Please use this identifier to cite or link to this item: http://hdl.handle.net/11349/21037
Title: Comparison of maximum likelihood, support vector machines, and random forest techniques in satellite images classification
Comparación de las técnicas máxima verosimilitud, máquinas de soporte vectorial y bosques aleatorios en clasificación de imágenes satelitales
Author: Valero Medina, José Antonio
Alzate Atehortúa, Beatriz Elena
Keywords: confidence test
confusion matrix
decision tree
random forest
software R
support vector machine
árboles de decisión
bosques aleatorios
máquinas de soporte vectorial
matriz de confusión
pruebas de confianza
software R
Publisher: Universidad Distrital Francisco José de Caldas. Colombia
Description: Context: Nowadays, the images of the Earth surface and the algorithms for their classification are widely available. In particular, the algorithms are promising in the differentiating of cotton crops stages, but it is necessary to establish the capabilities of the different algorithms in order to identify their advantages, and disadvantages. Method: This paper describes the assessment process in which the Support Vector Machines (SVM) and random-forest technique (decision trees) are compared with the maximum likelihood estimation when differentiating the stages of cotton crops. A RapidEye satellite image of a geographic area in the municipality of San Pelayo, Cordoba (Colombia), is used for the study. Using a set of sampling polygons, a random sample of 6000 pixels was taken (2000 training and 4000 for validating the classifications.) Confusion matrices, and R (data processing and analysis software) were used during the validation process Results: The maximun likelihood estimation presented a correct classification percentage of 68.95%. SVM correctly classified 81.325% of the cases and the decision trees correctly classified 78.925%. The confidence test for the classifications showed non-overlapping intervals, and SVM obtained the highest values. Conclusions: It was possible to confirm the superiority of the technique based on support vector machines for the proposed verification zones. However, this technique requires a number of classes that comprehensively represent the variations of the image (in order to guarantee a minimum number of support vectors) to avoid confusion in the classification of non-sampled areas. This was less evident in the other two classification techniques analysed.
Contexto: Hoy en día las imágenes de la superficie de la Tierra están ampliamente disponibles, así como la evolución de los algoritmos para su clasificación. Estos son prometedores para la diferenciación de los diversos estadios del cultivo de algodón. Por esta razón es necesario establecer sus capacidades, ventajas y desventajas. Métodos: En este artículo se describe el proceso de valoración de las bondades de la clasificación basada en las técnicas de máquinas de soporte vectorial (SVM, por su sigla en inglés) y bosques aleatorios (árboles de decisión) en comparación con la técnica de máxima verosimilitud, empleando una imagen del satélite RapidEye, de un área geográfica ubicada en el municipio de San Pelayo, en el departamento de Córdoba (Colombia), con el propósito de diferenciar varios estadios de cultivos de algodón. A partir de un conjunto de polígonos de muestreo, se tomó de manera aleatoria un total de 6000 pixeles, 2000 de ellos para entrenamiento y 4000 para realizar la validación de las clasificaciones. La comparación de los resultados obtenidos de cada técnica fue realizada a partir de las matrices de confusión del proceso de validación, mediante el software de procesamiento y análisis de datos R. Resultados: El porcentaje de clasificación correcta (PCC) para la clasificación de máxima probabilidad correspondió a 68,95 %, para la clasificación SVM fue 81,325 %, y para bosques aleatórios fue 78,925 %. La prueba de confianza para las clasificaciones demostró intervalos no solapados, obteniendo los valores más altos para SVM. Conclusiones: Para las zonas de verificación planteadas, se pudo constatar la superioridad de la técnica basada en máquinas de soporte vectorial; sin embargo, se concluyó que para esta técnica se requiere un número de clases que representen de forma exhaustiva las variaciones de la imagen, garantizando así un mínimo de vectores de soporte, para evitar en la clasificación resultante las confusiones en las áreas restantes no muestreadas, lo cual fue menos evidente en las otras dos técnicas de clasificación analizadas.
URI: http://hdl.handle.net/11349/21037
Other Identifiers: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/14826
10.14483/22487638.14826
Appears in Collections:Tecnura

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.