  of  independent  variables  is  often  necessary  to  activate  the  model's  ability  to  predict 
 the  future  -  to  predict  what  will  happen  in  period  t  based  on  knowledge  of  what  happened 
 up  to  period  t-1  .  In  this  case,  the  energy  load  data  can  work  as  a  predictor.  It  is  possible  to 
 use  a  traditional  time  series  analysis,  but  considering  the  autocorrelation  will  show  an 
 interesting  pattern.  The  peaks  in  the  autocorrelation  at  the  24  and  168-hour  lags  suggest  the 
 utilization of lagged predictors of 1 and 7 days.  Figure 15 exhibits this pattern. 

 43 

https://paperpile.com/c/Bz3IqF/xZ7C


 Figure 15  .  Data Readings - Lagged predictors of 1  and 7 days.  Source: Authors 

 2.2.2.2.2.  Biased and unbiased estimation 

 In  supervised  learning  with  a  set  of  training  points,  is  𝑦  𝑛 ,     𝑥  𝑛 ( ),     𝑛    =     1 ,     2 ,    ...    ,     𝑁 ,    
 possible  to  return  an  estimate  of  an  unknown  parameter  vector  .  However,  as  the  training θ
 points  are  random  variables,  having  another  set  of  N  different  observations  of  the  same 
 random  variables,  the  resulting  estimate  will  also  be  different  -  changing  the  training  data 
 will change the result. 

 An  estimate,  such  as  ,  has  a  specific  value.  This  comes  from  a  function  acting  on  a  set  of θ
 observations on which the estimation depends  [30]  .  A general form of equation (7) is 

 (8) θ =  𝑔 ( 𝑦 ,     𝑋 )
 By  allowing  the  set  of  observations  to  change  randomly,  the  estimate  becomes  itself  a 
 random variable, and (8) becomes the estimator of the unknown vector  𝜃 

 (  y  , X)  (9) θ =  𝑔 
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 Let  denote  the  random  variable  of  the  associated  estimator.  By  adopting  the  squared θ
 error  loss  function  to  quantify  deviations,  a  reasonable  criterion  to  measure  the  performance 
 of an estimator is the mean-square error (MSE), 

 MSE = 𝔼  ,  (10) θ   − θ  𝑜 ( )  2 ⎡⎢⎣ ⎤⎥⎦
 where  the  mean  𝔼  is  taken  over  all  possible  training  data  sets  of  size  N.  If  the  MSE  is 
 small,  the  resulting  estimates  are  close  to  the  true-value.  Although  is  not  known, θ  𝑜 
 studying  how  the  MSE  depends  on  various  terms  will  still  help  to  learn  how  to  proceed  in 
 practice  and  unravel  possible  paths  that  one  can  follow  to  obtain  good  estimators.  Let’s 

 insert the mean value 𝔼  of  in equation  (10), θ[ ] θ
 MSE = 𝔼 θ −  𝐸 θ[ ]( ) +  𝐸 θ[ ] − θ  𝑜 ( ){ }  2 ⎡⎢⎣ ⎤⎥⎦

 = 𝔼  ,  (11) θ   −  𝐸 θ[ ]( )  2 [ ] +  𝐸 θ − θ  𝑜 ⎡⎢⎣ ⎤⎥⎦( )  2 
 Equation  (11)  suggests  that  the  MSE  consists  of  two  terms,  the  first  one,  the  variance 
 around  the  mean  value,  and  the  second  one  is  due  to  the  bias,  that  is,  the  deviation  of  the 
 mean  value  of  the  estimator  from  the  true  one.  Considering  that  an  unbiased  parameter 
 vector estimator satisfies: 

 𝔼  = 𝞡  o  (12) θ[ ]
 the MSE around the true value of 𝞡  o  is defined as 

 MSE = 𝔼  (13) θ − θ 𝑜 ( )  𝑇 θ − θ 𝑜 ( )⎡⎢⎣ ⎤⎥⎦ =  𝑖 = 1 
 𝑙 ∑  𝐸 θ 𝑖 − θ 𝑜𝑖 ( )  2 ⎡⎢⎣ ⎤⎥⎦

 Looking  carefully  at  (13)  reveals  that  the  MSE  for  a  parameter  vector  is  the  sum  of  the 

 MSEs  of  the  components  ,  i  =  1,2,...,  l  ,  around  the  corresponding  true-values  .  Hence, θ 𝑖 θ 𝑜𝑖 
 by  averaging  a  large  number  of  the  unbiased  estimator,  it  is  expected  to  get  an  estimate 
 close  to  the  accurate  value.  However,  in  practice,  data  are  a  commodity  that  is  not  always 
 abundant.  In  such  cases,  where  one  cannot  afford  to  obtain  and  average  a  considerable 
 number of estimators, an unbiased estimator may not necessarily be the best choice. 
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 2.2.2.2.2.1.  Model development - regression learner 

 One  of  the  most  demanding  issues  of  a  ML  workflow  is  that  there  is  no  way  to  know,  with 
 confidence,  what  modeling  technique  will  work  best  on  a  particular  dataset.  That  is  why 
 various authors suggest trying different regression techniques as an iterative process. 

 Results 

 RMSE  0.26478 

 R-Squared  0.94 

 MSE  0.070107 

 MAE  0.16985 

 Table 1  .  Trained model results for wind speed.  Source:  Authors 

 Figure 16.  Data Readings - Response plot for GPR  model.  Source: Authors 
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 This  research  tested  19  models  covering  linear  regression  (LR),  bagged  regression  trees 
 (BRT),  support  vector  machines  (SVM),  Gaussian  process  regression  (GPR),  ensembles  of 
 tree  models,  and  Neural  Networks  (NN),  among  others.  Figure  16  shows  the  response  plot 
 that  displays  the  predicted  response  versus  the  record  number  considering  the  results  for  a 
 GPR  -  Matern  5/2  GPR  for  the  wind  speed.  Likewise,  table  1  exhibits  the  performance  of 
 the model considering different error measures. 

 2.2.2.2.3.  Regularization 

 Regularization  [30]  is  a  mathematical  tool  to  impose  a  priori  information  on  the  structure  of 
 the  solution  that  comes  as  the  outcome  of  the  optimization  task.  A  regularized  version  of 
 the LS solution for the linear regression task given by equation (5) is, 

 (14)  𝑛 = 1 
 𝑁 ∑  𝑥  𝑛  𝑥  𝑛  𝑇 +  𝜆  𝐼 ( )θ =  𝑛 = 1 

 𝑁 ∑  𝑦  𝑛  𝑥  𝑛 
 where  I  is  the  identity  matrix  of  appropriate  dimensions.  The  presence  of  𝜆  biases  the  new 
 solution  away  from  that  which  would  have  been  obtained  from  the  unregularized  LS 
 formulation  and  attempts  to  reduce  the  norm  of  the  estimated  vector  and  simultaneously  try 
 to  keep  the  sum  of  squared  errors  low.  In  order  to  achieve  this  combined  goal,  the  vector 
 components,  𝚹  i  ,  are  modified  in  such  a  way  so  that  the  contribution  in  the  misfit  measuring 
 term  from  the  less  informative  directions  in  the  input  space  is  minimal.  In  other  words, 
 those  of  the  components  that  are  associated  with  less  informative  orientation  will  be  pushed 
 to  smaller  values  to  keep  the  norm  small  and  concurrently  have  minimal  influence  on  the 
 misfit measuring term. 

 2.2.2.2.4.  Ill-conditioning and overfitting 

 Inverse  problems  are  typically  ill-posed,  as  opposed  to  the  well-posed  ones  [30]  . 
 Well-posed  problems  involve  the  existence  of  a  solution,  its  uniqueness,  and  its  stability. 
 The  latter  condition  is  usually  violated  in  ML  problems,  meaning  that  the  obtained  solution 
 may  be  very  sensitive  to  changes  in  the  training  set.  That  means  that  the  obtained  solution 
 may  be  very  sensitive  to  changes  in  the  training  set,  a  sensitivity  known  as  ill-conditioning. 
 This  behavior  results  when  the  model  used  to  describe  the  data  can  be  complex  concerning 
 the  large  number  of  unknown  free  parameters  concerning  the  number  of  data  points.  The 
 profile  with  which  this  problem  manifests  itself  in  machine  learning  is  known  as 
 overfitting,  denoting  that  during  training,  the  estimated  parameters  of  the  unknown  model 
 learn  too  much  about  the  idiosyncrasies  of  the  specific  training  data  set,  and  the  model 
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 poorly  performs  when  it  deals  with  data  sets  other  than  the  used  for  training  purposes.  The 
 MSE  criterion  discussed  in  equation  (11)  attempts  to  quantify  this  data  dependence  of  the 
 task  through  the  mean  deviation  of  the  obtained  estimates  from  the  accurate  value  by 
 changing  the  training  sets.  When  the  number  of  training  samples  is  small  for  the  number  of 
 unknown  parameters,  the  available  information  is  not  enough  to  reveal  a  sufficiently  good 
 model  that  fits  the  data,  and  it  can  be  misleading  to  the  presence  of  the  noise  and  possible 
 outliers. 

 Regularization  is  an  elegant  and  efficient  tool  to  cope  with  the  complexity  of  the  model, 
 that  is,  to  make  it  less  intricate  and  more  smooth.  There  are  different  ways  to  achieve  this. 
 One  way  is  by  constraining  the  norm  of  the  unknown  vector,  where  regularization  helps  to 
 replace  the  original  ill-conditioned  problem  with  a  nearby  one,  which  is  well-conditioned 
 and  whose  solution  approximates  the  target  one.  Another  example  where  regularization 
 can  help  to  obtain  a  solution,  or  even  a  unique  solution  to  an  otherwise  unsolvable  problem, 
 is  when  the  model’s  order  is  large  compared  to  the  number  of  data,  only  a  minor  percentage 
 of  the  model’s  parameters  are  nonzero,  and  a  standard  LS  linear  regression  approach  has  no 
 solution.  Regularizing  the  sum  of  a  squared  errors  cost  function  using  the  norm  of  the 
 parameter vector can lead to a unique solution. 

 2.2.2.2.5.  Curse of dimensionality 

 A  low  MSE  depends  on  two  things.  First,  the  model's  complexity  (number  of  parameters) 
 should  be  small  enough  concerning  the  number  of  training  points.  Second,  to  eliminate  the 
 overfitting,  the  number  of  training  points  should  be  more  than  the  number  of  parameters. 
 How  big  a  data  set  should  be  to  be  more  relaxed  concerning  the  performance  of  the 
 designed  predictor?.  The  answer  to  this  question  depends  on  the  dimensionality  of  the  input 
 space;  it  turns  out  that  the  larger  the  dimension  of  the  input  space  is,  the  more  data  points 
 are needed. This is related to the curse of dimensionality  [45]  . 

 There  are  various  ways  to  cope  with  the  curse  of  dimensionality  and  try  to  exploit  the 
 available  data  set  correspondingly.  A  popular  direction  is  to  resort  to  suboptimal  solutions 
 by  projecting  the  input/feature  vectors  in  a  lower-dimensional  subspace.  This  approach 
 leads  to  small  performance  losses  because  the  original  training  data  lives  in  a 
 lower-dimensional  subspace  due  to  physical  dependencies  restricting  the  number  of  free 
 parameters.  The  intrinsic  dimensionality  of  the  problem  is  the  number  of  free  parameters 
 leading  to  learning  about  the  subspace  onto  which  to  project.  Remarkably,  the 
 dimensionality  of  the  input  space  is  not  always  crucial.  On  the  contrary,  the  critical  factor  is 
 the  so-called  VC  dimension  [46]  of  a  classifier.  In  several  classifiers,  such  as  linear 
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 classifiers  or  neural  networks,  the  VC  dimension  relates  directly  to  the  dimensionality  of 
 the input space. 

 2.2.2.2.6.  Validation 

 A  leading  phase  in  any  ML  task  is  to  quantify  the  performance  that  the  designed  model 
 exhibits  in  practice  -  measuring  the  performance  against  the  training  data  set  would  lead  to 
 an  optimal  value  of  the  performance  index  because  it  uses  the  same  set  on  which  the 
 estimate  was  optimized  [47]  .  For  instance,  if  the  model  is  complex  enough,  with  a  broad 
 number  of  free  parameters,  the  training  error  may  even  become  zero  since  a  perfect  fit  to 
 the  data  can  be  achieved.  However,  it  is  more  meaningful  to  look  for  the  generalization 
 performance  of  the  estimator,  specifically  its  average  operation  computed  over  different 
 data  sets  which  did  not  participate  in  the  training  and  the  error  associated  with  this  average 
 performance, known as generalization error or test error. 

 Figure 17.  Model performance.  Source: Authors. 

 Figure  17  shows  a  typical  performance  expected  as  a  result  in  practice.  It  exhibits  the  error 
 measured  on  the  single  training  data  set  with  the  average  test  error  as  the  model  complexity 
 varies.  If  the  model  is  complex  concerning  the  size  of  the  available  training  set,  then  the 
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 error  measured  on  the  training  set  will  be  overoptimistic,  and  the  generalization  error  takes 
 large values based on the variance term of the MSE given by equation (10). 

 Contrastingly  if  the  model  is  too  simple,  the  generalization  error  will  also  attain  large 
 values  in  the  MSE  case.  In  this  case,  the  contribution  is  mainly  due  to  the  bias  term.  The 
 idea  is  to  have  a  model  complexity  corresponding  to  the  minimum  of  the  respective  curve. 
 In  practice,  it  is  necessary  to  test  the  performance  of  a  predictor  using  different  data  sets,  a 
 process  known  as  validation.  Assuming  that  enough  data  are  at  the  designer’s  disposal,  it  is 
 recommendable  to  split  the  data  into  three  parts:  one  for  training,  another  for  testing,  and 
 the  other  to  validate  the  performance.  Following  this  path  implies  the  confidence  that  the 
 training  set,  the  validation  set,  and  the  test  set  are  big  enough  for  the  model  complexity.  A 
 large-enough  test  data  set  is  required  to  provide  a  statistically  good  result  on  the 
 generalization error. 

 Likewise,  frequently  the  size  of  the  available  data  is  not  sufficient,  but  it  is  necessary  to 
 validate  the  outcome.  In  this  case,  cross-validation  is  a  common  technique  usually 
 employed.  According  to  this  method,  the  data  set  is  split  into  K  roughly  equal-sized  parts. 
 The  training  is  repeated  K  times,  each  time  selecting  one  different  part  of  the  data  for 
 testing  and  validation  and  the  remaining  K-2  parts  for  training.  This  is  advantageous  as  it 
 permits  testing  with  a  part  of  the  data  not  involved  in  the  training  phase,  so  it  can  be 
 considered  independent.  Eventually,  it  is  possible  to  combine  the  errors  from  the  test  sets  to 
 get  a  better  estimate  of  the  generalization  error  that  the  estimator  exhibits  in  real-life 
 applications.  In  practice,  the  K  value  depends  very  much  on  the  application,  and  typical 
 values  are  of  the  order  of  5  to  10  [30]  .  The  price  paid  for  K-fold  cross-validation  is  the 
 complexity  of  training  K  times,  high  estimator’s  variance,  and  the  unknowable 
 dependencies  between  runs,  revealing  that  the  validation  task  is  far  from  innocent.  Ideally, 
 there  should  be  available  large  data  sets  divided  into  several  non-overlapping  training  sets 
 along with separate validation sets and test sets that are large enough. 

 2.2.2.2.6.1.  Model development - models comparison on training and test set 

 A  convenient  measure  for  the  model  generalization  capability  considers  its  performance  on 
 a  holdout  dataset.  It  could  be  possible  that  even  though  a  BRT  model  has  a  lower  MAPE 
 on  the  training  set  than  an  NN  model,  it  has  a  higher  MAPE  on  the  test  set.  This  situation 
 indicates  that  it  is  likely  to  have  an  overfit  on  the  training  set.  Figure  18  compares  the  LM, 
 GPR,  NN,  and  BRT  models  using  training  and  test  data  sets  for  available  wind  speed  data. 
 This  comparison  allows  the  selection  of  two  models  to  advance  with  the  ML  procedure,  NN 
 and  BRT.  A  similar  selection  process  applies  to  the  available  energy  load  and  irradiance 
 data sets. 
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 Figure 18.  Data Readings - Comparison response for  the wind model.  Source: Authors 

 2.2.2.2.6.2.  Model development - further validation 

 While  the  model  may  do  well  on  average,  it  could  have  problems  in  isolated  cases. 
 Therefore,  it  is  necessary  to  look  at  how  it  does  on  the  validation  data.  Figures  19,  20,  and 
 21  present  the  measured  response  compared  with  the  ahead  prediction  for  the  GPR,  BRT, 
 and  NN  models  considering  the  available  wind  speed  data.  This  exercise  confirms  the 
 selection  of  the  NN  and  BRT  models  to  move  forward  with  the  ML  procedure  for  the  wind 
 speed case. 
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 Figure 19.  Data Readings - Overfit response plot for GPR model.  Source:  [29] 

 Figure 20.  Data Readings - Response plot for BRT model.  Source:  [29] 
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 Figure 21.  Data Readings - Response plot for NN model.  Source: Authors 

 2.2.3.  Section conclusion 

 The  CREMS  uses  the  LP  to  convert  the  optimized  data  into  a  prediction  model.  As  with 
 other  solutions  [37]  ,  the  phases  presented  in  this  research  request  a  search  space  and  an 
 evaluation  criterion  to  define  a  parametric  model.  The  parameter  estimation  scheme  used 
 by  the  CREMS  considers  regressions,  estimators'  efficiency,  bias-variance  dilemmas, 
 ill-conditioning,  over-fitting,  and  the  curse  of  dimensionality  [31]  .  Nevertheless,  no 
 method  guarantees  a  modeling  approach  for  one  information  set.  So,  the  CREMS  performs 
 an  iterative  strategy  using  independent  regression  approaches  such  as  LR,  RT,  SVM,  GPR, 
 BRT,  and  NN  [29]  .  Likewise,  the  ML  procedure  uses  coefficient  values  optimization 
 techniques  to  restrain  definitive  attributes  under  a  square  error  standpoint,  providing 
 function  convexity.  The  CREMS  uses  the  MAPE  to  estimate  the  model's  abstraction 
 capacity  and  divides  the  information  into  three  parts  [31]  training,  testing,  and  validation, 
 considering  50%,  25%,  and  25%  as  percentage  partitions  and  regarding  the  model's 
 complexity,  respectively.  The  CREMS  framework  evaluates  the  MAPE  in  both  the  testing 
 and  training  sets,  discards  problems  associated  with  parameter  estimation  as  estimator 
 efficiency  or  over-fitting,  and  corroborates  the  predictor  performance  using  the  validation 
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 set.  This  enhances  the  framework's  autonomy  and  adaptation  to  resource  fluctuations  and 
 assures specific objectives two and three. 

 2.3.  Implemented framework 

 2.3.1.  Section introduction 

 The  results  presented  in  this  section  are  available  in  the  IEEE  in  the  following  conferences 
 papers  [29], [48]  . 

 This  doctoral  research  involves  developing  an  experimental  MG  testbed  (MG)  that  allows 
 real-time  task  emulation.  These  tasks  include  predicting  energy  consumption  and 
 generation  in  an  emulated  MGC  managed  by  an  on-cloud  EMS  that  runs  ML  methods  to 
 solve  an  EDP.  The  application  of  supervised  learning  techniques  to  estimate  future 
 consumption  and  generation  in  an  MGC  helps  the  management  system  verify  and  modify 
 itself  according  to  resource  fluctuation.  The  MGT  considers  PV,  wind  energy,  and  BESS 
 system  models  and  includes  hardware-in-the-loop  (HIL),  power-hardware-in-the-loop 
 (PHIL),  and  real-life  inverters  to  obtain  a  close  emulation  of  the  MGC.  It  also  regards  a 
 communication  protocol  to  connect  the  cloud-based  EMS  with  the  PHIL  and  an  IoT 
 strategy  to  track  consumption  patterns  and  execute  experiments  related  to  solving  the  EDP 
 or  other  experiments  related  to  demand  response.  These  features  permit  compliance  with 
 specific  objective  number  one  and  validate  the  delineated  by  the  IEEE  STD  2030.7  -  2017, 
 as stipulated in specific objective four. 

 2.3.2.  Model for a solar PV system and the MPPT principle 

 This  research  uses  a  standard  single  exponential  model  with  a  series  and  shunt  resistance 
 [49]–[51]  shown  in  figure  22.  The  equivalent  circuit  model  equations  result  by  applying 
 Kirchhoff’s  voltage  and  current  laws  to  the  circuit  model.  Equations  (15)  and  (16)  exhibit 
 these V-I relationships: 

 (15)  𝑖 =  𝐼  𝑝ℎ −  𝐼  0  𝑒  𝑣    +    𝑖𝑅𝑠  𝑛  𝑠  𝑉  𝑡 −  1 ( ) −  𝑣 + 𝑖  𝑅  𝑠  𝑅  𝑠ℎ 

 (16)  𝑣 =−  𝑅  𝑠ℎ  𝑖 −  𝐼  𝑝ℎ +  𝐼  𝑜  𝑒  𝑣 + 𝑖𝑅  𝑠  𝑛  𝑠  𝑉  𝑡 −  1 ( )⎡⎢⎢⎣ ⎤⎥⎥⎦ −  𝑖  𝑅  𝑠 
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 Figure 22.  PV’s equivalent circuit model.  Source:  Authors. 

 At open circuit, where no current flows, (17) applies 

 (17)  𝐼  𝑜𝑐 =  0 =  𝐼  𝑝ℎ −  𝐼  0  𝑒  𝑉  𝑜𝑐  𝑛  𝑠  𝑉  𝑡 −  𝑉  𝑜𝑐  𝑅  𝑠ℎ 
 At short circuit where there is no voltage across the panel, (18) is applicable. 

 (18)  𝐼  𝑠𝑐 =  𝐼  𝑝ℎ −  𝐼  𝑜  𝑒  𝑅  𝑠  𝐼  𝑠𝑐  𝑛  𝑠  𝑉  𝑡 −  𝐼  𝑠𝑐  𝑅  𝑠  𝑅  𝑠ℎ 
 Finally, at maximum power point 

 (19)  𝐼  𝑚𝑝𝑝 =  𝐼  𝑝ℎ −  𝐼  𝑜  𝑒  𝑉  𝑚𝑝𝑝 + 𝑅  𝑠  𝐼  𝑚𝑝𝑝  𝑛  𝑠  𝑉  𝑡 −  𝐼  𝑚𝑝𝑝  𝑅  𝑠  𝑅  𝑠ℎ 
 Equation  (20)  shows  the  relationship  between  thermal  voltage  at  standard  conditions  V  tstc 

 and the diode ideality factor (A). 

 (20)  𝑉  𝑡  𝑠𝑡𝑐 =  𝐴𝑘  𝑇  𝑠𝑡𝑐  𝑞 
 Equations  (17)  -  (20),  in  conjunction  with  the  measurements  typically  provided  by  solar  PV 
 panel  datasheets  (Table  2),  characterize  the  PV  model.  Further  equation  manipulation 
 remains with three unknown variables:  R  s  , R  sh  ,  and  A  . 
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 Datasheet 
 Params 

 Make and Model of Solar Panel 

 SLP020  MSX120 
 (24V) 

 MSX60  MSX64  KC200GT 

 Isc (A)  1.31  3.87  3.8  4.0  8.21 

 Voc (V)  21.6  42.1  21.1  21.3  32.9 

 Impp (A)  1.2  3.52  3.5  3.66  7.66 

 Vmpp (V)  18.6  33.7  17.1  17.5  26.3 

 Ns  36  72  36  36  54 

 ki (%/°C)  0.065  0.065  0.065  0.065  3.18 mA /°C 

 kv (mV/°C)  -65  -160  -80  -80  -123 

 Table 2  .  Datasheet values for a selection of commercially  available PV panels at STC. 
 Source: Authors. 

 This  work  derives  circuit  parameters  by  solving  the  non-linear  equations  with  a  Newton 
 Raphson  method  and  using  a  Jacobian  matrix  [52]  .  In  this  case,  the  value  of  the  three 
 unknowns should satisfy 

 (21) 

 The  iterative  solution  reaches  by  using  a  Newton-Raphson  progression  with  a  Jacobian 
 matrix as in (22) 

 (22)  𝑥  𝑛 + 1 =  𝑥  𝑛 −  𝐽 ( 𝑥  𝑛    ) − 1  𝑓 ( 𝑥  𝑛 )
 The  Jacobian  matrix  follows  a  matrix  of  partial  derivatives  of  the  three  equations  f  1  ,  f  2  and 
 f  3  : 
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 (23) 

 The  progression  in  (23)  must  be  initialized  with  estimates  of  the  three  parameters  to  be 
 solved for the Newton-Raphson iterative process to converge. 

 (24)  𝑥  0 =  𝑅  𝑠ℎ  𝑜        𝑅  𝑠  𝑜        𝐴  0 ⎡⎢⎣ ⎤⎥⎦  𝑇 
 Once  ascertained,  the  parameters  R  s  ,  R  sh  ,  and  A  are  assumed  locked  over  a  range  of  panel 
 temperatures  and  insolation.  It  still  provides  a  good  approximation  of  PV  panel  behavior. 
 Most  of  the  effects  of  temperature  and  insolation  on  photocurrent  I  ph  ,  dark  saturation 
 current  I  o  ,  and  short  circuit  current  I  sc  can  be  considered  linear,  as  can  the  effect  of 
 temperature  on  open-circuit  voltage,  V  oc  .  However,  V  oc  varies  logarithmically  with 
 insolation,  and  as  a  non-linear  effect,  its  solution  is  dealt  with  iteratively.  The  PV  panel 
 output  voltage  and  current  will  depend  upon  the  panel’s  operating  temperature  and 
 insolation.  A  given  panel  output  voltage  will  give  rise  to  a  given  output  current,  and 
 vice-versa.  The  V-I  curve  point  where  the  panel  is  operating  will  determine  these  factors. 
 From  the  perspective  of  modeling  the  PV  panel,  the  choice  is  to  model  the  output  voltage  as 
 a function of output current or the output current as a function of output voltage. 

 2.3.3.  Model for wind energy system 

 Wind  power  varies  throughout  the  day  as  wind  speed  fluctuates.  The  power  produced  by  a 
 wind turbine is given by  [53] 

 (25)  𝑃 =  0 .  5 πρ 𝐶𝑝 λ, β( ) 𝑅  2  𝑉  𝑤  3 
 where  R  is  the  turbine  radius,  V  w  is  the  wind  speed,  is  the  air  density,  Cp  is  the  power ρ   
 coefficient,  𝜆  is  the  tip  speed  ratio,  and  𝛽  is  the  pitch  angle.  In  this  work,  𝛽  takes  a  zero 
 value.  The tip speed ratio is given by: 

 (26) λ = Ω 𝑅  𝑉  𝑤 
 where Ω is the turbine angular speed.  The dynamic equation for the wind turbine is 
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 (27)  𝑑 Ω 𝑑𝑡 =  1  𝐽  𝑇  𝑚 − 𝑇  𝐿 − 𝐹𝑤  𝑟 [ ]
 where  J  is  the  system  inertia,  F  is  the  viscous  friction  coefficient,  T  m  is  the  torque 
 developed  by  the  turbine,  T  L  is  the  torque  due  to  load,  in  this  case,  the  generator  torque,  and 
 w  r  is  the  turbine  rotor  speed.  The  turbine  power  coefficient  is  a  non-linear  function  given 
 by: 

 (28)  𝐶𝑝 λ, β( ) =  0 .  5176  116 δ −  0 .  4 β −  5 ( ) 𝑒 −  21 δ

 where, 

 (29)  1 δ =  1 λ+ 0 . 08 β −  0 . 035  1 +β  3 
 The optimum power obtained from a wind turbine is 

 (30)  𝑃  𝑜𝑝𝑡 =  𝐾  𝑜𝑝𝑡 Ω 𝑜𝑝𝑡  3 
 where, 

 and  (31)  𝐾  𝑜𝑝𝑡    =  0 . 5 πρ 𝐶𝑝  𝑚𝑎𝑥 (λ,β) 𝑅  5 λ  𝑜𝑝𝑡  3 Ω  𝑜𝑝𝑡 = λ  𝑜𝑝𝑡  𝑉  𝑤  𝑅 
 The  power  for  a  certain  wind  speed  is  maximum  at  a  defined  value  of  rotor  speed  called 
 optimum  rotor  speed  .  It  is  the  speed  that  corresponds  to  the  optimum  tip  speed  ratio Ω 𝑜𝑝𝑡 

 .  The  turbine  should  operate  consistently  at  to  achieve  maximum  possible Ω 𝑜𝑝𝑡 λ 𝑜𝑝𝑡 λ 𝑜𝑝𝑡 
 power  by  controlling  the  turbine’s  rotational  speed  to  get  the  optimum  rotation  speed. 
 Table 3 presents the specifications of the wind turbine. 

 Parameter  Value 

 Mechanical output power  210 kW 

 Base wind speed  11 m/s 

 Maximum power at base wind speed  0.9 pu 
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 Pitch angle  0° 

 Table 3.  Parameters of 210 kW wind turbine.  Source:  [54] 

 2.3.4.  Model of the battery energy storage system 

 The  battery  model  proposed  in  [55]  and  presented  in  figure  23  summarizes  a 
 comprehensive  battery  performance  by  coupling  the  dynamic  electrical  circuit 
 characteristics with non-linear capacity effects on the battery. 

 Figure 23.  Proposed battery model.  Source: Authors 

 Consider  a  period  of  t  0  <  t  <  t  r  in  which  the  battery  cell  is  first  discharged  with  a  constant 
 current and then rests for the remainder of the period.   The model expresses the following: 

 (32)  𝑆𝑜𝐶 ( 𝑡 ) =  𝐶  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ( 𝑡 ) 𝐶  𝑚𝑎𝑥 =  𝑆𝑜𝐶  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −  1  𝐶  𝑚𝑎𝑥 ∫  𝑖  𝑐𝑒𝑙𝑙 ( 𝑡 ) 𝑑𝑡 +  𝐶  𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ( 𝑡 )⎡⎢⎢⎣ ⎤⎥⎥⎦
 (33)  𝑉  𝑜𝑐  𝑆𝑜𝐶 ( 𝑡 )[ ] =  𝑎  0  𝑒 − 𝑎  1  𝑆𝑜𝐶 ( 𝑡 ) +  𝑎  2 +  𝑎  3  𝑆𝑜𝐶 ( 𝑡 ) −  𝑎  4  𝑆𝑜𝐶  2 ( 𝑡 ) +  𝑎  5  𝑆𝑜𝐶  3 ( 𝑡 )
 (34)  𝑉  𝑐𝑒𝑙𝑙 ( 𝑡 ) =  𝑉  𝑂𝐶  𝑆𝑜𝐶 ( 𝑡 )[ ] −  𝑖  𝑐𝑒𝑙𝑙 ( 𝑡 ) 𝑅  𝑠𝑒𝑟𝑖𝑒𝑠 −  𝑉  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ( 𝑡 )   
 (35)  𝑉  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ( 𝑡 )   =  𝑉  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛  𝑡  𝑆 ( 𝑡 ) +  𝑉  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛  𝑡  𝐿 ( 𝑡 )   
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 C  max  ,  C  available  ,  and  C  unavailable  are  the  maximum,  available  and  unavailable  battery  capacities. 
 The  state  of  charge  (SoC)  of  the  battery  reduces  when  it  delivers  charge  to  the  load  as 
 expressed  in  (32)  by  the  current  integration  term.  C  unavailable  represents  the  nonlinear  SoC 
 variation  due  to  the  non-linear  capacity  effects  of  the  battery.  SoC  initial  is  the  estimated  SoC 
 at  the  end  of  the  last  operating  period  before  t  0  .  In  practice,  SoC  initial  can  correct  by  using 
 (33)  with  the  open-circuit  voltage  measured  during  some  resting  intervals.  The  terminal 
 voltage  V  cell  is  estimated  by  V  oc  ,  the  voltage  across  R  series  ,  and  the  transient  voltage  term 
 V  transient  ,  which  represents  the  short-term  response  of  the  RC  network.  The  RC  network 
 parameters are the functions of SoC: 

 (36)  𝑅  𝑠𝑒𝑟𝑖𝑒𝑠 ( 𝑆𝑜𝐶 ) =  𝑏  0  𝑒 − 𝑏  1  𝑆𝑜𝐶 +  𝑏  2 +  𝑏  3  𝑆𝑜𝐶 −  𝑏  4  𝑆𝑜𝐶  2 +  𝑏  5  𝑆𝑜𝐶  3 
 (37)  𝑅  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛  𝑡  𝑆 ( 𝑆𝑜𝐶 )   =     𝑐  0  𝑒 − 𝑐  1  𝑆𝑜𝐶 +  𝑐  2 
 (38)  𝐶  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛  𝑡  𝑆 ( 𝑆𝑜𝐶 )   =     𝑑  0  𝑒 − 𝑑  1  𝑆𝑜𝐶 +  𝑑  2 
 (39)  𝑅  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛  𝑡  𝐿 ( 𝑆𝑜𝐶 )   =     𝑒  0  𝑒 − 𝑒  1  𝑆𝑜𝐶 +  𝑒  2 
 (40)  𝐶  𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛  𝑡  𝐿 ( 𝑆𝑜𝐶 )   =     𝑓  0  𝑒 − 𝑓  1  𝑆𝑜𝐶 +  𝑓  2 

 These  parameters  are  constant  when  the  SoC  is  20-100%  and  change  exponentially  when 
 the SoC varies below 20%.  The available capacity is determined by 

 (41)  𝐶  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ( 𝑡 ) =  𝐶  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∫  𝑖  𝑐𝑒𝑙𝑙 ( 𝑡 ) 𝑑𝑡 −  𝐶  𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ( 𝑡 )
 where the unavailable charge of the battery can be expressed as  [56] 

 (42)  𝐶  𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ( 𝑡 ) =  𝑢 ( 𝑡 )   
 Likewise,  all  of  the  electrical  circuit  parameters  of  the  model  came  from  the  least-squares 
 curve  fitting  of  the  experimental  data  obtained  at  room  temperature  using  pulse  discharge 
 currents with an interval of 5% SoC. 
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 2.3.5.  MG testbed 

 The  physical  system  under  test  is  a  300  kW  MGC  consisting  of  three  MG  considering 
 photovoltaic  and  wind  generation  in  combination  with  storage  under  the  active  generation 
 context, as illustrated in figure 24 and scaled to a laboratory prototype at the SEC: 

 FIGURE 24  . General scheme of the MGC implemented in SEC. Source:  [28] 

 Figure  25  illustrates  an  overall  scheme  of  the  real-life  PHIL  testbed  available  in  the  SEC. 
 For  this  experiment,  the  MGC  merged  three  (03)  Inverter-based  Distributed  Generators 
 (IDGs)  coupled  to  individual  BESS  to  resemble  three  dispatchable  units:  two  photovoltaic 
 systems  and  one  wind  turbine.  This  procedure  assumes  that  each  MG  chose  to  contribute  to 
 augmenting  the  assemblage's  total  profit.  Also,  to  secure  the  prototype's  accuracy  and 
 power  production,  the  assembly  incorporates  the  utility  grid  through  a  four-quadrant  power 
 amplifier  [57]  .  This  component  improves  the  cluster's  adequate  reference  when  considering 
 features  such  as  frequency  and  voltage  and  facilitates  balancing  the  energy  demand  with  the 
 energy generated when the load or the generation varies. 
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 FIGURE 25  . Implemented framework.  Source:  [29] 

 The  MG  testbed  (MGT)  includes  a  dSPACE  SCALEXIO  [58]  system  working  as  PHIL 
 interface  that  controls  the  test  bench  inverter-based  generators  (Figure  26).  It  also 
 incorporates  an  OPAL-RT  OP1400,  a  four-quadrant  power  amplifier  [59]  used  as  PHIL  that 
 can  emulate  the  utility  grid.  By  default,  the  MGT  includes  four  2.2  kW  three-phase 
 DANFOSS  VLT-302s  [60]  that  symbolize  each  IDG.  In  this  application,  three  inverters 
 emulate  the  IDG  units,  while  the  fourth  acts  like  the  load  profile.  Three-Phase  LCL 
 modular  filters  connect  to  each  inverter  output  to  mitigate  harmonic  components.  Also, 
 each  inverter  can  be  any  time  connected  or  disconnected  from  the  common  AC  bus  using  a 
 three-phase  solid-state  relay.  A  PLC  is  used  for  controlling  the  three-phase  solid-state  relay 
 to  connect  the  inverters  as  desired.  In  this  research,  the  four-quadrant  power  amplifier 
 works  as  the  utility  grid  to  set  the  operative  frequency,  provide  voltage  coupling,  and 
 balance  the  consumption  demand.  Likewise,  the  MGT  modular  structure  allows  connecting 
 or  disconnecting  additional  loads  to  the  AC  bus  to  test  any  load  variation.  In  addition,  the 
 MGT  uses  LEM  sensor  boxes  to  measure  the  three-Phase  LCL  modular  filters  for  analog 
 measurement. 
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 FIGURE 26  . Microgrid Testbed, 1-IDGs, 2-LCL output  filters, 3-Linear Load, 4-Power 
 analyzer, 5-Non-Linear load, 6-dSPACE-Scalexio (back view), 7-DC Supply (IDGs), 

 8-dSPACE-Scalexio (front view), 9-Sensor Boxes, 10-OP1400 Power Amplifier, 11-DC 
 Supply (OP1400).  Source:  [61] 

 The  MGT  also  includes  IoT  energy  efficiency  features  as  it  includes  smart-meters  to  send 
 measured  data  to  the  CREMS  via  JavaScript  Object  Notation  (JSON)  advanced  format 
 setting  in  MQ  Telemetry  Transport  (MQTT)  protocol  in  one-minute  intervals  (see  figure 
 27).  In  this  way,  it  is  possible  to  achieve  two  advantages:  first,  the  direct  use  of  object  data 
 format  that  facilitates  direct  integration  with  diverse  applications  without  forcing  to  change 
 the  existing  JSON  format  into  a  numeric  data  type,  and  second,  the  graphical  UI  for  setting 
 JSON  data  structure  is  intuitive  and  easy  to  understand.  In  addition,  the  protocol  used  to 
 communicate  the  CREMS  with  the  real-life  PHIL  platforms  is  the  user  datagram  protocol 
 (UDP)  [62]  . 
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 FIGURE 27  . IoT strategy.  Source:  [61] 

 As  mentioned  above,  for  this  test,  the  main  feature  of  the  MGT  is  having  a  fully-deployed 
 CREMS  using  AWS.  The  CREMS  test  operation  considers  controlling  the  battery's  SoC, 
 exploiting  usable  renewable  resources  data,  and  analyzing  usage-energy  historical  data  to 
 reduce  the  price  paid  to  the  grid  provider.  Via  the  ML  model  usage,  the  economic  power 
 dispatch  problem  (EPDP)  should  reduce  the  utility  grid  price  by  considering  the  forecast 
 generation  and  demand  power  [63]  .  Other  conditions  [64]  comprehends  the  production 
 level  limits  and  the  balance  between  the  predicted  energy  production,  the  battery  features, 
 and  the  utility  assistance.  The  batteries'  status  breaks  into  charging  and  negative 
 discharging  phases  submitted  to  power  limits.  Likewise,  the  battery's  SoC  stays  within  its 
 bounds  by  permanent  observation.  In  addition,  it  is  necessary  to  define  the  battery  charging 
 power  coming  from  the  utility  or  the  RES.  Finally,  discharging  into  the  utility  is  restrained 
 to  the  residual  demand,  and  the  proposed  SoC  equalization  model  is  verified.  As  discussed, 
 the  cloud  infrastructure  allows  the  operating  of  massive  data  with  reliability  and  validity, 
 adding  secure  management  and  simplifying  the  implementation  of  massive  data  processing. 
 According  to  this  research  performance,  solving  problems  related  to  the  demand  response 
 and  utility  grid  stability  via  the  IoT  sensors  inclusion  facilitated  the  definition  of  the 
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 infrastructure  in  the  cloud  scalability  in  terms  of  storage  and  data  processing.  Also,  to 
 improve  the  MGT  security,  the  operation  considered  a  network  topology  where  the 
 dSPACE  Scalexio  had  a  public  IP  configured  with  firewall  rules  that  accepts  sending  and 
 receiving  data  coming  only  from  the  AWS  server  static  IP  [65]  .  On  the  other  hand, 
 importing  data  from  the  IoT  broker's  server  considers  another  methodology  as  the  CREMS 
 connects  directly  to  the  IoT  broker's  server  via  the  MQTT  protocol.  However,  the  MGT 
 facilitates  the  incorporation  of  other  commercial  IoT  meters  using  a  local  wireless  access 
 point to send the data directly to the CREMS. 

 2.3.5.1.  Power Controller Implementation 

 Figure  28a  exhibits  the  control  block  diagram  of  an  IDG.  The  diagram  shows  that  the 
 generator has two main components: a physical power system and a control system. 

 a) 
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 b) 
 FIGURE 28.  Optimal Power Control Strategy for Grid Connect Mode.  Source:  [66] 

 The  physical  power  system  consists  of  a  three-phase  DC–AC  converter,  an  LCL  filter,  and 
 a  Pulse  Width  Modulation  (PWM)  block.  On  the  other  hand,  the  control  system  utilizes  an 
 integrated  PQVI  controller  based  on  a  linear  quadratic  regulator  (LQR)  with  optimal 
 reference  tracking  (ORT).  Figure  28b  shows  the  complete  scheme  of  the  LQR-ORT 
 controller.  For  getting  the  gains  (Kd,  Kvv),  the  system  utilizes  a  modified  cost  function  that 
 weights  the  tracking  error  and  the  control  input  using  the  equation  and  process  defined  in 
 [66]  . 

 2.3.6.  Section conclusion 

 Unlike  previous  approaches,  the  implemented  framework  uses  IoT  data  and  deploys  an  ML 
 model  to  forecast  the  MGC's  generation  and  load  energy  curve,  as  the  system  optimization 
 algorithm  executes  in  an  MPS  instance  using  AWS.  This  approach  defines  the  CREMS 
 performance  and  eliminates  the  offline  optimization  process  [66]  .  The  changes 
 implemented in the SEC's testbed configuration support the findings exposed in  [28]  : 

 ●  The CREMS intends to reduce utility grid costs and optimize battery usage. 
 ●  The  implemented  framework  efficiently  combines  PHIL  interfaces,  ML,  IoT,  and 

 decision-making. 
 ●  The  energy  production  prediction  provides  an  initial  assessment  to  the  energy 

 administrator and the final user. 
 ●  The system can manipulate energy decisions close to real-time. 
 ●  The  EMS  structure  adapts  conveniently  to  the  amount  of  MG  available  at  a  specific 

 time. 

 The  above-mentioned  standpoints  permit  corroborating  the  compliance  of  specific 
 objectives numbered one and four. 
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 2.4.  Scalable  and  autonomous  framework  of  the  EMS  to  administer  an  MGC 
 under a CC environment 

 2.4.1.  Section introduction 

 The  results  presented  in  this  section  are  under  revision  by  Applied  Energy  in  the  paper 
 titled: Full-deployed energy management system tested in a microgrid cluster. 

 The  fulfillment  of  the  general  objective  of  this  doctoral  research  demands  definite 
 requirements.  The  ultimate  CREMS,  described  in  this  section,  integrates  data  acquisition, 
 generation,  and  consumption  forecasting  under  a  cost-effective  procedure  beyond  routinary 
 CC  [67]  to  satisfy  them.  For  this,  it  was  essential  to  define  a  suitable  technique  to  organize 
 the  IoT  data  arriving  from  devices  placed  in  distributed  RESs.  Also,  it  was  required  to 
 determine  the  ML  incorporation  procedure  to  forecast  generation  and  consumption 
 attributes  in  a  specific  spot.  Likewise,  it  was  demanding  to  test  the  CREMS  in  a  real-life 
 PHIL  testbed  to  validate  the  ML,  IoT,  and  CC  appliance's  applicability  in  an  MGC, 
 recognizing the variances between the simulation results and the practical verification  [61]  . 

 2.4.2.  Cloud-based real-time EMS framework 

 As  characterized  in  [28]  ,  the  CREMS  divides  into  three  sections  (see  Figure  29): 
 supervisory  system  (SS),  data  acquisition,  storage  &  processing  (DASP),  and  scheduling 
 and  optimization  (S&O).  In  this  research,  the  SS  section  uses  a  Matlab  Production  Server 
 (MPS)  appliance  where  the  broker  links  each  MG  with  a  specific  procedure  allowing  a 
 CREMS  managerial  standpoint  with  each  MG,  and  permits  corporate,  mobile,  or  web 
 applications  to  call  Matlab  code.  The  incorporation  of  novel  IoT  devices  lets  dispatch  the 
 data  gathered  by  either  the  SS  or  the  IoT  instruments  into  the  DASP  using  Big  Data  (BD) 
 mechanisms  available  in  the  Amazon  Simple  Storage  Service  (S3)  [68]  .  The  DASP  section 
 is  a  data  file  collection  whose  analysis  provides  the  pattern  and  predictive  framework 
 needed  to  execute  unique  duties.  Lastly,  the  S&O  section  runs  improved  optimization 
 patterns and frameworks to get optimal references timely returned to the RES. 

 The  resultant  architecture  facilitates  select  multi-cloud  supported  framework  services  that 
 allow  scalable  CREMS  characterization  for  an  MGC  control.  Likewise,  the  ML  active 
 algorithm  gives  sufficient  endurance  and  excellent  energy  reference  update  under 
 unforeseen  changes  in  generation  and  consumption.  The  architecture  improvement  allows 
 the  S&O  section  transparently  to  create,  compile,  and  deploy  the  CREMS  algorithm  to  the 
 server  unaltering  its  functioning.  Similarly,  it  facilitates  the  DASP  section  accessing  the 
 mechanisms  that  the  CREMS  demands  to  incorporate  BD,  ML,  and  IoT  routines  to  enhance 
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 the  MGC  management  execution.  Lastly,  the  SS  unit  enhances  the  framework's  capabilities 
 to  obtain  low  latency  processing,  expansion  capability,  and  redundancy  required  by  the 
 CREMS. 

 FIGURA 29  .  Conceptual CREMS.  Source:  [61] 

 The  IoT  adaptation  involves  measurement  units'  on-field  deployment  in  specific  points  to 
 warranty  transmission  links  oriented  to  the  IoT  broker  or  accessing  points  to  retrieve  the 
 measured  data  in  the  S3  bucket.  The  streamed  data  is  first  gathered  in  the  physical  layer  and 
 then  transmitted  to  superior  layers  to  provide  appropriate  management.  Consequently,  as 
 declared  in  [48],  [69]  ,  a  practical  method  to  incorporate  IoT  devices  with  an  MG  is  to 
 reorient  the  initial  operations  of  the  Microgrid  Control  Center  (MGCC)  to  match  the 
 required  IoT  capacities.  Figure  30  depicts  the  enhanced  hierarchical  structure  and  its 
 incorporation into the framework. 

 The  primary  level  permits  the  device's  communication  over  diverse  transmission  protocols. 
 Numerous  standardization  institutions  have  made  notable  endeavors  to  deliver  advanced 
 solutions  for  industrial,  residential,  and  building  segments  that  have  permitted  developing 
 the  data  networks  and  protocols.  The  secondary  level  connects  the  IoT  for  a  better  user 
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 experience.  The  tertiary  level  considers  scenarios  where  the  convenience  and  financial 
 standpoints alter to accomplish an optimal general service. 

 FIGURE 30  .  Enhanced hierarchical structure.  Source:  [61] 

 2.4.3.  Section conclusion 

 The  CC,  IoT,  and  ML  capabilities  experimented  into  the  EMS  of  a  cluster  of  integrated  MG 
 facilitate  data  analysis  under  a  real-time  experience  and  permit  an  SL  model  definition 
 beyond  offline  computing  limitations,  giving  autonomy  features  to  the  ultimate  framework. 
 Also,  these  capabilities  offer  scalability  to  the  CREMS  framework  beyond  the  inherent  CC 
 features.  A  particular  issue  calls  attention  to  the  framework's  experimental  performance. 
 The  IoT  strategy  changed  transparently  from  a  data  acquisition  &  storage  to  a  DASP  with 
 the  IoT  broker  inclusion.  The  mentioned  permits  comply  with  the  requirements  of  this 
 doctoral research's general objective. 

 2.5.  CREMS performance verification 

 2.5.1.  Section introduction 

 The  experimental  verification  of  the  CREMS  performance  follows  an  EPDP,  ensuring  the 
 IoT  applicability  and  the  suitable  ML  functionality  in  a  cloud-connected  MG  testbed 
 assemblage.  This  section  presents  two  optimization  models,  a  general  optimization  model 
 and  an  SoC  equalization  one.  Every  model  is  described  conveniently  with  its  particular 
 considerations,  objective  functions,  problem  constraints,  and  performance  under  the 
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 CREMS  execution.  In  this  way,  this  doctoral  research  validates  the  restrained  by  the 
 specific objective number four. 

 2.5.2.  General optimization model 

 The  results  presented  in  this  section  are  available  in  the  IEEE  in  the  following  conference 
 paper  [48]  and will be socialized in  [70]  . 

 The  suggested  CREMS  considered  a  mixed-integer  linear  programming  (MILP)  problem, 
 as  defined  in  [28]  ,  and  employs  it  to  decrease  the  expenditure  applicable  to  the  utility  grid 
 [3],  [71]  .  The  scheduling  executes  T  hours  with  timeframes  of  30  minutes.  Where  t 
 represents  the  T  th  hour  (for  t  =  1,  2,  3,  .  .  .  ,  T  ),  and  i  describes  the  I  th  IDG  (for  i  =  1,  2,  3  ). 
 Table  4  summarizes  the  MGT  parameters  setup  used  in  this  trial,  and  the  CREMS  output 
 variables define the setpoints for each IDG,  P  pv  (1,  t), P  pv  (2, t)  , and  P  wt  (1, t)  , for this case. 

 Parameter  Grid  P  V1  B  PV1  P  V2  B  PV2  WT  B  WT 

 Selling cost, 
 $/kWh 

 0.00  0.00  0.00  0.00  0.00  0.00  0.00 

 Operational cost, 
 $/kWh 

 0.21  0.00  0.05  0.00  0.05  0.00  0.05 

 Production (min), 
 kW 

 -0.30  0.00  0.00  0.00  0.00  0.00  0.00 

 Production (max), 
 kW 

 0.30  0.30  0.30  0.30  0.30  0.30  0.30 

 Initial SoC, 
 % 

 -  -  100  -  100  -  100 

 Minimum SoC, 
 % 

 -  -  20  -  20  -  20 

 Maximum SoC, 
 % 

 -  -  100  -  100  -  100 

 Storage capacity, 
 kW 

 -  -  0.5  -  0.5  -  0.5 

 Battery efficiency, 
 % 

 -  -  0.93  -  0.93  -  0.93 

 TABLE 4.  MGT configuration parameters.  Source:  [48] 
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 2.5.2.1.  Objective function 

 Conveniently,  the  CREMS  expands  progressively  according  to  the  number  of  MGs 
 available in the cluster, namely, ∀i ∈  I  and ∀t ∈  T  [48]  ,  [72]  : 

 (45)  𝑚𝑖𝑛  𝑝 ( 1 , 𝑡 ),..., 𝑝 ( 𝑛 , 𝑡 )                      𝑖    ∈    𝑁 ∑  𝑡    ∈    𝑇 ∑  𝐶  𝑖 , 𝑡  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 +  𝐶  𝑡  𝑝  𝐺𝑟𝑖𝑑 , 𝑡  𝑠𝑢𝑏𝑗𝑒𝑐𝑡     𝑡𝑜                 𝑖    ∈    𝑁 ∑  𝑡    ∈    𝑇 ∑  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 +     𝑝  𝑔𝑟𝑖𝑑 ,    𝑡    ≤     𝑝  𝑑 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
 Where,  p  d,t  describes  the  MGC  power  requirement  at  time  t  ,  p  it  regards  the  power  produced 
 by  the  I  th  DG  at  time  t  ,  the  IDG  set  restricts  to  i  =  {1,  2,  3}  ,  the  scheduling  time  considers  t 

 =  {1,  …  ,  T}  ,  defines  the  cost  function  for  the  I  th  DG  at  time  t  ,  and  𝐶  𝑖 , 𝑡 ( 𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 )  𝐶  𝑡 ( 𝑝  𝑔𝑟𝑖𝑑 , 𝑡 )
 describes the cost function for the utility at the same time. 

 2.5.2.2.  Problem constraints 

 Equation  46  sets  limits  for  production  by  considering  [18].  Equation  47  settles  the  cluster 
 output  balance  corresponding  to  the  estimated  production,  the  battery  availability,  and  the 
 utility  load.  The  battery  condition  separates  into  charging  and  discharging  states,  as  denoted 
 by equation 48, and restrains to specific boundaries with equation 49. 

 (46)  𝑝  𝑖 , 𝑡  𝑚𝑖𝑛 ≤     𝑝  𝑖 , 𝑡    ≤     𝑝  𝑖 , 𝑡  𝑚𝑎𝑥 
 (47)  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =  𝑝  𝑖 , 𝑡  𝑝𝑣 ,    𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 −  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑝𝑣    +  𝑝  𝑖 , 𝑡  𝑤𝑡 ,    𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 −  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑤𝑡 +  𝑝  𝑔𝑟𝑖𝑑 , 𝑡    
 (48)  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒 +  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 
 (49)  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , 𝑚𝑖𝑛    ≤     𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦    ≤     𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑚𝑎𝑥 

 Equation  50  follows  the  batteries’  SoC,  which  in  correspondence,  must  remain  within  its 
 limits  as  indicated  in  equation  51.  Equations  52  and  53  establish  the  battery  charging  power 
 being  achievable  from  both  the  utility  (equation  54)  and  the  generation  (equations  55  and 
 56).  Battery  discharging  into  the  utility  is  controlled  by  equation  57,  mainly  limited  to  the 
 not satisfied demand. 
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 (50)  𝑆𝑜𝐶  𝑖 , 𝑡    =     𝑆𝑜𝐶  𝑖 , 𝑡 − 1 +  𝑝  𝑖 , 𝑡 − 1  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒 .   η 𝑖  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 .∆ 𝑡  𝐶  𝑖  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 +  𝑝  𝑖 , 𝑡 − 1  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 .∆ 𝑡 η 𝑖  𝑏𝑎𝑡𝑡𝑒𝑟𝑦  𝐶  𝑖  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 
 (51)  𝑆𝑜𝐶  𝑖  𝑚𝑖𝑛    ≤     𝑆𝑜𝐶  𝑖 , 𝑡    ≤     𝑆𝑜𝐶  𝑖  𝑚𝑎𝑥 
 (52)  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝑃𝑉 +  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝐺𝑟𝑖𝑑 
 (53)  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒 =  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝑊𝑇 +  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝐺𝑟𝑖𝑑 
 (54)  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝐺𝑟𝑖𝑑    ≥     0 
 (55)  0    ≤     𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝑃𝑉    ≤     𝑝  𝑖 , 𝑡  𝑝𝑣 ,    𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
 (56)  0 ≤  𝑝  𝑖 , 𝑡  𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ,    𝑐ℎ𝑎𝑟𝑔𝑒     𝑊𝑇 ≤  𝑝  𝑖 , 𝑡  𝑊𝑇 ,    𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

 (57) 

 2.5.2.3.  General model performance 

 In  this  case,  the  CREMS  execution  considered  a  summer  week  with  a  moderate  PV  and  WT 
 generation  and  the  batteries'  SoC  initial  state  set  to  100%.  Figure  31  exhibits  the  power 
 scheduling  for  the  MGC.  The  three  lines  present  the  demanded,  dispatch,  and  utility  grid 
 energy  in  red,  black,  and  purple,  respectively.  As  proposed,  the  CREMS  optimizes  both  the 
 energy  delivered  by  each  RES  and  the  one  supplied  by  the  utility  grid  to  cover  the  load. 
 Likewise,  the  utility  grid,  emulated  here  by  the  power  amplifier,  balances  the  energy 
 demand  with  the  generation  in  specific  periods  -  days  2,  3,  and  7.  Figure  32  regards  these 
 specific  time  spots  and  exhibits  the  load  generation  balance  impact  over  the  cost  assumed 
 by  the  MGC  final  users.  As  stated  in  table  4,  the  utility  grid  and  RES  usage  consider 
 operating  fees.  The  market  operator  defines  the  utility  cost  and  the  maintenance,  the 
 replacement,  and  the  lifespan  determine  the  long-term  RES  expense.  Then,  figure  33 
 shows  the  number-one  PV-system  performance  during  the  week.  It  includes  power 
 available,  delivered,  and  charging  state.  The  ML  model  specifies  the  dispatched  power 
 according  to  the  forecasted  power  availability.  Likewise,  within  the  timeframe  considered, 
 the  batteries'  SoC  exhibits  favorable  results  as  its  percentages  stay  regulated  to  the 
 restrained  ones  reducing  high  discharge  repercussions,  expanding  batteries'  lifespan,  and 
 reducing  utility  grid  usage  in  the  charging  process  -  most  of  the  charging  power  comes  from 
 RES.  Figure  34  exhibits  this,  and  figure  31  corroborates  this  statement.  A  similar  analysis 
 applies to the second PV and the wind turbine systems. 
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 FIGURE 31  .  Scheduling results.  Source:  [72]  . 

 FIGURE 32  .  Cost results.  Source:  [72]  . 
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 FIGURE 33  .  PV1 results.  Power units expressed in kW. Source:  [72]  . 

 FIGURE 34  .  Battery´s Soc results.  SoC level expressed in percentage. Source:  [72]  . 
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 2.5.3.  SoC equalization optimization model 

 The  results  presented  in  this  section  are  under  revision  by  Applied  Energy  in  the  paper 
 titled: Full-deployed energy management system tested in a microgrid cluster. 

 The  CREMS  also  considers  minimizing  operating  costs  by  solving  a  typical  EPDP  while 
 equalizing  the  SoC  of  the  ESSs  integrated  into  each  i  th  IDG  through  a  MILP  to  avoid 
 uneven  degradation  of  the  BESS  [61]  .  In  this  way,  when  the  system  disconnects  and 
 reconnects  or,  a  battery  replacement  occurs,  the  CREMS  will  ensure  SoC  equalization.  This 
 follows  the  recommendation  to  perform  an  SoC  equalization  during  the  electrical  system 
 operation  defined  in  [73]  .  To  include  the  SoC  equalization  in  the  optimization  model,  the 
 error between the different SoCs in the  i  th  IDG and  at each time  t  , E  SoCi,t  , is defined as: 

 (58)  𝐸  𝑆𝑜𝐶𝑖 , 𝑡 =  𝑆𝑜  𝐶  𝑖 , 𝑡 −  𝑆𝑜  𝐶  𝑖 + 1 , 𝑡 ( ), ∀ 𝑖     ∈     𝑁 −  1 ,  𝑡     ∈     𝑇 
 The  equalization  reaches  by  minimizing  this  variable.  The  variable  must  be  positive  to 
 indicate a feasible solution and is given by: 

 (59)  𝑆𝑜  𝐶  𝑖 , 𝑡 −  𝑆𝑜  𝐶  𝑖 + 1 , 𝑡 ( ) ≥0 , ∀ 𝑖     ∈     𝑁 −  1 ,  𝑡     ∈     𝑇 

 FIGURE 35  .  Flow diagram for the SoC’s downstring  associated with the SoC error constraint. 
 Source:  [61] 
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 Then,  data  preprocessing  is  required  to  down  sorting  the  SoC  of  the  ESSs  before  conducting 
 the  optimization  problem  for  all  time  t  .  A  decision-making  stage  is  included  within  the 
 optimization  process  to  perform  this  task,  as  shown  in  figure  35.  Thus,  the  algorithm 
 calculates  the  error  between  pairs  (k11  -  k12,  k21  -  k22,  and  k31  -  k32)  and  guarantees  their 
 positiveness.  The definitions of the ancillary indexes guide constraint (59). 

 2.5.3.1.  Objective function 

 The  objective  function  of  the  optimization  problem  presented  in  (60)  optimizes  the 
 operating costs and favors the SoC equalization, 

 (60)  𝑖  ∈  𝑁 ∑  𝑡  ∈  𝑇 ∑  𝐶  𝑖 , 𝑡  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∆ 𝑡 +  𝐶  𝑖 , 𝑡  𝑝  𝐺𝑟𝑖𝑑 , 𝑡 ∆ 𝑡 +  𝐶  𝑖 , 𝑡  𝐸  𝑆𝑜𝐶𝑖 , 𝑡 ( )   
 The  first  two  terms  in  (60)  minimize  the  cost  associated  with  the  usage  of  energy  from  the 

 IDGs  and  the  utility  grid,  where  (  is  the  i  th  IDG  forecasted  energy  and  (  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∆ 𝑡 )  𝑝  𝐺𝑟𝑖𝑑 , 𝑡 ∆ 𝑡 
 )  is  the  energy  exchanged  with  the  utility  grid.  The  third  term  is  a  penalty  for  having  an 
 equalization  error  between  SoCs.  C  i,t  includes  the  cost  of  using  any  resource  and  the 
 penalty  coefficient  related  to  the  equalization.  The  coefficients  were  adjusted  to  give 
 priority to the minimization of the cost. 

 2.5.3.2.  Problem Constraints 

 The  first  constraint  details  the  energy  balance.  At  each  time  spam,  t,  which  lasts  ,  the ∆ 𝑡 
 energy  provided  by  all  the  IDGs,  ,  together  with  the  energy  absorbed  from  the  𝑖 , 𝑁 ∑  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
 grid,  ,  fed  the  load.  In  this  scenario,  the  problem  considers  two  kinds  of  load,  the  one  𝑝  𝐺𝑟𝑖𝑑 , 𝑡 
 measured  by  the  smart  meters,  ,  and  the  forecasted  load  .  This  fact  enables  𝑝  𝑑 , 𝑡  𝑠𝑚𝑎𝑟𝑡  𝑝  𝑑 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 
 the  CREMS  to  react  online  to  mismatches  between  the  forecasted  load  and  real  one  and, 
 consequently,  recalculate  the  dispatched  power  for  each  IDG.  Therefore,  the  equation  that 
 represents the energy balance is, 

 (61)  𝑖 , 𝑁 ∑  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∆ 𝑡    +  𝑝  𝐺𝑟𝑖𝑑 , 𝑡 ∆ 𝑡 −  𝑝  𝑑 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∆ 𝑡 −  𝑝  𝑑 , 𝑡  𝑠𝑚𝑎𝑟𝑡 ∆ 𝑡 =  0 , ∀    𝑡 
 The  energy  of  each  IDG  comes  from  RES,  ,  and  ESSs,  modeled  as  the  subtraction  𝑝  𝑅𝐸𝑆  𝑖 , 𝑡 ∆ 𝑡 
 between the discharged and charged ESS energy, 
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 (62)  𝑝  𝑖 , 𝑡  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∆ 𝑡 =  𝑝  𝑅𝐸𝑆  𝑖 , 𝑡 ∆ 𝑡 +  𝑝  𝐵𝑎𝑡𝑡 , 𝑑𝑖𝑠𝑐  ℎ  𝑖 , 𝑡 ∆ 𝑡 −  𝑝  𝐵𝑎𝑡𝑡 , 𝑐ℎ  𝑖 , 𝑡    ∆ 𝑡 ( ), ∀    𝑡 
 In  turn,  the  power  provided  by  the  IDGs  and  the  utility  grid  should  be  bounded.  On  one 
 part,  the  maximum  power  supplied  by  the  RES  considers  the  manufacturer's 
 recommendations,  which  defines  the  .  In  the  case  of  the  utility  grid,  it  depends  on  𝑝  𝑅𝐸  𝑆  𝑛𝑜  𝑚  𝑖 
 the  infrastructure  and  contracts  with  the  local  operator  to  establish  .  In  this  way,  the  𝑝  𝐺𝑟𝑖  𝑑    
 boundaries of the power of IDGs and the utility grid are, 

 (63)  0 ≤  𝑝  𝑅𝐸𝑆  𝑖 , 𝑡 ≤  𝑝  𝑅𝐸  𝑆  𝑛𝑜  𝑚  𝑖 , ∀ 𝑖 ,  𝑡 
 (64)  0≤  𝑃  𝐺𝑟𝑖𝑑 , 𝑡 ≤  𝑝  𝐺𝑟𝑖  𝑑    , ∀ 𝑡 

 To model the behavior of SoC of the ESSs, its relationship with the exchanged energy is, 

 (65) 

 In  this  way,  the  SoC  available  in  the  ESS  in  the  previous  time  step,  ,  is  updated  by  𝑆𝑜  𝐶  𝑖 , 𝑡 − 1 
 algebraically  adding  the  charged  or  discharged  energy  to  the  ESS,  or  𝑝  𝐵𝑎𝑡𝑡 , 𝑐ℎ     𝑖 , 𝑡 

 respectively,  previously  weighted  with  the  ESS  physical  parameters:  capacity  𝑝  𝐵𝑎𝑡𝑡 , 𝑑𝑖𝑠𝑐  ℎ  𝑖 , 𝑡  Δ  𝑡 
 in kWh,  , and charge or discharge efficiency  and  , respectively.  𝐶  𝑖  𝐵𝑎𝑡𝑡 η 𝑐ℎ  𝑖 η 𝑑𝑖  𝑠  𝑖 
 Finally,  the  variables  of  the  boundaries  also  should  be  defined.  In  this  formulation  these 
 constraints are modeled as, 

 (66)  𝑆𝑜  𝐶  𝑖 , 𝑡  𝑚𝑖𝑛 ≤  𝑆𝑜  𝐶  𝑖 , 𝑡 ≤  𝑆𝑜  𝐶  𝑖 , 𝑡  𝑚𝑎𝑥 ,    ∀ 𝑖 ,  𝑡 
 (67)  0 ≤  𝑝  𝐵𝑎𝑡𝑡 , 𝑐ℎ  𝑖 , 𝑡    ≤  𝑝  𝐵𝑎𝑡𝑡 , 𝑐ℎ𝑚    .  𝑥  𝑏𝑎𝑡𝑡 , 𝑡 , ∀ 𝑖 ,  𝑡 
 (68)  0 ≤  𝑝  𝐵𝑎𝑡𝑡 , 𝑑𝑖𝑠𝑐  ℎ  𝑖 , 𝑡 ≤  𝑝  𝐵𝑎𝑡𝑡 , 𝑑𝑖𝑠𝑐ℎ𝑚    . ( 1 −  𝑥  𝑏𝑎𝑡 , 𝑡 ), ∀ 𝑖 ,  𝑡 
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 The  SoC  boundaries,  and  ,  should  be  in  accordance  with  the  𝑆𝑜  𝐶  𝑖 , 𝑡  𝑚𝑖𝑛  𝑆𝑜  𝐶  𝑖 , 𝑡  𝑚𝑎𝑥 
 recommendations  of  the  provider  to  preserve  the  ESS  life  spam.  Regarding  the  ESS  power 
 limits,  ,  the  charging  and  discharging  processes  also  should  be  𝑝  𝐵𝑎𝑡𝑡 , 𝑐ℎ𝑚     𝑎𝑛𝑑     𝑝  𝐵𝑎𝑡𝑡 , 𝑑𝑖𝑠𝑐ℎ𝑚 
 kept  below  the  recommended  values  to  avoid  damaging  the  ESS.  The  model  includes  a 
 binary  variable,  ,  that  establishes  the  status  of  the  ESS,  i.e.  the  variable  is  1  when  the  𝑥  𝑏𝑎𝑡 , 𝑡 
 ESS  is  being  charged  and  is  0  when  it  is  discharged.  In  this  way,  the  ESS  is  modeled  in  a 
 way that is not charged and discharged simultaneously. 

 2.5.3.3.  SoC equalization performance 

 The  IoT  devices  continuously  track  the  load  consumption  patterns  and  update  the 
 information  to  the  CREMS  to  solve  the  EPDP  in  almost  real-time  to  verify  the  performance 
 of  the  proposed  optimization  problem  within  the  MGT.  With  the  updated  information,  the 
 CREMS  recalculates  the  dispatched  power  for  the  IDG  in  a  rolling-horizon  scheme.  Figure 
 36  shows  one  PV  generation  profile  that  the  IDG  units  used  for  testing  the  operation  in  a 
 one-week timeframe. 

 FIGURE 36  .  PV Generation Profile. Source:  [61] 

 Similarly,  figure  37  shows  two  profiles  related  to  the  load:  the  real-load  profile  and  the 
 forecast-load  profile.  The  first  comes  from  the  IoT  devices  previously  presented,  and  the 
 second  results  from  the  ML  process  performed  by  the  CREMS.  The  load  profiles  represent 
 the  three-house  energy  consumption  in  a  one-week  timeframe.  Also,  figure  37  shows  the 
 added  generation  from  all  the  IDGs  (RESS  power)  and  the  power  exchanged  with  the  utility 
 grid.  Regarding  temporization,  this  test  considered  a  30-minute  time  step  for  the  profiles 
 and a one-week window repeated every 15 minutes for the rolling horizon. 
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 FIGURE 37.  Experimental generation and consumption schedule results. Source:  [61] 

 During  the  experiment,  the  real-load  profile  modifies  according  to  the  predicted-load 
 profile.  It  happens  by  intentionally  employing  a  variable  load  whose  behavior  is  tracked 
 constantly  by  the  CREMS.  The  experiment  design  considers  that  the  generation  dispatched 
 from  the  CREMS  will  always  try  to  match  the  consumption.  However,  under  a  sudden  load 
 variation,  there  would  be  a  latency  caused  by  the  time  required  by  the  IoT  devices  to  update 
 the  measured  data,  which  is  close  to  one  minute,  the  communication  delay,  less  than  one 
 minute,  and  the  time  needed  by  the  CREMS  to  solve  the  dispatch  under  a  rolling-horizon 
 approach,  about  3  minutes.  So,  there  is  an  inherent  time  mismatch  between  generation  and 
 consumption  due  to  various  factors,  basically  four  minutes,  where  the  utility  grid  needs  to 
 compensate  for  the  discrepancy,  as  presented  in  figure  37  by  the  blue  line.  This  also  means 
 having  a  10%  improvement  (34  versus  38  seconds  for  each  RESS),  according  to  the  details 
 given  in  [74]  .  Based  on  the  AWS  reserved  instances  pricing  [75]  ,  the  CC  total  operation 
 cost  per  year  in  the  AWS  EC2  platform  comes  to  USD  220.  This  includes  a  t4.medium 
 instance  in  a  standard  one-year  term.  It  considers  that  the  EC2  system  can  serve  up  to  15 
 processes  simultaneously.  So  the  cost  of  one  microgrid  per  year  is  USD  14.66.  Something 
 similar to the one presented in  [74]  . 
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 Finally,  figure  38  shows  the  results  of  the  SoC  equalization  process  between  batteries.  This 
 experiment  contemplates  intentionally  different  initialization  values  for  the  SoC  in  all  the 
 IDGs  (90%,  50%,  and  35%,  as  observed  in  figure  38).  As  illustrated,  the  SoC  equalization 
 gets  complete  within  days  four  and  five  -  third  time  spot,  remaining  equalized  during  the 
 rest  of  the  experiment  to  the  value  defined  by  the  CREMS  following  the  manufacturer's 
 recommendations to extend the battery's life span  [76]  . 

 FIGURE 38  . SoC equalization. Source:  [61] 

 The  SOC  equalization  time  depends  on  various  elements  but  rests  on  the  available  power  in 
 the  RESS  and  the  load  profile  associated  with  the  time  frame  analyzed,  and  it  is  notorious 
 that  the  equalization  process  moves  as  soon  as  the  CREMS  assumes  control  and  follows  the 
 expected  at  the  tertiary  level  within  hours  and  days.  Comparing  this  outcome  with  other 
 authors'  results  is  not  feasible  because,  to  our  knowledge,  no  similar  experiments  are  testing 
 a  real-life  PHIL  within  the  CREMS.  However,  most  of  the  reviewed  literature  tries  to 
 maintain  the  SOC  of  the  battery  within  an  appropriate  range  (for  instance,  20%  to  60%) 
 during  the  consecutive  energy  dispatch  process,  as  indicated  in  [77]  or  others  like  [78]  and 
 [79]  ,  not  using  ML  or  IoT,  reach  the  SOC  equalization  to  the  four  time-spot,  one  time-spot 
 later  that  the  behavior  presented  in  figure  38.  This  indicates  a  25%  improvement, 
 considering the equalization time for the CREMS. 
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 2.5.4.  Section conclusion 

 Unlike  previous  approaches,  the  system  optimization  algorithm  executes  in  an  MPS 
 instance  using  CC,  ML,  and  IoT.  This  approach  improves  CREMS  performance  by 
 eliminating  offline  optimization.  Also,  the  CC  usage  improves  the  findings  presented  in 
 [29]  as  the  CREMS  relieves  the  utility  costs  and  optimizes  the  battery  usage.  As  the  system 
 can  manipulate  energy  decisions  near  real-time,  the  EMS  structure  adapts  conveniently  to 
 the  amount  of  MGs  available  at  a  specific  time,  providing  an  initial  assessment  to  the 
 energy  administrator  and  the  final  user.  As  proposed,  the  CREMS  optimizes  both  the 
 energy  delivered  by  each  RES  and  the  one  supplied  by  the  utility  grid  to  cover  the  load. 
 Likewise,  the  utility  grid,  emulated  by  the  power  amplifier,  balances  the  energy  demand 
 with  the  generation  in  specific  simulation  periods.  It  is  interesting  to  see  how  the  ML  model 
 specifies  the  dispatched  power  according  to  the  forecasted  power  availability  within  the 
 specific  timeframe.  Besides,  the  IoT  tracking  helps  the  batteries'  SOC  exhibit  favorable 
 results  as  its  percentages  stay  regulated  to  the  restrained  values  reducing  high  discharge 
 repercussions,  expanding  batteries'  lifespan,  and  reducing  utility  grid  usage  in  the  charging 
 process - most of the charging power comes from RES. 

 As  expected,  the  results  presented  in  this  section  and  the  comparison  with  other  authors' 
 outcomes  give  sufficient  evidence  to  support  the  specific  objective  number  four  defined  for 
 the doctoral research. 

 3.  Conclusions 

 Renewables  were  the  only  energy  source  for  which  demand  increased  in  2020  despite  the 
 pandemic,  while  consumption  of  all  other  fuels  declined  [80]  .  This  means  that  integrating 
 higher  shares  of  renewable  energy  systems  technologies,  such  as  wind  and  solar 
 photovoltaic,  in  grid  systems  is  essential  for  decarbonizing  the  power  sector  while 
 continuing  to  meet  the  growing  energy  demand.  As  a  result  of  the  sharply  falling  costs  and 
 supportive  policies,  RES  deployment  has  expanded  dramatically  in  recent  years  [81]  . 
 However,  the  inherent  variability  of  wind  and  solar  photovoltaic  energy  generation  raises 
 challenges for power system operators and regulators. 

 For  this  reason,  this  doctoral  research  defines  a  scalable  and  autonomous  CREMS 
 framework  that  joins  up  maximum  capacity  generation,  power  consumption,  and  EPDP 
 operation  under  an  ML  and  IoT  perspective  running  in  real-time  and  using  cloud  resources 
 to  administer  an  MGC.  Conveniently,  ML  capabilities  deployment  inside  the  CREMS 
 allows  data  sampling  at  much  higher  intervals  improving  the  generalized  one-day  ahead 
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 range  and  decreasing  it  to  minutes-seconds,  overcoming  the  limitations  given  by  data 
 network  congestion,  storage,  and  offline  computing.  The  inclusion  of  ML,  IoT,  and  CC 
 capabilities  in  the  EMS  of  a  cluster  of  integrated  MG  facilitates  data  analysis  under  a 
 real-time experience and permits the SL model definition beyond offline limitations. 

 Additionally,  the  MGT  inclusion  permitted  testing  of  some  framework  features  like 
 autonomy  and  scalability.  The  availability  of  PHIL  interfaces  facilitates  defining  other 
 attributes  like  cost-effectiveness  compared  to  [77]  -  close  to  50%  savings  in  the  overall  CC 
 deployment  and  70%  in  the  utility  grid  usage,  solving  the  dispatch  under  a  4-minute 
 rolling-horizon  approach  and  settling  the  Ethernet  bandwidth  requirements  -  2.56  Mbit/s. 
 Neither  [3]  ,  [29]  ,  [77]  nor  [82]  defined  it.  Moreover,  the  IoT  broker  inclusion  supports  the 
 CC  deployment  as  it  reduces  the  required  bandwidth,  a  key  factor  for  accessing  CC 
 infrastructure. 

 Also,  the  cloud-based  autonomous  algorithms  tested  to  solve  the  EPDP  secure  adequate 
 stability  performance  and  optimal  power  reference  tracking  under  unexpected  load  and 
 generation  changes  in  the  MGC  -  a  crucial  business  issue  for  the  renewable  energy  market 
 growth.  In  fact,  and  according  to  the  experimental  results,  the  CREMS  framework  could 
 expand to the MG secondary level, power management. 

 Finally,  the  inclusion  of  new  information  and  communications  technologies  such  as  CC, 
 ML,  and  IoT  and  the  decentralization  of  information  and  management  systems  bring 
 additional  challenges,  such  as  the  reliability  and  vulnerability  of  the  information  shared  by 
 the  distributed  units  or  the  centralized  management  unit.  The  framework´s  security  warrants 
 data  protection.  This  key  feature  becomes  a  takeaway  element  for  the  CC  provider  and  IoT 
 broker  selection  according  to  the  IEEE  STD  2030.7  -  2017  and  compared  to  local  server 
 research. 

 4.  Thesis contribution 

 The  main  contribution  of  this  doctoral  research  is  defining  a  CREMS  framework  that 
 includes  the  concept  of  CC,  ML,  and  IoT  technologies  to  solve  an  EPDP  in  an  MGC. 
 Unlike  most  previous  approaches,  the  cloud-deployed  real-time  framework  deployed  in  the 
 MPS  [83]  solves  the  EPDP  using  recurrent  MGC  data  for  generation  and  load  energy  in 
 real  time.  Likewise,  the  experimental  verification  utilizes  a  real-life  PHIL  testbed  to 
 validate  the  functionality  of  the  proposed  autonomous  and  scalable  CREMS  deployed  in  the 
 MPS  under  an  AWS  environment.  The  AWS  implementation  guarantees  fast  convergence 
 and  optimality  of  the  dynamic  algorithm  as  it  demands  low  implementation  complexity. 
 This  approach  also  leads  to  a  real-time  EMS  by  eliminating  the  requirement  of  the  offline 
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 optimization  process  proposed  previously  [4],  [84]  .  Additionally,  the  experimental 
 validation  strategy  results  presented  permits  to  differentiate  this  research  from  theoretical 
 perspectives  reported  in  the  literature  [64],  [85]  ,  [86]  .  Finally,  this  doctoral  research 
 corroborates that: 

 1.  The CREMS aims to reduce power costs and optimize battery usage. 
 2.  The CREMS combines prediction, decision-making, CC, IoT, and ML tools. 
 3.  Prediction  of  the  renewable  energy  generation  curve  gave  preliminary  feedback  to 

 the market operator. 
 4.  Prediction  of  the  energy  consumption  curve  gave  preliminary  feedback  to  the  final 

 user. 
 5.  Considering  the  optimization  model  used  by  the  EPDP  and  the  tools  utilized  for 

 real-life  implementation,  the  CREMS  can  manage  the  energy  decision  close  to 
 real-time. 

 6.  The  CREMS  framework  expands  transparently  and  autonomously  according  to  the 
 number  of  MG  connected  to  the  system.  The  final  user  can  create  algorithms, 
 package  them,  and  deploy  them  to  the  cloud  server  without  recoding  or  creating 
 custom infrastructure. 

 7.  Users  can  access  the  latest  version  of  the  analytics  automatically  because  the  cloud 
 server  runs  on  a  multiprocessor  and  multicore  machine,  allowing  simultaneous  job 
 request processing with low latency. 

 5.  Suggestions and future work 

 Two  research  directions  are  worth  the  analysis  effort  for  future  work  and  suggestions.  It  is 
 necessary  to  assess  the  behavior  of  the  proposed  CREMS  in  customer-owned 
 cloud-premises  and  cross-platform  commercial  scenarios  such  as  Google  Cloud  [87]  or 
 Microsoft  Azure  [88]  .  In  addition,  it  would  be  interesting  to  include  other  state-of-the-art 
 technologies  in  the  framework,  like  blockchain  and  deep  learning  capabilities.  Blockchain 
 inclusion  would  support  increasing  the  framework's  security  considering  energy  negotiation 
 within  the  MGC.  Likewise,  deep  learning  capabilities  could  give  a  different  perspective 
 regarding framework autonomy features. 

 6.  Publications 

 6.1.  Book 

 Gestión y ciberseguridad para microredes eléctricas residenciales 
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 Elvis Eduardo Gaona García, David Gustavo Rosero Bernal, Eduardo Alirio Mojica Nava, 
 César Leonardo Trujillo Rodríguez, Nelson Leonardo Díaz Aldana 

 Abstract 

 Electrical  microgrids  have  enabled  the  integration  of  distributed  energy  resources  with 
 different  generation  characteristics,  but  located  locally  into  a  well-defined  area.  The 
 microgrids  look  for  ensuring  the  energy  supply  for  a  specific  load  based  on  local  energy 
 resources.  This  fact  has  allowed  not  only  the  possibility  of  supplying  energy  to  remote 
 communities,  not  interconnected  to  the  utility  grid,  by  means  of  the  integration  of 
 renewable  energy  sources.  Also,  the  microgrid  concept  has  become  a  change  in  the 
 paradigm  of  how  electricity  users  interact  with  the  conventional  energy  grid.  All  this  is 
 possible  by  taking  advantage  of  the  potentiality  of  heterogeneous  distributed  generators  and 
 their  integration  within  microgrids,  always  ensuring  local  consumption  based  on  local 
 resources while reducing the dependence of the utility grid. 

 Given  the  above  points,  and  in  addition  to  an  increasingly  growing  concern  for  reducing  the 
 impact  of  conventional  energy  sources  based  on  fossil  fuels  in  the  environment.  Those  facts 
 have  driven  the  use  of  renewable  energy  sources  with  the  minimum  environmental  impact 
 such  as  photovoltaic  panels  and  wind  turbine  generators  within  the  household  domain.  In 
 this  context,  the  residential  microgrid  concept  emerges  as  an  alternative  for  reducing  the 
 dependence  from  the  utility  grid,  looking  for  an  effective  reduction  on  the  energy  bill,  with 
 a minimum environmental impact. 

 Therefore,  in  a  residential  microgrid,  it  is  necessary  to  ensure  proper  interaction  between 
 heterogeneous  and  highly  variable  energy  resources  with  loads  of  several  different 
 characteristics,  mainly  electronic  loads,  which  should  be  available  to  satisfy  the 
 requirements  of  the  household  owners.  To  perform  this  important  task,  energy  management 
 systems  are  required  for  coordinating  and  managing  all  the  distributed  energy  resources  and 
 loads  within  the  residential  microgrid,  in  such  a  way  that  reliability  of  the  local  energy 
 system  is  ensured.  To  do  this,  the  energy  management  system  is  supported  on  dedicated 
 communication  channels  enabling  the  communication  between  the  distributed  energy 
 resources  and  loads  with  the  management  units.  The  communication  channel  enables  the 
 definition  of  set  points  and  control  commands  for  the  different  loads  and  distributed 
 generators,  and  also  allows  the  energy  management  system  to  receive  information  about 
 loads  and  consumption  profiles  in  order  to  define  the  proper  control  and  coordination 
 action. This layer in the management structure is commonly known as the cybernetic layer. 
 Due  to  the  large  amount  of  information  and  complexity  in  the  management  of  this  amount 
 of  information,  energy  generation  systems  in  residential  microgrids  have  been  supported  in 
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 emerging  technologies,  but  already  well  positioned,  such  as  the  Internet  of  things,  advanced 
 measurement  infrastructure,  or  even  cloud  computing  looking  for  a  faster  an  enhanced 
 information processing and more efficient energy management that responds to user needs. 
 However,  the  use  of  new  technologies  supported  in  communications  systems  means  a  great 
 risk  in  the  management  of  information  and  the  reliability  of  the  microgrid,  due  to  its 
 interaction  with  the  energy  management  system.  In  this  case,  not  only  the  stability  of  the 
 electrical  system  can  be  compromised.  Also,  sensitive  user  information  such  as 
 consumption  preferences,  residence  time  at  home,  etc.  may  be  compromised,  manipulated 
 or  obtained  from  undesired  entities.  Since,  the  information  can  be  acquired  externally 
 without the consent of the users. 

 Based  on  the  above,  the  need  to  address  the  cybersecurity  of  electric  micro  networks  as  the 
 main  theme  of  this  book  is  raised.  The  document  addresses  the  general  characteristics  for 
 an  energy  management  system  in  residential  microgrids  and  explores  the  vulnerability  of  its 
 communications  systems.  At  the  end,  an  exploration  of  strategies  and  architectures  that 
 guarantee the cybersecurity of residential microgrids are explored. 

 Print ISBN: 978-958-787-228-6 
 Digital ISBN: 978-958-787-229-3 

 6.2.  Journal paper 

 Cloud and machine learning experiments applied to the energy management in a 
 microgrid cluster 

 David Gustavo Rosero Bernal, Nelson Leonardo Díaz Aldana,César Leonardo Trujillo 
 Rodríguez 

 Abstract 

 The  way  to  organize  the  generation,  storage,  and  management  of  renewable  energy  and 
 energy  consumption  features  has  taken  relevance  in  recent  years  due  to  demands  that  define 
 the  social  welfare  of  this  century.  Like  demand  increases,  other  factors  require  grid 
 infrastructure  improvement,  updates,  and  opening  to  other  technologies  that  assuage  the 
 final  customer  needs.  Precisely,  the  interest  in  renewable  energy  sources,  the  constant 
 evolution  of  energy  storage  technologies,  the  continuous  research  involving  microgrid 
 management  systems,  and  the  evolution  of  cloud  computing  technologies  and  machine 
 learning  strategies  motivate  the  development  of  this  article.  Tasks  associated  with  a 
 microgrid  cluster  like  the  integration  of  a  considerable  number  of  heterogeneous  devices, 
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 real-time  support,  information  processing,  massive  storage  capabilities,  security 
 considerations,  and  advanced  optimization  techniques  usage  could  take  place  in  an 
 autonomous  and  scalable  energy  management  system  architecture  under  a  machine  learning 
 perspective  running  in  real-time  and  using  Cloud  resources.  This  paper  focuses  on 
 identifying  the  elements  considered  by  different  authors  to  define  a  cloud-based 
 architecture  and  ensure  the  appropriately  supervised  learning  functionality  under  a 
 microgrids  cluster  environment.  Namely,  it  was  necessary  to  revise  and  run  microgrid 
 simulations,  real-time  simulation  platforms  usage,  connection  to  a  virtual  server  for 
 microgrid  control  and  set  the  energy  management  system  using  cloud  computing  and 
 machine  learning.  Based  on  the  review  and  considering  the  scenarios  mentioned,  this  article 
 presents  a  scalable  and  autonomous  cloud-based  architecture  that  allows  power  generation 
 forecast,  energy  consumption  prediction,  a  real-time  energy  management  system  using 
 machine learning techniques. 

 This paper has been published in  Applied Energy  , volume  304, 15 December 2021, 11770 

 6.3.  Journal paper 

 Full-deployed energy management system tested in a microgrid cluster 

 David Gustavo Rosero Bernal, Enrique Sanabria Torres, Nelson Leonardo Díaz Aldana, 
 César Leonardo Trujillo Rodríguez, Adriana Carolina Luna Hernández, Fabio Andrade 

 Rengifo 

 Abstract 

 Under  a  hierarchical  structure  perspective,  the  integration  of  tools  like  the  internet  of 
 things,  cloud  computing,  and  machine  learning  into  a  microgrid  real-time  energy 
 management  system  involves  superior  capabilities  like  an  autonomous  and  scalable  design, 
 massive  storage  capabilities,  real-time  information  analysis  and  processing,  and  security 
 issues  control,  to  mention  a  few.  This  paper  evaluates  most  of  them  using  a  cloud-based 
 real-time  energy  management  system  integrated  into  a  real-life  hardware-in-the-loop 
 testbed.  The  proposed  cloud-based  system  is  tested  by  solving  an  economic  power  dispatch 
 problem  including  the  equalization  of  the  multiple  battery-based  energy  storage  systems 
 interacting  within  a  multi-microgrid  environment.  The  test  assessment  combined  reviewing 
 and  running  microgrid  models,  incorporating  these  models  into  a  real-life 
 hardware-in-the-loop  unit,  linking  the  testbed  to  a  cloud  server,  and  merging  the  energy 
 management  system  with  on-demand  computing  tools,  primarily  machine  learning  and  the 
 internet  of  things.  As  established  by  the  experimental  evidence,  this  paper  cites  the  benefits 
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 of  combining  machine  learning  techniques  and  internet  of  things  tools  with  a  scalable  and 
 autonomous  real-life  cloud-based  energy  management  system  architecture  to  improve  the 
 framework's  functionality,  enhance  the  energy  forecasting  for  generation  and  usage,  and  cut 
 down the price paid to the service provider. 

 This paper has been published in  Applied Energy  , volume  334, 15 March 2023, 120674 

 6.4.  International conference paper 

 Machine Learning Experiments for a Real-Time Energy Management in a Microgrid 
 Cluster 

 David Gustavo Rosero Bernal, Enrique Sanabria Torres, Fabio Andrade Rengifo, Nelson 
 Leonardo Díaz Aldana, César Leonardo Trujillo Rodríguez 

 Abstract 

 In  a  Microgrid,  the  integration  of  many  tasks  makes  possible  an  adequate  energy 
 management  system.  Jobs  involving  real-time  support  and  information  procession  for 
 having  an  autonomous  and  scalable  management  system,  and  others  such  as  massive 
 storage  capabilities  and  security  considerations  to  guarantee  reliability  and  validity,  are  a 
 few.  This  paper  considers  them  to  propose  a  real-time  energy  management  system  based  on 
 the  economic  dispatch  problem  under  a  cloud-based  architecture,  ensuring  the  appropriately 
 supervised  learning  functionality  in  a  Microgrid  cluster.  Namely,  it  was  necessary  to  revise 
 and  run  Microgrid  implementations,  integrate  real-time  simulation  platforms,  connect  to  a 
 virtual  server  from  a  Microgrid  control,  and  set  the  energy  management  system  using  cloud 
 computing  and  machine  learning.  Based  on  the  results,  this  article  presents  a  scalable  and 
 autonomous  cloud-computing  architecture  for  a  real-time  energy  management  system  using 
 machine  learning  techniques  that  allows  power  generation  and  energy  consumption 
 prediction. 

 This paper has been published in  IECON 2021 – 47th  Annual Conference of the IEEE 
 Industrial Electronics Society 

 6.5.  International conference paper 

 Microgrid Structure for testing a Real-Time Energy Management System Model 

 Enrique Sanabria Torres, David Gustavo Rosero Bernal, Fabio Andrade Rengifo, Nelson 
 Leonardo Díaz Aldana, César Leonardo Trujillo Rodríguez 
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 Abstract 

 Proper  management  of  the  tasks  in  a  microgrid  makes  the  energy  management  system 
 successful.  These  tasks  are  based  on  analysis,  control,  and  predictions  in  real-time,  which 
 makes  the  system  capable  of  autonomous  and  guarantees  its  reliability  and  validity.  In  this 
 paper,  an  experimental  Microgrid  testbed  is  proposed  to  allow  emulating  tasks  in  real-time 
 that  involve  predicting  energy  consumption  and  generation  in  an  emulated  Microgrid 
 cluster  with  an  on-cloud  energy  management  system.  It  involves  machine  learning  methods 
 in  order  to  solve  economic  dispatch  problems.  Since  the  use  of  the  supervised  machine 
 learning  technique  to  estimate  future  consumption  and  generation  in  a  system,  helps  the 
 control  system  verify  and  modify  itself.  The  Microgrid  testbed  includes  system  hardware  in 
 the  loop  interface,  hardware  power  in  the  loop,  and  real  inverters  to  have  close  emulation  of 
 the  Microgrid  cluster.  A  communication  protocol  is  also  implemented  to  connect  to  the 
 on-cloud energy management system and the system hardware in the loop. 

 This paper has been published in  2022 IEEE Applied  Power Electronics Conference and 
 Exposition (APEC) 

 6.6.  National conference paper 

 Real-Time Energy Management System Supported on Cloud Services for Cluster of 
 Microgrids 

 David Gustavo Rosero Bernal, Enrique Sanabria Torres, Fabio Andrade Rengifo, Nelson 
 Leonardo Díaz Aldana, César Leonardo Trujillo Rodríguez 

 Abstract 

 An  innovative  microgrid's  energy  management  system  demands  many  features  under  a 
 hierarchical  structure  perspective:  an  autonomous  and  scalable  design,  massive  storage 
 capabilities,  real-time  information  analysis,  and  fast-paced  processing  are  a  few,  and  others 
 such  as  cybersecurity  issues  to  maintain  trustworthiness  and  viability,  are  a  must.  This 
 research  revised  most  of  them  before  integrating  and  deploying  the  proposed  cloud-based 
 real-time  energy  management  system  architecture  in  a  real-life  scenario.  The 
 implementation  solved  an  economic  dispatch  problem,  incorporated  internet  of  things 
 materials,  and  used  suitable  machine  learning  functionalities  in  an  interconnected  microgrid 
 assemblage.  For  this,  the  authors  studied  and  ran  microgrid  models,  deployed  the  models 
 into  hardware-in-the-loop  units,  linked  the  consolidated  hardware  to  a  production  cloud 
 server,  and  merged  the  energy  management  system  with  machine  learning,  and  the  internet 
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 of  things  tools.  As  established  by  real-life  evidence,  this  research  defines  relevant  aspects 
 for  a  fully-deployed  scalable  and  autonomous  real-time  cloud-computing  energy 
 management  system  architecture  to  optimize  energy  generation,  usage  forecasting,  and 
 energy trade. 

 This paper has been accepted in  2022 Workshop on Engineering  Applications (WEA) 
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