Please use this identifier to cite or link to this item:
Title: Sobre una Introducción a la Teoría de Aproximación en Espacios Normados y de Hilbert
Author: Jiménez Villamil, Julieth
Advisor: Mora Valbuena, Luis Oriol
Keywords: Aproximación
Date: 1-Aug-2016
Abstract: The main objective of this paper is to present an introduction to the fundamentals of the approximation theory focused on normed and Hilbert spaces. In Chapter 1, previous concepts which point to the main content are introduced. Chapter 2 introduces the concept of best approximation, additionally, its existence and uniqueness is discussed. Strictly convex normed space is defined, and how the uniqueness of the best approximation is obtained. Depending on the selection of the norm, there are different types of approximations; in Chapter 3 Uniform approximation in C[a,b] and continuous with approximation by Chebyshev polynomials are introduced in Chapter 4. Chapter 5 introduces approximation to Hilbert spaces. The paper concludes with a brief discussion of cubic splines in Chapter 6.
Description: El objeto principal de este trabajo, es presentar una introducción a los fundamentos de la teoría de aproximación enfocada a los espacios normados y de Hilbert. En el Capítulo 1 se presentan conceptos previos que orientan al contenido principal. El Capítulo 2 presenta el concepto de mejor aproximación, además se discute su existencia y unicidad. Se define espacio normado estrictamente convexo, y como se tiene la unicidad de la mejor aproximación en estos. Dependiendo de la elección de la norma, se tienen diferentes tipos de aproximaciones; en el Capítulo 3 se presenta la aproximación uniforme en C[a,b] y continua con la aproximación por polinomios de Chebyshev en el Capítulo 4. En el Capítulo 5 se presenta la aproximación en espacios de Hilbert. Se concluye con una breve discusión de splines cúbicos en el Capítulo 6.
Appears in Collections:Matemáticas

Files in This Item:
File Description SizeFormat 
JuliethJiménezVillamil2016.pdf2,17 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons