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Abstract 

This paper addresses the problem regarding voltage regulation for classical second-order 

DC-DC converters via a nonlinear control technique that is based on the inverse optimal 

control theory. In the literature, there are a few papers describing the inverse optimal control 

for DC-DC converters, hence, this paper is a contribution to the state of art in nonlinear 

control techniques for DC-DC converters. The analyzed converter topologies are: (i) Buck; (ii) 

Boost; (iii) Buck-Boost; and (iv) Noninverting Buck Boost. A dynamic model as a function of 

the error of the state variables was proposed, which helped demonstrate that the 

implemented inverse optimal control law with proportional-integral action for the analyzed 

converters guarantees stability for closed-loop operation by means of the Lyapunov theorem. 

A numerical validation was performed through simulations in PSIM software, contrasting 

the established control law, the PI passivity-based control law, and the open-loop control. The 

results showed that both nonlinear control laws have a similar dynamic response and better 

results in contrast with the open-loop control, with negligible error despite the load variations. 

The main objective of this research was to apply inverse optimal control theory with integral 

action to the typical second-order DC-DC conversion topologies in order to regulate voltage in 

linear loads by means of a stable operation regardless of load variations and the application. 

It's concluded that the proposed method is easier to implement and with better dynamical 

behavior than the PI-PBC, guaranteeing asymptotic stability from the closed-loop control 

design. 
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Inverse Optimal Control, DC-DC Converter, Nonlinear Control Systems, Dynamical 
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Resumen 

Este artículo aborda el problema de regulación de tensión para convertidores DC-DC 

clásicos de segundo orden mediante una técnica de control no lineal que está basado en la 

teoría de control óptima inversa. En la literatura, hay pocos artículos que describen el control 

optimo inverso para convertidores DC-DC, por tanto, este artículo es una contribución al 

estado del arte en técnica de control no lineal para convertidores DC-DC. Las topologías de 

los convertidores analizados son: (i) Buck; (ii) Boost; (iii) Buck-Boost; y (iv) Buck-Boost No 

Inversor. Se planteó un modelo dinámico en función del error de las variables de estado, el 

cual ayudó a demostrar que la ley de control óptima inversa con acción proporcional-integral 

implementada para los diferentes convertidores garantiza la estabilidad para operación en 

lazo cerrado mediante el teorema de Lyapunov. Se realizó la validación numérica mediante 

simulaciones en el software PSIM, comparando la ley de control establecida, la ley de control 

PI basada en pasividad y un control en lazo abierto. El objetivo principal de esta investigación 

fue implementar la teoría de control óptimo inverso con acción integral a las topologías típicas 

de conversión DC-DC para regular tensión independientemente de las variaciones de la carga 

y de la aplicación. Se concluye que el método propuesto es más sencillo de implementar y con 

mejor comportamiento dinámico que el PI-PBC, garantizando la estabilidad asintótica desde 

el diseño de control en lazo cerrado. 
 

Palabras clave 
Control Óptimo Inverso, Convertidores DC-DC, Sistemas de Control No Lineal, Sistema 

Dinámico, Función de Lyapunov 

  



1. INTRODUCTION 

 

Population growth, technology advances, infrastructure, and greenhouse gases have 

caused the electric energy demand to increase disproportionately in the last years around the 

world [1]. An example of this is the increased use of electric vehicles (EVs), which have 

required an accelerated strengthening of the electric systems infrastructure with the objective 

of meeting the electric energy demand while also considering a sustainable future thanks to 

the low 𝐶𝑂2 emissions of EVs. This type of vehicles contributes to mitigating air pollution 

problems, which makes them attractive for consumers [2]. All of this is linked to the multiple 

mechanisms and proposals that have been made for governmental entities to reach common 

objectives like Net-Zero 2050, which consists of preventing an increase in the earth’s average 

temperature 1.5 °𝐶 over the current values, thus achieving 0% 𝐶𝑂2 emissions by 2050 [3]. 

The electric energy demand in 2020 was 23300 TWh. By 2030, 30000 TWh are 

expected [4]. To meet that demand, it is necessary to broaden the use of electric energy, and, 

considering the objectives mentioned above, it is necessary to incorporate technologies with 

renewable sources as their primary energy input. The energy supply growth through 

renewable energy sources has been increasingly promoted. For example, the wind and solar 

power generated in 2020 was 93 GW and 139 GW, respectively [5], [6]. 

Increasing the renewable energy capacity brings a number of challenges. Among these are 

the mechanisms for integration to the electricity market and their effects on the price of 

electricity [7], as well as the impact and participation of power systems modeling and 

optimization in the search of intelligent network development [8]. On the other hand, power 

systems control is an important challenge to overcome regarding optimal systems operation. 

Furthermore, converter control is also among these challenges with respect to their 

integration to power systems (such as VSCs, FACTs, etc.), due the fact that their operation 

depends on the energy source and the power system itself. Thus, converters could connect to 

energy networks and improve their behavior [9]. In this context there are different kind of 

controls which have been implemented in both converters and inverters. Particularly, the 

direct current converter control involves a diversity of techniques [10] - [12], namely, direct 

pole placement [13]; voltage control mode [14]; current control mode [15], [16]; PID control 

[17]; classical half cycle posicast control [18]; hybrid posicast control [19]; sliding control mode 

[20]; fuzzy logic control [21], [22]; neural network-based control [23]; predictive model control 

[24]; state space modeling control and passivity-based control [25], [26]; and intelligent 

control, among others. These techniques allow achieving and/or satisfying the demands of 

problems in specific systems. An example of this is improving the behavior of the converters’ 

dynamic response, increasing the efficiency, and reducing their own power losses. To 

summarize the main literature reports in the current literature regarding control and its 

applications in DC-DC converters, Table 1 lists important reference works that have dealt 

with control designs in the converters under study.  

It is important to mention that, despite having been generally addressed in the scientific 

literature for DC-DC power converters [27] - [29], inverse optimal control has not been 

addressed as it is in this document. The papers presented by Vega & Alzate in [27], [28] and 

by Villegas-Ruvalcaba et al in [29], only describe the inverse optimal control for the Boost 

converter. For that reason, the following contributions from this research are presented: 

• A general methodology to implement inverse optimal control theory to any second-order 

DC-DC converter for voltage regulation in generic resistive loads. 

• The addition of integral gain to the classical inverse optimal control design in order to 

reduce possible steady state errors in the voltage regulation caused by unmodeled 

dynamics in DC-DC converters.  



• The explicit demonstration of the stability in closed-loop operation for all the DC-DC 

converters studied via Lyapunov’s stability theory. 

 
Table 1. Background of some control techniques used in DC-DC converters. Source: created by the authors. 

Ref. Title of the Paper Objective Methodology 
Control &/or 

Converter 
Results 

[14] 

Design of Digital 

PID Controller for 

Voltage Mode 

Control of DC-DC 

Converters 

To get a 

better 

response from 

the DC-DC 

converters 

through PID 

digital 

control. 

Design and simulation of the 

PID digital control for DC-

DC converters in 

MATLAB/Simulink. 

Voltage Mode 

Control. 

Buck-Boost. 

The proposed digital 

control improves the 

performance of the DC-

DC converters under 

disturbances, obtaining a 

stable output voltage. 

[20] 

Sliding-Mode PID 

Control of DC-DC 

Converter 

To 

implement, 

analyze, and 

compare the 

conventional 

sliding mode 

control and 

PID sliding 

mode control. 

Modeling the dynamic 

system of a Buck converter, 

to establish the conventional 

equations of the sliding mode 

control and the PID sliding 

mode control. A stability 

analysis is conducted to 

obtain the optimal 

parameters of the control. 

Finally, a simulation is made 

while considering a fixed and 

a variable load. 

PID sliding 

control mode 

and 

conventional 

sliding control 

mode. 

 

Buck. 

The simulation results of 

the system show that 

PID sliding mode control 

has a better dynamical 

response and a statical 

performance than the 

conventional sliding 

mode control.  

 

[21] 

Fuzzy Logic 

Controller (FLC): 

Application to 

Control DC-DC 

Buck Converter 

To model a 

controllable 

system for a 

Buck 

converter. 

A dynamic model for a Buck 

converter is obtained. A 

Fuzzy Logic controller is 

modeled for the Buck 

converter and then simulated 

in MATLAB/Simulink. 

Fuzzy Logic 

Control. 

Buck. 

The effectiveness of the 

fuzzy logic controller is 

demonstrated as applied 

to a Buck converter, 

showing a good 

performance and thus 

proving the robustness 

and the good 

stabilization quality of 

the controller. 

[25] 

Sensorless 

Adaptive Voltage 

Control for 

Classical DC-DC 

Converters Feeding 

Unknown Loads: A 

Generalized PI 

Passivity-Based 

Approach 

To carry out 

the design, 

simulation, 

and 

implementati

on of the PI-

passivity-

based control 

for classical 

DC-DC 

converters. 

Obtaining the mathematical 

model of the PI-passivity-

based control, the dynamical, 

and the representation of the 

PI-passivity-based control for 

classical DC-DC converters, 

as well as performing an 

estimation based on a system 

without sensors applied to an 

unknown resistive load 

through simulations and 

experimental results. 

PI Passivity 

Based 

Control. 

Buck, Boost, 

Buck-Boost, 

Noninverting 

Buck-Boost. 

The results show that the 

proposed control method 

exhibits and adequate 

output voltage regulation 

in all converters in a 

similar way to the 

behavior of a first-order 

system.  There were no 

overshoots due to load 

variations. This method 

is better than classical PI 

control.  

 

The structure of this paper is as follows: Section 2 summarizes the main definitions and 

aspects that contribute directly to the research; Section 3 presents the general modeling for 

studied classical second-order DC-DC converters; Section 4 presents dynamic modeling as a 

function of the error of the state variables for the studied second-order DC-DC converters; 

Section 5 presents the implementation of inverse optimal control while adding proportional 

and integral action for the studied classical second-order DC-DC converters; Section 6 



presents the numerical validation and analysis of the implemented inverse optimal control 

for the studied converters through simulations of the voltage and current dynamic response 

via the PSIM software, which is in turn compared with open-loop control and other types of 

nonlinear control (PI passivity-based control), using the parameters described in [26]; and 

finally, Section 7 presents the conclusions and future work. 

 

 

2. REFERENCE FRAMEWORK 

 
2.1 State space modeling 

 

State space modeling is a way to represent the dynamic equations of a system, which 

consist of a set of first-order differential equations where the variables are known as state 

variables. This kind of equations are particularly useful in modern control theory [30], [31]. 

These equations are a canonical form to write the differential equations that describe the 

dynamical behavior of a system. In the case of converters, state variables are associated with 

the elements that store energy, i.e., capacitors and inductors. In the case of capacitors, the 

state variable is the voltage and in the inductors are the current [30]. State variables must 

satisfy these two conditions [31]: 

a. At any initial time 𝑡 = 𝑡0, state variables define the initial state of the system. 

b. Once the input of the system for 𝑡 ≥ 𝑡0 and the initial states defined above are specified, 

the state variables must completely define the behavior of the system in the future. 

Therefore, state variables “are defined as a minimum set of variables 𝑥1(𝑡), 𝑥2(𝑡), ..., 𝑥𝑛(𝑡), 

whose knowledge in any time 𝑡0, and the knowledge of the excitation input information that 

is applied subsequently, are enough to find the state of the system at any time 𝑡 > 𝑡0” [31]. 

The state equations can be represented in the form of a matrix, as is shown in (1) [30], 

[31]: 

 

𝑲
𝑑𝒙(𝑡)

𝑑𝑡
= 𝑲�̇� = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) (1) 

where 𝒙(𝑡) is the vector that contains the state variables; 𝒖(𝑡) is the input vector that 

contains the independent inputs to the system (as an example, it could be the voltage of the 

input source in a converter); �̇� is the derivative of the state variables vector; 𝑲 is the vector 

that contains the respective elements (in the case of the converters, it would be the 

capacitances, inductances, and mutual inductances, if any); and the 𝑨 and 𝑩 matrices contain 

proportionality constants.  

As state variables are the voltage (in volts – V) and current (in amperes – A) of the 

capacitor and the inductor, respectively, as shown in (2) and (3), it is necessary to define what 

these two variables are: 

 

𝑣𝐿(𝑡) =  𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 (2) 

𝑖𝑐(𝑡) =  𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 (3) 

 

If we refer to second-order converters, it is necessary to consider both state variables, 

thus making it possible to find the state equations. Thereupon, it is important to consider the 



two states of the switch in the converter. The two states are added, knowing that 𝐴1 and 

𝐵1 refer to when the switch is on and 𝐴2 and 𝐵2 to when the switch is off. Then, (4) is obtained 

[30], [32]: 

 

𝑨 = 𝑨1𝐷 + 𝑨2𝐷′ 
(4) 

𝑩 = 𝑩1𝐷 + 𝑩2𝐷′ 
 

where 𝐷 𝜖 [0 − 1] is the control variable (also known as 𝑢) and  𝐷′ = 1 − 𝐷. This variable 

is dimensionless. 

 
2.2 Inverse optimal control 

 

The optimal control of a system implies finding the best approximation of an objective 

depending on a given performance criteria [33].  This control seeks to find all the performance 

indices for which a given control law is optimal [34]. In addition, this avoids the explicit 

solution of the Hamilton-Jacobi-Bellman equation (HJB), which establishes the beginning of 

optimal control, in order to find the optimal control law [35]. Optimization, i.e., either 

maximizing or minimizing (depending on the system requirements), is carried out through a 

cost function or performance index associated with system variables such as the error, the 

control signal, and the state vector. This function has the form shown in (5) [27], [28], [34]–

[36]: 

 

𝐽(𝑥(𝑡), 𝑢(𝑡)) = ∫ (ℒ{𝑥(𝑡), 𝑢(𝑡)})𝑑𝑡
∞

0

= ∫ (𝑙(𝑥(𝑡)) + 𝑢𝑇(𝑡)𝑅(𝑥(𝑡))𝑢(𝑡)) 𝑑𝑡
∞

0

 (5) 

where 𝐽(𝑥(𝑡), 𝑢(𝑡)) is the cost function (also known as performance index) that represents 

the cumulative contribution over time; ℒ{𝑥(𝑡), 𝑢(𝑡)} is known as the loss or Lagrangian 

function, which is the soft function that depends on t, x, and u, (it is also a continuously 

differentiable function with respect to x(t) and u(t)); 𝑙(𝑡) ≥ 0 represent the weighing error; x(t) 

is the state vector ϵ 𝑅𝑛; u(t) ϵ 𝑅𝑚 is the control vector; 𝑅(𝑥) > 0 ∀ 𝑥(𝑡); and T denotes the 

transpose of the matrix. 

In the inverse approximation, the stabilizer feedback is first designed, and then it is 

demonstrated that is optimal for the cost function 𝐽(𝑥(𝑡), 𝑢(𝑡)). It is said that the problem is 

inverse because the functions 𝑙(𝑥) and 𝑅(𝑥) are determined by the stabilizer feedback instead 

of being chosen a priori by the designer [36]. The stabilized control law 𝑢(𝑥) answers the 

optimal inverse control problem for the system with (6)  [27], [28], [34]–[36]: 

 

𝑥(𝑡)̇ = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡), 𝑥0 = 𝑥(0) (6) 

  
where 𝑓: 𝑅𝑛 → 𝑅𝑛 and 𝑔: 𝑅𝑛 → 𝑅𝑛𝑥𝑚 are generally nonlinear functions of the state. When 𝐽 

is minimum, it is known as the function of optimal value, which is regarded as the Lyapunov 

function denoted by 𝑉(𝑥). If 𝑢(𝑡) is optimal, it is denoted as 𝑢∗. To find the optimal control 

law, it is necessary to define the associated Hamiltonian of the system, which is given by (7) 

[27], [35]: 

 

ℋ(𝑥(𝑡), 𝑢(𝑡)) = 𝑙(𝑥(𝑡)) + 𝑢𝑇(𝑡)𝑅(𝑥(𝑡))𝑢(𝑡) + [
∂𝑉

∂𝑥
(𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡))]

𝑇

 (7) 



 

To ensure optimality, 
∂ℋ

∂𝑢
= 0 is required, so (7) can be rewritten as is shown in (8): 

 

∂ℋ

∂𝑢
= 2𝑅(𝑥(𝑡))𝑢(𝑡) + 𝑔𝑇(𝑥(𝑡))

∂𝑉

∂𝑥
= 0 (8) 

 

Equation (9) is given after clearing (8): 

 

𝑢∗ = −
1

2
𝑅−1(𝑥(𝑡))𝑔𝑇(𝑥(𝑡))

∂𝑉

∂𝑥
,  𝑅(𝑥) > 0 (9) 

The equation above is the optimal control law and can be written in a formal way using 

the following theorem [27], [35], [36]: 

 

- Theorem 1 (sufficient condition for optimality): 

If a positive semidefinite function 𝑉(𝑥) exists which is differentiable once 𝐶1, that 

satisfies the HJB, (10) is obtained 

 

𝑙(𝑥) +
∂𝑉

∂𝑥
𝑓(𝑥) −

1

4

∂𝑉

∂𝑥
𝑔(𝑥)𝑅−1(𝑥)𝑔𝑇(𝑥)

∂𝑉

∂𝑥
= 0,  𝑉(0) = 0 (10) 

where 𝑙(𝑥) and 𝑅−1(𝑥) are given by the cost function, while 𝑓(𝑥) and 𝑔(𝑥) by the system, 

then the control law shown in (9) ensures global asymptotic stabilization at the equilibrium 

point. Thus, 𝑢∗(𝑥) is the stabilizer inverse optimal control that minimizes the cost function, 

guaranteeing that lim
𝑛→∞ 

𝑥(𝑡) = 0 and 𝑉(𝑥) is the optimal value function. To solve the optimal 

control problem, it is necessary to solve (10). 

 
2.3 Lyapunov theorem 
 

A system is stable, according to Lyapunov, if the function 𝑉(x) satisfies the following set 

of conditions [37]: 

Condition 1. ∀𝑥 =  0, the chosen Lyapunov function for his point must be equal to zero, 

as shown in (11). 

 

 𝑥 = 0, 𝑉(𝑥) = 0 (11) 
 

Condition 2. ∀𝑥 ≠ 0, the chosen Lyapunov function must be greater than zero, as shown 

in (12). 

 

𝑥 ≠ 0, 𝑉(𝑥) > 0 (12) 
 

Condition 3. The chosen Lyapunov function derivative with respect to time must be 

lower than zero, as shown in (13). 

 

𝑑𝑉(𝑥)

𝑑𝑡
< 0 (13) 

 

If the three conditions above are fulfilled, then the system is stable. 



 

2.4 DC-DC Converters 
 

A DC-DC converter is a power electronic circuit that allows conversion between DC voltage 

levels by stepping up or down the voltage. These circuits can be controlled through different 

methods that involve regulating the voltage for it to remain constant when there are load 

variations.  

In general, all converters consist of inductors, capacitors, diodes, and transistors. 

Inductors and capacitors act together as a low-pass filter to remove the harmonics produced 

by the transistor’s commutation in order to only allow the DC component to pass to the load 

[30]. To keep the input and output power equal, it is mandatory that the converters step up 

or down the current depending on the converter [26]. 

For DC-DC converters, an analogy can be made with a transformer, which works with AC 

signals while DC-DC converters work for DC signals for the sake of redundancy. 

To control the converters, a PWM is needed (the most classical control). Two states of the 

transistor are given: on and off. The PWM interval is the duty-cycle that is the amount of time 

that the transistor is in on state or off state as a percentage of the total time of it takes to 

complete one cycle, and is between 1 and 0, and, depending on the converter topology, it helps 

to step up or down the output voltage. 

 

3. PROPOSED METHODOLGY  

 

Figure 1 shows the methodology used to model the converters and obtain the functions 

that describe the control laws for each of them.  

 

 
Figure 1. Proposed research methodology. Source: created by the authors.   

 

The first step is to choose the converter for which the control law will be obtained to later 

implement the dynamic modeling (state equations) of the chosen converter. The obtained 



state equations must be evaluated in the equilibrium point to get 𝑢∗, and they must also be 

written in terms of error. Then, the inverse optimal control can be implemented, where the 

Lyapunov candidate function must be chosen first. This function must satisfy conditions 1 

and 2 of the Lyapunov theorem, so �̃� can be obtained. Condition 3 of the Lyapunov theorem 

can then be evaluated. If this condition is satisfied, then the inverse optimal control with 

proportional action law is obtained. Afterwards, an integral action is added, and condition 3 

of the Lyapunov theorem is evaluated. If the condition is satisfied, then the inverse optimal 

control with proportional-integral action is obtained. Finally, numerical validation is made to 

evaluate the control law that was found through simulation. 
 

 

4. GENERAL MODELING OF CLASSICAL DC-DC CONVERTERS 

 

This section presents the general dynamic modeling of the most classical DC-DC 

converters. The studied topologies are Buck, Boost, Buck-Boost, and Noninverting Buck-Boost 

converters. The general characteristic of these kind of converters is that they are classified as 

second-order converters since each of them presents two associated dynamics (current and 

voltage of the inductor and capacitor, respectively). Figure 2 shows the studied converters’ 

general structure. These are connected to a resistive load, which is modeled as a conductance 

𝐺𝐿.  

 

  
(a)  (b) 

  
(c) (d) 

Figure 2. Second-order DC-DC converters: (a) Buck converter, (b) Boost converter, (c) Buck-Boost converter, (d) 

Noninverting Buck-Boost converter. Source: created by the authors. 
 

Variables and parameters in Figure 2 have the following interpretation: 𝐸 > 0 corresponds 

to the input voltage (in volts - V); 𝑖 > 0 represents the associated current of inductor L (in 

amperes - A); 𝑣 represents the output voltage associated to capacitor C (in volts - V); and 

𝑢 ϵ [0 − 1] represents the input control variable applied to the forced commutation of the 

transistors (dimensionless quantity) [25]. To obtain the state equations of the converters 

(Figure 2), it is necessary to use Kirchhoff’s current and voltage laws in the two states in 

which the converters operate (with Q on and Q off) [26]. Kirchhoff’s laws must be applied both 

in the mesh that contains the inductor and in the node in which the capacitor is located within 

each state. 

To obtain the dynamic model of the DC-DC converters, the following assumptions must be 

made [26]: 



Assumption 1. The power losses, both in the transistor Q and the diode D, are neglected. 

Assumption 2. The input voltage and the state variables (current and voltage of the 

inductor and capacitor respectively) are measurable. 

Assumption 3. The converter parameters (inductor L and Capacitor C) are positive 

definite.  

Assumption 4. The value of the constant resistive load (modeled as a conductance) is 

bounded and positive. 

Assumption 5. The switching frequencies are sufficiently high to employ the average 

modeling theory.  

By renaming the state variables and then deriving them, we have (14) [32]: 

 

𝑥1(𝑡) = 𝑖(𝑡);  �̇�1(𝑡) =
𝑑𝑖(𝑡)

𝑑𝑡
 

𝑥2(𝑡) = 𝑣(𝑡);  �̇�2(𝑡) =
𝑑𝑣(𝑡)

𝑑𝑡
 

(14) 

 

Equations above are the renamed equations of state variables. 𝑥1 is the current in the 

inductors and �̇�1 its derivative; 𝑥2 is the voltage in the capacitors and �̇�2 its derivative. 
 

4.1 Buck converters 

 

Buck converters (also known as step-downs or ‘Choppers’ – Figure 2a) are a type of DC-

DC converter intended for stepping down the voltage [30]. Their most common application is 

to regulate the output voltage for load variations [26]. By using the Kirchhoff laws, (15) and 

(16) are obtained: 

 

𝐿�̇�1(𝑡) = −𝑥2(𝑡) + 𝐸𝑢(𝑡) (15) 

𝐶�̇�2(𝑡) = 𝑥1(𝑡) − 𝐺𝐿𝑥2(𝑡) (16) 

 

Equations above are the state equations that describe the dynamical behavior of the Buck 

converter. 
 

4.2 Boost converters 

 

DC-DC converters are also called step-ups (Figure 2b) because the output voltage is 

greater than the input voltage. Their main application is in the DC-regulated energy sources 

and DC motor regenerative speed braking [38]. By using the Kirchhoff laws, (17) and (18) are 

obtained: 

   

𝐿�̇�1(𝑡) = −(1 − 𝑢(𝑡))𝑥2(𝑡) + 𝐸 (17) 

𝐶�̇�2(𝑡) = (1 − 𝑢(𝑡))𝑥1(𝑡) − 𝐺𝐿𝑥2(𝑡) (18) 

 

Equations above are the state equations that describe the dynamical behavior of the Boost 

converter. 
 



4.3 Buck-Boost converter 

 

This type of converter (as shown in Figure 2c) is the cascade connection of Buck and Boost 

converters. The output voltage can be lower or greater than the input voltage, and it has an 

opposite polarity to the input voltage. By using the Kirchhoff laws, (19) and (20) are obtained: 

 

𝐿�̇�1(𝑡) = (1 − 𝑢(𝑡))𝑥2(𝑡) + 𝐸𝑢(𝑡) (19) 

𝐶�̇�2(𝑡) = −(1 − 𝑢(𝑡))𝑥1(𝑡) − 𝐺𝐿𝑥2(𝑡) (20) 

 

Equations above are the state equations that describe the dynamical behavior of the Buck-

Boost converter. 
 

4.4 Noninverting Buck-Boost converter 

 

This type of converter is similar to Buck-Boost converters. The difference is that the output 

voltage polarity has the same as the input voltage. These converters, compared to their 

homonymous, have two transistors and two diodes that are commuted at the same time in 

the corresponding interval (𝑄1 and 𝑄2 in interval 1, and 𝐷1 and  𝐷2 in interval 2 – Figure 2d). 

Their voltage output also can be greater or lower than the input voltage. By using the 

Kirchhoff laws, (21) and (22) are obtained: 

 

𝐿�̇�1(𝑡) = −(1 − 𝑢(𝑡))𝑥2(𝑡) + 𝐸𝑢(𝑡) (21) 

𝐶�̇�2(𝑡) = (1 − 𝑢(𝑡))𝑥1(𝑡) − 𝐺𝐿𝑥2(𝑡) (22) 

 

Equations above are the state equations that describe the dynamical behavior of the 

Noninverting Buck-Boost converter. 

 

5. DYNAMIC MODELING IN FUNCTION OF THE ERROR 

 

To obtain the error model of the converters, it is necessary to begin with their dynamic 

equations, namely (15) to (22). The analysis of the model must be evaluated at the equilibrium 

point 𝑥∗, which is equivalent to zero (𝑥∗ = 0) and then 𝑓(𝑥∗) = 0, as well as at the equilibrium 

point, 𝑢∗ = 0. The equations (23) and (24) following variables are needed: 

 

𝑦 = 𝑘(𝑥) (23) 

𝑢 = −𝑘(𝑥) (24) 

 

Moreover, the dynamic error behavior must be considered. The equations (25) and (26) 

represent the error.: 

 

�̃� = 𝑥 − 𝑥∗ (25) 

�̃� = 𝑢 − 𝑢∗ (26) 



where, �̃� is a vector that represents the error and has the same dimension as the state 

variables vector that contains the error of current �̃�1 and the voltage of the capacitor �̃�2 and 

�̃� is the input control variable (ideally, the error must be equal to zero). 

To obtain 𝑥∗, the state equations must be evaluated at the equilibrium point. This is 

important because the system signals are constants, and the derivative at the equilibrium 

point is therefore zero. 

To demonstrate the procedure, modeling will be carried out with the Buck converter. 

However, the procedure is the same for all converters.  
 

 

5.1 Buck converter modeling 

 

For the current state equations, the model is not satisfied. This is because the function is 

not equal to zero. Evaluating at the equilibrium point, we have (27) and (28): 

 

𝐿�̇�1
∗ = −𝑥2

∗ + 𝑢𝐸 = 0 (27) 

𝐶�̇�2
∗ = 𝑥1

∗ − 𝐺𝐿𝑥2
∗ = 0 (28) 

 

Clearing equations above, (29) and (30) are given: 

 

𝑢∗ =
𝑥2

∗

𝐸
 (29) 

𝑥1
∗ = 𝐺𝐿𝑥2

∗ (30) 

  

Equations (29) and (30) is the control law 𝑢∗ 𝜖 [0 − 1] at the equilibrium point and (30) is 

the current 𝑥1
∗ in terms of the output voltage  𝑥2

∗ at the equilibrium point, show that we are 

working with a Buck converter. It is important to remember that the control law is given by 

the ratio of the output voltage over the input voltage for this converter [39] and that 𝑥2 = 𝑣, 

as expressed by (14). The control can be implemented with the steady state variables and a 

basic PWM. However, the problem is that the desired response takes a long time to stabilize. 

For the control law, 𝑢∗ was obtained. Now, the objective is to obtain �̃�. First, (25) and (26) 

are replaced in the dynamic equations of the converter obtaining (31) and (32): 

 

𝐿(�̇̃�1 + �̇�1
∗) = −(�̃�2 + 𝑥2

∗) + (�̃� + 𝑢∗)𝐸 (31) 

𝐶(�̇̃�2 + �̇�2
∗) = (�̃�1 + 𝑥1

∗) − 𝐺𝐿(�̃�2 + 𝑥2
∗) (32) 

 

Equations above demonstrate how the error is implemented in state equations and can 

be reduced using (27) and (28), as is shown in (33) and (34): 

 

�̇̃�1 = −
�̃�2

𝐿
+

�̃�𝐸

𝐿
 (33) 

�̇̃�2 =
�̃�1

𝐶
−

𝐺𝐿�̃�2

𝐶
 (34) 

 



Equations above are the simplified equations in terms of the error and can be rewritten 

in matrix form as is shown in (35): 

 

�̇̃� = [
�̇̃�1

�̇̃�2

] ; �̃� = [
�̃�1

�̃�2
] ;  𝑓(�̃�) = [

0 −
1

𝐿
1

𝐶
−

𝐺𝐿

𝐶

] ;  𝑔(𝑥) = [
𝐸

𝐿
0

] (35) 

It’s important to mention that the equilibrium points of x̃ = 0. This is because 𝑥 = 𝑥∗ is 

desirable. 

 
5.2 Boost converter modeling 

 

Like the Buck converter, the error model for the Boost converter can be obtained using 

the dynamical equations. Equations (36) and (37) show that we are working with a Boost 

converter [39]. 

 

𝑢∗ = 1 −
𝐸

𝑥2
∗ (36) 

𝑥1
∗ =

𝐺𝐿𝑥2
∗2

𝐸
 (37) 

 

By adding the error to the system through (25) and (26) in (17) and (18) and simplifying, 

(38) and (39) are obtained: 

 

�̇̃�1 = −
(1 − 𝑢∗)�̃�2

𝐿
+

(�̃�2 + 𝑥)�̃�

𝐿
 (38) 

�̇̃�2 =
(1 − 𝑢∗)�̃�1 − 𝐺𝐿𝑥2

𝐶
−

(𝑥1
∗ + �̃�1)�̃�

𝐶
 (39) 

 

The equations above are the simplified equations in terms of the error and can be 

rewritten in the form of a matrix, as is shown in (40). 

 

𝑓(�̃�) = [
0 −

(1 − 𝑢∗)�̃�2

𝐿
(1 − 𝑢∗)�̃�1

𝐶
−

𝐺𝐿�̃�2

𝐶

] ;  𝑔(𝑥) = [

𝑥2
∗ + �̃�2

𝐿

−
𝑥1

∗ + �̃�1

𝐶

] (40) 

5.3 Buck-Boost converter modeling 

 

Using the dynamic equations at the equilibrium point, (40) and (41) are obtained: 

 

u∗ =
x2

∗

x2
∗ − E

  (41) 



𝑥1
∗ =

𝐺𝐿𝑥2
∗(𝑥2

∗ − 𝐸)

𝐸
 (42) 

 

Equations (41) and (42) show that we are working with a Buck-Boost converter [39]. By 

adding the error to the system through (25) and (26) in (19) and (20) and simplifying, (43) and 

(44) are obtained: 

 

�̇̃�1 =
(1 − 𝑢∗)�̃�2

𝐿
−

(�̃�2 + 𝑥2
∗ − 𝐸)�̃�

𝐿
 (43) 

�̇̃�2 =
−(1 − 𝑢∗)�̃�1 − 𝐺𝐿�̃�2

𝐶
+

(𝑥1
∗ + �̃�1)�̃�

𝐶
 (44) 

 

The equations (43) and (44) are the simplified equations in terms of the error and can be 

rewritten in the form of a matrix as is shown in (45).  

 

𝑓(�̃�) = [
0

(1 − 𝑢∗)�̃�2

𝐿
−(1 − 𝑢∗)�̃�1

𝐶
−

𝐺𝐿�̃�2

𝐶

] ;  𝑔(𝑥) = [
−

𝑥2
∗ + �̃�2 − 𝐸

𝐿
𝑥1

∗ + �̃�1

𝐶

] (45) 

5.4 Noninverting Buck-Boost Converter 

 

Using the dynamic equations at the equilibrium point, (46) and (47) are obtained: 

 

𝑢∗ =
𝑥2

∗

𝑥2
∗ + 𝐸

 (46) 

𝑥1
∗ =

𝐺𝐿𝑥2
∗(𝑥2

∗ + 𝐸)

𝐸
 (47) 

 

Equations (46) and (47) show that we are working with a Noninverting Buck-Boost 

converter [40]. Adding the error to the system through (25) and (26) in (21) and (22), and 

simplifying, (48) and (49) are given: 

 

�̇̃�1 =
−(1 − 𝑢∗)�̃�2

𝐿
+

(�̃�2 + 𝑥 +2
∗ 𝐸)�̃�

𝐿
 (48) 

�̇̃�2 =
(1 − 𝑢∗)�̃�1 − 𝐺𝐿�̃�2

𝐶
−

(𝑥 +1
∗ �̃�1)�̃�

𝐶
 (49) 

 

The equations (48) and (49) are the simplified equations in terms of the error and can be 

rewritten in the form of a matrix, as is shown in (50).  



𝑓(�̃�) = [
0 −

(1 − 𝑢∗)�̃�2

𝐿
(1 − 𝑢∗)�̃�1

𝐶
−

𝐺𝐿�̃�2

𝐶

] ;  𝑔(𝑥) = [

𝑥2
∗ + �̃�2 + 𝐸

𝐿

−
𝑥1

∗ + �̃�1

𝐶

] (50) 

6. INVERSE OPTIMAL CONTROL IMPLEMENTATION 

 

To implement inverse optimal control (IOC) in the converters, it is necessary to first choose 

a Lyapunov function. In this case, (51) is the candidate function: 

 

𝑉(�̃�) =
1

2
𝐿�̃�1

2 +
1

2
𝐶�̃�2

2 (51) 

Equation (47) is a function that satisfies conditions 1 and 2 of the Lyapunov theorem, as 

shown in (11) and (12). Condition 3 must be verified. If another function is selected, we can 

obtain another control law. To demonstrate the third condition, the IOC implementation to 

the Buck converter will be shown. However, the procedure is the same for all converters. 

 
6.1 Buck converter 

 

6.1.1 Proportional control law 

 

Regarding (9), 𝑔𝑇(�̃�), 𝑅(�̃�), and 
∂ V

∂ x̃
 must be found. For the Buck converter, (52)-(54) are 

given: 

 

𝑔𝑇(�̃�) = [
𝐸

𝐿
0] (52) 

𝑅(�̃�) =
1

𝑘𝑝
 (53) 

𝜕 𝑉

𝜕 �̃�
= [

𝐿�̃�1

𝐶�̃�2
] (54) 

 

 Equations (53) and (54) are a constant and the partial derivative of the Lyapunov 

candidate function respectively, necessary to find the optimal control law (9) for the buck 

converter and are the same for all converters. Replacing (52), (53), (54) in (9), (55) is obtained: 

 

�̃� = −
1

2
𝑘𝑝𝐸�̃�1 (55) 

 

Equation (55) is the error in (26) and is obtained by the optimal control law theory. By 

replacing (29) and (55) in (26), the proportional control law (56) is obtained: 

 

𝑢  = 𝑢∗ + �̃� =
x 2

∗

E
−

1

2
 𝑘𝑝 𝐸 �̃� 1 (56) 

 



6.1.2 Demonstration of condition 3 of the Lyapunov for the selected function regarding the 

proportional (P) control law 

 

Equation (51) is derived in terms of time, obtaining (57): 

 
𝑑𝑣

𝑑𝑡
= 𝐿�̇̃�1�̃�1 + 𝐶�̇̃�2�̃�2 (57) 

 

 which is the derivative in terms of time of the Lyapunov function candidate. Equations 

(33) and (34) are replaced in (57), obtaining (58): 

 
𝑑𝑣

𝑑𝑡
= �̃�𝐸�̃�1 − 𝐺𝐿�̃�2

2 (58) 

 

 Equation (51) is replaced in (58), obtaining (59): 

 
𝑑𝑣

𝑑𝑡
= −

1

2
𝑘𝑝𝐸2�̃�1

2 − 𝐺𝐿�̃�2
2 (59) 

 

Equation (59) demonstrates the third condition and is also satisfied as long as �̃� ≠ 0. This 

allows us to conclude that the proportional control law is asymptotically stable because the 

control variable depends on both state variables. In case one of the state variables 

disappeared from the control variable, the control law would be only stable. 
 

6.1.3 Proportional-Integral (PI) control law 

 

In this case, an integral action must be added, as is shown in (60) and (61): 

 

�̃�𝑖 = −𝑘(�̃�) + 𝑘𝑤𝑤 (60) 

�̇� = −𝑘(�̃�) = −
1

2
𝑘𝑝𝐸�̃�1 (61) 

 

In (60) and (61) is shown how is implemented the integral action in the optimal control 

law (9) for the buck converter. Considering (29) and (60), (62) is obtained: 
 

𝑢 = 𝑢∗ + �̃�𝑖 =
𝑥2

∗

𝐸
−

1

2
𝑘𝑝𝐸�̃�1 −

1

2
𝑘𝑤 ∫ 𝑘𝑝𝐸

𝑡

0

�̃�1𝑑𝑡 (62) 

 

The control law shown in (62) must be simplified by replacing 𝑘𝑤 =
𝑘𝑖

𝑘𝑝
, then we have the 

Proportional-Integral control law (63): 

 

𝑢 =
𝑥2

∗

𝐸
−

1

2
𝑘𝑝𝐸�̃�1 −

1

2
𝑘𝑖 ∫ 𝐸

𝑡

0

�̃�1𝑑𝑡 (63) 



 

Equation (63) shows an optimal Proportional-Integral controller because the procedure 

comes from the IOC theory. This control scheme generates a PI control that guarantees 

stability all over the system, which is also optimal. It is important to mention that, in the 

controller, despite the control action given by current, the voltage is controlled. This can be 

observed in (30). 
 

6.1.4 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the PI control law 

 

By adding the integral action, the Lyapunov function yields (64): 

 

𝑉(�̃�, 𝑤) =
1

2
𝐿�̃�1

2 +
1

2
𝐶�̃�2

2 +
1

2
𝑘𝑚𝑤2;  𝑘𝑚 > 0 (64) 

 

Equation (64) is the Lyapunov candidate function for the PI control law for the Buck 

converter. Deriving in terms of time, (65) is obtained: 

 

𝑑𝑣(�̃�, 𝑤)

𝑑𝑡
= 𝐿�̇̃�1�̃�1 + 𝐶�̇̃�2�̃�2 + 𝑘𝑚�̇�𝑤 (65) 

 

Equations (33), (34), and (61) are replaced in (65), which is the derivative of the Lyapunov 

function candidate (66): 

 

𝑑𝑣(�̃�, 𝑤)

𝑑𝑡
= −

1

2
𝑘𝑝𝐸2�̃�1

2 + 𝑘𝑤𝑤𝐸�̃�1 − 𝐺𝐿�̃�2
2 −

1

2
𝑘𝑚𝑘𝑝𝐸𝑤�̃�1 (66) 

 

The control law shown in (66) must be simplified by replacing 𝑘𝑚 =
2𝑘𝑤

𝑘𝑝
; 𝑘𝑤 > 0, 

obtaining (67): 

 

𝑑𝑣(�̃�, 𝑤)

𝑑𝑡
= −

1

2
𝑘𝑝𝐸2�̃�1

2 − 𝐺𝐿�̃�2
2 (67) 

 

Equation (67) is the same as (59). However, in this case, the control is stable because the 

variable 𝑤 disappears. 
 

6.2 Boost converter 

 

6.2.1 P control law 

 

The P control law for the Boost converter is shown in (68): 

 

𝑢 = 𝑢∗ + �̃� = 1 −
𝐸

𝑥2
∗ −

1

2
𝑘𝑝(𝑥2

∗�̃�1 − 𝑥1
∗�̃�2) (68) 

 



Equation (68) is obtained by replacing (36) and the respective error for the Boost 

converter. 
 

6.2.2 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the P control law 

 

The equation that demonstrates the third condition of the Lyapunov theorem is 

shown in (69): 

 
𝑑𝑣

𝑑𝑡
= −

1

2
𝑘𝑝(�̃�1𝑥2

∗ − �̃�2𝑥1
∗)2 − 𝐺𝐿�̃�2

2 (69) 

 

Equation (69) is obtained by deriving de Lyapunov candidate function for the Boost 

converter. 
 

6.2.3 PI control law 

 

Equation (70) is the PI control law: 

 

𝑢 = 1 −
𝐸

𝑥2
∗ −

1

2
𝑘𝑝(𝑥2

∗�̃�1 − 𝑥1
∗�̃�2) −

1

2
𝑘𝑖 ∫ (𝑥2

∗�̃�1 − 𝑥1
∗�̃�2)𝑑𝑡

𝑡

0

 (70) 

 

Equation (70) is obtained by replacing (36) and the respective error with PI action for the 

Boost converter. 
 

6.2.4 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the PI control law 

 

Equation (71) demonstrates the third condition of the chosen Lyapunov function: 

 

𝑑𝑣(�̃�, 𝑤)

𝑑𝑡
= −

1

2
𝑘𝑝(�̃�1𝑥2

∗ − �̃�2𝑥1
∗)2 − 𝐺𝐿�̃�2

2 (71) 

 

Equation (71) is the same as (69). However, in this case, the control is stable because the 

variable 𝑤 disappears. 
 

6.3 Buck-Boost converter 

 

6.3.1 P control law 

 

The P control law for the Buck-Boost converter is shown in (72): 

 

𝑢 = 𝑢∗ + �̃� =
𝑥2

∗

𝑥2
∗ − 𝐸

−
1

2
𝑘𝑝(𝑥1

∗�̃�2 − 𝑥2
∗�̃�1 + �̃�1𝐸) (72) 

 

Equation (72) is obtained by replacing (41) and the respective error for the Buck-Boost 

converter. 



 

6.3.2 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the P control law  

 

Equation (73) demonstrates the third condition of the Lyapunov theorem: 

 
𝑑𝑣

𝑑𝑡
= −

1

2
(𝐸�̃�1 + �̃�2𝑥1

∗ − �̃�1𝑥2
∗)2 − 𝐺𝐿�̃�2

2 (73) 

 

Equation (73) is obtained by deriving de Lyapunov candidate function for the Buck-Boost 

converter. 
 

6.3.3 PI control law 

 

Equation (74) is the PI control law: 

 

𝑢 =
𝑥2

∗

𝑥2
∗ − 𝐸

−
1

2
𝑘𝑝(𝐸�̃�1 + 𝑥1

∗�̃�2 − 𝑥2
∗�̃�1) −

1

2
𝑘𝑖 ∫ (𝐸�̃�1 + 𝑥1

∗�̃�2 − 𝑥2
∗�̃�1)𝑑𝑡

𝑡

0

 (74) 

 

Equation (74) is obtained by replacing (41) and the respective error with PI action for the 

Buck-Boost converter. 
 

6.3.4 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the PI control law  

 

Equation (75) demonstrates the third condition of the chosen Lyapunov function is the 

following: 

 

𝑑𝑣(�̃�, 𝑤)

𝑑𝑡
= −

1

2
𝑘𝑝(𝐸�̃�1 + �̃�2𝑥1

∗ − �̃�1𝑥2
∗)2 − 𝐺𝐿�̃�2

2 (75) 

 

Equation (75) is the same as (73). However, in this case, the control is stable because the 

variable 𝑤 disappears. 
 

6.4 Noninverting Buck-Boost converter 

 

6.4.1 P control law 

 

The P control law for the Noninverting Buck-Boost converter is shown in (76): 

 

𝑢 = 𝑢∗ + �̃� =
𝑥2

∗

𝑥2
∗ + 𝐸

−
1

2
𝑘𝑝(𝑥2

∗�̃�1 − 𝑥1
∗�̃�2 + �̃�1𝐸) (76) 

 

Equation (76) is obtained by replacing (46) and the respective error for the Noninverting 

Buck-Boost converter. 
 



6.4.2 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the P control law  

 

Equation (77) demonstrates the third condition of the chosen Lyapunov function: 
𝑑𝑣

𝑑𝑡
= −

1

2
(𝐸�̃�1 + �̃�1𝑥2

∗ − �̃�2𝑥1
∗)2 − 𝐺𝐿�̃�2

2 (77) 

Equation (77) is obtained by deriving de Lyapunov candidate function for the 

Noninverting Buck-Boost converter. 
6.4.3 PI control law 

 

Equation (78) is the PI control law: 

 

𝑢 =
𝑥2

∗

𝑥2
∗ + 𝐸

−
1

2
𝑘𝑝(𝐸�̃�1 + 𝑥2

∗�̃�1 − 𝑥1
∗�̃�2) −

1

2
𝑘𝑖 ∫ (𝐸�̃�1 + 𝑥2

∗�̃�1 − 𝑥1
∗�̃�2)𝑑𝑡

𝑡

0

 (78) 

Equation (78) is obtained by replacing (46) and the respective error with PI action for the 

Noninverting Buck-Boost converter. 
 

6.4.4 Demonstration of condition 3 of the Lyapunov theorem for the selected function regarding 

the PI control law  

 

The equation (79) demonstrates the third condition of the chosen Lyapunov function: 

 

𝑑𝑣(�̃�, 𝑤)

𝑑𝑡
= −

1

2
𝑘𝑝(𝐸�̃�1 + �̃�1𝑥2

∗ − �̃�2𝑥1
∗)2 − 𝐺𝐿�̃�2

2 (79) 

Equation (79) is the same as (77). However, in this case, the control is stable because the 

variable 𝑤 disappears. 

 

7. SIMULATIONS 

 

The controls where numerically validated via simulations with the PSIM software, 

version 2021a, where open-loop control and closed loop control simulations were performed. 

The objective of these simulations was to show the dynamic response of the converters. For 

the closed loop control, the inverse optimal control with PI action (IOC-PI) and the PI 

passivity-based control (PI-PBC) were implemented in order to compare two kinds of 

nonlinear control  [25], [26]. The study was conducted with the values proposed by [26] with 

a switching frequency of 100 kHz. Table 2 presents these values. 

 
Table 2. Converter parameters for the study. Source: created by the authors. 

Converter 𝑬[𝑽] 𝑳 [𝛍𝑯] 𝑪 [𝝁𝑭] 𝑮𝑳𝟏[℧] 𝑮𝑳𝟐[℧] 𝒗(𝑥2
∗)[𝑽] 𝒖  

Buck 24 50 6.36 1/2 1 12 0.500 

Boost 12 25 31 1/8 1/4  24 0.500 

Buck-Boost 15 200 20 1/8 1/4  -20 0.571 

Noninverting Buck-

Boost  
24 30 50 1/8 1/4 20 0.455 



 

7.1 Numerical validation 

 

As well as [26], the following validations were considered to demonstrate the effectiveness 

of and strengthen the proposed IOC-PI controller in order to regulate the output voltage of 

the second-order DC-DC converters: 

 

- The initial voltage of the capacitor was equal to the reference voltage 𝑥2
∗, also called 𝑣 

(Table 2). The current in the inductors, due to convergence problems in the simulator, 

was considered to be 0 A. 

- The system was initially positioned with the load 𝐺𝐿2. In the simulator, there were two 

loads with the same value 𝐺𝐿1 in parallel. After 2.5 ms, the load changed, leaving a 

single load equal to 𝐺𝐿1. This process was repeated twice for a total time of 10 ms. 

- All simulations were validated in an interval of 10 ms.  
 

It is important to mention that all simulations were run after the state variables stabilized 

in the simulator. In this case, the simulations shown took between 0.09 seconds and 

0.1 seconds, enough time to see the dynamic response considering the load variations. 

The settling time (𝑡𝑠) and the steady-state error (𝜀𝑠𝑠) were used to quantify the 

performance of both the nonlinear controller (IOC-PI and PBC-PI) and the open-loop control. 

 
7.1 Open-loop control 

 

Figure 3 shows the implemented circuits with open-loop control in the software. Figure 

3a, Figure 3b, Figure 3c and Figure 3d are the open-loop control for the Buck, Boost, Buck-

Boost and Noninverted Buck-Boost converter respectively implemented in PSIM. In this case, 

only a comparator was used where the inputs were a sawtooth signal with a maximum voltage 

of 1 V and a 100 kHz frequency, as well as a reference signal corresponding to the duty cycle 

𝑢 (Table 2). 

  
(a) (b) 

 

 

(c) (d) 



Figure 3. Open-loop control of the implementation of second-order DC-DC converters in PSIM: (a) Buck 

converter, (b) Boost converter, (c) Buck-Boost converter, (d) Noninverting Buck-Boost converter. Source: 

created by the authors.[KOC1] 

Figure 4 shows the dynamic response of the output voltage and the current of the 

inductors of the converters in open-loop control. Figure 4a, Figure 4b, Figure 4c and Figure 

4d are the open-loop control dynamic response for the Buck, Boost, Buck-Boost and 

Noninverted Buck-Boost converter respectively. All the open-loop simulations are described 

as follows: 𝑥1 (inductor current) and  𝑥2 (output voltage), in black, are the output current 

voltage respectively; 𝑥1
∗ and 𝑥2

∗, in red, are the reference inductor current and reference output 

voltage. The load variations are remarkable: each 2.5 ms in all converters. Boost, Buck-Boost, 

and Noninverting Buck-Boost converters have a slow dynamic response compared to the buck 

converter. This is due to the nonlinearity of these converters (the Buck converter is linear). 

 

  
(a)  (b) 

  
(c) (d) 

Figure 4. Dynamic response of the inductor current and output voltage of the open-loop control of the 

implemented second-order DC-DC converters in PSIM: (a) Buck converter, (b) Boost converter, (c) Buck-Boost 

converter, (d) Noninverting Buck-Boost converter. Source: created by the authors.[KOC2] 

 

 



 

 

 
7.2 Closed-Loop control 

 

For the PI-PBC controller, the gains 𝐾𝑝 and 𝐾𝑖 were chosen in accordance with [26] 

(see Table 3). For the IOC-PI controller, the gains 𝐾𝑝 and 𝐾𝑖 in each converter were tuned to 

0.5 and 0.1, respectively (these control gains were found by implementing a heuristic search 

algorithm that minimizes the mean square error between the voltage reference and the 

converters’ output). All the closed-loop simulations can be described as follows: in each figure, 

the voltage and current dynamic responses of the IOC-PI and PI-PBC controllers are 

compared; the inductor current (𝑥1) is the upper graph, and the output voltage (𝑥2) is the 

lower graph; the PI-PBC validation is presented in black and the IOC-PI validation in red. 

 
Table 3. Controller gains. Source: created by the authors.  

Converter 𝑲𝒑 𝑲𝒊 

Buck 0.0020 0.0001 

Boost 0.0099 0.0009 

Buck-Boost 0.0031 0.0003 

Noninverting 

Buck-Boost  
0.0150 0.0050 

7.2.1 Buck converter 

 

Figure 5 shows the dynamic response of both nonlinear controllers for the Buck converter. 



 

Figure 5. Dynamic response of the output voltage and inductor current of the IOC-PI (red) and PI-PBC 

(black) controllers of the Buck converter in PSIM. Source: created by the authors. 

 

In the IOC-PI controller, the peaks and valleys in the voltage signal, ripple, and settling time 

are lower than those in the open-loop and PI-PBC controllers. The peaks in the voltage signal 

go from 19.74 V in open-loop control to 17.94 V in the PI-PBC controller, and finally to 16.77 V 

in the IOC-PI controller. The valleys in the voltage signal go from 7.03 V in open-loop control 

to 7.82 V in the PI-PBC controller, and finally to 8.58 V in the IOC-PI controller. The IOC-PI 

controller shows a better performance in all parameters when compared to the open-loop and 

PI-PBC controllers. It should be highlighted that both nonlinear controllers manage to 

achieve a reduction of the settling time and ripple with respect to the open-loop control 

(Figure 4a). Both controllers keep the voltage around the reference voltage despite the load 

variations. The steady state error is better in the open-loop control, but the settling time is 

better in the IOC-PI controller (Table 4). 

 
7.2.2 Boost converter 

 

Figure 6 shows the dynamic response of both controllers (PI-PBC and IOC-PI) for this 

converter. Both controllers clearly have a better response compared to the open-loop control 

(Figure 4b), but the IOC-PI controller has the best response among the three controllers with 

regard to the steady state error (Table 4) and the ripple.  

 



 
Figure 6. Dynamic response of the inductor current and output voltage of the IOC-PI (red) and PI-PBC (black) 

controllers of the Boost converter in PSIM. Source: created by the authors 

. 
The controllers have a similar response, as well as have peaks and valleys of 26 𝑉 and 21.5 𝑉, 

respectively, but the voltage is maintained at the reference despite the load variations. The 

settling times in both cases are very similar; thus, it is assumed that this happens at the same 

time. The ripple in the IOC-PI controller has a considerable reduction regarding the open-

loop and PI-PBC controllers. 
 

7.2.3 Buck-Boost converter 

 

The dynamic response of the Buck-Boost converter is shown in Figure 7. Like the dynamic 

responses of the converters above, the controllers have a better response than the open-loop 

control (Figure 4c), and the output voltage is within the reference values. In both cases, 

although the dynamic response is very similar, there is a significant reduction of the ripple 

in the IOC-PI controller regarding the PI-PBC controller, and, although the controllers have 

peaks and valleys in the voltage signal around −12.5 𝑉  and −30𝑉, they are lower than those 

of the open-loop control. In this case, the settling time is assumed to be the same (see Table 

4) in both implemented nonlinear controllers. The steady state error is lower in the IOC-PI 

controller (see Table 4). 

 



 
Figure 7. Dynamic response of the inductor current and output voltage of the IOC-PI (red) and PI-PBC (black) 

controllers of the Buck-Boost converter in PSIM. Source: created by the authors. 

 

 

 

 

7.2.4 Noninverting Buck-Boost converter 

 

Figure 8 shows the dynamic response for the implemented nonlinear controllers of this 

converter. The dynamic response in both controllers is better than the open-loop control, 

where, despite the load variations, the output voltage is at the reference. The peaks and 

valleys for the controllers decrease in comparison with the open-loop control (Figure 4d). The 

settling time is assumed to be the same for both controllers, and it is better than the open-

loop control. The PI-PBC controller has a lower steady state error than the IOC-PI controller 

and the open-loop control (see Table 4). It is important to highlight that the ripple shows a 

significant reduction in the IOC-PI controller.  



 

Figure 8. Dynamic response of the inductor current and output voltage of the IOC-PI (red) and PI-PBC 

(black) controllers of the Noninverting Buck-Boost converter in PSIM. Source: created by the authors. 

 
Table 4[KOC3]. Settling time and steady-state error of the implemented controllers. Source: created by the 

authors. 

 Open-Loop PI-PBC IOC-PI 

Converter 𝒕𝒔[𝒎𝒔] 𝛆𝒔𝒔[%] 𝒕𝒔[𝒎𝒔] 𝛆𝒔𝒔[%] 𝒕𝒔[𝒎𝒔] 𝛆𝒔𝒔[%] 

Buck 0.25 0.01 0.142 0.23 0.045 0.060 

Boost > 2.50 0.08 0.625 0.27 0.625 0.008 

Buck-Boost > 2.50 0.29 0.625 0.39 0.625 0.045 

Noninverting 

Buck-Boost  
1.25 0.11 0.625 0.05 0.625 0.120 

 

8. CONCLUSIONS AND FUTURE WORK 

 

Dynamic models of classical second-order DC-DC converters in terms of the error were 

obtained, which allowed determining the control law through inverse optimal control theory. 

A closed-loop controller was designed which allowed observing the dynamic response of 

different converters, thus concluding that the system was stable according to the Lyapunov 

theorem. The PI-PBC control law designed in [26] was compared with the IOC-PI control law 

implemented in this document. The numerical results showed that both control laws are 



dynamically better than open-loop control, and that the IOC-PI controller is the one with the 

best response. 

Furthermore, it is necessary to clarify that all the converters have a fairly pronounced 

ripple, and, despite the fact that the gains helped reduce it, it can be improved. Therefore, in 

order to reduce it both in the output voltage and in the current of the inductors, a detailed 

design of the converters must be carried out, choosing the capacitors and inductors according 

to the required design parameters. 

To compare the two implemented control laws, Figure 9 shows the implementation of a 

Boost converter with both controllers. The number of elements used in the IOC-PI controller 

is far less than in the PI-PBC controller, which leads to a simpler implementation, reduced 

simulation/execution times, and a reduction of human errors while implementing the control 

law, among others. This makes the control law proposed in this document optimal, since it 

uses fewer resources to reach the same or a better solution. In addition, it is noteworthy that 

the simulation time in the IOC-PI control law was far less than in the PI-PBC control law. 

 
Figure 9. Block diagrams implemented for the Boost converter in PSIM. The converter is presented in 

black, the IOC-PI controller in blue, and the PI-PBC controller in red. Source: made by the authors. 

 

The implementation of the inverse optimal control is proposed as future work, considering 

the switching losses of the transistor, the internal resistance and forward voltage of the 

diodes, and the internal resistance of the elements that store energy. Furthermore, 

implementation in fourth-order converters could be carried out, such as the Ćuk, SEPIC, and 

Zeta converters, as well as the implementation in DC/AC systems involving VSCs and AC/AC 

systems such as inverters. 
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PHRASES 

 

• The proposed methodology allows to find the IOC-PI for multiple DC-DC 

converters. 

• The IOC-PI theory is easier to implement than other control techniques. 

• The PI action in the IOC eliminates steady state errors in the desired 

references. 


