ANÁLISIS DEL COMPONENTE CARTOGRAFICO Y SENSORES REMOTOS EN UN CONTEXTO HISTÓRICO PARA ALGUNOS MUNICIPIOS DE LA SABANA DE BOGOTA

Proyecto Presentado Bajo La Modalidad De Investigación Para Optar Por El Título De Ingeniero Catastral y Geodesta

Edson Manuel Velásquez Riaño 20112025091

Universidad Distrital Francisco José De Caldas
Facultad De Ingeniería
Ingeniería Catastral y Geodesia
Centro De Investigaciones Y Desarrollo Científico
Grupo Interdisciplinario De Investigación En Medio Ambiente Urbano
Bogotá D.C
ANÁLISIS DEL COMPONENTE CARTOGRAFICO Y SENSORES REMOTOS EN UN CONTEXTO HISTÓRICO PARA ALGUNOS MUNICIPIOS DE LA SABANA DE BOGOTA

Edson Manuel Velásquez Riaño 20112025091

Director
Jair Preciado Beltrán
Facultad del Medio Ambiente y Recursos Naturales

Enmarcado en el proyecto general titulado: “Territorio, Desarrollo Regional Y Medio Ambiente En La Sabana De Bogotá: Una Visión Desde Los Actores”
Apoyado por el Centro de Investigaciones y Desarrollo Científico –CIDC-.

Universidad Distrital Francisco José De Caldas
Facultad De Ingeniería
Ingeniería Catastral y Geodesia
Centro De Investigaciones Y Desarrollo Científico
Grupo Interdisciplinario De Investigación En Medio Ambiente Urbano
Bogotá D.C
Nota de aceptación

Firma

Firma
Agradecimientos

Agradezco al PhD Jair Preciado Beltrán por promover mi interés en la investigación, orientándome y ayudándome en la realización de este proyecto, por su disposición permanente en tutorías con el fin de aclarar inquietudes y su colaboración para acceder a material bibliográfico y demás información requerida para el desarrollo del proyecto.

A la Universidad Distrital Francisco José de Caldas en el proyecto curricular de Ingeniería Catastral y Geodesia por los docentes que compartieron sus experiencias y conocimientos que fueron de utilidad para mi formación profesional.

Al Centro de investigaciones y desarrollo científico, grupo interdisciplinario de investigación en medio ambiente urbano que dio lugar a este proyecto enmarcado en el proyecto “Territorio, Desarrollo Regional Y Medio Ambiente En La Sabana De Bogotá: Una Visión Desde Los Actores”, y a los revisores y jurados por sus aportes a este documento.
Tabla de contenido

Índice de figuras.. vi
Índice de tablas .. vi

Capítulo I ... 7
 1.1 Introducción ... 7
 1.2 Objetivos .. 7
 1.2.1 General ... 7

Capítulo II .. 8
 2.1 Marco teórico .. 8
 2.1.1 Fundamentos teledetección y sensores remotos ... 8
 2.1.2 Índices de Vegetación ... 9
 2.1.3 Transformaciones ... 9
 2.1.4 Clasificación supervisada ... 10
 2.2 Contexto histórico ... 10
 2.2.1 Cajicá ... 11
 2.2.2 Chía .. 11
 2.2.3 Cota .. 12
 2.2.4 Facatativá ... 12
 2.2.5 Funza ... 13
 2.2.6 Madrid ... 13
 2.2.7 Mosquera .. 14
 2.2.8 Soacha ... 14
 2.2.9 Tabio .. 15
 2.2.10 Tenjo ... 16
 2.2.11 Zipaquirá .. 17

Capítulo III ... 18

Datos y Métodos .. 18
 3.1 Zona de estudio ... 18
 3.2 Extension del área de estudio .. 19
 3.3 Datos .. 20
 3.3.1 información raster .. 20
 3.3.2 Información vector ... 22
3.3.3 Información aérea ... 24
3.3.4 Software procesamiento .. 24
3.4 Metodología ... 25

Capítulo IV ... 27

Resultados .. 27

4.1 Cartografía temática .. 27
4.2 Confiabilidad temática ... 34
4.3 Cartografía multitemporal .. 35
4.4 Análisis de resultados ... 39

Conclusiones ... 42

Referencias .. 44

Índice de figuras

Figura 1: Localización Sabana de Bogotá ... 18
Figura 2: Localización municipios de estudio en la sabana de Bogotá 19
Figura 3: Aerofotografías izquierda Humedal Gualí tres esquinás, derecha Laguna de La Herrera 20
Figura 4: Metodología Obtención Cartografía temática ... 25
Figura 5: Humedal Laguna la Herrera, izquierda año 2017, derecha año 1987 39
Figura 6: Cambios en 40 años en la sabana de Bogotá .. 40

Índice de tablas

Tabla 1: Características misiones Landsat ... 8
Tabla 2: Información rás ter implementada en el proyecto ... 20
Tabla 3: Información vector implementada en el proyecto ... 22
Tabla 4: Información aérea implementada en el proyecto .. 24
Tabla 5: Software de procesamiento implementado en el proyecto 24
Tabla 6: Coberturas según Clasificación CORINE Land Cover ... 27
Tabla 7: Cartografía temática. Imagen Landsat 2 año 1977 ... 29
Tabla 8: Cartografía temática. Imagen Landsat 4 año 1988 ... 30
Tabla 9: Cartografía temática. Imagen Landsat 5 año 1997 .. 31
Tabla 10: Cartografía temática. Imagen Landsat 7 año 2003 .. 32
Tabla 11: Cartografía temática. Imagen Landsat 8 año 2015 .. 33
Tabla 12: Resultados coeficiente Kappa .. 34
Tabla 13: matriz de confusión para la clasificación del año 1977 .. 34
Tabla 14: Representación Multitemporal 1977-1988 ... 35
Tabla 15: Representación Multitemporal 1977-1997 ... 36
Tabla 16: Representación Multitemporal 1977-2003 ... 37
Tabla 17: Representación Multitemporal 1977-2015 ... 38
Tabla 18: Resultado de los objetivos .. 41
Capítulo I.

1.1 Introducción
El territorio conocido como la Sabana de Bogotá, ha venido experimentando una transformación inusitada en las últimas dos décadas. Escenario rural tradicional en el imaginario colectivo desde el siglo XIX, el territorio rural ha venido desapareciendo para dar paso a proyectos de vivienda de distinto nivel, así como al establecimiento de complejos polígonos industriales que ejercen unos efectos ambientales con impacto regional.

La ciudad de Bogotá y su área metropolitana ha venido experimentando un crecimiento físico y demográfico desde comienzos de la década de 1950 que ha determinado de forma directa la aparición de fenómenos sociales y hechos ambientales sumamente complejos. La conformación de Bogotá como una ciudad importante en el contexto nacional desde mediados del siglo pasado, se traduce en una mayor demanda de vivienda, servicios públicos, infraestructura vial, servicios comunitarios, empleo y asistencia social entre otros.

Esta investigación constituye una segunda fase del proyecto titulado: “Desarrollo regional y medio ambiente: desafíos para la construcción de la región metropolitana de Bogotá”, apoyado por el Centro de Investigaciones de la Universidad Distrital y realizado entre los años 2009-2012. En esta fase actual se pretende hacer una mirada sobre once municipios de la Sabana de Bogotá donde se evidencia una dinámica poblacional sobre el territorio que presupone la desaparición de la ruralidad en el plazo de una a dos décadas, estos son: Cajicá, Chía, Cota, Facatativá, Funza, Madrid, Mosquera, Soacha, Tabio, Tenjo y Zipaquirá.

1.2 Objetivos
1.2.1 General
A partir de la consulta de fuentes primarias, material documental e histórico, elaborar un documento base para el análisis de la transformación territorial y ambiental en los Municipios de Cajicá, Chía, Cota, Facatativá, Funza, Madrid, Mosquera, Soacha, Tabio, Tenjo y Zipaquirá.

1.2.2 Específicos
Determinar la evolución histórica desde la perspectiva geográfica del territorio cuantificando su dinámica y transformación.
Determinar la dinámica de los procesos de transformación territorial y ambiental, mediante análisis multitemporal.

Recopilar y revisar la documentación histórica que permita describir un proceso de transformación en los municipios de la sabana de Bogotá en el siglo XX.

Analizar la transformación de la Sabana de Bogotá en términos del desarrollo regional ambiental y sus implicaciones para la Región Metropolitana de Bogotá y la Región Administrativa y de Planificación Especial. –RAPE-
Capítulo II
Marco de referencia

2.1 Marco teórico
2.1.1 Fundamentos teledetección y sensores remotos
Por Teledetección entendemos, de modo genérico, cualquier procedimiento o técnica de adquisición de información sin tener contacto directo con ella. Sin embargo, de un modo más restringido, y en el ámbito de las ciencias de la Tierra, la Teledetección es entendida como una Técnica que tiene por objeto la captura, tratamiento y análisis de imágenes digitales tomadas desde satélites artificiales. (Pérez Gutiérrez & Muñoz Nieto, 2006)

Sensores pasivos: se basan en la detección de las características radiativas o reflectantes del sistema observado, es decir, el sensor cumple la misión de registrar la radiación emitida por el sistema observado o la radiación solar reflejada. (Sobrino, 2000)

Resolución espacial: Este concepto describe la capacidad del sistema para distinguir objetos en función de su tamaño. Dicho de otro modo, la resolución espacial suele interpretarse como el tamaño del objeto más pequeño que puede ser distinguido en un imagen: tamaño del píxel sobre el terreno. (Pérez Gutiérrez & Muñoz Nieto, 2006)

Resolución radiométrica: Indica la capacidad del sensor para discriminar niveles o intensidades de radiancia. La energía electromagnética recibida por el sensor, cuando se convierte a nivel digital, necesita un formato binario (número de bits) para codificarse. (Pérez Gutiérrez & Muñoz Nieto, 2006)

Resolución espectral: Indica el número y anchura de las bandas espectrales que puede discriminar el sensor. En este sentido, un sensor tendrá una resolución espectral más grande cuanto mayor sea el número de bandas. (Pérez Gutiérrez & Muñoz Nieto, 2006)

Resolución temporal: Mide el tiempo de paso del satélite sobre la vertical de un punto. Con ello se determina la periodicidad de adquisición de imágenes de una misma zona. De este modo podemos cuantificar la capacidad que tiene un sistema sensor para registrar los cambios temporales acaecidos sobre una determinada cubierta, lo cual es de vital importancia a la hora de abordar estudios evolutivos. (Pérez Gutiérrez & Muñoz Nieto, 2006)

<table>
<thead>
<tr>
<th>Tabla 1: Características misiones Landsat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misión</td>
</tr>
<tr>
<td>Orbita</td>
</tr>
<tr>
<td>Inclinación</td>
</tr>
<tr>
<td>Altura</td>
</tr>
<tr>
<td>Periodo orbital</td>
</tr>
<tr>
<td>Tamaño de la imagen</td>
</tr>
<tr>
<td>Sensor</td>
</tr>
</tbody>
</table>
2.1.2 Índices de Vegetación

Implica hacer una división pixel a pixel, entre los niveles digitales almacenados en dos o más bandas de la misma imagen. Para mejorar la distorsión entre suelos y vegetación. El empleo de los cocientes para discriminar masas vegetales se deriva del peculiar comportamiento radiométrico de estas cubiertas. (Chuvieco, 1990)

- **NDVI** (Normalized Difference Vegetacion Index): Fácil interpretación, ya que está acotado entre ±1, con un umbral crítico para cubiertas vegetales en torno a 0.2. Este tipo de estudios permiten conocer el estado de vigor vegetal sobre grandes espacios.

- **NDWI** (Normalized Difference Water Index): aprovecha la reflectividad de la vegetación en el NIR y la absorción por el agua en los límites entre las bandas NIR y SWIR y, cuanto mayor es, más contenido de humedad contiene la vegetación (Rodriguez Perez, Sanchez Carnero, Dominguez Gomez, & Marta Pastrana, 2015)

- **SAVI** (Soil Adjusted Vegetation Index): Según (Huete,1987), al introducir un parámetro corrector en la fórmula del índice NDVI; el cual indica una constante para ajustar la línea vegetación-suelo al origen. En estudios experimentales sobre campos de hierba y algodón, se comprobó que este índice reducía sustancialmente las variaciones inducidas por el suelo en comparación con el NDVI (Citado en Chuvieco, 1990, p 307)

2.1.3 Transformaciones

Operaciones dirigidas a crear bandas artificiales, a partir de combinaciones entre las originales, con objeto de mejorar la discriminación de algunos aspectos temáticos dentro de la imagen, tales operaciones no proporcionan una nueva información que no estuviera ya incluida en los datos originales, permiten no obstante mejorar la disposición de los datos, de forma que sean más evidentes determinados fenómenos de interés. (Chuvieco, 1990)

- **Componentes principales**: Su objetivo es resumir un grupo amplio de variables en un nuevo conjunto mas pequeño, sin perder una parte significativa de la información original.
La adquisición de imágenes sobre bandas adyacentes del espectro, implica con frecuencia detectar una información redundante, puesto que los tipos de cubierta tienden a presentar un comportamiento similar en regiones próximas del espectro. (Chuvieco, 1990)

- **Tasseled Cap**: Ofrece unos componentes de significado físico preciso, esto es independientes del tipo de imagen que se esté analizando. Se distinguen tres componentes: uno denominado brillo (Brightness), suma ponderada de las cuatro bandas originales; otro denominado verdor (greeness), relacionado con la actividad vegetativa; un tercero conocido como marchitez (yellowness), que pretendía relacionarse con la reducción en el vigor vegetal, y un último sin significado aparente (n nonsuch) (Chuvieco, 1990)

2.1.4 Clasificación supervisada

La clasificación se dirige a obtener una nueva imagen en la cual cada uno de los pixels originales venga definido por un ND, que es el identificador de la clase en donde se haya incluido. La clasificación supervisada parte de un cierto conocimiento de la zona de estudio lo que permite al intérprete delimitar sobre la imagen unas áreas piloto denominadas áreas de entrenamiento. (Chuvieco, 1990)

- **Clasificador de máxima probabilidad (Verosimilitud estadística- MLC)** Este método considera que los ND en el seno de cada clase se ajustan a una distribución normal. Esto nos permite describir esta categoría por una función de probabilidad, a partir de su vector de medias y matriz de varianza-covarianza. En pocas palabras, esa función asemeja la distribución real de los ND en esa categoría, por lo que nos sirve para calcular la probabilidad de que un pixel (con determinado ND) sea miembro de ella. El cálculo se realiza para todas las categorías que intervienen en la clasificación, asignando el pixel a aquella que maximice la función de probabilidad. (Chuvieco, 1990)

2.2 Contexto histórico

A principios del presente siglo se hace más evidente la estrecha relación entre la Sabana de Bogotá y la capital. Es entonces clara la configuración de esta región, que con un marcado tinte de herencia española, se diferencia cada vez más del resto de Cundinamarca y Boyacá, conformando grupos de poder con espíritu de comunidad, alimentados de una tradición señorial, atada a títulos de abolengo y apellido. Este tradicionalismo fue mantenido y prolongado por las “rancias” familias bogotanas, herederas de los grandes hacendados y éstos, a su vez, de los encomenderos. La condición de capital le otorgó a Santafé de Bogotá una cierta condición cosmopolita y de apertura al exterior, reforzada por un crecimiento de la ciudad que demandó
mano de obra de otras regiones del país. Mientras eso sucedía, el pueblo "raso" de la Sabana mantuvo ciertas tradiciones venidas de antiguo, de la cultura indígena y mestiza construida en la cotidianidad del trabajo, como ciudadanos de segunda clase frente a los grandes señores.

2.2.1 Cajicá
Posterior a la independencia, Cajicá empieza a establecer linderos, el 12 de mayo de 1864 por ley C. 12 se delimitó hacia el sur con el municipio de Chía, años más tarde los límites dados por el Agustín Codazzi se legalizaron por Ordenanza 36 de 1945, por el Decreto Departamental 441 de 1950 y ratificado por Decreto Nacional 1510 de 1951 (para ese año con Tabio y Zipaquirá no había límites legalizados). Por el oriente, Cajicá llegaba hasta la Hacienda Hato Grande del Cura Pedro Martínez Buganda, pero fue cedida a Sopó porque los Cajiqueños no podían cruzar el río para llegar allá (por no saber nadar). Años más tarde, esta hacienda se convirtió en el hogar de grandes personajes históricos, así como también casa de campo para los presidentes de la república de Colombia y monumento nacional. (Sanchez Gonzalez & Martinez fonseca, 2017)

Ya en el afán de un desarrollo económico capitalista, se adoptaron sectores como el comercio, la minería, la agricultura de exportación, hasta llegar al sector bancario y la industria. Los avances en infraestructura de transporte se enfocaron en el comercio exterior, dejando al mercado interno en las peores condiciones. Todos los tramos que se construyeron no eran con el fin de crear un sistema de transporte interconectado en el país, sino que conectaba exclusivamente las zonas estratégicas de producción de recursos exportables. En los lugares que funcionaron las vías ferreas, se reemplazó el transporte de carga en mulas y en personas, lo cual fue una medida eficiente para los comerciantes, ya que se disminuyeron los costos y el tiempo de acarreo y la inseguridad de las mercancías, y aumentó el volumen de mercancías por viaje. (Sanchez Gonzalez & Martinez fonseca, 2017)

2.2.2 Chía
En la década de 1970 presenció periodos de lluvia definidos, en los cuales los ríos Bogotá, río Frío contaban con un gran caudal, el cual permitía que sirvieran como grandes fuentes para la pesca. Sin embargo, el paisaje de Chía no dejaba de mostrar paisajes ricos en fauna y en flora, tanto en la zona de los Cerros Orientales como en la planicie y cercanía con las corrientes de agua. Esto producía una masiva recolección de flora para la temporada decembrina y las festividades, donde los arbustos, musgos y frailejones eran los más afectados. Además era frecuente el uso del “helecho de monte” como envoltura de la carne comercializada. (Sambrano Saavedra & Castro lozano, 2017)

A mediados de la década de los 60 Chía contaba con 15793 habitantes, según el DANE. Se estima que a partir de esta época la tasa de crecimiento de la población incrementó debido a la gran demanda de residencia de la población aledaña al municipio, principalmente de Bogotá, ya que en 10 años pasó de ser de un 17.3% a un 66%.

Lo anterior dio origen al término “ciudad dormitorio”, debido a que la gente residía en Chía pero realizaba sus actividades cotidianas en Bogotá. También aumentó el turismo los fines de semana, tendencia que se veía desde la década pasada. Debido a todo esto, el casco urbano perimetral se incrementó. (Sambrano Saavedra & Castro lozano, 2017)
2.2.3 Cota
El humedal La Conejera era de gran importancia para los indígenas ubicados en la región de Cota, ya que en sus alrededores se cultivaba papa, chugua, haba, cubios, maíz, batata, yuca y arracacha, así también sustentaba la cría de curies y patos. Fue hasta 1971 que el humedal mantuvo sus buenas condiciones. Así lo cuenta el propietario y residente hace más de 25 años Eugenio Sierra de la hacienda La Esperanza, ubicada en el costado oriental. (Esscobar Buitrago & Supelano Moreno, 2017)

“El área estaba conformada por haciendas dedicadas a la ganadería, y en algunos casos a la agricultura. El agua de la quebrada era limpia y se utilizaba para los usos domésticos, pero con la aparición de los barrios se contamiñó” (Olivos & Melo, 2006)

A nivel territorial en la sabana de Bogotá vienen ocurriendo cambios en las dinámicas de ocupación, usos y posesión de la tierra desde 1950, que se representan en la conformación de una malla urbana dominada por la Ciudad Capital que genera ciertas relaciones de dependencia sobre todo el territorio sabanero. Así, aquellos municipios más cercanos a Bogotá y que se conectan a los principales ejes viales, presentan un crecimiento acelerado entre 1973 y 1985, siendo Cota el segundo municipio con más crecimiento después de Soacha. (Palacio et al., 2008)

Unos de los principales factores explicativos de las mencionadas relaciones de dependencia y de las fuertes interacciones sociospatiales entre las entidades territoriales de la sabana de Bogotá, específicamente del eje norte de la Sabana Centro de Bogotá (Cota, chía y Cajicá), es la ubicación contigua entre dichos municipios que ofrece una alta conectividad que se soporta en las vías nacionales: carretera central del Norte (Bogotá-Tunja), autopista Medellín, así como en las vías intermunicipales: vía Siberia-Tenjo, variantes Suba-Cota y Chía-Cajicá. Esas mismas interacciones han dado lugar desde los 50’s a importantes procesos de transformación en el ámbito rural y urbano de estos municipios. (Palacio et al., 2008)

2.2.4 Facatativá
Las distintas etapas de crecimiento y desarrollo del municipio están relacionadas con el auge y posterior desuso del ferrocarril, con el inicio del cultivo masivo de flores y con situaciones de orden público (como el Bogotazo y la violencia de los años ochenta). Consecuencia de lo anterior se han desarrollado una cadena de eventos que son el desarrollo mismo del municipio, entre los que sobresalen la industrialización y especificación del talento humano entorno al ferrocarril en los años cincuenta, el desarrollo institucional de los años setenta, las distintas y continuas urbanizaciones y el proceso de densificación y consolidación de las zonas urbanas en los últimos 40 años.

Entre los años 1940 y 1960 se presentó en fenómeno de la formación de los “barrios obreros” los cuales eran localizados a las cercanías de los centros de producción del municipio y estaban dirigidos como su nombre lo indica a crear zonas residenciales para la mano de obra.

Con el desarrollo legislativo del país en los años noventa en temas territoriales igualmente se fue normalizando en las ciudades y municipios. Desde 1993 en Facatativá se reglamentó el uso del suelo, aunque vale resaltar que en un informe de la contraloría municipal se denuncia la inconsistente información predial ni ningún control urbanístico pertinente (López, 2000). Se podría
2.2.4 Funza
El municipio de Funza no guarda mayores rasgos de que en sus antepasados sus territorios hubiesen sido ocupados con una tribu indígena colombiana que fue abandonada por unos y otros, reducida a cenizas y en proceso de extensión, solo historias plasmadas en crónicas españolas destacan los pueblos que habitaban estos territorios como aguerridos a su cultura, y bélicos en cuanto a la defensa del territorio al punto de que obligaron a una tropa de Jiménez de Quesada con hostilización constante a desplazarse el territorio actualmente conocido como Bosa. Antes de un trágico fin anunciado este terrenno fue asignado mediante la figura de encomienda a Anton Olalla conocido por su ardua labor y recorridos en latifundios y por sus crueldades con los indios, y que además fue el primero en traer los primeros ganados a estas tierras. (Ortiz Amaya & Montes Galeano, 2017)

Para el año de 1920, las familias más importantes del municipio y que poseían una gran visión empresarial, deciden fundar una compañía de buses (compuestos de 2 buses) prestan el servicio de transporte para los habitantes del municipio hasta la estación del ferrocarril (sabemos que el ferrocarril funcionaba en aquel entonces ya que en el municipio de Subachoque se construyen los rieles para prestar el servicio desde municipios aledaños hasta la ciudad de Bogotá), pero luego con la caída del ferrocarril (se da porque la empresa que fabricaba estos rieles queda en la quiebra), deciden prestar el transporte desde Funza hasta la ciudad de Bogotá, por lo que junto con más socios nace la empresa FLOTA FUNZA. Luego con el tiempo, la población comienza a crecer, así como su economía, por lo que la empresa cierra sus puertas, y así para el año de 1955 es absorbida por la empresa EXPRESO CUNDINAMARCA, acabando con la historia de la primera empresa de transportes del municipio. (Veloza Gonzalez, 2014)

2.2.6. Madrid
El área que hoy se conoce como Madrid y los municipios vecinos en la sabana de Bogotá eran inicialmente territorio de indígenas Muiscas, sin embargo durante la colonización se conformaron allí grandes haciendas cuyos propietarios eran encomenderos y conquistadores españoles. Es de esta forma como se puede decir que inicia la historia de la división predial en Colombia; pues, si bien muchas de estas grandes extensiones de tierra se mantuvieron por años ya que la existencia de algunas se puede datar entre los años 1550 a 1600 y se extienden hasta cerca de finales del siglo XIX, es en este siglo cuando las dinámicas del crecimiento demográfico se ven reflejadas en la parcelación y el fraccionamiento predial tanto a nivel rural como urbano, causando su reducción o desaparición como “hacienda” propiamente dicha. Para el caso de Madrid se estima que su actual superficie comprendía las haciendas de: la Estancia de Serrezuela (Comprendía parte de la laguna de la Herrera, el río Bojacá y el río Subachoque); Potrero Grande y Serrezuela (localizada al pie de serrezuela entre el río Bojacá por el sur y por el occidente las tierras de las monjas de santa Inés en el municipio de Bojacá) y la Hacienda Casablanca la cual corresponde a la encomienda de indios de Serrezuela, cuya población indígena se asentaba en lo que hoy es Madrid (localizada
por el norte entre lo que desde entonces comprende el casco urbano del municipio de Madrid y por el sur hasta el río Bojacá) (Díaz Arias & Aguilar Rivera, 2017)

2.2.7 Mosquera
Teniendo en cuenta las intenciones de los nuevos hombres en el continente, en el altiplano no se constituyó la actividad minera como eje principal, ya que la explotación de minerales no se daba bien en estas tierras, así que las principales actividades transformadoras del territorio fueron las agrícolas, principalmente el cultivo de maíz, tubérculos, cereales y la actividad ganadera en donde se introducirían especies de ganado procedentes de Europa. (Cardona Farias & Parada Parra, 2017)

En el sector de la Herrera, en el actual territorio de Mosquera y otros municipios de la sabana, bordeando la laguna, pasaba el camino que de Mosquera conducía a la Mesa, además, el camino de Balsillas en donde se cruzaba con el camino de Occidente se encuentra con el lugar denominado tres esquinas, cuya importancia quedó plasmada en la historia por haber sido el sitio de cruce de los caminos que atravesaban la sabana de oriente a occidente y de norte a sur. En donde después se fundaría Mosquera. (Serna, 2003)

La oferta de la Sabana de Bogotá, al igual que la demanda de Santa fé (Hoy Bogotá), iban creciendo de forma simultánea a medida que su población también lo hacía, así que, inevitablemente los ecosistemas de la Sabana también ofrecían un cambio simultáneo pero de forma inversa, la degradación y el agotamiento de los recursos naturales presentes consecuencia de la gran presión antrópica que se presenta desde la segunda mitad del siglo XIX, especialmente de sus suelos, los cuales gozaban de un margen de productividad inmenso, que pronto se vería agotado y desplazado por la creciente expansión urbana. (Ruiz, 2008)

Para el establecimiento del cultivo del trigo, predominante en las tierras de la Sabana del Río Funza (Ruiz, 2008), se buscaron tierras hacia el occidente, las cuales fueran no inundables donde pudiese mantenerse el cultivo de forma permanente, al mismo tiempo según Ruiz (2008) se instalaron criaderos de “ovejas, caballos y ganado de ceba (carne y cuero) también se instaló en el altiplano donde gozaba de un clima privilegiado” en los territorios comprendidos hoy por Funza y Mosquera. (Cardona Farias & Parada Parra, 2017)

Los cambios de los usos agrícolas en el municipio han estado vinculados con las dinámicas socioeconómicas del país que se presentaron hacía el siglo XX. Hubo una importante cambió de la agricultura tradicional basada en el cultivo de cereales a principios del siglo, transitando por una horticultura minifundíaria a una agricultura de exportación de flores, desplazando estos últimos, espacios ocupados por cultivos agrícolas, aunque en menor medida, comparado con los municipios vecinos (Condori, 2006)

2.2.8 Soacha
Posterior a esto en la segunda mitad del siglo XIX en el territorio de Soacha se empezaron a desecar los pantanos de la hacienda la Chucua 3, lo que amplificó el sistema agrícola y ganadero de la zona, ya que don Manuel Umaña Manzaneque fue de los primeros en usar los arados ingleses en Colombia, los cuales fueron importados por su suegro don Raimundo de Santa María. (Pardo Umaña, 1946). Esto marco el inicio de Soacha como municipio agricultor y ganadero en sus principios.
El municipio de Soacha empieza su desarrollo como municipio legal desde el año 1875 cuando se realizó el levantamiento del plano de población, el cual le instauro el nombre oficial al municipio y se reconoció como municipio de Cundinamarca, en el transcurso de la historia del municipio se han desarrollado diferentes obras que han permitido una interconexión con el resto del territorio nacional al igual que la mejora en algunos equipamientos que han permitido brindar servicios públicos y ambientales para el municipio y su importancia con la región, algunos de estos proyectos fue la construcción de la línea del ferrocarril (1898), la hidroeléctrica el charquito (1900) primera hidroeléctrica del país, en el año 1950 se construyó la represa del muña en mediaciones con el municipio de Sibaté. (Cancino, 1940)

La extensión del municipio en el año 1940 era de 600 kilómetros cuadrados, de los cuales un poco más de la mitad están dedicados a la industria de la agricultura y el resto a la ganadería. (Cancino, 1940) La población de Soacha en las dos primeras épocas del siglo XX era en su mayoría rural y aunque tenía mayor población que municipios como Facatativá no generaba mayores aportes a la economía de socio productiva urbana que se desarrollaba en Bogotá, esta dinámica se evidenciaba en la caracterización de los productos que entranaban por el ferrocarril del sur, el cual no presentaba una cantidad considerable de materias primas que requería la ciudad y sus industrias. (Restrepo, 2006)

Durante esta época adicional al comercio agrícola y la vocación que todavía se conservaba se encontraban incursionando nuevas industrias, tales como la minería debido a la presencia de carbón de piedra, cal y canteras de piedra labor, estas se comerciaban en su gran mayoría con el distrito capital de Bogotá. La incursión en la extracción minera atrajo nuevos tipos de industrias y fabricas al municipio (Díaz Moya, 2014)

2.2.9 Tabio

Entre 1900-1950 las relaciones del hombre con la tierra la forma de establecimiento en Tabio y la sabana es la de viviendas o fincas aisladas, es decir que tanto trabajadores como operadores no residían en la cabecera del municipio sino en las zonas rurales. Ahora bien, el centro de población de Tabio es un centro comercial, religioso, educativo y recreativo.

Como conclusiones el estudio menciona que no existe latifundio en Tabio, aunque algunos propietarios tienen grandes extensiones en otras partes del país, en concordancia se ha agudizado el minifundio, es decir parcelas muy pequeñas que puedan ofrecer un buen nivel de vida a sus propietarios. Existe mucho desperdicio de trabajo, ya que el arado, la rueda y la tracción animal todavía no entran sino muy incidentalmente en los trabajos agrícolas del municipio, generando un nivel de vida muy bajo entre la población. No existe un buen nivel de educación en el municipio, los jóvenes carecen de instrucción, y se recomienda el impuesto predial como un medio para que el municipio pueda desarrollar una mejor educación, para que le dé al pueblo nuevas habilidades, nuevas técnicas y el conocimiento en general para adquirir los servicios adicionales requeridos. (Cárdenas & Mamayate, 2017)

Durante 1950-2010 el municipio sufrió grandes transformaciones configurándose como actualmente se le conoce. De acuerdo con la información y los datos de población, los fenómenos que se describieron en las décadas anteriores sobre poco crecimiento de la población y la migración
de esta a otras zonas del país, cambiaron por uno de un crecimiento por encima de lo esperado, derivado en parte a la llegada de personas de otras zonas del país, producto del recrudecimiento del conflicto armado colombiano. A la par de esto el municipio vivía un atraso muy pronunciado en cuanto a vías, a infraestructura como de energía eléctrica, acueducto y alcantarillado lo que generó que la situación en el municipio llegara a una marcada crisis hasta principios de los ochentas (Cárdenas & Mamayate, 2017)

2.2.10 Tenjo
La forma como se ha ocupado el territorio y los poblados con su respectiva jerarquía regional; muchos de ellos desde épocas prehispánicas fueron asentamientos de origen indígena soportados por los caminos de interconexión regional.

Inicialmente la ocupación del territorio se caracterizaba por ser muy compacta y nucleada, hasta comienzos del siglo XX. Ya a mediados de éste la estructura territorial comienza a mostrar otra dinámica en la cual, el carácter disperso genera la aparición de nuevas vías de comunicación superpuestas a los antiguos caminos, que aún en la actualidad permiten desplazamientos hacia los núcleos urbanos y su respectiva periferia. La demanda de ocupación de suelos de la Sabana ha generado impactos en la estructura general ambiental, como en el caso de los acuíferos que han sido desecados para generar áreas urbanizables en algunos de los municipios. (Rincon Vega & Naranjo Casallas, 2017)

La distribución espacial obedece a una configuración que fue dada desde el periodo colonial e incluso se remonta a la etapa precolombina y en el que incluso se habla de una “inercia espacial” que continúa hasta el siglo XIX con regiones fragmentadas e incomunicadas y heterogéneas en las facultades económicas, durante el periodo marcado por el federalismo. Es por ello que en el periodo 1880-1930 se empieza a dar una tendencia a la urbanización y la modernización, además de un increment en las exportaciones marcándose así el proceso de la acumulación de capital impulsado de cierta manera por el papel que ejercieron las políticas centralistas (Rincon Vega & Naranjo Casallas, 2017)

La floricultura en Colombia, tiene su primera aparición a principios del siglo XX, a manos de ciudadanos europeos, quienes establecieron las primeras plantaciones con las que se surtían de la materia prima para elaborar arreglos florales que luego vendían en selectos mostradores en las principales ciudades colombianas (Centro de estudios sociales & Servicio Nacional de Aprendizaje , 1992).

En el año 1964, extranjeros americanos, luego de evaluar las ventajas comparativas con las que contaba la región de la Sabana de Bogotá, establecieron los cultivos de flores en su versión moderna. Originalmente, el cultivo de flores se asienta en el municipio de Mosquera, y gracias a esas ventajas comparativas, se irradia a toda la Sabana, trayendo consigo transformaciones espaciales, sociales y económicas que se dieron en el último cuarto del siglo XX. (Rincon Vega & Naranjo Casallas, 2017)

En la evolución de los cultivos y las áreas ocupadas por la floricultura, se identifican dos fases entre la mitad de la década del 60 y comienzos de los 90. El despegue en el periodo 1964-1981 y la expansión acelerada en los siguientes 10 años. En la primera fase, que tardó cerca de 17 años,
solo se establecieron 149 cultivos que ocupaban 912 hectáreas, mientras que, en la segunda fase, surgieron más de 300 cultivos, los cuales incrementaron en más de 300% el área registrada a comienzos de los 80 (Centro de estudios sociales & Servicio Nacional de Aprendizaje, 1992)

2.2.11 Zipaquirá

Una de las características de Zipaquirá es la de poseer en su suelo un yacimiento de sal que le ha permitido a través de la historia, características especiales en su desarrollo socio-económico y político tanto a nivel regional como nacional (Velandia, 1982)

La coyuntura social, política, económica y de infraestructura de Colombia en este momento, en especial de la población del altiplano Cundí-boyacense, tras los traumatismos sociales y políticos, generó cambios, entre estos y quizás el más relevante que ha influido directamente en la historia del país fue el de los cambios de propiedad de los territorios de los ejido y el proceso de parcelación. Desde finales del siglo XIX, se da una acometida a los territorios aledaños a las haciendas, por la ley de enajenación de tierras fueron parcelados estos territorios de ejidos y la población fue emigrando hacia la urbe con el objeto de “enganche” en alguna fábrica o industria de la ciudad. Entonces esta ley que permitió la enajenación de los resguardos, dejo como efecto una población sin tierra convertida en obreros, jornaleros y peones de las fábricas urbanas y en efecto un radio amplio de pobreza y aglomeración poblacional de algunos sectores característicos de la ciudad (Acuña, 2014)

A partir de los años 50 con la agudización de la “época de la violencia”, especialmente en el área rural, se produce en Zipaquirá un fuerte movimiento migratorio de personas procedentes principalmente de la región de Rio Negro y en menor escala de Tolima y Santander. La ciudad crece tanto en número de habitantes como en extensión con la construcción de nuevos barrios y de centros poblados en la zona rural. Esta situación provocó paulatinamente una falta de sentido pertenencia de las gentes y una consecuente falta de compromiso para con la ciudad, cuyo impacto “lo ha sentido la naturaleza al ver desaparecer sus fuentes de agua, disminuido el bosque natural y empobrecido el suelo.

Durante el siglo XX la producción salinera no fue el único renglón de la economía local, destacándose el sector agrícola con productos como el trigo, la cebada y el maíz; actualmente se cultiva principalmente papa y hortaliza. Hacia 1954 se inaugura la primera Catedral de Sal, convirtiendo a la ciudad en un atractivo turístico. Este se ha reactivado en las últimas décadas, gracias a la reapertura de la Catedral de Sal (diciembre de 1995) que continúa siendo el máximo atractivo promocionado a nivel nacional e internacional. En las 2 últimas décadas se ha intensificado el área comercial y se han construido y aprobado numerosos proyectos de vivienda, varios de los cuales se han extendido hacia la periferia.
Capítulo III
Datos y Métodos

3.1 Zona de estudio
La Sabana de Bogotá está ubicada sobre la cordillera oriental. La Sabana de Bogotá es asiento de veintiséis municipios del Departamento de Cundinamarca y de una parte considerable del Distrito Capital de Santafé de Bogotá. Alberga una población cercana a seis millones de habitantes, noventa por ciento de los cuales vive en la capital, pero los demás se encuentran en un proceso de evidente metropolización y suburbanización. Además, las tradicionales cabeceras municipales de la región tienden a crecer acelerada y diferencialmente configurándose como lugares dormitorio y/o centros alternativos de desarrollo urbano.

De la superficie total, 137,621 has corresponden a suelos planos; 6661 has a espejos de agua, entre represas y lagunas; y las restantes 281588 has son suelos de laderas, localizadas hacia los flancos de la Sabana. La región comprende 86,340 has del Distrito Capital, área equivalente al 54% del mismo. Abarca, además, el territorio completo de 17 municipios y territorios parciales de 9 de ellos. Estos últimos están localizados hacia los bordes de la Sabana y se extienden más allá de la divisoria de aguas correspondiente al Río Bogotá, pero sus cabeceras municipales se encuentran ubicadas dentro de la Sabana de Bogotá. (Montañez Gomez, y otros, 1994)

Figura 1: Localización Sabana de Bogotá.
Izquierda: Nivel nacional, derecha: nivel departamental
Fuente: autor
La Sabana de Bogotá es atravesada por el Río Bogotá y está bordeada por el costado oriental por una cadena montañosa, estos dos ecosistemas son estratégicos por su importancia ecológica, no solo para el Distrito Capital, sino también para los municipios aledaños con los cuales se integra espacial y funcionalmente. Los cuales recientemente han sido identificado y delimitados dentro del área geográfica del ámbito metropolitano de la Región, por la Subsecretaría de Planeación Territorial.

Según (secretaria de tránsito y transporte Bogotá, 2006) Es importante mencionar que los cerros orientales, que forman parte del corredor ecológico del sistema Sumapaz-Chingaza, son la base de una parte importante del sistema hídrico de ciudad y ejercen control sobre algunos aspectos climáticos como la dirección e intensidad de los vientos y sobre los niveles de precipitación. El Distrito Capital tiene una superficie de 163.663,1 ha y se ha desarrollado sobre los suelos fértiles y planos de la sabana. El 75% de la superficie del Distrito Capital es zona rural. En ellas se distinguen los ecosistemas de Bosque Alto Andino, subpáramo y Páramo. (citado en Dirección de ambiente y ruralidad DAR, 2014, p 39)

3.2 Extension del área de estudio

En la sabana de Bogotá se encuentran varias lagunas de gran importancia por su belleza, su riqueza en recursos naturales y los valiosos servicios ambientales que prestan a muchos habitantes de la sabana como la Laguna de La Herrena localizada en los municipios de Mosquera y Bojacá. (Figura 3)

Además de las Lagunas propiamente dichas, existían en el territorio de la sabana de Bogotá varios complejos de humedales que regulaban las crecientes del río Bogotá durante las épocas de
invierno; muchos de ellos fueron parcial o totalmente desecados y rellenados para construir sobre ellos viviendas y obras de infraestructura, otros intervenidos drásticamente para desarrollar actividades como la agricultura, la ganadería y la minería, como el humedal gualí tres esquinas (figura 3)

Figura 3: Aerofotografías izquierda Humedal Gualí tres esquinas, derecha Laguna de La Herrera

Fuente: IGAC aerofotografía gualí tres esquinas vuelo c 1390, año 1971; IGAC aerofotografía La Herrera vuelo C-1056 año 1987

3.3 Datos
Para el desarrollo del proyecto la información base fue obtenida de diferentes entidades, a continuación se muestra la información asociada.

3.3.1 Información raster

Tabla 2: Información rásster implementada en el proyecto

<table>
<thead>
<tr>
<th>Imagen</th>
<th>Información General</th>
</tr>
</thead>
</table>
| ![Imagen Información General](image) | Año: 1977
Misión: Landsat 2
Sensor: MSS
Tamaño: 214.8 MB
Resolución espacial: 60m
Número de bandas: Cuatro
Resolución radiométrica: 8 bits |
Año: 1988
Misión: Landsat 4
Sensor: TM
Tamaño: 319,71 MB
Resolución espacial: 30 m
Número de bandas: Seis
Resolución radiométrica: 8 bits

Año: 1997
Misión: Landsat 5
Sensor: TM
Tamaño: 328,42 MB
Resolución espacial: 30 m
Número de bandas: Seis
Resolución radiométrica: 8 bits

Año: 2003
Misión: Landsat 7
Sensor: ETM+
Tamaño: 328,55 MB
Resolución espacial: 30 m
Número de bandas: Seis
Resolución radiométrica: 8 bits
Al escoger las imágenes para el desarrollo del proyecto, se tuvo en cuenta el cubrimiento por imagen del área de estudio, resolución espacial, cobertura de nubes, épocas de adquisición, asequibilidad de los datos. Estas imágenes fueron adquiridas a través de la plataforma Earth Explorer del servicio geológico de Estados Unidos, teniendo en cuenta los aspectos anteriormente mencionados la imagen más antigua útil para el desarrollo del proyecto que proporcionan las misiones Landsat es del año 1977, teniendo una diferencia temporal aproximadamente de 10 años entre imágenes para poder realizar el análisis.

3.3.2 Información vector

Tabla 3: Información vector implementada en el proyecto

<table>
<thead>
<tr>
<th>Shp</th>
<th>Contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complejo de páramos</td>
<td>(Instituto Humboldt)</td>
</tr>
</tbody>
</table>
La información fue recopilada de entidades como IDEAM, IGAC, CAR, instituto Humboldt. Estos datos tipo vector son de utilidad para complementar procesos de interpretación, y principalmente para la identificación de las estructuras ecológicas presentes en el área de estudio, el contenido de esta información a su vez permite evidenciar los límites administrativos de los municipios enmarcados en el proyecto de investigación.
3.3.3 Información aérea

Tabla 4: Información aérea implementada en el proyecto

<table>
<thead>
<tr>
<th>Imágenes entre años 60-80 Format Tiff</th>
</tr>
</thead>
</table>

Fuente: autor

Esta información fue proporcionada por el instituto geográfico Agustín Codazzi, estas fotografías aéreas permiten apoyar el proceso de análisis de la zona mediante la interpretación de sus coberturas y permite tener un conocimiento de varias áreas dentro de la zona de estudio y evidenciar el cambio de coberturas que se ha generado a lo largo de los años ya que está información posee una fecha de captura de más de dos décadas.

3.3.4 Software procesamiento

Tabla 5: Software de procesamiento implementado en el proyecto

<table>
<thead>
<tr>
<th>Software</th>
<th>Características</th>
</tr>
</thead>
</table>
| ERDAS | License Type: Standart
 | Product: Intergraph Corporation
 | Version:14.00.0000 Build 350 |
| PCI Geomatica | License Type: Standart
 | Product: Geomatica
 | Version: V12.0.1 |
| ArcGIS | License Type: Standart
 | Product: ESRI
 | Version:10.3 |
| Ilwis | License Type: Standart
 | Product: 52 North
 | Version:3.31 |

Fuente: autor

La utilización de diferente software de procesamiento de imágenes como herramientas para realizar el proyecto es indispensable para obtener resultados confiables, en este proyecto se implementó el uso de varias herramientas que facilitan los procesos para generar en este caso cartografía temática a partir de imágenes satelitales.
3.4 Metodología

Para generar la cartografía temática, una vez obtenidas las imágenes satelitales en estado crudo (sin ningún procesamiento), es necesario realizar unas acciones para obtener productos que faciliten su clasificación e interpretación en la Figura 4 se muestra la metodología general realizada.

![Diagrama de Metodología](Figura4)

Figura 4: Metodología Obtención Cartografía temática

Fuente: autor

En la fase de pre procesamiento se realizan, mejoramientos, filtros, calibración geométrica, radiométrica y recorte de la zona de estudio. Debido a la interacción de la energía electromagnética con las capas atmosféricas, se realizan mejoramientos que optimizan la interpretación de la imagen, la calibración geométrica permite georreferenciar las imágenes, la calibración radiométrica normaliza los datos. El proceso de recorte se aplica para reducir tiempos de ejecución en los algoritmos de procesamiento.

En la fase de procesamiento se generan las transformaciones e índices que resultan ser información de apoyo para discriminar las coberturas y realizar la clasificación como lo son NDVI para diferenciar zonas de vegetación con mayor vigor.

En la fase de clasificación temática, es necesario realizar un muestreo en el que se deben tener en cuenta la matriz de separabilidad, desviaciones estándar, se tiene ejecuta el algoritmo de clasificación el cual resulta en una edición simplificada, si la calidad de la clasificación es adecuada de acuerdo a la matriz de separación se realiza la agregación para corregir las zonas que no se han clasificado correctamente.

En la fase de post proceso se evalúan los resultados de las clasificaciones visual y estadísticamente, se realiza un proceso de edición y filtro, que permite eliminar el efecto moteado en la imagen temática, ya que se presenta auto correlación entre algunas clases espectrales se realiza una agregación.
Los mapas temáticos son el resultado del post procesamiento mediante el índice de exactitud Kappa que es la proporción de coincidencias obtenidas en un producto cartográfico sustrayendo aquellos generados de forma fortuita..

Para determinar el tamaño de la muestra para determinar la exactitud temática estableciendo un nivel de confianza de 95% lo que indica que el kappa esperado es de 85%

\[
N = \frac{Z^2(p)(q)}{E^2}
\]

Donde:

N: número mínimo de puntos de evaluación
p: porcentaje de kappa esperado
q: 100-p
E: error permitido
Z: 2(de la desviación normal estándar de 1,96 para el nivel de confianza del 95% a dos colas)

Para el desarrollo de la exactitud temática:

\[
N = \frac{2^2(85)(15)}{5^2} = 204
\]

Luego de la fase de muestreo se crea un listado en el cual están los puntos de las coberturas reales como los decididos por el clasificador. Con estos datos se forma una matriz, denominada de confusión ya que reúne los conflictos que se presentan entre categorías. Las filas son las clases referencia y las columnas las categorías deducidas por la clasificación; La relación entre el número de puntos correctamente asignados y el total expresa la fiabilidad global del mapa. Los residuales en las filas indican tipos de cubierta real que no se incluyeron en el mapa, mientras que los residuales de las columnas implican cubiertas del mapa que no se ajustan a la realidad. Estos errores son conocidos como errores de omisión y errores de comisión, respectivamente. (Chuvieco, 1990)

A partir de los mapas temáticos se realizan los mapas multitemporales con los cuales se visualiza y se cuantifica los cambios generados en un espacio de tiempo.
Capítulo IV

Resultados

A continuación se presenta la cartografía temática de 5 años diferentes y un análisis multitemporal para 4 espacios de tiempo, comprendidos entre los años 1977 y 2015. La escala de la cartografía resultante es de 1:100000 ya que es adecuada para realizar un estudio semi detallado de la Sabana de Bogotá

4.1 Cartografía temática

Para la identificación y clasificación de las coberturas se utilizó la metodología CORINE Land Cover adaptada para Colombia. Descritas en la tabla 6

<table>
<thead>
<tr>
<th>Tabla 6: Coberturas según Clasificación CORINE Land Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobertura</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Zonas Urbanizadas</td>
</tr>
<tr>
<td>Arbustos y matorrales</td>
</tr>
<tr>
<td>Bosques</td>
</tr>
<tr>
<td>Cuerpo de Agua</td>
</tr>
<tr>
<td>Cultivos</td>
</tr>
<tr>
<td>Laguna</td>
</tr>
<tr>
<td>Pastos enrastrojados</td>
</tr>
</tbody>
</table>
prácticas de manejo o la ocurrencia de procesos de abandono. En general, la altura del rastrojo es menor a 1,5 metros.

<table>
<thead>
<tr>
<th>Pastos limpios</th>
<th>Esta cobertura comprende las tierras ocupadas por pastos limpios con un porcentaje de cubrimiento mayor al 70%; la realización de prácticas de manejo (limpieza, encalamiento y/o fertilización, etc.) y el nivel tecnológico utilizados impiden la presencia o el desarrollo de otras coberturas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tierras desnudas</td>
<td>Esta cobertura corresponde a las superficies de terreno desprovistas de vegetación o con escasa cobertura vegetal, debido a la ocurrencia de procesos tanto naturales como antrópicos de erosión y degradación extrema. Se incluyen las áreas donde se presentan tierras salinizadas, en proceso de desertificación, o con intensos procesos de erosión que pueden llegar hasta la formación de cárcavas.</td>
</tr>
<tr>
<td>Vegetación de páramo</td>
<td>Esta unidad se caracteriza por presentar una cobertura vegetal de bajo porte que se localiza en las zonas de alta montaña, está compuesta principalmente por gramíneas (familia Poaceae) del tipo pajonal (Calamagrostis sp.), entremezclada con plantas arrocetadas como los frailejones (Espeletia sp.) y otras especies. Esta cobertura se encuentra en las franjas diferenciadas altitudinalmente como subpáramo, entre los ±2.800 msnm a ±3.500 msnm, páramo, entre ±3.500 a ±4.500 msnm y superpáramo, de ±4.500 msnm en adelante, las cuales bordean en algunos casos zonas subnivales desprovistas de vegetación y zonas nivales.</td>
</tr>
<tr>
<td>Zonas industriales o comerciales</td>
<td>Áreas recubiertas por infraestructura artificial (terrenos cimentados, alquitranados, asfaltados o estabilizados), sin presencia de áreas verdes dominantes, las cuales se utilizan también para actividades comerciales o industriales.</td>
</tr>
<tr>
<td>Zonas Pantanosas</td>
<td>Esta cobertura comprende las tierras bajas, que generalmente permanecen inundadas durante la mayor parte del año, pueden estar constituidas por zonas de divagación de cursos de agua, llanuras de inundación, antiguas vegas de divagación y depresiones naturales donde la capa freática aflora de manera permanente o estacional. Comprenden hondonadas donde se recogen y naturalmente se detienen las aguas, con fondos más o menos cenagosos. Dentro de los pantanos se pueden encontrar cuerpos de agua, algunos con cobertura parcial de vegetación acuática, con tamaño menor a 25 ha, y que en total representan menos del 30% del área total del pantano.</td>
</tr>
</tbody>
</table>

Adaptado de (IDEAM, IGAC, CORMAGDALENA, 2008)
Tabla 7: Cartografía temática. Imagen Landsat 2 año 1977

<table>
<thead>
<tr>
<th>Clase</th>
<th>Numero de Pixeles</th>
<th>Área (ha)</th>
<th>Clase</th>
<th>Numero de Pixeles</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos</td>
<td>572920</td>
<td>202862.364</td>
<td>Tierras desnudas</td>
<td>36273</td>
<td>12843.724</td>
</tr>
<tr>
<td>Pastos limpios</td>
<td>239902</td>
<td>84945.694</td>
<td>Pastos enrastrados</td>
<td>134215</td>
<td>47523.515</td>
</tr>
<tr>
<td>Zonas urbanizadas</td>
<td>34428</td>
<td>12190.438</td>
<td>Arbustos y matorrales</td>
<td>1782592</td>
<td>77293.563</td>
</tr>
<tr>
<td>Bosques</td>
<td>359057</td>
<td>127136.689</td>
<td>Sin información</td>
<td>44672</td>
<td>15817.684</td>
</tr>
<tr>
<td>Cuerpo de agua</td>
<td>12352</td>
<td>4373.658</td>
<td>Zonas pantanosas</td>
<td>2564</td>
<td>907.874</td>
</tr>
<tr>
<td>Laguna</td>
<td>2348</td>
<td>831.392</td>
<td>Zonas industriales o comerciales</td>
<td>2482</td>
<td>878.839</td>
</tr>
<tr>
<td>Vegetación de páramo</td>
<td>123088</td>
<td>43583.611</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para la imagen del año 1977 del área total clasificada, 1.93% corresponden a Zonas urbanizadas, 13.46% a pastos limpios, 20.14% a bosques, 0.69% a cuerpos de agua, 32.14% a Cultivos, 0.13% a lagunas, 7.53% a pastos enrastrados, 2.03% a tierras desnudas, 6.91% a vegetación de páramo, 0.14% a Zonas industriales o comerciales, 0.14% a zonas pantanosas, 12.25% a arbustos y matorrales y 2.51% sin información.
Para la clasificación del año 1988 del área total corresponden, 4.17% a zonas urbanizadas, 12.61% a pastos limpios, 16.22% a bosques, 0.46% a cuerpos de agua, 35.66% a cultivos, 0.03% a lagunas, 13.79% a pastos enrastrados, 1.85% a tierras desnudas, 6.04% a vegetación de paramo, 0.25% zonas industriales y comerciales, 0.21% zonas pantanosas, 6.5% arbustos y matorrales, 2.21% sin información.
Tabla 9: Cartografía temática. Imagen Landsat 5 año 1997

<table>
<thead>
<tr>
<th>Clase</th>
<th>Numero de Pixeles</th>
<th>Área (ha)</th>
<th>Clase</th>
<th>Numero de Pixeles</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas pantanosas</td>
<td>2856</td>
<td>1028.160</td>
<td>Pastos enrastrojados</td>
<td>265484</td>
<td>95574.240</td>
</tr>
<tr>
<td>Zonas urbanizadas</td>
<td>84680</td>
<td>34461.000</td>
<td>Tierras desnudas</td>
<td>42595</td>
<td>15334.200</td>
</tr>
<tr>
<td>Pastos limpios</td>
<td>503564</td>
<td>181283.040</td>
<td>Vegetación de páramo</td>
<td>91485</td>
<td>32934.600</td>
</tr>
<tr>
<td>Bosques</td>
<td>221248</td>
<td>79649.280</td>
<td>Zonas industriales o comerciales</td>
<td>31238</td>
<td>11245.680</td>
</tr>
<tr>
<td>Cuerpo de agua</td>
<td>11577</td>
<td>4167.720</td>
<td>Arbustos y matorrales</td>
<td>83643</td>
<td>30111.480</td>
</tr>
<tr>
<td>Cultivos</td>
<td>395384</td>
<td>142338.240</td>
<td>Sin información</td>
<td>7831</td>
<td>2819.160</td>
</tr>
<tr>
<td>Laguna</td>
<td>590</td>
<td>212.400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la clasificación de la imagen correspondiente al año 1997, 0.16% corresponde a zonas pantanosas, 4.86% a zonas urbanas, 28.72% a pastos limpios, 12.62% a bosques, 0.66% a cuerpo de agua, 22.55% a cultivos, 0.03% a lagunas, 15.14% a pastos enrastrojados, 2.43% a tierras desnudas, 5.22% a vegetación de páramo, 1.78% a zonas industriales o comerciales, 4.77% a arbustos y matorrales, 0.45% sin información.
Tabla 10: Cartografía temática. Imagen Landsat 7 año 2003

<table>
<thead>
<tr>
<th>Clase</th>
<th>Numero de Pixeles</th>
<th>Área (ha)</th>
<th>Clase</th>
<th>Numero de Pixeles</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas urbanizadas</td>
<td>95738</td>
<td>34466.01</td>
<td>Tierras desnudas</td>
<td>61376</td>
<td>22095.36</td>
</tr>
<tr>
<td>Pastos limpios</td>
<td>272491</td>
<td>98096.76</td>
<td>Vegetación de páramo</td>
<td>92659</td>
<td>33357.24</td>
</tr>
<tr>
<td>Bosques</td>
<td>204886</td>
<td>73758.96</td>
<td>Zonas industriales o comerciales</td>
<td>35327</td>
<td>12717.72</td>
</tr>
<tr>
<td>Cuerpo de agua</td>
<td>12539</td>
<td>4514.04</td>
<td>Zonas pantanosas</td>
<td>3256</td>
<td>1172.16</td>
</tr>
<tr>
<td>Cultivos</td>
<td>339836</td>
<td>122340.96</td>
<td>Arbustos y matorrales</td>
<td>165141</td>
<td>59450.76</td>
</tr>
<tr>
<td>Laguna</td>
<td>1012</td>
<td>364.32</td>
<td>Sin información</td>
<td>145746</td>
<td>52468.56</td>
</tr>
<tr>
<td>Pastos enrastrojados</td>
<td>334481</td>
<td>120413.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La clasificación temática del año 2003 se obtuvo como resultado del área total, 5.43% correspondiente a zonas urbanizadas, 15.54% a pastos limpios, 11.68% a bosques, 0.72% a cuerpo de agua, 19.38% a cultivo, 0.06% a laguna, 19.08% a pastos enrastrojados, 3.5% a tierras desnudas, 5.28% a vegetación de páramo, 2.01% a zonas industriales y comerciales, 0.19% zonas pantanosas, 9.42% a arbustos y matorrales, 8.31% sin información.
Para la clasificación de la imagen del año 2015 del área total se obtuvo un 6.05% correspondiente a zonas urbanizadas, 9.87% a arbustos y matorrales, 19.71% a bosques, 0.70% a cuerpo de agua, 20.62%, a cultivos, 0.04% a lagunas, 14.36% a pastos enrastrados, 1.92% a tierras desnudas, 2.47% a vegetación de páramo, 0.73% a zonas industriales, 0.14% a zonas pantanosas, 14.17% a pastos limpios, 9.21% sin información.
4.2 Confiabilidad temática

Para estimar la confiabilidad temática es decir el grado de fidelidad de los valores asignados respecto a sus características representadas en la realidad y su correcta clasificación, este proceso consiste en comparar la información del mapa con información de referencia.

Se utilizó el índice de Kappa en el cual se evidencia la proporción de coincidencias obtenidas en los resultados cartográficos, mide la diferencia de una clasificación mediante una herramienta software y una clasificación visual. Según (Landis & Koch, 1977) para interpretar el valor de Kappa se dispone de una escala como la siguiente:

(< 0) Pobre, (0-0.20) Leve, (0.21-0.40) aceptable, (0.41-0.60) moderada, (0.61-0.80) considerable, (0.81-1) casi perfecta

A continuación se muestran los resultados del índice para cada una de las clasificaciones temáticas

<table>
<thead>
<tr>
<th>Tabla 12: Resultados coeficiente Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente Kappa</td>
</tr>
</tbody>
</table>

Otro indicador de exactitud temática son las matrices de confusión según (Chuvieco, 1990) Es una tabla de doble entrada en el cual se colocan en las filas y columnas las distintas clases a ser evaluadas, la diagonal expresa el número de coincidencias que se produce entre las dos fuentes el mapa y la realidad. El resto supone errores de asignación.

Es la correspondencia entre la clase asignada a un pixel y ya verdadera clase a la que pertenece

<table>
<thead>
<tr>
<th>Tabla 13: matriz de confusión para la clasificación del año 1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clases</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Zonas urbanizadas</td>
</tr>
<tr>
<td>Zonas urbanizadas</td>
</tr>
<tr>
<td>Pastos enrastrojados</td>
</tr>
<tr>
<td>Cultivos</td>
</tr>
<tr>
<td>Arbustos y matorrales</td>
</tr>
<tr>
<td>Bosques</td>
</tr>
<tr>
<td>Vegetación de paramo</td>
</tr>
<tr>
<td>Tierras desnudas</td>
</tr>
<tr>
<td>Zonas pantanosas</td>
</tr>
<tr>
<td>Cuerpos de agua</td>
</tr>
<tr>
<td>Laguna</td>
</tr>
<tr>
<td>Sin información</td>
</tr>
<tr>
<td>pastos limpios</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

Fuente: autor
En la matriz de confusión se pueden muestran los errores de asignación de pixeles, en las columnas se evidencia lo que se denomina error de omisión es decir cuando un pixel pertenece a determinada categoría, no resulta clasificado en dicha categoría, asignación de pixeles de una misma categoría en clases diferentes. Esto se plantea como riesgo del productor.

También se puede identificar lo que se denomina error de comisión es decir cuando un pixel resulta clasificado en una categoría y en realidad pertenece a otra. Esto se plantea como riesgo del usuario.

Para esta imagen del año 1977 puede estimarse una fiabilidad global del orden de 95%, el cual está dado como el cociente entre la traza de la matriz y la suma de sus elementos.

Para un intervalo de confianza de 95% la fiabilidad de la clasificación está entre 91.9 y 98%

Para la imagen del año 1988 se estima una fiabilidad global de 86% con un intervalo de confianza de 95%

4.3 Cartografía multitemporal

Esta cartografía permite detectar las zonas de mayor impacto en cuanto a los cambios que se han presentado en la zona de estudio. A continuación se presentan los mapas resultados con la respectiva cuantificación de área

Tabla 14: Representación Multitemporal 1977-1988

<table>
<thead>
<tr>
<th>Numero de pixeles</th>
<th>Área(ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Mapa de representación multitemporal 1977-1988]
En el primer periodo comprendido por los años 1977 y 1988 algo las de una década, se evidencia un incremento en las coberturas de zonas urbanizadas, pasando de ser 1.93% del área total en el año 1977 a ser 4.17% del área total en el año 1988 mostrando un crecimiento en el casco urbano de Bogotá y de sus municipios aledaños se estima un crecimiento de 14 mil hectáreas aproximadamente, una reducción de la cobertura de bosques pasando de 20% a 12% del área total.

Tabla 15: Representación Multitemporal 1977-1997

<table>
<thead>
<tr>
<th></th>
<th>Numero de pixeles</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansión Urbana</td>
<td>52039</td>
<td>18 426,23</td>
</tr>
<tr>
<td>Reforestación</td>
<td>36730</td>
<td>13 005,54</td>
</tr>
<tr>
<td>Inundación</td>
<td>1800</td>
<td>637,35</td>
</tr>
<tr>
<td>Deforestación</td>
<td>179854</td>
<td>63 683,6</td>
</tr>
<tr>
<td>Sequía</td>
<td>2525</td>
<td>894,06</td>
</tr>
<tr>
<td>Recuperación Humedal</td>
<td>1239</td>
<td>438,71</td>
</tr>
<tr>
<td>Erosión</td>
<td>27484</td>
<td>9 731,67</td>
</tr>
<tr>
<td>Deterioro Humedal</td>
<td>434</td>
<td>153,67</td>
</tr>
</tbody>
</table>
En el periodo comprendido entre 1977 y 1998 aproximadamente veinte años, el crecimiento de los cascos urbanos sigue evidenciándose, pasando de 1.93% del total del área de estudio a 4.17% del total estimado en aproximadamente 18 mil hectáreas, observando la cobertura de bosques ocupa un 20.4% en el año 1977 y un 12.7% en el año 1988, se evidencia el embalse de san Rafael construido en el año 1991

Tabla 16: Representación Multitemporal 1977-2003

<table>
<thead>
<tr>
<th></th>
<th>Numero de píxeles</th>
<th>Área(ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansión Urbana</td>
<td>65301</td>
<td>23 122,1</td>
</tr>
<tr>
<td>Reforestación</td>
<td>49331</td>
<td>17 467,37</td>
</tr>
<tr>
<td>Sequía</td>
<td>2784</td>
<td>985,77</td>
</tr>
<tr>
<td>Deforestación</td>
<td>152713</td>
<td>54 073,38</td>
</tr>
<tr>
<td>Inundación</td>
<td>2275</td>
<td>805,54</td>
</tr>
<tr>
<td>Recuperación Humedal</td>
<td>1639</td>
<td>580,53</td>
</tr>
<tr>
<td>Erosión</td>
<td>44996</td>
<td>15 932,41</td>
</tr>
<tr>
<td>Deterioro Humedal</td>
<td>833</td>
<td>294,95</td>
</tr>
</tbody>
</table>

En el periodo comprendido por los años 1977 y 2003 alrededor de treinta años el incremento de las zonas urbanas respecto del área total fue de 1.93% a 5.43% respectivamente estimando un incremento en el área de 23 mil hectáreas aproximadamente, la cobertura de bosques se redujo de 20.14% a 11.61% del área total clasificada
Tabla 17: Representación Multitemporal 1977-2015

<table>
<thead>
<tr>
<th>Evento</th>
<th>Numero de píxeles</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansión Urbana</td>
<td>74104</td>
<td>26 239,11</td>
</tr>
<tr>
<td>Reforestación</td>
<td>125972</td>
<td>14 604,79</td>
</tr>
<tr>
<td>Inundación</td>
<td>1957</td>
<td>692,94</td>
</tr>
<tr>
<td>Deforestación</td>
<td>117306</td>
<td>41 536,29</td>
</tr>
<tr>
<td>Sequía</td>
<td>2370</td>
<td>839,18</td>
</tr>
<tr>
<td>Recuperación Humedal</td>
<td>926</td>
<td>327,88</td>
</tr>
<tr>
<td>Erosión</td>
<td>25220</td>
<td>8 930,02</td>
</tr>
<tr>
<td>Deterioro Humedal</td>
<td>729</td>
<td>258,13</td>
</tr>
</tbody>
</table>

En este periodo aproximadamente cuarenta años, se marca la tendencia de crecimiento de zonas urbanizadas en 1977 ocupaba 1.93% del área total, en 2015 ocupaba 6.05% de área total de la zona de estudio, estimando un crecimiento de 26 mil hectáreas aproximadamente, en la cobertura de bosques paso de ocupar 20% a ocupar 19% del área total de estudio.
4.4 Análisis de resultados

El desarrollo de este proyecto es de utilidad para evidenciar el cambio en la sabana de Bogotá, sirve de apoyo con procesos de planificación regional, ya que en general el proyecto da una visión regional de la sabana en los últimos años, el cual puede ser tenido en cuenta para desarrollar proyectos que beneficien a la sabana de Bogotá.

El aporte de este proyecto es la generación de cartografía temática multitemporal de la sabana de Bogotá, de tal manera que sirve como herramienta para la toma de decisiones, planeamiento y ordenamiento del territorio.

Analizando la cartografía temática resultante lo que se hace más evidente expansión del casco urbano no solo de la capital sino también de los municipios que conforman la sabana de Bogotá. En las cuatro décadas se evidencia una tendencia de crecimiento en gran parte sobre suelo con potencial agropecuario, las consecuencias de este crecimiento tan abrupto en las estructuras ecológicas de la sabana, deteriorando los humedales que se ven reducidos, el paso de cobertura humedales a cultivos, humedales a pastos limpios, zonas urbanas, obedeciendo a actividades de pesca, caza, recreación botes caballos, construcción de canales de drenaje para realizar actividades de ganadería y agricultura. En la Figura 5 se evidencia el cambio que se ha presentado en el humedal Laguna la Herrera en la reducción de su espejo de agua.

![Figura 5: Humedal Laguna la Herrera, izquierda año 2017, derecha año 1987](image)

Fuente: izquierda Red RITA Universidad Distrital 2017, derecha IGAC aerofotografía La Herrera vuelo C-1056 año 1987

A medida que los cascos urbanos se expanden los humedales se rellenan y desecan para construir viviendas y con lo que esto acarrea consolidar barrios enteros. En los últimos años la defensa de estos ecosistemas ha tomado más fuerza y son un objeto de discusión en las políticas públicas de la región.
En la figura 6 se pueden evidenciar los cambios ocurridos en la sabana de Bogotá en aproximadamente cuatro décadas, en ésta cartografía la cobertura de color gris representa las zonas urbanas existentes en el año 1977, la representación en rojo representa el incremento de esta cobertura para el año 2015 de acuerdo al estudio se estiman 26 mil hectáreas aproximadamente. En donde en los municipios se hace evidente la herencia de la comunidad española en relación al paisaje urbano.

En los corredores industriales de los municipios cercanos a la ciudad de Bogotá crecieron a lo largo de los años asentamientos suburbanos, el bajo costo del suelo, las economías que surgen a raíz de los asentamientos, todos estos factores están ligados al cambio permanente presenciado en la sabana de Bogotá.

La deforestación asumida como el cambio de la cobertura de Bosques a coberturas como, cultivos, pastos limpios, erosión, pastos enrastrados se estimó en 41 mil hectáreas aproximadamente. En donde las cuencas altas de los ríos se ven mayormente afectadas dejando en riesgo la biodiversidad y los beneficios que proporcionan estos ecosistemas.

Una de las coberturas que predomina es la de cultivos en esta cobertura se enmarcan los cultivos de flores, papa, hortalizas, cereales como cebada, trigo. En donde los cultivos de flores se han impuesto sobre la agricultura tradicional teniendo como fenómenos asociados a la generación de asentamientos suburbanos, la demanda de recurso hídrico, la contaminación por el uso intensivo de plaguicidas, se evidencia que las áreas rurales hacia el norte de la sabana presentan cambios de suburbanización en áreas rurales.
El principal fenómeno que afecta a la sabana es el crecimiento urbano debido principalmente al desplazamiento de la población teniendo afectaciones en términos de calidad de vida, seguridad, deterioro ambiental que se presenta en toda la región. Adicional a esto la movilidad en la región presenta alta congestión automotor por las diferentes ubicaciones espaciales entre vivienda y trabajo, a nivel regional la comunicación de Bogotá con los municipios aledaños a nivel vial son escasas para la carga automotriz que manejan debido a las actividades que se desarrollan en la región. Las facilidades que ofrecen estos corredores viales para la habilitación de suelo urbano y suburbano permiten que los municipios tengan una mayor oferta de servicios, mejorando así sus condiciones, en la cartografía se evidencia que existe una mayor intensidad hacia el borde occidental de la ciudad de Bogotá mostrando un patrón sobre los corredores viales que conectan los municipios con la ciudad capital.

Para la región la importancia de los sistemas ecológicos es que gracias a estos se realizan las actividades socioeconómicas además de provisionar recursos hídricos y energéticos, el grado de alteración en los ecosistemas debido a las actividades que realiza el ser humano, son el resultado de políticas de ocupación sobre el territorio, como asignación para suelo urbano, actividades agropecuarias, este fenómeno se incrementa al tener una mayor cercanía con la ciudad de Bogotá, como en los municipios de Cajicá, Tenjo, Facatativá, Madrid, Mosquera, ya que estos procesos ponen en riesgo las estructuras ecológicas es de vital importancia que sean preservadas mediante áreas protegidas, siendo esto vital para la conservación de la diversidad biológica

El resultado de este proyecto permitió cumplir con los objetivos propuestos en la tabla se evidencia un resumen de los resultados.

Tabla 18: Resultado de los objetivos

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determinar la dinámica de los procesos de transformación territorial y ambiental, mediante análisis multitemporal.</td>
<td>Generación cartografía multitemporal analizando los cambios de las coberturas identificadas, tomando como base la cartografía obtenida del año 1977</td>
</tr>
<tr>
<td>Recopilar y revisar la documentación histórica que permita describir un proceso de transformación en los municipios de la sabana de Bogotá en el siglo XX.</td>
<td>Evidencia del cambio desde el siglo XIX época cuando la sabana era habitada por los muiscas y por el asentamiento de los españoles en el siglo XX y su impacto en la sabana</td>
</tr>
<tr>
<td>Analizar la transformación de la Sabana de Bogotá en términos del desarrollo regional ambiental y sus implicaciones para la Región Metropolitana de Bogotá y la Región Administrativa y de Planificación Especial. – RAPE-</td>
<td>El cambio de la sabana a nivel de región tiene positivo impacto como lo es el desarrollo de la región, aunque también presenta un impacto negativo ambiental ya que se presenta un deterioro de las estructuras ecológicas, las que terminan teniendo afectaciones a nivel de la región</td>
</tr>
</tbody>
</table>
Conclusiones

La exactitud temática más baja que se registró teniendo el índice kappa fue de 0.823 para la imagen clasificada Landsat 4 del año 1988, las de los demás años son superiores lo que indica alta confiabilidad, en cada parte del proceso se llevó un control detallado evaluando cada una de las etapas para minimizar cualquier error presente, evitando la correlación espectral entre clases, tomando un muestreo aleatorio estratificado con la finalidad de abordar todo el área asignando un número de puntos de acuerdo a el peso de cada cobertura respecto al área total.

Para desarrollar el proceso de exactitud temática se procedió a la identificación de las coberturas para ello se usaron insumos como fotografías aéreas, cartografía y coberturas de la tierra (IDEAM), además de literatura acerca del desarrollo de la sabana de Bogotá con esto se garantiza que la, evaluación de las clasificaciones presente una mayor rigurosidad.

Es importante mencionar que la expansión de los municipios sin una adecuada planificación en donde el cambio de uso del suelo permite el incremento de suelo suburbano sobre los ecosistemas, de no tener presente la importancia de preservarlos ya son agentes reguladores en los diferentes territorios de la sabana. Al utilizar la cartografía temática como herramienta para mitigar el impacto negativo sobre estos ecosistemas se podría tener una visión de transformación de la sabana de Bogotá en donde sean tenidos en cuenta esos ambientes naturales para mantener un equilibrio del hombre y sus actividades con el entorno ambiental.

La tendencia en sabana como región es que los espacios rurales desaparezcan ya que la agricultura tradicional se ha visto desplazada por la nueva agricultura de flores además del crecimiento no solo en la ciudad de Bogotá sino también en las cabeceras municipales el cual ha sido vertiginoso, es casi imposible que el entorno físico no presente algún cambio debido a todas las dinámicas que están ligadas con el asentamiento de la población humana pero si no se realiza un seguimiento adecuado de cómo impactan todas éstas actividades en un contexto ambiental ya que se generan procesos de uso y porque no mencionar de abuso del territorio las zonas verdes se verán significativamente reducidas en unos cuantos años o en el peor de los casos terminará desapareciendo a pesar de los esfuerzos por proteger estos espacios.

Analizando cada uno de los mapas y haciendo una comparación entre ellos se observa la transformación en la zona de estudio, obedeciendo al cambio de uso de una forma drástica, como ya se ha mencionado es prominente el crecimiento de los cascos urbanos y con el transcurrir del tiempo acarreando consigo el fenómeno de conurbación que se acentúa en la región ligado al concepto de desarrollo, aunque parece que no se tuviese en cuenta que el espacio presenta limitaciones geográficas en donde existe un pensamiento en el que las ideas son realizables pero
en última instancia ocurren problemáticas y desastres, que no se comprenden de una manera general que afecta al territorio sino son vistos como problemas locales.

En las últimas décadas se ha presenciado un incremento demográfico en la región por factores como oportunidad laboral, oportunidades y facilidades que ofrece la región en cuanto a la mejora de calidad de vida, pero conlleva a una densificación mayor en el espacio que resulta ser limitado el posible inconveniente que llega a estar asociado es el aumento de la presión sobre el ambiente en donde su capacidad de carga se ve superada por lo que la gestión administrativa y la gestión ambiental cada vez deben estar más ligadas en las directrices del ordenamiento y la planeación.
Referencias

