“IDENTIFICACIÓN DE LOS PARÁMETROS ESPACIO-TEMPORALES DE LA MARCHA HUMANA A PARTIR DEL EQUIPO TECH MCS”

PRESENTADO POR:

JOSÉ DAVID SÁNCHEZ ARTEAGA CÓDIGO: 20142383055
LINA MARÍA YARA CIFUENTES CÓDIGO: 20142383002

TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE INGENIERO EN CONTROL

DIRECTOR:

ING. ESPERANZA CAMARGO CASALLAS

DOCENTE-FACULTAD TECNOLÓGICA

FACULTAD TECNOLÓGICA

PROYECTO CURRICAL DE TECNOLOGÍA EN ELECTRÓNICA- INGENIERÍA EN CONTROL E INGENIERÍA EN TELECOMUNICACIONES

GRUPO DE INVESTIGACIÓN DIGITI

MODALIDAD DE INVESTIGACIÓN- INNOVACIÓN

BOGOTÁ, D.C.

OCTUBRE DE 2016
RESUMEN

INTRODUCCIÓN

1. JUSTIFICACIÓN

1.1 PLANTEAMIENTO DEL PROBLEMA

1.2 JUSTIFICACIÓN TÉCNICA-PRÁCTICA

1.3 JUSTIFICACIÓN ACADÉMICA

2. OBJETIVOS

2.1 OBJETIVO GENERAL

2.2 OBJETIVOS ESPECÍFICOS

3. ANTECENDENTES

4. MARCO TEÓRICO

4.1 Definición de Marcha Humana

4.2 Métodos de estudio

4.2.1 Métodos cinemáticos

4.2.2 Métodos Dinámicos

4.3 Fases de la marcha Humana

4.3.1 Periodo de apoyo del pie ipsilateral

4.3.2 Primer Intervalo de apoyo bipodal

4.3.3 Intervalo de apoyo monopodal del pie ipsilateral

4.3.4 Segundo Intervalo de apoyo bipodal

4.3.5 Periodo de balanceo del pie ipselateral

4.4 Parámetros de la Marcha

4.4.1 Variables espacio-temporales

4.4.1.1 Longitud del paso

4.4.1.2 Tiempo de paso

4.4.1.3 Cadencia de pasos
4.4.1.4. Longitud de la zancada .. 29
4.4.1.5. Tiempo de zancada ... 31
4.4.1.6. Velocidad de la marcha ... 31
4.5 Sensores inerciales ... 32
5. ESPECIFICACIONES TÉCNICAS EQUIPO DE CAPTURA DE MOVIMIENTO TECH
MCS V3 ... 33
5.1. Descripción general ... 33
5.2. Guía rápida .. 36
5.3. Descripción de general TECH HUB ... 37
5.4. Procedimiento de operación .. 42
6. MARCO LEGAL .. 44
6.1. Normatividad .. 44
6.1.1. ISO 9001 .. 44
6.1.2. IEEE 830 .. 44
6.1.3. ISO 9241 .. 45
6.1.4. ANSI/AAMI 60601-1 .. 45
6.1.5. Decreto 4725 de 2005 Normatividad Colombiana ... 45
7. METODOLOGÍA ... 46
7.1. Descripción de los bloques sistemáticos ... 46
7.1.1. Bloque Análisis de parámetros ... 46
7.1.2. Bloque Software .. 47
8. DESARROLLO DE LA METODOLOGÍA ... 47
8.1. Bloque análisis de parámetros ... 47
8.2. Bloque software ... 57
9. RESULTADOS ... 73
9.1. Pruebas realizadas .. 73
9.2. Estadísticas .. 91

CONCLUSIONES Y ANOTACIONES .. 103

BIBLIOGRAFÍA ... 106

ANÉXOS. ... 109

Anexo 1. Código fuente Matlab para la obtención de los parámetros espacio temporales........ 109

Anexo 2. Manual de Usuario Software de Identificación de parámetros espacio-temporales de la Marcha Humana a partir del equipo TECH MCS... 115
ÍNDICE DE FIGURAS.

Fig. 1. Representación gráfica de los periodos* de una zancada. .. 22
Fig. 2. Maletín grande para 16 Tech IMUs, Tech-MCS v3. (Technaid L. M., 2016). 34
Fig. 3. Contenido del sistema TECH MCS. (Technaid, Guía rápida 16 IMUs, 2016). 37
Fig. 4. Vista frontal TECH HUB. (Technaid, Guía rápida 16 IMUs, 2016). 38
Fig. 5. Vista superior y trasera TECH HUB. (Technaid, Guía rápida 16 IMUs, 2016). 38
Fig. 6 y Fig. 7. Ubicación en los puntos anatómicos de los Tech IMUs. ... 41
Fig. 8. Conexión recomendada para instalar una red de 16 IMUs en el cuerpo humano. (Technaid,
Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016). 42
Fig. 9. Vista de interfaz de usuario TECH MCS STUDIO. (Technaid, Guía rápida 16 IMUs, 2016).
.. 44
Fig. 10. Diagrama de bloques sistemático(Autores, Yara, & Sánchez, 2016). 46
Fig. 11. Distribución de los sensores en los puntos anatómicos. (Technaid, Conexión recomendada
de una red de 16 IMUs para el cuerpo humano, 2016). ... 48
Fig. 12. Ventana de configuración de nuevo proyecto en software TECH MCS STUDIO. (Motion,
2016). ... 49
Fig. 13. Ventana de configuración de capturas(Motion, 2016). .. 50
Fig. 14. Ventana de dispositivos del proyecto.(Motion, 2016). ... 51
Fig. 15. Ventana de etiquetar IMUs. (Motion, 2016). ... 52
Fig. 16. Ventana de vista 3D. (Motion, 2016). .. 53
Fig. 17. Propiedades de dispositivo. (Motion, 2016). .. 54
Fig. 18. Gráficas de ángulos vs muestras de proceso de captura para datos tipo
ángulos/orientación/cuaternos. (Motion, 2016). .. 55
Fig. 19. Estructura de archivo de exportación del software TECH MCS STUDIO. Extensión .capa.
(Motion, 2016). ... 57
Fig. 20. Postura T, calibración de equipo (Motion, 2016). ... 60
Fig. 21. Concatenación de las medidas antropométricas y los ángulos en radianes. (Autores, Yara,
& Sánchez, 2016) .. 61
Fig. 22. Vectores base forma canónica y sistema de coordenadas(Wikiversidad, 2015). 62
Fig. 23. Sistema de Coordenadas cartesianas espaciales (Wikipedia, Wikipedia, 2016). 63
Fig. 24. Matriz general conversión de coordenadas polares a coordenadas (x, y)(Autores, Yara,
& Sánchez, 2016). .. 64
Fig. 25. Matriz de suma vectorial. (Autores, Yara, & Sánchez, 2016). .. 66
Fig. 26. Vector columna con mínimos y máximos de las extremidades. (Autores, Yara, & Sánchez,
2016). ... 67
Fig. 27. Ventana de presentación GUI. (Autores, Yara, & Sánchez, 2016) .. 70
Fig. 28. Segunda ventana GUI. (Autores, Yara, & Sánchez, 2016) .. 71
Fig. 29. Segunda Ventana (Digitalización de distancias antropométricas y carga del archivo.capa). (Autores, Yara, & Sánchez, 2016) ... 72
Fig. 30. Tercera Ventana de la GUI – Cálculo de los parámetros Espacio-temporales. (Autores, Yara, & Sánchez, 2016) ... 72
Fig. 31. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016) ... 73
Fig. 32. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016) ... 74
Fig. 33. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 1. (Autores, Yara, & Sánchez, 2016) ... 74
Fig. 34. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 2. (Autores, Yara, & Sánchez, 2016) ... 75
Fig. 35. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 3. (Autores, Yara, & Sánchez, 2016) ... 75
Fig. 36. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 4. (Autores, Yara, & Sánchez, 2016) ... 76
Fig. 37. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 5. (Autores, Yara, & Sánchez, 2016) ... 76
Fig. 38. Plataforma de registro de pasos para medición con cinta métrica y cronómetro. (Autores, Yara, & Sánchez, 2016) ... 77
Fig. 39. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 2. (Autores, Yara, & Sánchez, 2016) ... 78
Fig. 40. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 2. (Autores, Yara, & Sánchez, 2016) ... 79
Fig. 41. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 1. (Autores, Yara, & Sánchez, 2016) ... 79
Fig. 42. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 2. (Autores, Yara, & Sánchez, 2016) ... 80
Fig. 43. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 3. (Autores, Yara, & Sánchez, 2016) ... 80
Fig. 44. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 4. (Autores, Yara, & Sánchez, 2016) ... 81
Fig. 45. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 3. (Autores, Yara, & Sánchez, 2016) .. 81
Fig. 46. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 3. (Autores, Yara, & Sánchez, 2016) .. 82
Fig. 47. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 1. (Autores, Yara, & Sánchez, 2016) ... 83
Fig. 48. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 2. (Autores, Yara, & Sánchez, 2016) ... 83
Fig. 49. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 3. (Autores, Yara, & Sánchez, 2016) ... 84
Fig. 50. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 4. (Autores, Yara, & Sánchez, 2016) ... 84
Fig. 51. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 4. (Autores, Yara, & Sánchez, 2016) .. 85
Fig. 52. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 4. (Autores, Yara, & Sánchez, 2016) .. 85
Fig. 53. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 1. (Autores, Yara, & Sánchez, 2016) ... 86
Fig. 54. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 2. (Autores, Yara, & Sánchez, 2016) ... 86
Fig. 55. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 3. (Autores, Yara, & Sánchez, 2016) ... 87
Fig. 56. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 4. (Autores, Yara, & Sánchez, 2016) ... 87
Fig. 57. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 5. (Autores, Yara, & Sánchez, 2016) .. 88
Fig. 58. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 5. (Autores, Yara, & Sánchez, 2016) .. 89
Fig. 59. Cálculo de los parámetros espacio-temporales del sujeto de prueba 5, captura 1. (Autores, Yara, & Sánchez, 2016) ... 89
Fig. 60. Cálculo de los parámetros espacio-temporales del sujeto de prueba 5, captura 2. (Autores, Yara, & Sánchez, 2016) ... 90
Fig. 61. Cálculo de los parámetros espacio-temporales del sujeto de prueba 5, captura 3. (Autores, Yara, & Sánchez, 2016) ... 90
Fig. 62. Dispersión entre los parámetros calculados con el equipo TECH MCS y los medidos de manera manual- sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016). .. 92

Fig. 63. Dispersión entre los parámetros calculados con el equipo TECH MCS y los medidos de manera manual- sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016). .. 92

Fig. 64. Laboratorio de análisis de movimiento y marcha humana, Universidad Central (Autores, Yara, & Sánchez, 2016). (Central, 2016) ... 97

Fig. 65. Marcadores reflectivos. (Autores, Yara, & Sánchez, 2016). (Central, 2016) 98

Fig. 66. Modelo desarrollado en Software SMART Tracker, sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016), (Central, 2016) ... 99

Fig. 67. Bloques de procesamiento para exportación de datos, (Autores, Yara, & Sánchez, 2016), (Central, 2016) .. 100

Fig. 68. Formato de exportación software Analyzer Tracker para la longitud de paso. (Autores, Yara, & Sánchez, 2016), (Central, 2016) ... 101

Fig. 69. Carpetas del software. (Autores, Yara, & Sánchez, 2016). .. 115

Fig. 70. Archivos disponibles en el path. (Autores, Yara, & Sánchez, 2016). 115

Fig. 71. Archivo a ejecutar en Matlab (Autores, Yara, & Sánchez, 2016). 116

Fig. 72. Ubicación de instalador MyAppInstaller_mcr.exe. (Autores, Yara, & Sánchez, 2016). ... 116

Fig. 73. Proceso de instalación MyAppInstaller_mcr.exe- adición de acceso directo a escritorio. (Autores, Yara, & Sánchez, 2016). ... 117

Fig. 74. Acceso directo aplicación de identificación de parámetros espacio-temporales de la marcha humana. (Autores, Yara, & Sánchez, 2016). .. 118

Fig. 75. Ventana principal y acerca de. (Autores, Yara, & Sánchez, 2016). 118

Fig. 76. Inicio ventana 2. (Autores, Yara, & Sánchez, 2016). ... 119

Fig. 77. Antropometría tomada sin agregar captura TECH-MCS. (Autores, Yara, & Sánchez, 2016). .. 120

Fig. 78. Correcta importación archivo capa. (Autores, Yara, & Sánchez, 2016). 120

Fig. 79. Ventana visualización parámetros espaciotemporales. (Autores, Yara, & Sánchez, 2016). .. 121

Fig. 80. Reporte generado por el software (Autores, Yara, & Sánchez, 2016). 122
<table>
<thead>
<tr>
<th>Tabla 1.</th>
<th>Parámetros espacio-temporales, cinemáticos y cinéticos para estudios de marcha (Adriana Villa Moreno, 2008).</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 2.</td>
<td>Longitud de paso a velocidad espontánea. (cámaras, 2011).</td>
<td>26</td>
</tr>
<tr>
<td>Tabla 3.</td>
<td>Cadencia de pasos para rangos de edad, en hombres andando calzados a velocidad espontánea (cámara, 2011).</td>
<td>27</td>
</tr>
<tr>
<td>Tabla 5.</td>
<td>Longitud de la zancada a velocidad espontánea (cámara, 2011).</td>
<td>30</td>
</tr>
<tr>
<td>Tabla 6.</td>
<td>Tiempo de zancada a velocidad espontánea (cámara, 2011).</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 8.</td>
<td>Redes de IMUs (Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016).</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 9.</td>
<td>Descripción de los cables según color y referencia (Technaid, Guía rápida 16 IMUs, 2016).</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 10.</td>
<td>Clasificación de los cables para cada red (Technaid, Guía rápida 16 IMUs, 2016).</td>
<td>40</td>
</tr>
<tr>
<td>Tabla 11.</td>
<td>Asociación de los sensores con respecto a los puntos anatómicos de las extremidades inferiores del proceso de captura para el análisis de marcha. (Autores, Yara, & Sánchez, 2016).</td>
<td>49</td>
</tr>
<tr>
<td>Tabla 13.</td>
<td>Identificación de columnas según la asociación del proceso de concatenación de la matriz general de la figura 24, para el cambio de coordenadas polares a cartesianas. (Autores, Yara, & Sánchez, 2016).</td>
<td>64</td>
</tr>
<tr>
<td>Tabla 15.</td>
<td>Variables y ecuaciones empleadas en Matlab para la determinación de los parámetros espacio-temporales. (Autores, Yara, & Sánchez, 2016).</td>
<td>67</td>
</tr>
<tr>
<td>Tabla 16.</td>
<td>Datos de los parámetros espacio-temporales del proceso de adquisición con el TECH MCS y los calculados a partir del método manual para el sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).</td>
<td>91</td>
</tr>
<tr>
<td>Tabla 17.</td>
<td>Varianza, desviación estándar y coeficientes de variación para cada parámetro a sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).</td>
<td>93</td>
</tr>
<tr>
<td>Tabla 18.</td>
<td>Comparación para parámetro de longitud de paso entre los resultados obtenidos por el software del sujeto de prueba 1 y diferentes autores. (Autores, Yara, Sánchez, 2016), (cámara, 2011).</td>
<td>94</td>
</tr>
</tbody>
</table>
Tabla 19. Comparación para parámetro de cadencia de pasos de acuerdo al rango de edad, entre parámetros calculados a partir del TECH MCS para el sujeto de prueba 1 y los normalizados por el autor según la tabla 3. (Autores, Yara, & Sánchez, 2016), (cámara, 2011)

Tabla 20. Comparación entre los valores de diferentes autores y los calculados (sujeto de prueba 1), de acuerdo a la edad de la persona, para el tiempo de la zancada. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

Tabla 22. Comparación de la velocidad de la marcha entre los métodos utilizados y los valores encontrados en la literatura. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

Tabla 23. Comparación entre métodos de captura de movimiento. (Autores, Yara, & Sánchez, 2016), (Central, 2016).
Diagrama de flujo 1. Funcionamiento global bloque procesamiento. ..58
Diagrama de flujo 2. Funcionamiento general de la GUI ...69
RESUMEN

El presente proyecto consiste en la identificación y obtención de los parámetros espacio-temporales de la marcha humana, mediante el procesamiento en el software computacional Matlab, de las señales de los sensores inerciales IMUs, del equipo de captura de movimiento TECH MCS, entregados por los archivos de exportación de texto plano compatibles con Matlab y generados por el software TECH MCS STUDIO. El procesamiento realizado, se llevó a cabo a partir de la configuración y ubicación de los sensores en la anatomía de los miembros inferiores del cuerpo humano, así mismo, la evaluación del parámetro y su respectiva publicación en una interfaz gráfica GUI adicional a la entregada por el fabricante, esta última con fines informativos y para análisis posteriores, por parte de las personas que lo usaran. Este proyecto se realizó bajo la coordinación del grupo de investigación DIGITI y dentro de la modalidad de investigación y desarrollo de tecnologías para la Bioingeniería.
INTRODUCCIÓN

El análisis de los diferentes tipos de movimiento humano, ha sido el principal interés de los laboratorios de análisis de movimiento y marcha, dada la importancia de monitorear mediante sistemas de medición, las alteraciones o anormalidades en los sistemas corporales, para la identificación de causas y la elección de tratamientos (Haro, 2014) o alternativas terapéuticas, por ejemplo, en pacientes con enfermedades de tipo neuro-musculo-esqueléticas (Adriana Isabel Agudelo Mendoza T. J., 2013), ya sean transitorias o permanentes, locales o generales o los estudios de movimiento, enfocados, en el análisis de la biomecánica de deportistas de alto rendimiento o ergonomía, que a partir de la generación de resultados cuantificables, permiten llevar una valoración, seguimiento y control del progreso de los pacientes .

Algunos laboratorios especializados en el estudio de marcha humana, han empleado diferentes tecnologías y técnicas, las cuales les permiten analizar las secuencias de locomoción coordinada y alternante de ambas piernas (cámara, 2011), resultado del proceso de desplazamiento, mediante la interacción de las diferentes estructuras corporales, que se encuentran controladas por el sistema nervioso central (Haro, 2014). La marcha humana, es considerada como una actividad física muy estudiada en el campo de la biomecánica, debido a que es la más practicada (Haro, 2014).

Estos análisis normalmente se desarrollan a partir de métodos de estudio, tanto, cinemáticos como dinámicos, de los cuales se identifican variables, referente a los movimientos o aquellas fuerzas que se producen durante la marcha. Dependiendo del método de estudio, los laboratorios especializados hacen uso de técnicas, que abarcan desde el empleo de cintas métricas, cronómetros o maletines de sensores inerciales hasta sofisticas tecnologías, que van desde las plataformas dinamométricas, captores fijos en los pies o algunas plantillas instrumentadas (Vázquez, 2002).

En la actualidad, los laboratorios de análisis de movimiento y marcha humana, han sido considerados como herramientas de investigación y enseñanza, en universidades y centros de investigación, dado el interés de realizar análisis de tipo cuantitativo en estudios de rehabilitación, mediante el uso de tecnologías altamente especializadas (Haro, 2014).

Para el análisis de marcha humana, es importante la identificación de parámetros cuantitativos, como lo son las variables espacios-temporales, de las cuales se puede generar un estudio detallado y fiable en cada una de las fases de la marcha durante los periodos de apoyo monopodal y bipodal (Bohórquez, 2005).
La Universidad Distrital y en específico el grupo de investigación DIGITI, dentro de la modalidad de investigación y desarrollo de tecnologías para la bioingeniería, realizó la adquisición del equipo de captura de movimiento TECH MSC, el cual es un sistema de análisis y medición de movimiento, que mediante el uso de sensores inerciales y de una interfaz de usuario, proporciona información básica, comúnmente empleada en aplicaciones de rehabilitación e investigación biomédica.

En este documento, se establece la identificación y obtención de seis (6) parámetros espacio-temporales, necesarios para un análisis de marcha humana, a partir del uso del equipo TECH MCS, que debido a su incursión reciente en el mercado, aún carece de algunas funciones, las cuales se encuentran en proceso de investigación y desarrollo; por tal motivo, para potencializar el sistema de captura de este equipo, se desarrolló una interfaz gráfica GUI adicional, diseñada en Matlab, que permite la visualización de los parámetros espacio-temporales identificados, los cuales no se encuentran en el software entregado por el fabricante (TECH STUDIO), de tal manera que los datos de la captura de movimiento, se puedan exportar del equipo hacia la interfaz para su posterior identificación y visualización.
1. **JUSTIFICACIÓN**

1.1 **PLANTEAMIENTO DEL PROBLEMA**

Debido a que el laboratorio de electrónica de la Facultad Tecnológica y el grupo de Investigación DIGITI de la Universidad Distrital Francisco José de Caldas, cuentan con un equipo de la Marca TECH MCS, el cual se compone de sensores inerciales que pueden utilizarse para la adquisición de diferentes medidas anatómicas de los miembros del cuerpo humano; el equipo presenta algunas limitaciones, dado a que entrega únicamente las señales de los sensores y algunas gráficas cinemáticas, a partir de una interfaz gráfica suministrada por el fabricante. Por tal motivo, el potencial de este equipo se ve reducido, al no contar con una interfaz usuario que centralice la información en obtener y visualizar, por ejemplo, los parámetros espacio-temporales de la marcha humana, que son de gran utilidad para diferentes aplicaciones, como lo son: el diagnóstico, la biomecánica de deportistas de alto rendimiento, la elección de tratamientos en pacientes con enfermedades neuro-musculo-esqueléticas o los estudios que se realizan en laboratorios especializados en análisis de movimiento y Marcha humana que se encuentran en algunas universidades o centros de investigación y clínicas de rehabilitación (Adriana Isabel Agudelo Mendoza T. J., 2013).

1.2 **JUSTIFICACIÓN TÉCNICA-PRÁCTICA**

La propuesta presentada en este documento como proyecto de grado, busca complementar la funcionalidad del equipo TECH MCS adquirido por el grupo de investigación DIGITI y el laboratorio de electrónica de la Facultad Tecnológica de la Universidad Distrital Francisco José de Caldas, mediante el diseño y la implementación de una interfaz gráfica GUI, adicional a la entregada por el fabricante, que proporcione los parámetros espacio-temporales de la marcha humana, obtenidos por el sistema de captura y su respectivo reporte, en formato compatible con el software computacional Matlab. Para garantizar la calidad de la adquisición de los datos, es necesario disponer de medidas antropométricas y de protocolos establecidos para los análisis de marcha, de tal manera que permita estimar los parámetros espacio-temporales, los cuales son calculados en base a la posición de los sensores inerciales en la anatomía del paciente, así mismo, es importante realizar una validación de la información estimada, mediante la comparación con otro sistema o técnica de medición.
1.3 JUSTIFICACIÓN ACADÉMICA

Con este proyecto se desea potencializar el sistema de captura integrando estos parámetros espacio-temporales, haciendo uso de herramientas computacionales académicas como Matlab, el cual permite realizar el procesamiento de la información del sistema de captura y su visualización para su análisis posterior. Así mismo, este proyecto promueve futuros trabajos concernientes a los métodos de estudio cinemáticos y dinámicos, así como también, la posibilidad de incorporar sistemas optoelectrónicos o de video convencionales, adicionales, que permitan constituir un sistema de medición completo para el desarrollo de un laboratorio de análisis de marcha y movimiento en la Universidad Distrital.
2. OBJETIVOS

2.1. OBJETIVO GENERAL

Identificar los parámetros espacio-temporales de la marcha humana mediante el procesamiento de las señales obtenidas del equipo TECH MCS, a partir de software computacional.

2.2. OBJETIVOS ESPECÍFICOS

- Evaluar el número de parámetros espacio-temporales que serán identificados a partir del uso de los sensores inerciales del equipo TECH MCS.
- Calcular los parámetros espacio-temporales de la marcha mediante el procesamiento de las señales adquiridas del equipo TECH MCS, utilizando herramientas matemáticas y de software.
- Desarrollar la interfaz de usuario que permita visualizar los parámetros espacio-temporales de la marcha humana anteriormente hallados.
- Comparar los valores de los parámetros espacio-temporales tomados manualmente del paciente(s) con los valores obtenidos por medio de este proyecto para comprobar el correcto funcionamiento del sistema implementado.
3. ANTECEDENTES

El análisis de la marcha, como patrón del movimiento corporal humano, hace parte fundamental de la evaluación del individuo por la correlación que sus modificaciones pueden tener con alteraciones en los diferentes sistemas corporales. A través del tiempo, han sido realizadas múltiples investigaciones con el objetivo de determinar los parámetros o las características particulares del patrón de marcha en patologías específicas o en ciertos grupos poblacionales. Su evaluación ha sido realizada a través de la implementación de diferentes métodos y herramientas que permiten la obtención parcial o total de los parámetros de la misma, siendo estos de gran interés en el ámbito clínico e investigativo, debido a que puede diagnosticar alteraciones, realizar un control y seguimiento de los pacientes, valorar la efectividad de determinado tratamiento, o ser punto de referencia para el diseño en la ingeniería biomédica (Bohórquez, 2005), de los métodos principales para realizar este análisis, sobresalen, los laboratorios para análisis de marcha y los maletines de análisis que principalmente poseen sensores inerciales y herramientas de procesamiento de datos.

Una investigación de la Universidad Manuela Beltrán, que se realizó en el Laboratorio de Biomecánica Digital BIOMED, muestra un estudio de caso de un paciente con amputación por encima de la rodilla y el mecanismo de rodilla monocéntrica, el cual emplea sistemas optoelectrónicos para capturar los movimientos y placas transductores de fuerza, con el fin de obtener datos de cinética y cinemática de la extremidad. Los resultados fueron analizados para tratar de reconocer los patrones más importantes, las características y posibles mejoras en la marcha, lo cual, podría proporcionar algunas bases para el futuro diseño de prótesis, de tal forma que sean cada vez más funcionales y similares de acuerdo al patrón de la marcha normal (GAITrite, 2014) a su vez en Valencia, España, se desarrolló una investigación a partir de la implementación de un laboratorio de marcha con plataformas dinamométricas, esta tesis nace a partir de un proyecto de investigación impulsado por el Instituto de Biomecánica de Valencia para la elaboración de Redes neuronales Artificiales, junto con técnicas de valoración y diagnóstico de patologías de la marcha conocidas como “inteligencia artificial”. Para la obtención de diagnósticos, las redes neuronales deben de ser entrenadas con los registros de pacientes que presente patologías de hemiplejia. Como fase previa a las determinaciones de los parámetros característicos de una patología, ya sea neurológico u osteoarticular, se requiere establecer los patrones de normalidad de uso clínico. Para cubrir dicho objetivo es necesario describir las características de la marcha humana normal desde el punto de vista cinético, para comparar con los resultados de las fuerzas de una población de hemipléjicos. Clínicamente resulta evidente la afectación de la marcha en los pacientes que han sufrido un ACV (accidente cerebrovascular), por lo que la filosofía del trabajo incluye el uso de 53 plataformas dinamométricas como herramienta diagnóstica. Se trata en sí, de analizar todos
aquellos aspectos que se salen del patrón de normalidad, en un intento de determinar su patofisiología a través de planteamientos biomecánicos, para extraer conclusiones con utilidad clínica (Béseler Soto, 1997), de igual manera e implementando plataformas dinamométricas en Madrid, se adelantó un estudio de la influencia del transporte de carga sobre el proceso de marcha, en concreto sobre parámetros cinéticos a partir de la implementación de plataformas dinamométricas de tipo piezoeléctrico. Con este estudio, se pretende analizar la influencia que tiene el transporte de carga sobre las fuerzas verticales, anteroposteriores y medio laterales que el sujeto ejerce sobre el suelo al caminar. Se pretende también, observar si existen diferencias según factores individuales como edad, sexo, talla y peso. Para ello, se ha llevado a cabo un análisis cinético de la marcha haciendo caminar a los sujetos sobre plataformas dinamométricas sin carga y con carga distribuida de distinta forma; una mochila a la espalda, colgada de un hombro o llevándola en la mano como si fuera una cartera o maletín, muchos de estos laboratorios especializados, además de contar con herramientas de sensórica como las anteriormente expuestas, también cuentan con sistemas de procesamiento digital de imágenes y video (Adriana Isabel Agudelo Mendoza T. J., 2013), en Medellín, Antioquia, se hace un acercamiento a estas técnicas que complementan el sistema de sensores, donde el análisis de la marcha humana resulta ser de gran utilidad para una amplia gama de aplicaciones, como el diagnóstico y decisión de tratamientos para pacientes con enfermedades neuro-músculo-esqueléticas (Anja Hochsprung, 2014). Los métodos y tecnologías existentes para este análisis son numerosos, y permiten la obtención de los parámetros cuantitativos característicos de un patrón de marcha de manera objetiva. Durante el análisis de marcha, muchos factores deben ser considerados para realizar los estudios adecuadamente, algunos de ellos se deben tener en cuenta desde la etapa de configuración y planeación del laboratorio, otros para el proceso de adquisición de los parámetros, y para el análisis de los resultados. En este trabajo se presentan algunas de estas consideraciones que parten, tanto de la revisión bibliográfica como de la experiencia directa con pacientes, enfocadas principalmente en sistemas que combinan técnicas de videogrametría, dinamometría y electromiografía, por ser estos los de mayor utilización en la actualidad (Tejero, 2011), mediante la implementación de estas técnicas, se logró en México, utilizando registros de marcha obtenidos mediante video y fotografía, generar patrones de normalidad basados en curvas o parámetros promedio con bandas de dispersión. Tales patrones servirán como referencia para contrastar registros de población patológica como herramienta de apoyo al diagnóstico y seguimiento de pacientes con déficit de marcha. Grabados mediante el uso de una cámara de video mini DV a sujetos aparentemente sanos, se obtuvieron mediante el manejo de un sistema de captura, la digitalización de imágenes y la posición de marcadores adheridos al cuerpo del sujeto. Esto permite capturar el movimiento de un sujeto en tiempo real, sin interferir en su ejecución. Así mismo, con el manejo de imágenes, es posible identificar parámetros propios de
la marcha, identificando los problemas causados por patologías anatómicas para la emisión de un diagnóstico preliminar. Uniendo las imágenes se determinarían las fases de doble apoyo, empuje y apoyo sencillo del ciclo de la marcha (Adriana Villa Moreno, 2008).

A pesar de que los estudios de marcha son extensos, casi todos son llevados y realizados en laboratorios adaptados para este propósito, con el paso del tiempo y la necesidad de llevar los estudios y las pruebas al lugar en vez de traer a los pacientes al laboratorio, se han diseñado dispositivos y plataformas portátiles para llevar a cabo estos estudios a los lugares donde se necesite. En Sevilla, España, se desarrolló un estudio analítico, descriptivo, transversal e individual, donde se analizan los resultados de una medición manual y otra automática (realizada con el sistema GEW), en relación con el mismo individuo (intrasujeto) y se comparan ambas mediciones.

La variable primaria era la validez comparativa del T25FW y los parámetros del sistema GEW mediante una variable cualitativa dicotómica (sí/no) y las siguientes variables cuantitativas secundarias [5], como lo son: el número de pasos (manual/GEW), Tiempo empleado (manual/GEW), medido en segundos, la velocidad (manual/GEW), medido en cm/s y la cadencia (manual/GEW), medido en pasos/min (Béseler Soto, 1997).

Con el avance tecnológico, en cuanto a hardware y software para la industria biomecánica y de rehabilitación, estos sistemas portátiles de análisis de marcha se han vuelto más compactos, llegando a implementarse estos sistemas, utilizando sensores inerciales como se evidencia en Madrid, España, donde el departamento de Ingeniería de Sistemas y Automática de la Universidad Carlos III, se encuentra desarrollando el robot humanoide TEO, con fines de investigación en este campo. Una de las partes fundamentales es la estabilidad de dicho humanoide y para ello, se ha realizado este proyecto. El objetivo de éste es la integración del sensor inercial MTi de la marca Xsens, para que genere los datos adecuados de posición y orientación, que serán usados en el control del robot. Para llevar a cabo este proyecto, se ha realizado una aplicación básica, escrita en lenguaje C++, bajo la plataforma Linux, que sirve para configurar el dispositivo y obtener los datos. También, se ha implementado una interfaz gráfica en Matlab. En dicha interfaz, el usuario podrá elegir la velocidad de transmisión del dispositivo y se representaran los datos de la aceleración, velocidad angular y campo magnético de los tres ejes (X, Y, Z). Además, es posible capturar estos datos para luego representarlos en una serie de gráficas, para su análisis posterior (Anja Hochsprung, 2014), esto es una muestra de cómo estos sensores son usados para realizar sistemas portables de análisis de parámetros en recursos de biomédica, automovilismo, robótica, domótica, etc.
4. MARCO TEÓRICO

4.1. Definición de Marcha Humana

La marcha humana es un proceso de locomoción en el cual el cuerpo humano en posición erguida, se desplaza hacia adelante o atrás siendo su peso soportado alternativamente por ambas piernas; cuando menos un pie está en contacto con el suelo mientras el otro se balancea hacia adelante como preparación al siguiente apoyo. Por lo que se puede definir como un movimiento periódico (Bohórquez, 2005).

4.2. Métodos de estudio

La locomoción humana ha tenido dos métodos de investigación: Uno es la cinemática y el otro es la cinética, los cuales se describen los movimientos del cuerpo y las fuerzas que generan dichos movimientos.

4.2.1. Métodos cinemáticos: Son todos los movimientos durante la marcha mediante la determinación de posiciones, velocidades, aceleraciones, etc., Estos se realizan a partir de técnicas como: la inspección, la fotografía, la cinematografía, el video, la exposición múltiple, el análisis óptico, la cinerradiología, los acelerómetros, los goniómetros, los electrogoniómetros, los equipos de ultrasonido, el cronómetro y la cinta métrica.

4.2.2. Métodos Dinámicos: Estos métodos estudian las fuerzas que se producen durante la marcha. Estos se realizan mediante el uso de: plataformas dinamométricas, plantillas instrumentadas, captures fijos en el pie, baropodómetros y también mediante algunas técnicas antropométricas (Vázquez, 2002).
4.3. Fases de la marcha Humana

La marcha está compuesta por pasos que forman zancadas, a la zancada también la denominan o describe como ciclo de la marcha.

El paso, es por consiguiente, la secuencia de acontecimientos que tiene lugar entre sucesivos puntos de contacto de pies alternos con el suelo. Un paso incluye un intervalo de apoyo bipodal y otro de apoyo monopodal. En la Figura 1. Se describe este proceso. Dos pasos consecutivos constituyen una zancada (cámara, 2011).

El intervalo de acontecimientos desde el apoyo del pie derecho hasta el apoyo del pie izquierdo se denomina paso izquierdo. El paso derecho es el intervalo de acontecimientos desde el apoyo del pie izquierdo en suelo hasta el apoyo del pie derecho (Lamoreux, 1971).

La zancada, se considera el instante en el que un pie toca el suelo y el final el momento en que el mismo pie vuelve a tocar el suelo. Una zancada está comprendida por dos intervalos de apoyo bipodal y dos de apoyo monopodal, uno por cada pie. La zancada derecha empieza con el contacto inicial del pie derecho con el suelo y termina con el contacto inicial consecutivo del pie derecho con el suelo, (Figura 1). La zancada izquierda comienza con el contacto inicial del pie izquierdo con el suelo y termina con el contacto inicial consecutivo del pie izquierdo con el suelo (cámara, 2011).

Fig. 1. Representación gráfica de los periodos* de una zancada.
Están representados los acontecimientos durante un tiempo ligeramente superior a una zancada (cámara, 2011).

4.3.1. Período de apoyo del pie ipsilateral

Es el periodo en el que el pie se encuentra en contacto con el suelo. Se considera por lo tanto que la zancada comienza cuando el talón de un pie (en este caso el pie ipsilateral) toca el suelo y termina cuando los dedos del mismo pie dejan de tocarlo. Durante este periodo el pie contra-lateral pasa de estar en contacto con el suelo a un periodo de balanceo, para terminar de nuevo apoyado en el suelo. Este periodo está compuesto por dos intervalos de apoyo bipodal y uno de apoyo monopodal (cámara, 2011).

4.3.2. Primer Intervalo de apoyo bipodal

También se conoce como intervalo de carga o transferencia de peso, es justo en este momento, donde los dos pies están en contacto con el suelo. El pie ipsilateral, acaba de tocar suelo y el contralateral todavía no ha empezado su fase de balanceo. El inicio de este intervalo marca el principio de la zancada. La desaparición del tiempo de apoyo bipodal, marca el paso de la marcha a la carrera (cámara, 2011).

4.3.3. Intervalo de apoyo monopodal del pie ipsilateral

En este intervalo, el pie ipsilateral se encuentra en contacto con el suelo mientras que el pie contralateral está en periodo de balanceo (cámara, 2011).

4.3.4. Segundo Intervalo de apoyo bipodal

También conocido como “Fase de prebalanceo”, del pie ipsilateral. Inicia cuando el pie contralateral toca el suelo y termina cuando el pie ipsilateral empieza su periodo de balanceo. Abarca aproximadamente desde el 50% hasta el 60-62% de la zancada (cámara, 2011).

4.3.5. Período de balanceo del pie ipsilateral

Es el periodo en el que el pie ipsilateral no se encuentra en contacto con el suelo. Inicia exactamente con el despegue completo del pie y termina cuando el mismo pie vuelve a tocar el suelo (cámara, 2011).
4.4. Parámetros de la Marcha

La marcha puede ser caracterizada con diferentes tipos de patrones, algunos básicos y otros de mayor complejidad. De la forma más básica, la marcha se describe mediante parámetros espacio-temporales. Aunque estos parámetros no solo varían entre sujetos sino también en el mismo sujeto, resultan ser representativos de una persona cuando las condiciones y los factores que afectan la marcha (como terreno, calzado, transporte de carga, edad, fatiga, peso) se mantienen constantes. Sin embargo, se obtiene una descripción más detallada del ciclo de la marcha al utilizar información cinemática y en mayor medida si el estudio se completa con información cinética. En la tabla 1, se muestra información detallada de los parámetros espacio-temporales, cinéticos y cinemáticos que usualmente se utilizan en estudios de marcha (Adriana Isabel Agudelo Mendoza T. J., 2013).

Tabla 1. Parámetros espacio-temporales, cinemáticos y cinéticos para estudios de marcha (Adriana Villa Moreno, 2008).

<table>
<thead>
<tr>
<th>PARÁMETROS DE LA MARCHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPACIO TEMPORALES</td>
</tr>
<tr>
<td>Temporales</td>
</tr>
<tr>
<td>Tiempo en fase de soporte (ms)</td>
</tr>
<tr>
<td>Tiempo en fase de balanceo (ms)</td>
</tr>
<tr>
<td>Tiempo de balanceo (% del ciclo)</td>
</tr>
<tr>
<td>Duración del ciclo o zancada (ms)</td>
</tr>
<tr>
<td>Cadencia (pasos/min)</td>
</tr>
<tr>
<td>Duración de doble soporte (% ciclo)</td>
</tr>
<tr>
<td>Porcentaje de doble basculación de pelvis</td>
</tr>
</tbody>
</table>
4.4.1. Variables espacio-temporales

Las variables o parámetros espacio-temporales hacen referencia al cálculo de indicadores tales como la velocidad de la marcha, la longitud del paso, la cadencia (número de pasos por minuto), el tiempo del paso, la longitud de la zancada, el tiempo de la zancada, entre otros. Estos se determinan en base a los datos obtenidos del posicionamiento de los sensores inerciales o marcadores en la anatomía del paciente o sujeto (cámara, 2011).

Longitud del paso

Es la distancia entre sucesivos puntos de contacto de pies alternos con el suelo. Durante la marcha a velocidad espontánea, el apoyo inicial de ambos pies se realiza con el talón, se define la longitud de paso como la distancia en la línea de progresión entre el apoyo del talón de un pie y el apoyo del talón del pie contrario.

La distancia del pie izquierdo al derecho y la del pie derecho al izquierdo son iguales. En la tabla 2, se muestra la velocidad espontánea de las longitudes de paso que han obtenido diversos autores.

A partir de los sesenta años, las personas empiezan a disminuir su longitud de paso. En personas por debajo de esta edad, estudios indican que no se obtienen diferencias significativas.

La Ecuación que define la longitud de paso es (1).

\[
LP = \frac{Velocidad}{Cadena de paso por minuto} \quad (1)
\]
Dónde:

Longitud de paso (LP) (metros)

Velocidad (m*min⁻¹)

Cadencia de pasos por minuto (pasos*min⁻¹). (cámara, 2011).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>Condición de calzado</th>
<th>LP(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Murray, 1964)</td>
<td>20-65</td>
<td>calzado [No especifica]</td>
<td>0,78 (0,05)</td>
</tr>
<tr>
<td>(Sekiya, Optimal walking in terms of step variability in step length, 1997)</td>
<td>25,9 (4,1)</td>
<td>calzado [No especifica]</td>
<td>0,76 (0,12)</td>
</tr>
<tr>
<td>(Sekiya, 1998)</td>
<td>22,4</td>
<td>calzado [No especifica]</td>
<td>0,66 (0,66)</td>
</tr>
<tr>
<td>(Cutlip, 2000)</td>
<td>21-26</td>
<td>calzado [No especifica]</td>
<td>0,75 (0,02)</td>
</tr>
<tr>
<td>(Della Croce, 2001)</td>
<td>24,6 (4,0)</td>
<td>descalzo</td>
<td>0,62 (0,05)</td>
</tr>
<tr>
<td>(Gill, Heelstrike and the pathomechanics of osteoarthrosis: a pilot gait study, 2003)</td>
<td>22-43</td>
<td>descalzo</td>
<td>0,73 (0,06)</td>
</tr>
<tr>
<td>(Menz, Age-Related Differences in Walking Stability, 2003)</td>
<td>22-39</td>
<td>zapatos OxfordTM</td>
<td>0,73 (0,07)</td>
</tr>
<tr>
<td>Menz (2004)</td>
<td>22-40</td>
<td>zapatos OxfordTM</td>
<td>0,77 (0,05)</td>
</tr>
<tr>
<td>(Van Uden, 2004)</td>
<td>19-59</td>
<td>calzado [No especifica]</td>
<td>0,77 (0,08)</td>
</tr>
</tbody>
</table>

Nota: Se presenta la desviación típica entre paréntesis cuando ésta ha sido facilitada por el autor

LP: Longitud del paso
4.4.1.2. Tiempo de paso

El tiempo de paso es el tiempo transcurrido entre el contacto inicial de un pie con el suelo y el contacto inicial del pie contrario.

El tiempo de paso del miembro inferior izquierdo es el periodo transcurrido desde el contacto inicial del pie derecho hasta el contacto inicial del pie izquierdo. El tiempo de paso del miembro inferior derecho es el lapso desde el contacto inicial del pie izquierdo hasta el contacto inicial del pie derecho. (cámara, 2011).

A velocidad espontánea se dan diferencias interindividuales en el tiempo de paso. Estas diferencias no están relacionadas ni con la altura, ni con la edad de los sujetos (cámara, 2011).

El tiempo de paso se normaliza por el tiempo de zancada. De esta forma se pueden realizar comparaciones sin que afecten las distintas velocidades de marcha de cada registro sobre esta variable (cámara, 2011).

4.4.1.3. Cadencia de pasos

Se denomina cadencia, al número de pasos o zancadas que ejerce un sujeto en un tiempo determinado. La cadencia natural se define como, la cantidad de pasos en un tiempo determinado que da una persona cuando anda a velocidad espontánea. En la tabla 3, se muestra los rangos de cadencia de pasos para cada grupo de edad.

Tabla 3. Cadencia de pasos para rangos de edad, en hombres andando calzados a velocidad espontanea (cámara, 2011).

<table>
<thead>
<tr>
<th>Edad</th>
<th>CP (Pasos*m-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-14</td>
<td>100-149</td>
</tr>
<tr>
<td>15-17</td>
<td>96-142</td>
</tr>
<tr>
<td>18-49</td>
<td>91-135</td>
</tr>
<tr>
<td>50-64</td>
<td>82-126</td>
</tr>
</tbody>
</table>

CP: Cadencia de pasos

Otro estudio, mencionó que las personas con calzado agrupadas por rangos de edad, obtuvieron cadencias de paso acordes con los valores de la tabla 3. Lo cual son pertenecientes a la marcha normal. Otros autores, registran datos de cadencia como se muestra en la tabla 4.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>Condición de calzado</th>
<th>CP (Pasos*m-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Murray, 1966)</td>
<td>20-65</td>
<td>calzado [No especifica]</td>
<td>113</td>
</tr>
<tr>
<td>(Kadaba, 1990)</td>
<td>18-40</td>
<td>descalza</td>
<td>112 (9)</td>
</tr>
<tr>
<td>(Radin, 1991)</td>
<td>27,7</td>
<td>descalza</td>
<td>113(6)</td>
</tr>
<tr>
<td>(Sekiya, 1997)</td>
<td>25,9(4,1)</td>
<td>calzado [No especifica]</td>
<td>108(9,7)</td>
</tr>
<tr>
<td>(Sekiya, 1998)</td>
<td>22,4</td>
<td>calzado [No especifica]</td>
<td>108,5(7,6)</td>
</tr>
<tr>
<td>(Polio, 1998)</td>
<td>27,2 (3,6)</td>
<td>calzado [No especifica]</td>
<td>11,4(8,2)</td>
</tr>
<tr>
<td>(Cutlip, 2000)</td>
<td>22,1</td>
<td>calzado [No especifica]</td>
<td>106,7-117,1</td>
</tr>
<tr>
<td>Riley (2001)</td>
<td>27(4,6)</td>
<td>descalza</td>
<td>108 (5)</td>
</tr>
<tr>
<td>(Menz, 2003)</td>
<td>22-39</td>
<td>zapatos Oxford TM</td>
<td>103,3 (7,3)</td>
</tr>
<tr>
<td>(Menz, 2004)</td>
<td>22-40</td>
<td>zapatos Oxford TM</td>
<td>110,7(6,9)</td>
</tr>
</tbody>
</table>

Nota: Se presenta la desviación típica entre paréntesis cuando ésta ha sido facilitada por el autor.

CP: cadencia de pasos

La cadencia de pasos se determina, (2), (3) y (4), respectivamente.

\[
CD = \frac{\text{número de pasos}}{\text{tiempo}} \quad (2)
\]

Dónde:

Cadencia de pasos (CD) (Pasos*s⁻¹).

Número de pasos (pasos).

Tiempo (s).

En la ecuación (3), la cadencia de pasos II,

\[
CD = \frac{\text{velocidad}}{\text{longitud de la zancada} \times 120} \quad (3)
\]

Dónde:
Cadencia de pasos (CD) (Pasos*min⁻¹).

Velocidad (m* s⁻¹).

Longitud de zancada (m).

En la ecuación (4), la cadencia de pasos III,

\[CD = \frac{600}{\text{tiempo tardado en dar 10 pasos}} \] (4)

Dónde:

Cadencia de pasos (CD) (Pasos*min⁻¹).

Tiempo tardado en dar 10 pasos (s).(cámara, 2011).

4.4.1.4. Longitud de la zancada

Es la distancia en la dirección de progresión entre sucesivos puntos de apoyo del mismo pie en el suelo.

Una zancada está compuesta por dos pasos, por lo que dos longitudes de paso constituyen una longitud de zancada. (cámara, 2011).

Las ecuaciones comúnmente utilizadas para determinar la longitud de zancada, son la que se relacionan en (5) y (6), respectivamente.

\[LZ = \text{Longitud de paso del miembro inferior derecho} + \text{longitud de paso del miembro inferior izquierdo} \] (5)

Dónde:

Longitud de la zancada (m).

Longitud de paso del miembro inferior derecho (m).
Longitud de paso del miembro inferior izquierdo (m).

En la ecuación (6), la longitud de la zancada II.

\[LZ = \text{Velocidad} \times \text{Tiempo de zancada} \ (6) \]

Dónde:

Longitud de la zancada (m).

Velocidad (m*s\(^{-1}\)).

Tiempo de zancada (s). (cámara, 2011).

Al igual que sucede con la longitud de paso, la longitud de zancada no muestra diferencias significativas en personas con una edad inferior a los 60 años. Autores encontraron que en personas con una edad comprendida entre los 60 y los 65 años una longitud de zancada significativamente inferior respecto a aquellas con una edad entre los 20 y los 25 años. La magnitud de esta variable está directamente relacionada con la altura de las personas. En la Tabla 5, se muestra la longitud de la zancada a velocidad espontánea, según varios autores.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>Condición de calzado</th>
<th>LZ (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Murray, 1964)</td>
<td>20-65</td>
<td>calzado [No especifica]</td>
<td>1,55-1,58</td>
</tr>
<tr>
<td>(Murray, 1966)</td>
<td>20-65</td>
<td>calzado [No especifica]</td>
<td>1,56 (0,13)</td>
</tr>
<tr>
<td>(Kadaba, 1990)</td>
<td>18-40</td>
<td>Descalza</td>
<td>1,41</td>
</tr>
<tr>
<td>(Polio, 1998)</td>
<td>27,2(3,6)</td>
<td>calzado [No especifica]</td>
<td>1,46 (0,9)</td>
</tr>
<tr>
<td>(Mills, 2001)</td>
<td>24,9(0,9)</td>
<td>calzado [No especifica]</td>
<td>1,7</td>
</tr>
<tr>
<td>(Gill, 2003)</td>
<td>22-43</td>
<td>Descalza</td>
<td>1,46 (0,08)</td>
</tr>
<tr>
<td>(Van Uden, 2004)</td>
<td>19-59</td>
<td>calzado [No especifica]</td>
<td>1,55 (0,17)</td>
</tr>
</tbody>
</table>

Nota: Se presenta la desviación típica entre paréntesis cuando ésta ha sido facilitada por el autor.

LZ: Longitud de zancada
4.4.1.5. Tiempo de zancada

Comprende el intervalo entre dos apoyos sucesivos del mismo pie en el suelo. Está compuesto por un tiempo de apoyo y un tiempo de balanceo del mismo pie. Se determina mediante la ecuación (7).

\[TZ = \frac{120}{\text{cadencia de pasos}} \]

Donde:

Tiempo de zancada (s).

Cadencia (pasos*min\(^{-1}\)).(cámara, 2011).

Los valores obtenidos de esta variable por diversos autores se muestran en la Tabla 6.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>Condición de calzado</th>
<th>TZ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bresler, 1950)</td>
<td>No específica</td>
<td>calzado [No específica]</td>
<td>1,18</td>
</tr>
<tr>
<td>(Murray, 1964)</td>
<td>30-35</td>
<td>calzado [No específica]</td>
<td>1,08(0,10)</td>
</tr>
<tr>
<td>(Murray, 1966)</td>
<td>20-65</td>
<td>calzado [No específica]</td>
<td>1,06(0,09)</td>
</tr>
<tr>
<td>(Kadaba, 1990)</td>
<td>18-40</td>
<td>Descalza</td>
<td>1,08 (0,08)</td>
</tr>
<tr>
<td>(Mills, 2001)</td>
<td>24,9 (0,9)</td>
<td>calzado [No específica]</td>
<td>1,18 (0,02)</td>
</tr>
<tr>
<td>(Gill, 2003)</td>
<td>22-43</td>
<td>Descalza</td>
<td>1,06 (0,09)</td>
</tr>
<tr>
<td>(Van Uden, 2004)</td>
<td>19-59</td>
<td>calzado [No específica]</td>
<td>1,10 (0,06)</td>
</tr>
</tbody>
</table>

Nota: Se presenta la desviación típica entre paréntesis cuando ésta ha sido facilitada por el autor.

TZ: Tiempo de zancada

4.4.1.6. Velocidad de la marcha

Es la distancia que recorre una persona en un tiempo determinado. Autores mencionan que en los estudios biomecánicos se suele medir en m*s\(^{-1}\) o en m*m\(^{-1}\). La transición de la marcha a la carrera empieza a producirse de acuerdo con las características o preferencias de las personas. Según (Thorstensson, 1987) ésta se da a partir de los 1,3 m*s\(^{-1}\). (Walters, 1999) Obtuvo esta transición a partir de los 1,6 m*s\(^{-1}\).
Las ecuaciones que definen la velocidad de marcha son las que se relacionan en (8) y (9), respectivamente:

Velocidad I.

\[V = \frac{\text{Distancia recorrida}}{\text{Tiempo}} \]
(8)

Dónde:

Velocidad de la marcha (V) (m*s\(^{-1}\))
Distancia recorrida (m)
Tiempo (s)

Velocidad II.

\[V = \frac{\text{Longitud de la zancada}}{\text{tiempo de zancada}} \]
(9)

Dónde:

Velocidad de la marcha (V) (m*s\(^{-1}\))
Longitud de la zancada (m)
Tiempo de zancada (s) (cámara, 2011).

4.5 Sensores inerciales

Un sensor inercial es un sensor que mide aceleración y velocidad angular y se utiliza en aplicaciones de captura y análisis de movimiento. Está compuesto por acelerómetros, giróscopos y magnetómetros. Los acelerómetros miden la aceleración lineal con que se mueve el sensor, los giróscopos la velocidad angular y los magnetómetros dan información acerca del norte magnético. Con estos tres sensores es posible estudiar el movimiento del sensor inercial completo en el plano o el espacio (esto depende de los ejes que posean los sensores). (Inercial, 2016).
Las aplicaciones típicas son:

- Robótica (medir velocidades, aceleraciones de cada eslabón).
- Air-Bag
- Análisis de la marcha humana.
- Estudios de ergonomía.
- Animación (Inercial, 2016).

5. ESPECIFICACIONES TÉCNICAS EQUIPO DE CAPTURA DE MOVIMIENTO TECH MCS V3

5.1. Descripción general

El sistema de captura de movimiento TECH MCS es un sistema de análisis de movimiento inalámbrico, basado en sensores inerciales que miden en tiempo real la cinemática de una persona.

Es un sistema preciso, inalámbrico, portable, versátil y sencillo, que registra la información en tarjetas de memoria Micro-SD, por lo tanto, no requiere un PC para la toma de medidas al aire libre.

El TECH-MCS se puede configurar de acuerdo a las necesidades del usuario. Todos los accesorios provistos son: TECH-HUB, adaptadores de fijación textiles, TECH-MCS Studio, entre otros. Además, existen accesorios opcionales para mejorar el rendimiento del sistema.(Technaid L. M., 2016).

TECH MCS es un producto desarrollado para el análisis, la captura y la medición de movimiento, por tanto, es útil para un amplio tipo de propósitos:

- **Movimiento:** Rehabilitación, Formación, Ergonomía.
- **Ingeniería:** Robótica, Mecánica.
- **Aplicaciones industriales:** Entretenimiento y Simulación, Cine, Animación, Videojuegos, Realidad virtual, Realidad aumentada

Entre las características del dispositivo concentrador TECH HUB, se destaca las siguientes características:

- Sistema portátil, robusto y ergonómico.
- Dispositivo que conecta y sincroniza hasta 16 TECH IMU de CAN simultáneamente de muestreo ajustable de frecuencias de hasta 500 Hz.
- Compatible con PC mediante un cable USB, Bluetooth inalámbrico o con una tarjeta SD de 8 GB Micro.
- Disparador de entrada y salida para sincronizar con otros dispositivos.
- Tamaño de 15x10x16 cm en caja de plástico resistente.
- SDK, para desarrollar aplicaciones en Windows y Matlab/Simulink
- Software Tech MCS Studio compatible con Windows 7/8/10
- Alimentación con 4 baterías (AA Ni-MH) o adaptador (5VDC@3A).(Technaid L. M., 2016).

En la figura 2, se muestra el maletín Tech –MCS v3, 16 TECH IMUs.

Fig. 2.Maletín grande para 16 Tech IMUs, Tech-MCS v3,(Technaid L. M., 2016).

En la Tabla 7, se muestra las especificaciones técnicas del sistema Tech MCS V3.

<table>
<thead>
<tr>
<th></th>
<th>Conexión simultanea</th>
<th>16 Tech IMU CAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baterías recargables</td>
<td>4AA</td>
</tr>
<tr>
<td>2</td>
<td>Adaptador de corriente (Multi.-conexión internacional)</td>
<td>110/220 VAC</td>
</tr>
<tr>
<td>3</td>
<td>Voltaje de alimentación externa</td>
<td>5V</td>
</tr>
<tr>
<td>4</td>
<td>Consumo máximo (16 Tech IMU conectados)</td>
<td>3A</td>
</tr>
<tr>
<td>5</td>
<td>Comunicaciones</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Comunicación por cable</td>
<td>USB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6.2</td>
<td>Comunicación inalámbrica</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>6.3</td>
<td>Trabajo sin conexión a PC</td>
<td>Micro SD (8 Gb)</td>
</tr>
<tr>
<td>6.4</td>
<td>Rango inalámbrico con línea vista</td>
<td>150 m</td>
</tr>
<tr>
<td>6.5</td>
<td>Rango inalámbrico con espacio cerrado</td>
<td>50 m</td>
</tr>
<tr>
<td>6.6</td>
<td>Sincronización inalámbrica In/Out con sistemas externos (Opcional)</td>
<td>Sí /(RF)</td>
</tr>
<tr>
<td>7</td>
<td>Dimensiones y peso</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Dimensiones Tech IMU</td>
<td>36x26x11 mm</td>
</tr>
<tr>
<td>7.2</td>
<td>Peso del Tech IMU</td>
<td>10 gr</td>
</tr>
<tr>
<td>7.3</td>
<td>Peso del sistema completo en maleta grande (430mm x 350mm x 180mm)</td>
<td>4500 gr</td>
</tr>
<tr>
<td>7.4</td>
<td>Peso del sistema medio en maleta mediana (320mm x 260mm x 160mm)</td>
<td>3000 gr</td>
</tr>
<tr>
<td>8</td>
<td>Apto para ser utilizado en exteriores con o sin PC</td>
<td>Sí</td>
</tr>
<tr>
<td>9</td>
<td>Portable y fácil de instalar</td>
<td>Sí</td>
</tr>
<tr>
<td>10</td>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Visualización y grabación de datos en tiempo real</td>
<td>Sí</td>
</tr>
<tr>
<td>10.2</td>
<td>Grabación de datos en 3D (aceleración, velocidad angular y campo magnético)</td>
<td>Sí</td>
</tr>
<tr>
<td>10.3</td>
<td>Registro de temperatura de Tech IMUs</td>
<td>Sí</td>
</tr>
<tr>
<td>10.4</td>
<td>Visualización gráfica en 3D de Avatares</td>
<td>Sí</td>
</tr>
<tr>
<td>10.5</td>
<td>Temporización de inicio y parada de capturas</td>
<td>Sí</td>
</tr>
<tr>
<td>10.6</td>
<td>Sistema operativo compatible (Windows 64-bit)</td>
<td>7,8,8.1 y10</td>
</tr>
<tr>
<td>11</td>
<td>Salida de información</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Datos 3D en digitales (RAW) y Físicos (Calibrados) del Tech IMU</td>
<td>10 señales</td>
</tr>
<tr>
<td>11.2</td>
<td>Orientación 3D en Quaterniones y DCM (Matriz de Cosenos Directores)</td>
<td>10 señales</td>
</tr>
<tr>
<td>11.3</td>
<td>Ángulos de las articulaciones del cuerpo en 3D</td>
<td>Sí</td>
</tr>
<tr>
<td>11.4</td>
<td>Frecuencia de captura</td>
<td>10 - 500 Hz</td>
</tr>
<tr>
<td>12</td>
<td>Formatos de exportación</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Formato de texto plano (compatible con Excel o Matlab)</td>
<td>Sí</td>
</tr>
<tr>
<td>13</td>
<td>Aplicaciones</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Investigación Biomecánica</td>
<td>Sí</td>
</tr>
<tr>
<td>13.2</td>
<td>Rehabilitación (Análisis de marcha)</td>
<td>Si</td>
</tr>
<tr>
<td>13.3</td>
<td>Rendimiento de deportistas</td>
<td>Si</td>
</tr>
<tr>
<td>13.4</td>
<td>Ergonomía</td>
<td>Si</td>
</tr>
<tr>
<td>14</td>
<td>Precisión de los datos</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Sensores inerciales de alta precisión</td>
<td>< 1 grado (RMS)</td>
</tr>
<tr>
<td>14.2</td>
<td>Algoritmo de orientación robusto y preciso</td>
<td>EKF</td>
</tr>
<tr>
<td>14.3</td>
<td>Interferencia corporal mínima</td>
<td>Si</td>
</tr>
<tr>
<td>14.4</td>
<td>Algoritmo de inmunidad a perturbaciones de campo magnético</td>
<td>Si</td>
</tr>
<tr>
<td>15</td>
<td>Adaptadores textiles ajustables</td>
<td>Si</td>
</tr>
<tr>
<td>16</td>
<td>Soporte al cliente</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Actualización gratuita de software y firmware</td>
<td>2 años</td>
</tr>
<tr>
<td>16.2</td>
<td>Garantía internacional por defectos de fabricación.</td>
<td>2 años</td>
</tr>
<tr>
<td>16.3</td>
<td>Adaptación a necesidades concretas del cliente (customization)</td>
<td>Si</td>
</tr>
<tr>
<td>16.4</td>
<td>Soporte técnico especializado por email, teleconferencia o videoconferencia.</td>
<td>Si</td>
</tr>
<tr>
<td>16.5</td>
<td>Soporte para aplicaciones en tiempo real con Matlab y Simulink.</td>
<td>Si</td>
</tr>
<tr>
<td>16.6</td>
<td>SDK (Software Development Kit) gratuita para C# y Matlab</td>
<td>Si</td>
</tr>
</tbody>
</table>

5.2. Guía rápida

El sistema TECH MCS, contiene como se muestra en la figura 3. Los siguientes componentes, los cuales permiten realizar una red sensorial completa de hasta 16 Tech IMUs CAN.

a: maletín de tela
b: maleta
c: 16 Tech IMU CAN
d: CD con software TECH MCS STUDIO
f: Adaptador de corriente
g: 4 pilas recargables

h: 1 módulo Trigger (2 componentes Wireless external trigger y trigger hub, opcionales)

i: 1 cable USB

k: 12 cables CAN

l: 16 sujeciones textiles. (Technaid, Guía rápida 16 IMUs, 2016).

Fig. 3. Contenido del sistema TECH MCS. (Technaid, Guía rápida 16 IMUs, 2016).

5.3. Descripción de general TECH HUB

El TECH HUB o concentrador, como se muestra en la figura 4 y 5 respectivamente. Consta de las siguientes partes, que se relacionan a continuación.

1. Ranura para tarjeta Micro SD (Incluida)
2. Puertos para TECH IMU CAN
3. Puerto in/Out TRIGGER
4. Puerto USB
5. LED indicador de nivel de batería
6. LED Modo bluetooth
7. LED modo Micro SD
8. LED modo USB
9. Botón de inicio de captura en modo MICRO SD
10. Botón MODE
11. Entrada de corriente continua
12. Botón de encendido/apagado
13. Pasadores de sujeción
14. Ventilación
15. Compartimiento de pilas.

Los 16 IMUs deben ser distribuidos entre los cuatro puertos para IMUs (Tech IMU Ports) (2) que tiene el concentrador (Tech-HUB V3), cuatro IMUs por puerto. Así se obtienen cuatro redes de IMUs que distribuyen correctamente la transmisión de datos y el suministro de energía en el concentrador (Technaid, Guía rápida 16 IMUs, 2016).

Fig. 4. Vista frontal TECH HUB. (Technaid, Guía rápida 16 IMUs, 2016).

Fig. 5. Vista superior y trasera TECH HUB. (Technaid, Guía rápida 16 IMUs, 2016).

Las cuatro (4) redes de IMUs, que se pueden formar se describen en la tabla 8, aquí, se especifica la distribución recomendada por el fabricante.
Tabla 8. Redes de IMUs (Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016).

<table>
<thead>
<tr>
<th>Red 1 para puerto 1 (4 IMUs):</th>
<th>Red 3 para puerto 3 (4 IMUs):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano izquierda</td>
<td>Pie izquierdo</td>
</tr>
<tr>
<td>Brazo izquierdo</td>
<td>Pierna izquierda</td>
</tr>
<tr>
<td>Escapula izquierda</td>
<td>Muslo izquierdo</td>
</tr>
<tr>
<td>Brazo izquierdo</td>
<td>cabeza</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Red 2 para puerto 2 (4 IMUs):</th>
<th>Red 4 para puerto 4 (4 IMUs):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pie derecho</td>
<td>Mano derecha</td>
</tr>
<tr>
<td>Pierna derecha</td>
<td>Antebrazo derecho</td>
</tr>
<tr>
<td>Muslo derecho</td>
<td>Brazo derecho</td>
</tr>
<tr>
<td>Pecho o lumbar</td>
<td>Omoplato derecho</td>
</tr>
</tbody>
</table>

Además, los cables que conectan las cuatro redes de IMUs al *Tech-HUB-V3* están agrupados por colores y cada grupo tiene una referencia, con el objetivo de identificarlos rápidamente y reducir el tiempo de instalación (Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016). Mediante esta nomenclatura, se tienen 5 tipos de cables, los cuales se especifican en la tabla 9.

Tabla 9. Descripción de los cables según color y referencia (Technaid, Guía rápida 16 IMUs, 2016).

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Cantidad</th>
<th>Colores</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Rojo</td>
<td>C-C01-01-BR-MCSV3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Blanco-rojo</td>
<td>C-C02-01-BRH-MCSV3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Azul</td>
<td>C-C03-01-PI-MCSV3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Blanco-marrón-azul</td>
<td>C-C04-01-PICH-MCSV3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Blanco-amarillo-azul</td>
<td>C-C05-01-PILH-MCSV3</td>
</tr>
</tbody>
</table>

Así mismo, los cables usados para conectar los IMUs de cada red, se detallan en la tabla 10, como recomendación por parte del fabricante (Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016).
Tabla 10. Clasificación de los cables para cada red (Technaid, Guía rápida 16 IMUs, 2016).

<table>
<thead>
<tr>
<th>#RED</th>
<th>Cables a usar</th>
<th>conexiones</th>
<th>Figuras</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dos cables tipo 1</td>
<td>Mano izquierda</td>
<td>Figura 6 y figura 8.</td>
</tr>
<tr>
<td></td>
<td>Un cable tipo 2</td>
<td>Antebrazo izquierdo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>o izquierdo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omoplato izquierdo</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dos Cables tipo 3</td>
<td>Pie derecho</td>
<td>Figura 7 y figura 8.</td>
</tr>
<tr>
<td></td>
<td>Un cable tipo 5</td>
<td>Pierna derecha</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muslo derecho</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pecho o Lumbar</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dos cables tipo 3</td>
<td>Pie izquierdo</td>
<td>Figura 7 y figura 8.</td>
</tr>
<tr>
<td></td>
<td>Un cable tipo 4</td>
<td>Pierna izquierda</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muslo izquierdo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cabeza</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dos cable tipo 1</td>
<td>Mano derecha</td>
<td>Figura 6 y figura 8.</td>
</tr>
<tr>
<td></td>
<td>Un cable 2</td>
<td>Antebrazo derecho</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brazo derecho</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omoplato derecho</td>
<td></td>
</tr>
</tbody>
</table>

Según el tipo de cable, se presenta la conexión en los puntos anatómicos del sujeto, así como se muestra en la figura 6 y 7 respectivamente.
Fig. 6 y Fig. 7. Ubicación en los puntos anatómicos de los Tech IMUs.

(Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016)

En la Figura 8, se muestra la conexión recomendada para instalar la red IMU al concentrador Tech HUB.
Fig. 8. Conexión recomendada para instalar una red de 16 IMUs en el cuerpo humano. (Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016).

5.4. Procedimiento de operación

Para la operación del equipo Tech MCS, el fabricante recomienda los siguientes pasos:

1. Se conecta el adaptador de corriente al dispositivo Tech HUB (11) o se inserta las pilas (15).
2. Se conecta los Tech IMU que se van a utilizar siguiendo el esquema mostrado en la figura 8.
3. Se enciende el dispositivo Tech HUB (12), luego se espera la señal sonora y se selecciona mediante el botón MODE (10), el modo de funcionamiento deseado (6, 7, 8)
4. Se conecta el dispositivo Tech HUB al ordenador según el modo seleccionado en el paso anterior.

- Modo USB (8): Se conecta el dispositivo al ordenador y se inicia el software Tech MCS STUDIO
- Modo Bluetooth (6): Una vez conectado el adaptador bluetooth al ordenador, se espera a que el indicador luminoso del modo bluetooth deje de parpadear, posteriormente se inicia el software Tech MCS STUDIO
- Modo MICRO SD (7): Se conecta el dispositivo Tech HUB al puerto USB del ordenador y configure la tarjeta MICRO SD mediante el software Tech MCS STUDIO.

5. Se ejecuta el software TECH MCS STUDIO

- Usando TECH MCS STUDIO en modo USB o Bluetooth

 Se detecta el dispositivo automáticamente (Ctrl+U)

 Se crea un nuevo proyecto (Ctrl+N)

 Se inicia/detiene captura Ctrl+Spacio)

- Usando TECH MCS STUDIO en modo MICRO SD

 Se detecta el dispositivo automáticamente (Ctrl+U)

 Se configura tarjeta MICRO SD

 Se captura sin ordenador con botón Start/Stop

La interfaz TECH MCS HUB se compone de las siguientes partes o menús, como se muestra en la Figura 9.
Fig. 9. Vista de interfaz de usuario TECH MCS STUDIO. (Technaid, Guía rápida 16 IMUs, 2016).

1. Barra de herramientas
2. Área de trabajo
3. Icono de ayuda
4. Barra de herramientas lateral

6. MARCO LEGAL

6.1. Normatividad

Para el desarrollo de este proyecto, se requiere abarcar la normatividad que permita cumplir con los requisitos de calidad, así como aquellas normas que rijan el desarrollo y comercialización de nuevos productos.

6.1.1. **ISO 9001:** Es una norma internacional que establece la base del sistema de gestión de calidad, ya que centraliza todos los elementos de administración de calidad con los que una empresa debe contar, para tener un sistema efectivo que le permita administrar y mejorar la calidad de los productos y servicios (Rodriguez, 2016).

6.1.2. **IEEE 830:** Éste estándar (IEEE 830-1998), define las características de una ERS (Especificación de requisitos de software), en cuanto los aspectos con los que debe contar un software referente a: consistente, completo, inequívoca, correcta, trazable, priorizable, modificable y verificable, también se centra en requisitos como los del usuario, los de sistema, los funcionales y los no funcionales (Wikipedia, Wikipedia, Especificaciones de software, 2016).
6.1.3. **ISO 9241:** Es una norma enfocada en la calidad respecto a la usabilidad y ergonomía, tanto de hardware como de software, fue creada por la ISO y la IEC (wikipedia, 2016).

6.1.4. **ANSI/AAMI 60601-1:** Estándar del American National Standards Institute/Association para instrumentación médica y límites de seguridad de corriente para aparatos electromédicos (AAMI, 2016)

6.1.5. **Decreto 4725 de 2005 Normatividad Colombiana:** Por la cual se reglamenta el régimen de registros sanitarios, permisos de comercialización y vigilancia sanitaria de los dispositivos médicos para uso humano. Éste es el Decreto marco vigente para todo lo relacionado con los dispositivos médicos. En el Capítulo III, se instaura que todo fabricante y/o importador de dispositivos médicos debe certificarse en las Buenas prácticas de manufactura y de capacidad de almacenamiento y/o acondicionamiento de los dispositivos médicos, para lo cual el Ministerio de Protección Social expedirá las normas que lo regulen. En el Capítulo IX. Control y Vigilancia se establecen las responsabilidades de cada uno de las autoridades sanitarias (Nacionales, Departamentales, Distritales y Municipales). En éste decreto se excluyen los dispositivos médicos sobre medida para salud visual, ocular, prótesis y órtesis externa, los cuales se encuentran regulados por otras normas expedidas, por el Ministerio de la Protección Social (Capital, 2016)
7. METODOLOGÍA

Para la realización de este proyecto, se constituye un conjunto de bloques, de tal manera que permita efectuar la identificación y obtención de los parámetros espacio-temporales, a partir del uso del equipo TECH MCS. Por tanto, se diseñaron (2) dos bloques sistemáticos, los cuales se detallan en la figura 10.

Fig. 10. Diagrama de bloques sistemático (Autores, Yara, & Sánchez, 2016).

7.1. Descripción de los bloques sistemáticos

7.1.1. Bloque Análisis de parámetros: Consiste en la documentación de los diferentes parámetros de la marcha humana, existentes, calculables y medibles. Una vez, identificados estos parámetros, se procede a realizar pruebas con el equipo de sensores inerciales TECH-IMus, con el fin de efectuar un acercamiento en su modo de operación y en los archivos de exportación; para posteriormente efectuar un tratamiento de los mismos por fuera del software que entrega la compañía. Con los sensores caracterizados, se procede a hacer un análisis conjunto entre electrónica, matemática, software y fisiología, para ejecutar una nueva identificación, esta vez referente a los parámetros espacio-temporales que serán calculados y medidos por el software a diseñar.
7.1.2. **Bloque Software:** Este bloque se subdivide a su vez, en otros dos bloques: Bloque tratamiento y bloque Interfaz

-Bloque procesamiento: Ya identificados los parámetros a visualizar, se procede a realizar un proceso de tratamiento de los datos, con el propósito de obtener de ellas las variables necesarias que permitan desarrollar los cálculos correspondientes para determinar los parámetros espacio-temporales definidos en el bloque de análisis de parámetros.

-Bloque Interfaz: En este bloque se agrupan todos los parámetros obtenidos de la etapa anterior, seguidamente, se desarrolla una interfaz gráfica GUI que permita visualizarlos, con el fin de efectuar un análisis completo de marcha humana, por último se realizan las pruebas pertinentes tomando medidas manuales y comparándolas finalmente, con las calculadas por la interfaz implementada, para así, comprobar el correcto funcionamiento de este proyecto.

8. DESARROLLO DE LA METODOLOGÍA

8.1. Bloque análisis de parámetros

-Identificación de parámetros

Tomando como referencia el marco teórico, basado en las investigaciones de diferentes autores, se realiza el proceso de identificación de los indicadores básicos que harán parte de la interfaz gráfica GUI.

En este trabajo se identificaron seis (6) parámetros de tipo espacio-temporal, básicos, los cuales pueden ser calculados a partir de la red de sensores inerciales con los que cuenta el sistema TECH MCS, mediante el posicionamiento adecuado y correcto de la red sensorial en los puntos anatómicos de los sujetos, proporcionando información cuantitativa y confiable

A partir de la investigación realizada, se relacionan los siguientes parámetros espacio-temporales

- Longitud del paso.
- Tiempo del paso.
- Cadencia de los pasos.
-Longitud de la zancada.

-Tiempo de zancada.

-Velocidad de marcha.

-Captura de datos

En esta sección del bloque análisis de parámetros, se procede a hacer uso del equipo Tech MCS y el software Tech MCS STUDIO. Para ello, se implementa una distribución de los sensores TECH IMUs en los puntos anatómicos de las extremidades inferiores, tomando como punto referencia el sensor (15), zona lumbar o espalda, como se muestra en la Figura 11.

Fig. 11. Distribución de los sensores en los puntos anatómicos. (Technaid, Conexión recomendada de una red de 16 IMUs para el cuerpo humano, 2016).

Para llevar a cabo la configuración del equipo y el proceso de captura de movimiento de las redes propuestas en la figura 11, se dispone de la siguiente asociación de sensores en relación a los puntos anatómicos descritos en la tabla 11. De igual manera, el fabricante dispone de un serial de identificación para cada sensor, el cual facilita el proceso de instalación y reconocimiento en el software.
Tabla 11. Asociación de los sensores con respecto a los puntos anatómicos de las extremidades inferiores del proceso de captura para el análisis de marcha. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th># sensor (según figura 12)</th>
<th>Código de sensor</th>
<th>Punto anatómico</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>ICEM-322</td>
<td>Lumbar (Espalda), referencia</td>
</tr>
<tr>
<td>11</td>
<td>ICEM-255</td>
<td>Muslo derecho</td>
</tr>
<tr>
<td>10</td>
<td>ICEM-256</td>
<td>Pierna derecha</td>
</tr>
<tr>
<td>9</td>
<td>ICEM-257</td>
<td>Pie Derecho</td>
</tr>
<tr>
<td>14</td>
<td>ICEM-324</td>
<td>Muslo izquierdo</td>
</tr>
<tr>
<td>13</td>
<td>ICEM-325</td>
<td>Pierna Izquierda</td>
</tr>
<tr>
<td>12</td>
<td>ICEM-326</td>
<td>Pie Izquierdo</td>
</tr>
</tbody>
</table>

Una vez realizada las asociaciones descritas en la tabla 11, se procede a crear un nuevo proyecto en el software TECH MCS STUDIO, para ello, se debe acceder al icono correspondiente a nuevo proyecto, que se encuentra en la barra de herramientas del software, la ventana de nuevo proyecto se compone de 5 pestañas las cuales se explican a continuación, Figura 12.

Fig. 12. Ventana de configuración de nuevo proyecto en software TECH MCS STUDIO. (Motion, 2016).
-**Datos generales:** En esta zona de la ventana, se debe indicar los datos generales, tales como nombre del proyecto, la ruta de almacenamiento y opcionalmente las observaciones del mismo.

-**Configuración de capturas:** Esta pestaña contiene las especificaciones de la configuración básica que tendrá por defecto las nuevas capturas que se creen en el proyecto. Desde esta ventana, se configura el nombre de la captura, el tipo de datos, que para este proyecto, se empleó datos de tipo ángulos de orientación/cuaternos, la frecuencia de muestreo de 50 Hertz, con la cual se realiza las capturas de orientación, así como configuraciones adicionales relacionadas con la temporización de las capturas y la sincronización externa. La ventana de configuración se muestra en la Figura 13.

![Ventana de configuración de capturas](Motion, 2016)

-**Dispositivos del proyecto:** En esta ventana se selecciona el dispositivo de captura, en este caso el dispositivo TECH HUB o concentrador. Esta ventana tiene el aspecto que se muestra en la figura 14.
Fig. 14. Ventana de dispositivos del proyecto. (Motion, 2016).

-Etiquetar IMU: Esta ventana realiza la asignación personalizada a los sensores Tech IMU, de tal manera que facilite la identificación, para ello, se tiene en cuenta la asociación creada en la tabla 11. En la figura 15, se muestra la estructura de la venta de etiquetar IMUs.
Fig. 15. Ventana de etiquetar IMUs. (Motion, 2016).

-Vista 3D: Esta pestaña es opcional y permite la configuración por defecto para la vista 3D de los Tech IMU usados en el proyecto creado. Dependiendo la perspectiva, la matriz de rotación o el tipo de visualización. En la figura 16, se muestra la ventana de vista 3D, una vez terminada la configuración se procede a verificar las propiedades del dispositivo, figura 17.
Fig. 16. Ventana de vista 3D. (Motion, 2016).
En la ventana de configuración de dispositivo figura 17, se realiza las relaciones de tipo distal/proximal, para ello, se establece las siguientes asociaciones en concordancia con las descritas en la tabla 11. Estas asociaciones son importantes, ya que serán las columnas del archivo de exportación, que se procesarán en el bloque de tratamiento.

1. (Espalda (lumbar)-proximal)/ (Muslo Derecho-Distal).
2. (Espalda (lumbar)-proximal)/ (Muslo Izquierdo-Distal).
3. (Muslo Derecho-proximal)/ (Pierna Derecha-Distal).
4. (Pierna Derecha-proximal)/ (Pie Derecho-Distal).
5. (Muslo Izquierdo-Proximal)/ (Pierna Izquierda-Distal).
6. (Pierna Izquierda-proximal)/ (Pie Izquierda-Distal).
Una vez finalizada la configuración de los dispositivos del equipo TECH MCS, se procede a realizar el proceso de captura. El software TECH MCS STUDIO, permite efectuar la captura mostrando en su ventana de trabajo, gráficas de ángulos vs muestras, de cadera, tobillo y rodillas, de acuerdo a los movimientos que se realizan en los diferentes planos (sagitual, frontal y transversal). En la Figura 18, se muestra las gráficas del proceso de captura específicamente para datos: ángulo/orientación/cuaternos a una frecuencia de muestreo de 50 Hz.

Fig. 18. Gráficas de ángulos vs muestras de proceso de captura para datos tipo ángulo/orientación/cuaternos. (Motion, 2016).

Terminado el proceso de captura (s), del sujeto, se procede a realizar la exportación de los datos. El equipo TECH MCS, cuenta con los archivos de captura exportados en formato .cap, estos archivos pueden ser utilizados para un posterior análisis en programas como Microsoft Excel, Matlab, aplicaciones 3D, etc. Este formato se caracteriza por contar con una estructura de 33 líneas de cabecera con información concerniente a la captura, así como los datos de movimiento capturados.
El software TECH MCS STUDIO, genera archivos de datos de captura de tipo digitales, físicos y de orientación.

-**Digitales:** El tipo de captura en digital permite obtener los datos en bruto, es decir, tal como los entrega el conversor de analógico/digital (CAD) de los sensores Tech IMU de Technaid S.L. El CAD funciona a 12 bits sin signo, por lo tanto, el rango de valores es de 0 a 4095.

-**Físicos:** El tipo de captura en físicos permite obtener los datos ya calibrados, es decir, con la magnitud física que los representa en formato float 32 bits (IEEE-747). Esta calibración se realiza a través de una plataforma diseñada expresamente para tal fin y, siguiendo el procedimiento creado por el investigador Franco Ferraris de la Universidad de Torino.

- Acelerómetros: miden la aceleración en los tres ejes, rango: -50.0, +50.0 m/s^2
- Giróscopos: miden la velocidad angular en los tres ejes, rango: -20.0, +20.0 rad/s
- Magnetómetros: miden el campo magnético terrestre en los tres ejes, rango: -120.0, +120.0 T
- Temperatura: mide la temperatura del sensor, rango: -40.0, +120.0 ºC

-**Ángulos:** Entrega los datos de ángulos de cada una de las asociaciones distal/proximal descritas. El formato de exportación es extensión .capa, que son archivos de formato de texto plano.

Este último formato se escogió dado a que arroja columnas de información de los ángulos asociados a cada extremidad, de acuerdo a las asociaciones descritas.

En la Figura 19, se muestra el contenido del archivo de extensión .capa, usado en el siguiente bloque. En este archivo, se evidencia parte de la configuración previa realizada en el software, de igual manera, se observa sus partes, compuesto por cabecera y captura de datos, esta última, registra los ángulos de cada extremidad de acuerdo a la cantidad de sensores IMUs empleados para las redes.
Fig. 19. Estructura de archivo de exportación del software TECH MCS STUDIO. Extensión .capa. (Motion, 2016).

8.2. Bloque software

Este bloque se subdivide en otros dos bloques los cuales se denominan, *bloque procesamiento* y *bloque interfaz*, respectivamente. Este bloque en general, se encarga del tratamiento de los datos de exportación, el cálculo de los parámetros espacio-temporales y la implementación de la interfaz gráfica GUI, desarrollados en el software computacional de Matlab.
9.2.1 Bloque procesamiento

Este bloque se compone de dos etapas, encargadas del tratamiento de los datos y el cálculo de los parámetros espacio-temporales. En el diagrama de flujo 1, se muestra el funcionamiento global del bloque procesamiento.

Diagrama de flujo 1. Funcionamiento global bloque procesamiento(Autores, Yara, & Sánchez, 2016).
-Tratamiento de datos: En esta parte del bloque procesamiento, se desarrolla una rutina en Matlab, que importa el archivo de exportación de extensión .capa, producto del proceso de captura de datos de tipo ángulo, del software TECH MCS STUDIO.

Este tipo de datos de exportación, fue seleccionado, por que proporciona información de cada uno de los ángulos (grados) en asociación a cada extremidad, específicamente 6 columnas, las cuales fueron configuradas de acuerdo a la asociación distal/proximal y a las redes sensoriales de los TECH IMU, colocados en los puntos anatómicos.

Para llevar a cabo el tratamiento de los datos de exportación, se estructuraron 6 scripts en Matlab. (Ver anexos- código fuente), que permitieron calcular los parámetros espacio-temporales de la marcha.

Debido a que el sistema no ubica distancias sin una referencia y dado a que la referencia está colocada sobre el sensor de la zona lumbar, todas las medidas efectuadas serían temporales e instantáneas, es decir, que al no contar con un sensor de posición global o completo como un GPS, o un sistema de videogrametría, es necesario realizar una aproximación de las distancias, tomando como punto de referencia el sensor lumbar y tomando las mediciones con respecto a ese punto.

Para las medidas con el sensor en la zona lumbar como referencia, al ser la postura de calibración (la postura T del cuerpo,)como se muestra en la figura 20, plano sagital; este sensor realizaría un movimiento junto con la persona, una vez esta empieza a efectuar la marcha, luego no se puede considerar como un punto de referencia, sino como un sistema de coordenadas movible, que avanza junto con los demás puntos de medida, por lo tanto, no es posible medir una distancia o recorrido directamente, pero es posible tomar la distancia del instante (captura y frame), por medio de la conversión de coordenadas y el análisis de las mismas, teniendo en cuenta que la posición de referencia es T y el punto de medida, será el sensor lumbar. Los sensores que se encuentren delante de él, registran los ángulos positivos, mientras los que se encuentran detrás del sensor lumbar, registraría los ángulos negativos.
Por tal razón, se requiere construir un sistema de referencia, la cual es proporcionada por el usuario y consiste en introducir las medidas de las distancias antropométricas de las extremidades inferiores, para así formar un sistema de coordenadas polares de la forma \((r, \theta)\), junto con los valores de ángulos proporcionados por el sistema de captura, donde:

- \(r\): Sería el radio del vector, que en este caso en particular, hace referencia a las medidas antropométricas solicitadas al paciente o sujeto.

- \(\theta\): Corresponde al ángulo polar o ángulo vectorial, proporcionado por el sistema de captura, mediante el archivo de exportación con datos de tipo ángulo, debido a que el sistema entrega los datos de ángulos en grados, se hace necesaria una conversión previa de los mismos a radianes, que es el tipo de ángulo con el que trabaja el software diseñado, esta conversión se llevó a cabo haciendo uso de la siguiente ecuación:

\[
Grados = \frac{Radianes \times \pi}{180} \quad (10)
\]

Las medidas antropométricas que permiten la aproximación de los parámetros espacio-temporales son:

- Medida de muslo izquierdo en cm
- Medida de muslo derecho en cm
- Medida de pierna izquierda en cm
-Medida de pierna derecha en cm

Una vez se introducen los valores escalares (distancias antropométricas) a la rutina realizada en Matlab, se efectúa un proceso de conversión de grados a radianes, de los ángulos tomados del proceso de captura, para posteriormente, generar, la concatenación de los escalares (distancias antropométricas) con los ángulos en radianes. En la Figura 21 se muestra el proceso de concatenación, matriz completa de 12 columnas y la cantidad de filas o frame del proceso de captura, que distribuye las medidas anatómicas insertadas en relación a los ángulos medidos por el sistema de captura. En la Tabla 12, se realiza la identificación de columnas según la asociación del proceso de concatenación de la figura 21.

![Fig. 21. Concatenación de las medidas antropométricas y los ángulos en radianes. (Autores, Yara, & Sánchez, 2016).](image)

![Tabla 12. Identificación de columnas según la asociación del proceso de concatenación de la figura 21. (Autores, Yara, & Sánchez, 2016).](table)
Así mismo, cuando se carga el archivo .capa, se toma la frecuencia de muestreo del proceso de captura, la cual por recomendación del fabricante, no debe exceder los 50 Hz.

Como se tiene a este punto una matriz general formando un sistema de coordenadas de tipo polar, se procede a realizar el proceso de conversión a coordenadas (x, y), a partir de la creación de matrices en base a la matriz general (coordenadas polares), para cada medida antropométrica de cada extremidad inferior, de tal manera que se obtiene una nueva matriz general (coordenadas cartesianas). En la Figura 24, se muestra la nueva matriz general con la concatenación del proceso de conversión a coordenadas (x, y) o cartesianas.

Una representación vectorial se realiza mediante la utilización de tres vectores de módulo unidad (Ver figura 22), los cuales son perpendiculares entre sí. La base formada por los vectores \{i, j, k\}, se denomina base canónica.

![Fig. 22. Vectores base forma canónica y sistema de coordenadas. (Wikiversidad, 2015).](image)

Entiéndase como cosenos directores (Ver figura 23) de un vector \(\hat{A} \), los ángulos que forma este con la base y su correspondiente reconstrucción trigonométrica asociado a la magnitud del mismo.
Matemáticamente cada elemento de esta reconstrucción trigonométrica puede expresarse como se muestra en las ecuaciones (11), (12), (13) y (14) respectivamente:

\[
\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \quad \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \quad \cos \zeta = \frac{z}{\sqrt{x^2 + y^2 + z^2}} \quad (11)
\]

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \zeta = 1 \quad (12)
\]

\[
x = |\vec{A}| \cos \alpha, \quad y = |\vec{A}| \cos \beta, \quad z = |\vec{A}| \cos \zeta \quad (13)
\]

\[
|\vec{A}| = \sqrt{x^2 + y^2 + z^2} \quad (14)
\]

Es debido a esto que un sistema de referencia puede cambiar en otro sin perder su fiabilidad (cambios de referencias polares, rectangulares, cuaternos, etc.), para este caso específico, es posible a partir de las ecuaciones (11),(12),(13) y (14), decir que la conversión de coordenadas se realiza mediante las ecuaciones (15) y (16).

\[
x = r \cdot \cos(\theta) \quad (15)
\]

\[
y = r \cdot \sin(\theta) \quad (16)
\]
En la tabla 13, se realiza la identificación de columnas según la asociación del proceso de concatenación de la matriz general de la figura 24, para el cambio de coordenadas polares a cartesianas.

Tabla 13. Identificación de columnas según la asociación del proceso de concatenación de la matriz general de la figura 24, para el cambio de coordenadas polares a cartesianas. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th>Distancia antropométrica (Coordenada X)</th>
<th># De columna en matriz de concatenación figura 24.</th>
<th>Asociación proximal-distal (archivo de exportación TECH MCS). (Coordenada Y)</th>
<th># de columna en matriz de concatenación figura 24 para asociación proximal - distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muslo izquierdo.</td>
<td>Columna 1</td>
<td>Right Thigh/Lumbar</td>
<td>Columna 2</td>
</tr>
<tr>
<td>Muslo Derecho</td>
<td>Columna 3</td>
<td>Left Thigh/Lumbar</td>
<td>Columna 4</td>
</tr>
<tr>
<td>Pierna derecha</td>
<td>Columna 5</td>
<td>Right Leg/Right Thigh</td>
<td>Columna 6</td>
</tr>
<tr>
<td>Pie derecha.</td>
<td>Columna 7</td>
<td>Right Foot/Right Leg</td>
<td>Columna 8</td>
</tr>
<tr>
<td>Pierna izquierda</td>
<td>Columna 9</td>
<td>Left Leg/Left Thigh</td>
<td>Columna 10</td>
</tr>
<tr>
<td>Pie izquierdo</td>
<td>Columna 11</td>
<td>Left Foot/Left Leg</td>
<td>Columna 12</td>
</tr>
</tbody>
</table>

Fig. 24. Matriz general conversión de coordenadas polares a coordenadas (x, y) (Autores, Yara, & Sánchez, 2016).
Una vez se realiza el proceso de conversión haciendo uso de las ecuaciones 11-16, se diseña el algoritmo que permite efectuar la suma vectorial, para determinar la distancia por extremidad. En esta parte, el algoritmo se encarga de sumar los valores de X y Y de cada fila, previamente organizada, primero para la extremidad derecha y luego para la extremidad izquierda, donde se formará una matriz de 4 columnas y el número de frames de la muestra (filas), distribuidas para cada extremidad, en el orden (x,y). Derecha e izquierda respectivamente.

Para la suma vectorial se parte de la base matemática de la suma individual de vectores libres como se muestra en las ecuaciones (17) y (18):

\[
\vec{A} + \vec{B} = A(x1, y1) + B(x2, y2) \quad (17)
\]

\[
\vec{C} = ((x2 + x1), (y2 + y1)) \quad (18)
\]

Una vez se organiza esta matriz, se suma los valores de Y y los valores de X, de cada extremidad, como se muestra en la figura 25.

En la tabla 14, se muestra la identificación de las columnas para la suma vectorial de cada extremidad en coordenadas cartesianas, según la asociación realizada en la figura 25.

<table>
<thead>
<tr>
<th>Suma Vectorial extremidad Derecha</th>
<th># columna según figura 25</th>
<th>Suma Vectorial Extremidad Izquierda</th>
<th># columna según figura 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordenada x</td>
<td>Columna 1</td>
<td>Coordenada x</td>
<td>Columna 3</td>
</tr>
<tr>
<td>Coordenada y</td>
<td>Columna 2</td>
<td>Coordenada y</td>
<td>Columna 4</td>
</tr>
</tbody>
</table>

Realizado este proceso de sumas vectoriales en los ejes X y Y, usando las ecuaciones (17) y (18), para cada extremidad (derecha e izquierda), se procede a calcular las distancias para cada una de las extremidades, mediante el uso de la función distancia cartesianas, posteriormente, se hace una iteración de los elementos de la matriz en donde se pregunta al software, cada vez que una extremidad pasa por el punto medio (cero), y ésta cambia de valor, siendo así, como se determina la aproximación a un ciclo de marcha humana, realizado en este proyecto. De igual manera, es necesario, crear un vector columna (1 columna y 12 filas), que concentre los valores máximos y mínimos, de cada uno de los ejes de las extremidades (x, y), los cuales se muestran en la figura 26.

Con los valores máximos, se puede determinar la longitud y la distancia de paso.

La distancia entre vectores con un mismo origen (después de realizada la suma vectorial de ambas extremidades por componentes vectoriales, da como resultado un par de vectores finales con un mismo origen, de esta manera es posible ejecutar un cálculo aproximado de distancia real, ya que la suma vectorial es a dimensional y por lo tanto, toma la dimensión o unidades que se le hayan asignado, para este caso, unidades de longitud (cm, m), por consiguiente, al calcular la distancia entre dos vectores cualesquiera que sean ellos, si están ubicados en el mismo sistema de referencia.
y en este caso con un mismo origen, es posible conocer la distancia entre dos puntos de manera aproximada), esto se logró a través de la ecuación (19)

\[d \left(A(x_1, y_1), B(x_2, y_2) \right) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} (19) \]

Dónde:

\[d = \text{distancia entre vectores} \]

Fig. 26. Vector columna con mínimos y máximos de las extremidades. (Autores, Yara, & Sánchez, 2016).

Posteriormente, es necesario inspeccionar el proceso en el cual se producen los cambios de signo en la matriz de grados, de tal manera que se pueda reconocer el número de pasos dados por el pie derecho y el pie izquierdo, efectuados durante el proceso de marcha. Por tanto, se requiere calcular el tiempo a partir de la frecuencia de muestreo y el número de filas o frames del proceso de captura.

Con el proceso efectuado para el tratamiento de los datos de exportación y las variables ya determinadas, se realiza el cálculo de los parámetros espacio-temporales de la marcha. En la Tabla 15, se registra las ecuaciones empleadas en Matlab para la determinación de los parámetros espacio-temporales.

Tabla 15. Variables y ecuaciones empleadas en Matlab para la determinación de los parámetros espacio-temporales. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Fórmulas</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| Tiempo (s) | \(\frac{1}{f} \times \text{fil} \) | Dónde:
 f: Frecuencia de muestreo
 fil: Cantidad de filas o frames |
| **Longitud de paso o distancia de paso**
Dpaso (cm) | **Dpaso = max (DMax)** | **Dónde:**
DMax: Máximo valor de distancia calculado en x |
|---|---|---|
| **Distancia (cm)** | \((\text{PasosD} + \text{PasosI}) \times \text{D paso}\) | **Dónde:**
PasosD: Número de pasos pierna derecha
Pasos I: Número de pasos pierna izquierda
Dpaso: Distancia de paso o longitud de paso |
| **Tiempo de paso (s)** | \(\frac{\text{PasosD}}{\text{tiempo}}\) | **Dónde:**
PasosD: Número de pasos pierna derecha |
| **Cadencia de paso**
(pasos/s) | \(\frac{(\text{PasosD} + \text{PasosI})}{\text{tiempo}}\) | **Dónde:**
Pasos D: Número de pasos pierna derecha
Pasos I: Número de pasos pierna izquierda
Dpaso: Distancia de paso o longitud de paso
Tiempo: periodo de la muestra |
| **Longitud de la zancada (cm)** | \(\text{Dpaso} \times 2\) | **Dónde:**
Dpaso: Distancia de paso o longitud de paso. |
| **Tiempo de la zancada (s)** | \(\text{TiempoPaso} \times 2\) | **Dónde:**
TiempoPaso: Período transcurrido entre el contacto inicial de un pie con el suelo y el contacto inicial del pie contrario. |
| **Velocidad de la marcha (cm/s)** | \(\frac{\text{Distancia}}{\text{tiempo}}\) | **Dónde:**
Distancia: longitud total recorrida durante la marcha
Tiempo: Periodo total de transcurrido durante la marcha |
8.2.2. Bloque Interfaz

Para la obtención de los parámetros espacio-temporales, se implementó el bloque interfaz, el cual detalla el desarrollo de la interfaz gráfica GUI, para la visualización de los parámetros espacio-temporales de la marcha, calculados en el bloque tratamiento de datos. Este bloque se compone de dos (2) etapas, las cuales abarcan el desarrollo de la interfaz y su respectiva verificación. En el diagrama de flujo 2, se muestra el desarrollo de esta etapa.

Diagrama de flujo 2. Funcionamiento general de la GUI.(Autores, Yara, & Sánchez, 2016).

-Desarrollo y verificación de interfaz

Para el desarrollo de esta etapa, la GUI implementada en Matlab costa de 3 ventanas, las cuales en su conjunto, hace parte de toda la interfaz gráfica para la determinación de los parámetros espaciotemporales. La primera ventana de la GUI es una presentación, la que se muestra en la como se muestra en la Figura 27.
La segunda ventana, como se muestra en la figura 28, consta de dos secciones. La primera sección realiza la solicitud de las distancias antropométricas de la persona, la cual consta de seis datos, los cuales son longitudes en cm de: Muslo izquierdo y derecho, pierna izquierda y derecha y pie izquierdo y derecho, sin la digitación de estos datos el software no continuará mostrando más opciones.
Posteriormente, al digitar los datos antropométricos solicitados y pulsar el botón tomar antropometría, se desplegarán dos opciones más, la primera es un menú Archivo con el cual se importará el archivo de captura de ángulos del software Tech MCS Studio (archivo.capa) y en caso de ser correcta la importación desplegará un aviso de que esta fue correctamente realizada, la segunda es un botón llamado Parámetros ET, el cual llevará a la ventana siguiente, para realizar el cálculo de los parámetros espacio temporales. En la Figura 29, se muestra la segunda ventana con la digitalización de las distancias antropométricas y la carga exitosa del archivo .capa.
Por último, al presionar en el botón Parámetros ET el software despliega la tercera ventana, la cual al presionar el botón (Calcular Parámetros ET), mostrará los parámetros espacio-temporales calculados con los datos que se le han suministrado en 7 cajas de texto, junto con el reporte generado en formato .txt. En la Figura 30, se muestra la tercera ventana de la GUI, con el cálculo de los parámetros espacio-temporales y el reporte clínico de los parámetros espacio-temporales.
9. RESULTADOS.

En esta sesión, se muestra la GUI implementada en Matlab, la cual le da al usuario los parámetros espacio-temporales de la marcha humana, de acuerdo a los datos de las distancias antropométricas solicitadas y la captura de marcha humana generada por el software TECH MCS Studio.

Para efectuar las pruebas al software diseñado e implementado, se realizan el proceso de captura de marcha humana a (5) cinco personas y sus respectivas medidas antropométricas tomadas de manera manual, para así, en la GUI implementada, observar los parámetros espacio-temporales de la persona, a través de diferentes capturas obtenidas del software TECH MCS Studio.

9.1. Pruebas realizadas

-Sujeto de prueba 1.

Nombre: Lina Yara
Sexo: Femenino
Edad: 24

En la Figura 31, se muestra la colocación del sistema TECH MCS, en el sujeto de prueba 1.

En la Figura 32. Se observa la interfaz gráfica, junto con la introducción de los datos de las distancias antropométricas del sujeto de prueba 1.
Para esta persona se realizaron cinco (5) capturas, haciendo uso del equipo Tech MCS y el software TECH MCS STUDIO, para así obtener mayor fidelidad en el cálculo de los parámetros. Estos datos se muestran en la interfaz gráfica diseñada, en las figuras 33, 34, 35, 36 y 37 respectivamente.

![Imagen 1](image1.png)

Fig. 32. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).

![Imagen 2](image2.png)

Fig. 33. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 1. (Autores, Yara, & Sánchez, 2016).
Fig. 34. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 2. (Autores, Yara, & Sánchez, 2016).

Fig. 35. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 3. (Autores, Yara, & Sánchez, 2016).
Fig. 36. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 4. (Autores, Yara, & Sánchez, 2016).

Fig. 37. Cálculo de los parámetros espacio-temporales del sujeto de prueba 1, captura 5. (Autores, Yara, & Sánchez, 2016).
Como se observan en las figuras anteriores, la captura 1, presenta valores atípicos, los cuales no se encuentran en los rangos de las demás capturas realizadas. Por tanto, para el análisis estadístico, es necesario prescindir de esta captura, de tal forma que no afecte el promedio de cada uno de los parámetros espacio-temporales.

Para comprobar la información entregada por la interfaz, se muestra los resultados del método manual, empleado para identificar los parámetros espacio-temporales de la marcha humana para el sujeto de prueba 1. Este método se seleccionó de un estudio realizado por estudiantes de la Institución Universitaria Iberoamericana, para un examen de marcha mediante instrumentos de análisis cualitativo y cuantitativo, (Aguilar, Moncada, Romero, & Vega, 2011), (Reyes, 2013). En la Figura 38, se observa la plataforma diseñada para realizar las mediciones de tipo manual, a partir de inspección visual mediante cinta métrica y cronómetro.

![Plataforma de registro de pasos para medición con cinta métrica y cronómetro](image)

Fig. 38. Plataforma de registro de pasos para medición con cinta métrica y cronómetro. (Autores, Yara, & Sánchez, 2016).

Mediante este método se obtiene los siguientes parámetros espacio-temporales, los cuales se determinaron a partir de las ecuaciones encontradas en la literatura.

- **Distancia** = 945.7 cm
- **Longitud de paso** = 47 cm
- **Tiempo de paso** = 1.01 segundos
- **Cadencia de paso** = 1.2 pasos/segundo
- **Longitud de zancada** = 94 cm
Tiempo de zancada= 2.2 segundos
Velocidad de marcha= 50.72 cm/s

-Sujeto de prueba 2.

Nombre: Luis Alberto Jaime
Sexo: Masculino
Edad: 21

En la Figura 39. Se muestra la colocación del sistema TECH MCS, en el sujeto de prueba 2,

Fig.39. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 2. (Autores, Yara, & Sánchez, 2016).

En la Figura 40, se observa la interfaz gráfica, junto con la introducción de los datos de las distancias antropométricas del sujeto de prueba 2.
Para esta persona se realizaron cuatro (4) capturas, haciendo uso del equipo Tech MCS y el software TECH MCS STUDIO, para así obtener mayor fidelidad en el cálculo de los parámetros. Estos datos se muestran en la interfaz gráfica diseñada, en las figuras 41, 42, 43y 44, respectivamente.
Fig. 40. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 2. (Autores, Yara, & Sánchez, 2016).

Fig. 41. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 1. (Autores, Yara, & Sánchez, 2016).
Fig. 42. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 2. (Autores, Yara, & Sánchez, 2016).

Fig. 43. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 3. (Autores, Yara, & Sánchez, 2016).
Fig. 44. Cálculo de los parámetros espacio-temporales del sujeto de prueba 2, captura 4. (Autores, Yara, & Sánchez, 2016).

Para esta persona, se observa que tanto la captura 1 como la captura 4, presentan valores atípicos en los parámetros de velocidad y distancia, los cuales, afectan los análisis estadísticos posteriores.

-Sujeto de prueba 3.

Nombre: Dayana Jiménez
Sexo: Femenino
Edad: 20

En la Figura 45, se muestra la colocación del sistema TECH MCS, en el sujeto de prueba 3.

Fig. 45. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 3. (Autores, Yara, & Sánchez, 2016)
En la Figura 46. Se observa la interfaz gráfica, junto con la introducción de los datos de las distancias antropométricas del sujeto de prueba 3.

Para esta persona se realizaron cuatro (4) capturas, haciendo uso del equipo TECH MCS y el software TECH MCS STUDIO, para así obtener mayor fidelidad en el cálculo de los parámetros. Estos datos se muestran en la interfaz gráfica diseñada, en las figuras 47, 48, 49 y 50, respectivamente.

![Interfaz gráfica con datos antropométricos](image)

Fig. 46. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 3. (Autores, Yara, & Sánchez, 2016).
Fig. 47. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 1. (Autores, Yara, & Sánchez, 2016).

Fig. 48. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 2. (Autores, Yara, & Sánchez, 2016).
Fig. 49. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 3. (Autores, Yara, & Sánchez, 2016).

Fig. 50. Cálculo de los parámetros espacio-temporales del sujeto de prueba 3, captura 4. (Autores, Yara, & Sánchez, 2016).

Para esta persona, se observa que la captura tres (3) y cuatro (4), presenta valores atípicos tanto en la distancia como en la velocidad, por tanto, es necesario anular estas capturas, ya que afectan la interpretación de la información.

-Sujeto de prueba 4.

Nombre: Johan Malagón
Sexo: Masculino
Edad: 26
En la Figura 51, se muestra la colocación del sistema TECH MCS, en el sujeto de prueba 4.

Fig. 51. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 4. (Autores, Yara, & Sánchez, 2016).

En la Figura 52. Se observa la interfaz gráfica, junto con la introducción de los datos de las distancias antropométricas del sujeto de prueba 4. Para esta persona se realizaron cuatro (4) capturas, haciendo uso del equipo TECH MCS y el software Tech MCS STUDIO, para así obtener mayor fidelidad en el cálculo de los parámetros. Estos datos se muestran en la interfaz gráfica diseñada, en las figuras 53, 54, 55 y 56, respectivamente.

Fig. 52. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 4. (Autores, Yara, & Sánchez, 2016).
Fig. 53. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 1. (Autores, Yara, & Sánchez, 2016).

Fig. 54. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 2. (Autores, Yara, & Sánchez, 2016).
Fig. 55. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 3. (Autores, Yara, & Sánchez, 2016).

Para esta persona, se inspecciona que las tres (3) primeras capturas, presentan valores atípicos en distancia y velocidad, por lo que es conveniente realizar de nuevo el proceso de captura, dado a que es necesario contar con capturas fiables que soporten en este caso la captura cuatro (4) realizada al sujeto de prueba.

Fig. 56. Cálculo de los parámetros espacio-temporales del sujeto de prueba 4, captura 4. (Autores, Yara, & Sánchez, 2016)
-Sujeto de prueba 5.

Nombre: Felipe Orjuela
Sexo: Masculino
Edad: 19

En la Figura 57, se muestra la colocación del sistema TECH MCS, en el sujeto de prueba 5.

![Image](image-url)

Fig. 57. Colocación de sensores del sistema TECH MCS, en sujeto de prueba 3. (Autores, Yara, & Sánchez, 2016).

En la Figura 58, se observa la interfaz gráfica, junto con la introducción de los datos de las distancias antropométricas del sujeto de prueba 5.

Para esta persona se realizaron tres (3) capturas, haciendo uso del equipo TECH MCS y el software TECH MCS STUDIO, para así obtener mayor fidelidad en el cálculo de los parámetros. Estos datos se muestran en la interfaz gráfica diseñada, en las figuras 59, 60 y 61, respectivamente.
Fig. 58. Introducción en la interfaz de las distancias antropométricas del sujeto de prueba 4. (Autores, Yara, & Sánchez, 2016).

Fig. 59. Cálculo de los parámetros espacio-temporales del sujeto de prueba 5, captura 1. (Autores, Yara, & Sánchez, 2016).
Fig. 60. Cálculo de los parámetros espacio-temporales del sujeto de prueba 5, captura 2. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia</td>
<td>875.429 cm</td>
</tr>
<tr>
<td>Longitud de Paso</td>
<td>51.4958 cm</td>
</tr>
<tr>
<td>Tiempo de Paso</td>
<td>1.21951 s</td>
</tr>
<tr>
<td>Cadencia de Paso</td>
<td>1.21951 pasos/s</td>
</tr>
<tr>
<td>Longitud Zancada</td>
<td>102.992 cm</td>
</tr>
<tr>
<td>Tiempo Zancada</td>
<td>2.43002 s</td>
</tr>
<tr>
<td>Velocidad Marcha</td>
<td>82.7985 cm/s</td>
</tr>
</tbody>
</table>

Fig. 61. Cálculo de los parámetros espacio-temporales del sujeto de prueba 5, captura 3. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia</td>
<td>944.37 cm</td>
</tr>
<tr>
<td>Longitud de Paso</td>
<td>52.465 cm</td>
</tr>
<tr>
<td>Tiempo de Paso</td>
<td>1.45631 s</td>
</tr>
<tr>
<td>Cadencia de Paso</td>
<td>1.24827 pasos/s</td>
</tr>
<tr>
<td>Longitud Zancada</td>
<td>104.93 cm</td>
</tr>
<tr>
<td>Tiempo Zancada</td>
<td>2.91262 s</td>
</tr>
<tr>
<td>Velocidad Marcha</td>
<td>86.4983 cm/s</td>
</tr>
</tbody>
</table>
Para esta persona, se observa que la captura 1, presenta valores atípicos en cada uno de los parámetros, pero en específico la velocidad y la distancia, por tanto se debe anular esta captura para no alterar los datos identificados de las capturas dos (2) y tres (3).

9.2. Estadísticas

En esta parte de los resultados, se realizó una comparación entre los parámetros espacio-temporales calculados en la GUI de Matlab y los calculados mediante el método manual de sujeto de prueba 1. Para ello, se ejecutó el siguiente proceso estadístico, como se muestra en la Tabla 16.

Tabla 16. Datos de los parámetros espacio-temporales del proceso de adquisición con el TECH MCS y los calculados a partir del método manual para el sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>captura 1</th>
<th>captura 2</th>
<th>captura 3</th>
<th>captura 4</th>
<th>captura 5</th>
<th>Parámetros estimados de manera manual</th>
<th>Promedio de datos de captura Sistema TECH MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia (cm)</td>
<td>2050,47</td>
<td>843,618</td>
<td>976,958</td>
<td>792,585</td>
<td>794,987</td>
<td>945,7</td>
<td>852,037</td>
</tr>
<tr>
<td>Longitud de paso (cm)</td>
<td>52,5761</td>
<td>44,4115</td>
<td>46,5218</td>
<td>44,0325</td>
<td>44,1659</td>
<td>47</td>
<td>44,7882925</td>
</tr>
<tr>
<td>Tiempo de paso (s)</td>
<td>1,73993</td>
<td>1,98276</td>
<td>2,12389</td>
<td>1,89963</td>
<td>1,76678</td>
<td>1,01</td>
<td>1,902598</td>
</tr>
<tr>
<td>Cadencia de paso (pasos/s)</td>
<td>3,57143</td>
<td>1,63793</td>
<td>1,85841</td>
<td>1,5544</td>
<td>1,59011</td>
<td>1,2</td>
<td>1,6602125</td>
</tr>
<tr>
<td>Longitud zancada (cm)</td>
<td>105,152</td>
<td>88,823</td>
<td>93,0436</td>
<td>88,065</td>
<td>88,3319</td>
<td>94</td>
<td>89,565875</td>
</tr>
<tr>
<td>Tiempo zancada (s)</td>
<td>3,47985</td>
<td>3,96552</td>
<td>4,24779</td>
<td>3,79965</td>
<td>3,53357</td>
<td>2,2</td>
<td>3,805276</td>
</tr>
<tr>
<td>Velocidad Marcha (cm/s)</td>
<td>187,772</td>
<td>72,743</td>
<td>86,4565</td>
<td>68,4443</td>
<td>70,2285</td>
<td>50,72</td>
<td>74,468075</td>
</tr>
</tbody>
</table>

De las capturas tomadas por el equipo TECH MCS al sujeto de prueba 1, se realiza un promedio aritmético para cada parámetro espacio-temporal. Dado a que el promedio es una medida descriptiva que se deja afectar por los valores atípicos, no se tiene en cuenta aquellos valores que
alteren los datos de las capturas por tanto, en la tabla 16, se puede observar que la captura 1, contiene datos atípicos, los cuales no se tuvieron en cuenta para determinar el promedio.

Para observar que tanto se dispersan los valores entre métodos, se muestra en la figura 61 y 62, un gráfico de dispersión y un gráfico de barras el cual proporciona la caracterización de cada parámetro.

Fig. 62. Dispersión entre los parámetros calculados con el equipo TECH MCS y los medidos de manera manual- sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).

Fig. 63. Dispersión entre los parámetros calculados con el equipo TECH MCS y los medidos de manera manual- sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).
Así mismo, para conocer que tanto se alejan los cálculos obtenidos en Matlab. En la tabla 17, se detalla la varianza, desviación estándar y el coeficiente de variación de cada uno de los parámetros calculados para el sujeto de prueba 1 (intrasujeto). En esta tabla, se obtiene el coeficiente de variación que permite observar la variabilidad de la captura con respecto a la media aritmética.

Es por ello, que los resultados obtenidos indican una variabilidad de las medidas de los parámetros en un rango entre 8 y 11%.

Tabla 17. Varianza, desviación estándar y coeficientes de variación para cada parámetro a sujeto de prueba 1. (Autores, Yara, & Sánchez, 2016).

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>X'</th>
<th>Varianza para cada parámetro - sistema TECH MCS σ^2</th>
<th>Desviación estándar para cada parámetro - sistema TECH MCS σ</th>
<th>CV coeficiente de variación</th>
<th>% CV porcentaje coeficiente de variación</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia (cm)</td>
<td>852,037</td>
<td>7488,45954</td>
<td>86,5358858</td>
<td>0,10156353</td>
<td>10%</td>
<td>51,033</td>
</tr>
<tr>
<td>Longitud de paso (cm)</td>
<td>44,7882925</td>
<td>16,2097692</td>
<td>4,02613577</td>
<td>0,08990337</td>
<td>9%</td>
<td>2,4893</td>
</tr>
<tr>
<td>Tiempo de paso (s)</td>
<td>1,902598</td>
<td>0,02507808</td>
<td>0,15836059</td>
<td>0,08323387</td>
<td>8%</td>
<td>0,24283</td>
</tr>
<tr>
<td>Cadencia de paso (pasos/s)</td>
<td>1,6602125</td>
<td>0,0186298</td>
<td>0,13649103</td>
<td>0,08221299</td>
<td>8%</td>
<td>0,30401</td>
</tr>
<tr>
<td>Longitud zancada (cm)</td>
<td>89,565875</td>
<td>64,8372618</td>
<td>8,05215883</td>
<td>0,08990208</td>
<td>9%</td>
<td>4,9786</td>
</tr>
<tr>
<td>Tiempo zancada (s)</td>
<td>3,805276</td>
<td>0,10031367</td>
<td>0,31672333</td>
<td>0,08323268</td>
<td>8%</td>
<td>0,48567</td>
</tr>
<tr>
<td>Velocidad Marcha (cm/s)</td>
<td>74,468075</td>
<td>66,9860264</td>
<td>8,18449915</td>
<td>0,10990615</td>
<td>11%</td>
<td>18,0122</td>
</tr>
</tbody>
</table>

Sin embargo, es importante observar las diferencias entre los valores calculados y aquellos que diversos autores han proporcionado en la literatura, con el propósito conocer la variabilidad de esos datos con respecto a los determinados por el software. En la Tabla 18, se muestra la comparación entre los valores de diferentes autores y los calculados, de acuerdo a la edad de la persona, para la longitud del paso.
Tabla 18. Comparación para parámetro de longitud de paso entre los resultados obtenidos por el software del sujeto de prueba 1 y diferentes autores. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>LP (m)</th>
<th>LP (cm)</th>
<th>LP (cm) promedio - Sistema de captura TECH MCS*</th>
<th>LP (cm) calculado por el método manual**</th>
<th>E%*</th>
<th>E%**</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Murray,1964)</td>
<td>20-65</td>
<td>0,78</td>
<td>78</td>
<td>44,782925</td>
<td>47</td>
<td>43%</td>
<td>40%</td>
</tr>
<tr>
<td>(Sekiya ,1997)</td>
<td>25,9</td>
<td>0,76</td>
<td>76</td>
<td>44,782925</td>
<td>47</td>
<td>41%</td>
<td>38%</td>
</tr>
<tr>
<td>(Sekiya ,1998)</td>
<td>22,4</td>
<td>0,66</td>
<td>66</td>
<td>44,782925</td>
<td>47</td>
<td>32%</td>
<td>29%</td>
</tr>
<tr>
<td>(Cutlip,2000)</td>
<td>21-26</td>
<td>0,75</td>
<td>75</td>
<td>44,782925</td>
<td>47</td>
<td>40%</td>
<td>37%</td>
</tr>
<tr>
<td>(Della,2001)</td>
<td>24,6</td>
<td>0,62</td>
<td>62</td>
<td>44,782925</td>
<td>47</td>
<td>28%</td>
<td>24%</td>
</tr>
<tr>
<td>(Gill, 2003)</td>
<td>22-43</td>
<td>0,73</td>
<td>73</td>
<td>44,782925</td>
<td>47</td>
<td>39%</td>
<td>36%</td>
</tr>
<tr>
<td>(Menz, 2003)</td>
<td>22-39</td>
<td>0,73</td>
<td>73</td>
<td>44,782925</td>
<td>47</td>
<td>39%</td>
<td>36%</td>
</tr>
<tr>
<td>(Menz,2004)</td>
<td>22-40</td>
<td>0,77</td>
<td>77</td>
<td>44,782925</td>
<td>47</td>
<td>42%</td>
<td>39%</td>
</tr>
<tr>
<td>(Van Uden,2004)</td>
<td>19-59</td>
<td>0,77</td>
<td>77</td>
<td>44,782925</td>
<td>47</td>
<td>42%</td>
<td>39%</td>
</tr>
</tbody>
</table>

En los resultados obtenidos en la Tabla 18, se observa que la longitud de paso en comparación con la parametrizada por diferentes autores, presenta un error porcentual alto para cada método utilizado, lo cual es razonable, dado a que variables como el sexo y el tipo de población, pueden afectar la comparación realizada.

En la Tabla 19, se muestra la comparación entre los valores según la edad de la persona y los calculados para el parámetro de cadencia de pasos con los resultados obtenidos mediante el software implementado para el sujeto de prueba 1. Observando que la edad del sujeto de prueba 1, se
encuentra en el rango de 18 a 49 años, se realiza el análisis estadístico, para el rango establecido por el autor en la tabla 3, de igual manera, se determina el rango según el número de capturas tomadas por el sistema TECH MCS, mediante la inspección del valor máximo y el valor mínimo registrado.

La comparación efectuada permite observar un error porcentual del 11%, así como también las tolerancias de la medida alrededor del promedio determinado para la cadencia de pasos.

Tabla 19. Comparación para parámetro de cadencia de pasos de acuerdo al rango de edad, entre parámetros calculados a partir del TECH MCS para el sujeto de prueba 1 y los normalizados por el autor según la tabla 3. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

<table>
<thead>
<tr>
<th>Edad</th>
<th>CP (Pasos*m-1)</th>
<th>CP (Pasos*s-1)</th>
<th>Cadencia promedio TECH MCS*</th>
<th>Cadencia calculada Manera manual **</th>
<th>Rango CP (1,5-2,25)</th>
<th>Rango CP (1,55-1,86)</th>
<th>Precisión CP para edad 18-49 Años</th>
<th>Precisión CP-TECH MCS*</th>
<th>E% *</th>
<th>E% **</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-14</td>
<td>100-149</td>
<td>1,7-2,48</td>
<td>1,660212</td>
<td>1,2</td>
<td>0,75</td>
<td>0,30</td>
<td>1,875±0,75</td>
<td>1,660±0,3</td>
<td>11%</td>
<td>36%</td>
</tr>
<tr>
<td>15-17</td>
<td>96-142</td>
<td>1,6-2,37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-49</td>
<td>91-135</td>
<td>1,5-2,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td>82-126</td>
<td>1,36-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la Tabla 20, se muestra la comparación entre los datos proporcionados de diferentes autores y los calculados (sujeto de prueba 1), de acuerdo a la edad de la persona, para el tiempo de la zancada.

Tabla 20. Comparación entre los valores de diferentes autores y los calculados (sujeto de prueba 1), de acuerdo a la edad de la persona, para el tiempo de la zancada. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>TZ (s) registrad a de manera manual</th>
<th>TZ (s), Promedio TECH MCS</th>
<th>Precisión medida TZ(s) TECH MCS</th>
<th>Rango Medida TZ (s) TECH MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bresler, 1950)</td>
<td>No especifica</td>
<td>1,18</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
<tr>
<td>(Murray, 1964)</td>
<td>30-35</td>
<td>1,08(0,10)</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
<tr>
<td>(Murray, 1966)</td>
<td>20-65</td>
<td>1,06(0,09)</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
<tr>
<td>(Kadaba, 1990)</td>
<td>18-40</td>
<td>1,08 (0,08)</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
<tr>
<td>(Mills, 2001)</td>
<td>24,9 (0,9)</td>
<td>1,18 (0,02)</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
<tr>
<td>(Gill, 2003)</td>
<td>22-43</td>
<td>1,06 (0,09)</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
<tr>
<td>(Van Uden, 2004)</td>
<td>19-59</td>
<td>1,10 (0,06)</td>
<td>1,2</td>
<td>3,53357</td>
<td></td>
</tr>
</tbody>
</table>
En la tabla 21, se muestra los datos estadísticos para la longitud de zancada comparada con la información normalizada por diferentes autores.

Como se observó con la longitud de paso, la longitud de zancada presenta errores entre el 33 % y 40%, lo cual se debe a variables no consideradas, como el tipo de población y el sexo de las personas de muestra.

Tabla 21.Comparación de la longitud de zancada entre software TECH MCS para sujeto de prueba 1 y los datos de diferentes autores. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Edad</th>
<th>LZ (m)</th>
<th>LZ (cm) autores</th>
<th>LZ promedio Tech MCS*</th>
<th>LZ calculado de manera manual**</th>
<th>E%*</th>
<th>E%**</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Murray, 1964)</td>
<td>20-65</td>
<td>1,565</td>
<td>156,5</td>
<td>89,565875</td>
<td>94</td>
<td>43%</td>
<td>40%</td>
</tr>
<tr>
<td>(Murray, 1966)</td>
<td>20-65</td>
<td>1,56(0,13)</td>
<td>156</td>
<td>89,565875</td>
<td>94</td>
<td>43%</td>
<td>40%</td>
</tr>
<tr>
<td>(Kadaba, 1990)</td>
<td>18-40</td>
<td>1,41</td>
<td>141</td>
<td>89,565875</td>
<td>94</td>
<td>36%</td>
<td>33%</td>
</tr>
<tr>
<td>(Polio, 1998)</td>
<td>27,2(3,6)</td>
<td>1,46 (0,9)</td>
<td>146</td>
<td>89,565875</td>
<td>94</td>
<td>39%</td>
<td>36%</td>
</tr>
<tr>
<td>(Mills, 2001)</td>
<td>24,9(0,9)</td>
<td>1,7</td>
<td>170</td>
<td>89,565875</td>
<td>94</td>
<td>47%</td>
<td>45%</td>
</tr>
<tr>
<td>(Gill, 2003)</td>
<td>22-43</td>
<td>1,46 (0,08)</td>
<td>146</td>
<td>89,565875</td>
<td>94</td>
<td>39%</td>
<td>36%</td>
</tr>
<tr>
<td>(Van Uden, 2004)</td>
<td>19-59</td>
<td>1,55 (0,17)</td>
<td>155</td>
<td>89,565875</td>
<td>94</td>
<td>42%</td>
<td>39%</td>
</tr>
</tbody>
</table>

En cuanto la velocidad de la marcha, según está se encuentra en el rango de los 1,3 m/s y los 1,6 m/s. En la tabla 22, se muestra la comparación de esta variable, (Velocidad de la marcha) con respecto a las medidas determinadas por los métodos implementados.

Tabla 22.Comparación de la velocidad de la marcha entre los métodos utilizados y los valores encontrados en la literatura. (Autores, Yara, & Sánchez, 2016), (cámara, 2011).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Velocidad de la marcha (cm*s⁻¹)</th>
<th>velocidad de la marcha promedio TECH MCS (cms⁻¹)</th>
<th>Velocidad de la marcha calculada de manera manual**</th>
<th>E%*</th>
<th>E%**</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Thorstensson, 1987)</td>
<td>130</td>
<td>74,468075</td>
<td>50,72</td>
<td>61%</td>
<td>61%</td>
</tr>
<tr>
<td>(Walters, 1999)</td>
<td>160</td>
<td>74,468075</td>
<td>50,72</td>
<td>68%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Así como los parámetros anteriores que presentaron altos porcentajes de error, la velocidad de la marcha también se ve afectada por las variables mencionadas anteriormente (población y sexo). Sin
embargo, el método utilizado como medio de validación (determinados de manera manual), permitió observar que la información suministrada por el software al mismo sujeto de prueba, presenta datos relativamente precisos, para todos los parámetros, luego se puede afirmar que estos parámetros espacio-temporales son únicos de cada individuo.

Adicional a la comparación efectuada en este documento, se corrobora los valores calculados producto de los archivos de exportación del equipo TECH MCS, a partir del diseño de un modelo del sujeto de prueba 1, realizado en el laboratorio de movimiento y marcha humana de la Universidad Central.

Este laboratorio consta de una plataforma dinamométrica y un sistema de videogrametría compuesto de seis (6) cámaras infrarrojas y (3) tres sistemas HUB o concentradores.

El laboratorio permitió efectuar un proceso de validación de la información suministrada por la interfaz diseñada en este proyecto, las mediciones manuales mediante el uso de la plataforma y los rangos normalizados encontrados en la literatura sobre los parámetros espacio-temporales.

En la figura 67, se muestra el laboratorio de análisis de marcha y movimiento de la Universidad Central.

![Laboratorio de análisis de marcha y movimiento de la Universidad Central](image)

Fig. 64. Laboratorio de análisis de movimiento y marcha humana, Universidad Central (Autores, Yara, & Sánchez, 2016). (Central, 2016).
Para el proceso de captura, el laboratorio cuenta con marcadores de material reflectivos, los cuales se instalaron en los puntos anatómicos correspondientes a la ubicación de los sensores inerciales del equipo TECH MCS, para así obtener una coincidencia entre ambos modelos.

Una vez son instalados, se procede a realizar un proceso de calibración de las cámaras en la zona de pasarela, de tal manera que permita formar el espacio de trabajo, para que las cámaras puedan reconocer los marcadores durante la marcha. En la figura 65, se muestra los marcadores empleados. Para la captura, se utilizaron siete (7) marcadores para cada punto anatómico, conservando la misma identificación proximal/ distal, empleados en el TECH MCS.

![Marcadores reflectivos](image)

Fig. 65. Marcadores reflectivos. (Autores, Yara, & Sánchez, 2016). (Central, 2016).

El laboratorio además, cuenta con (2) dos software. El software BTS SMART Tracker, se encarga de reconstruir automáticamente los datos en 3D, del proceso de captura (Figura 66), así como el software BTS Smart Analyzer, que es una herramienta para el análisis de movimiento biomecánico con datos cinemáticos en tres dimensiones, video y datos análogos de plataforma de fuerza, electro miógrafos u otros equipos, que realiza el proceso de un esquema computarizado que genera toda la información requerida por el usuario para un análisis completo y junto con su toolbox, permite obtener valores cinemáticos y dinámicos del proceso de captura, según el análisis que se desee efectuar.(Enraf, 2016).

Describiendo el software Smart Analyzer, este presenta el mismo principio del software TECH MCS Studio del sistema TECH MCS, ya que permite la generación de gráficas de acuerdo a las variables tratadas, así como la exportación de archivos en formato plano compatibles para su tratamiento en Matlab.
En el Analyzer Tracker, se realizó el proceso de exportación de captura en datos de tipo ángulos, de tal manera que coincidieran con el formato de exportación entregado por el equipo TECH MCS, para así, hacer uso del software desarrollado en Matlab y obtener los parámetros espacio-temporales. Sin embargo, el Analyzer Tracker, permitió identificar inmediatamente la longitud de paso o distancia del paso, mediante el uso del bloque de medición de distancias el cual, calcula la longitud entre el marcador instalado en el pie derecho y el pie izquierdo.
En la Figura 67, se muestra los bloques del toolbox, utilizado para determinar la longitud del paso y las demás variables espacio-temporales junto con las gráficas generadas por el software.

![Diagrama de bloques de procesamiento para exportación de datos](image)

Fig. 67. Bloques de procesamiento para exportación de datos, (Autores, Yara, & Sánchez, 2016), (Central, 2016).

Otra similitud en cuanto el software TECH MCS STUDIO, es el archivo de exportación compatible con Matlab. En la figura 68, se muestra el archivo de exportación en formato .txt, con la longitud de paso determinada entre los marcadores colocados en los pies del sujeto 1. Este documento, al igual que los archivos generados por el TECH MCS, genera un encabezado con la información del proceso de captura, así como las columnas con los datos requeridos de acuerdo al número de frames. Este Laboratorio de análisis de movimiento, trabaja a una frecuencia de muestreo de 50 Hz, lo cual, permite efectuar las comparaciones con los datos obtenidos mediante el sistema TECH MCS.
Para determinar la longitud de paso desde el archivo de exportación, se realiza un barrido de los valores capturados durante la marcha del sujeto 1 y mediante inspección, se halla el valor máximo del registro, el cual contiene la longitud del paso durante la marcha. En la Tabla 23, se muestra la comparación entre los parámetros obtenidos en el software Analyzer Tracker con respecto a los determinados por el software desarrollado.

Con el Analyzer Tracker, fue posible determinar (4) de los (6) seis parámetros espacio-temporales, analizados en este documento, sin embargo, con esta información, se logró determinar el error entre los dos métodos para la captura de movimiento del sujeto de prueba 1.
Tabla 23. Comparación entre métodos de captura de movimiento. (Autores, Yara, & Sánchez, 2016), (Central, 2016).

<table>
<thead>
<tr>
<th>Parámetros espacio-temporales</th>
<th>Error entre Software Diseñado Universidad Distrital y Software Analyzer Tracker Universidad Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud de paso software Analyzer Tracker Universidad Central [cm]</td>
<td>47,5</td>
</tr>
<tr>
<td>Longitud de paso software Diseñado Universidad Distrital [cm]</td>
<td>44,782925</td>
</tr>
<tr>
<td>Longitud de la zancada software Analyzer Tracker Universidad Central [cm]</td>
<td>95</td>
</tr>
<tr>
<td>Longitud de la zancada software Diseñado Universidad Distrital [cm]</td>
<td>89,565875</td>
</tr>
<tr>
<td>Tiempo de paso software Analyzer Tracker Universidad Central [cm]</td>
<td>1,99</td>
</tr>
<tr>
<td>Tiempo de paso software Diseñado Universidad Distrital [s]</td>
<td>1,902598</td>
</tr>
<tr>
<td>Tiempo de zancada software Analyzer Tracker Universidad Central [s]</td>
<td>3,98</td>
</tr>
<tr>
<td>Tiempo de zancada software Diseñado Universidad Distrital [s]</td>
<td>3,805276</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>6,28%</td>
</tr>
<tr>
<td>Error</td>
<td>5,72%</td>
</tr>
<tr>
<td>Error</td>
<td>4,52%</td>
</tr>
<tr>
<td>Error</td>
<td>4,27%</td>
</tr>
</tbody>
</table>
CONCLUSIONES Y ANOTACIONES.

Durante el desarrollo del proyecto se obtuvieron diferentes tipos de datos, exportados por el software TECH MCS Studio. Inicialmente y en vista de que los sensores del maletín TECH-MCS, se constituye de acelerómetros, giroscopios y magnetómetros, una alternativa de estudio consistió en tomar los datos de los acelerómetros a través del tiempo y dado a la obtención de aceleraciones angulares, realizar su conversión a aceleraciones lineales, para así, integrarlos con respecto al tiempo para obtener velocidad y posición. Para posteriormente, teniendo esta información de posiciones de cada uno de los sensores, establecer matemáticamente las medidas correspondientes a los parámetros espaciotemporales, pero al realizar el estudio de la captura de estos datos, se observó que las referencias de los sensores, no eran invariantes en el tiempo y que la referencia de cada sensor era el sensor más proximal al mismo, razón por la cual no hay una referencia fija en el tiempo que se pudiera tomar e integrar con respecto a la misma y así obtener una posición espacial, razón por lo cual, se obtiene es una posición referencial en cada espacio de tiempo, por esto se descartó este tipo de datos y de línea de estudio.

Posteriormente, se toma como línea de estudio la exportación de datos del equipo en tipo angular, este tipo de archivo consiste en la entrega de ángulos en grados de una extremidad referenciada a otra, esto con el fin de tener un punto fijo de referencia y el otro móvil, que permitiera entregar los ángulos de cada extremidad, es debido a esto que si el sistema se configura con sensores, la cantidad de ángulos que entregará por eje (X,Y,Z) es de n-1, en vista de que el método de acelerómetros directos no funcionó, se opta por hacer una aproximación a todos los parámetros espacio temporales, a partir de matemática vectorial de este tipo de archivos, haciendo uso de vectores polares, los cuales cuentan con componentes (r,theta), donde el theta es entregado por el archivo de exportación, y el r es solicitado al usuario, este es el motivo por el cual se le pide al usuario que proporcione la información antropométrica necesaria para suministrarla en la GUI implementada. Teniendo asociada ya cada longitud antropométrica a cada extremidad se arma el vector (r,theta), y se procede a realizar el correspondiente análisis matemático vectorial, este método entregó buenos resultados con errores inferiores al 15% en parámetros netamente espaciales, resaltando que este método es una aproximación en la obtención de los parámetros espacio-temporales.

Para futuras adecuaciones y actualizaciones de este sistema de laboratorio de marcha humana, se hace indispensable la investigación, implementación y uso de un sistema de referencia de posición, que sea invariante en el tiempo, con el fin de tener un punto inicial y un punto de finalización
parametrizado, con el cual se puedan hacer cálculos precisos de tiempo y distancia, ejemplos de estos sistemas de referencia, podría ser un sistema de GPS, posicionamiento de objetos por procesamiento digital de imágenes, técnicas de posicionamiento de marcadores, todo esto unido al sistema de sensores inerciales TECH-MCS y a su vez, a un sistema de fuerza, los cuales formarían una gran herramienta de investigación y desarrollo dentro del grupo de investigación DIGITI de la Universidad Distrital Francisco José de Caldas.

Al realizar las capturas que se exportan, para hacer uso de esta GUI es importante que la persona que usa el equipo TECH MCS (sensores inerciales, HUB), use únicamente 7 sensores, ubicados en la espalda (sensor de referencia), muslo derecho, muslo izquierdo, pierna derecha, pierna izquierda, pie (tobillo) derecho y pie (tobillo) izquierdo, ya que el software implementado está diseñado para hacer análisis únicamente de miembros inferiores, la persona debe caminar normalmente, no correr, ni caminar muy rápido, ya que los IMUS que posee el sistema, tienen un alto grado de sensibilidad y a pesar de que este sistema posee filtros de Kalman, en los datos de exportación hay ruido presente cuando se realiza alguna de las acciones anteriormente mencionadas.

Las variables entregadas en esta GUI son una aproximación a los parámetros espacio-temporales que podrían hallarse en un laboratorio de marcha humana, ya sea por métodos de videogrametría, marcadores o plataformas de fuerza de diferentes tipos de sensores, por lo que la precisión y exactitud de estos datos es baja, en comparación con el método de videogrametría que se encuentra en el laboratorio de análisis de movimiento y marcha humana de la Universidad Central, encontrando mediante análisis estadístico errores que oscilan entre el 4 y 6%, y teniendo en cuenta que se debe tomar por lo menos muestras de (5) cinco capturas de movimiento del equipo TECH MCS, para así, contar con datos fiables, que puedan ser tomados como una base de conocimiento y un modelo aproximado; es por ello, que esta interfaz, sólo sirve como acercamiento inicial a un sistema de laboratorio de marcha humana completo, que conlleva la búsqueda de un laboratorio de análisis de movimiento en la Universidad Distrital Francisco José de Caldas.

De igual manera, realizando el análisis estadístico, para la validación de los datos entregados por la interfaz implementada, en comparación con los métodos (manual y videogrametría) y con los valores normalizados encontrados en la literatura, se puede concluir que este tipo de parámetros espacio-temporales son únicos de cada persona y pueden verse afectados por variables, tales como el tipo de población y el sexo, así como se evidenció en el estudio estadístico realizado con los valores suministrados por diferentes autores. Sin embargo, efectuando el análisis de movimiento
con la misma persona y variando los métodos de captura, se obtiene mayor precisión entre los datos y baja variabilidad para cada parámetro.

También, es importante realizar un análisis con medidas de dispersión, las cuales requieren de un tratamiento previo de los datos, en el cual se debe eliminar los valores atípicos de las captura, de tal forma que pueda establecerse un promedio de la información y así, estudiar qué tan alejados están los parámetros estimados con respecto a la media aritmética determinada para cada uno, tal como se efectuó en el capítulo de resultados, entre las diferentes capturas realizadas y entregadas por el equipo TECH MCS, obteniendo coeficientes de variación entre el 8% y 11%.
BIBLIOGRAFÍA

Wikiversidad. (7 de Agosto de 2015). Wikiversidad. Recuperado el 04 de Noviembre de 2016, de Wikiversidad: https://es.wikiversity.org/wiki/Base_can%23B3nica
ANÉXOS.

Anexo 1. Código fuente Matlab para la obtención de los parámetros espacio temporales.

```matlab
function [Frec,MedidasOrd] = AntropometriaGUI(MusloD,MusloI,PierD,PierI,PieD,PieI)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
clc,clear ThighL ThighR LegL LegR FootL FootR
%Frecuencia de muestreo solicitada.
Frec = 50;
%Medidas antropométricas solicitadas.
ThighL = MusloI;
ThighR = MusloD;
LegL = PierI;
LegR = PierD;
FootL = PieI;
FootR = PieD;

MedidasOrd = [ThighR,ThighL,LegR,FootR,LegL,FootL];
clear ThighL ThighR LegL LegR FootL FootR
end

function [aDistancia,aLongPaso,aTiemPaso,aCadenPaso,aLongZancada,aTiemZancada,aVelMarcha] =
GeneralParamET(MedidasOrd,Frec)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
%-------------------
%Script CapturarCapa
MatGra = OpenAngle(); %Obtención matriz datos de captura ángulos (grados).
%MatGra2 es la matriz con las columnas 3 y 5 inversa (se invierten segmento
%muslo pierna de ambas extremidades.)
MatGra2 = cat(2, MatGra(:,1), MatGra(:,2), MatGra(:,3)*-1, MatGra(:,4), MatGra(:,5)*-1,
MatGra(:,6));
MatRad=deg2rad(MatGra2); %Conversión grados a rad en otra matriz.
[Fil,Col]= size(MatRad); %Determina tamaño de matriz.
clear MatGra
%---------------------------------------------------------------
%Script Concatenación
clear j C1 C11 C2 C22 C3 C33 C4 C44 C5 C55 C6 C66 MCR MCG
%Matrices Concatenadas, escalar y ángulo en radianes.
C1 = zeros();
C11 = zeros();
C2 = zeros();
C22 = zeros();
C3 = zeros();
C33 = zeros();
```
C4 = zeros();
C44 = zeros();
C5 = zeros();
C55 = zeros();
C6 = zeros();
C66 = zeros();

%Matriz 2X(Fil=numero de muestras captura.) Muslo Derecho RHO
for j=1:Fil
 %C1(j)=ThighR;
 C1(j)=MedidasOrd(1);
end
C11=cat(2,C1',MatGra2(:,1));
C1=cat(2,C1',MatRad(:,1));

%Matriz 2X(Fil=numero de muestras captura.) Muslo Izquierdo RHO
for j=1:Fil
 %C2(j)=ThighL;
 C2(j)=MedidasOrd(2);
end
C22=cat(2,C2',MatGra2(:,2));
C2=cat(2,C2',MatRad(:,2));

%Matriz 2X(Fil=numero de muestras captura.) Pierna derecha RHO
for j=1:Fil
 %C3(j)=LegR;
 C3(j)=MedidasOrd(3);
end
C33=cat(2,C3',MatGra2(:,3));
C3=cat(2,C3',MatRad(:,3));

%Matriz 2X(Fil=numero de muestras captura.) Pie Derecho RHO
for j=1:Fil
 %C4(j)=FootR;
 C4(j)=MedidasOrd(4);
end
C44=cat(2,C4',MatGra2(:,4));
C4=cat(2,C4',MatRad(:,4));

%Matriz 2X(Fil=numero de muestras captura.) Pierna Izquierda RHO
for j=1:Fil
 %C5(j)=LegL;
 C5(j)=MedidasOrd(5);
end
C55=cat(2,C5',MatGra2(:,5));
C5=cat(2,C5',MatRad(:,5));

%Matriz 2X(Fil=numero de muestras captura.) Pie Izquierdo RHO
for j=1:Fil
 %C6(j)=FootL;
 C6(j)=MedidasOrd(6);
end
C66=cat(2,C6’,MatGra2(:,6));
C6=cat(2,C6’,MatRad(:,6));

%Matrices completas (MC) 12 x Fil de grados y radianes (MCR y MCG)
MCR=cat(2,C1,C2,C3,C4,C5,C6);
MCG=cat(2,C11,C22,C33,C44,C55,C66);
clear j C1 C11 C2 C22 C3 C33 C4 C44 C5 C55 C6 C66

%--
%Script Conversión Coordenadas
clear X Y D1 D2 D3 D4 D5 D6 MCC
%[X,Y] = pol2cart(THETA,RHO)
X=[];
Y=[];
X=zeros();
Y=zeros();

%Armando matrices con cada matriz concatenada
% [X,Y]=pol2cart(C1(:,2),C1(:,1));
% D1=cat(2,X,Y);
% [X,Y]=pol2cart(C2(:,2),C2(:,1));
% D2=cat(2,X,Y);
% [X,Y]=pol2cart(C3(:,2),C3(:,1));
% D3=cat(2,X,Y);
% [X,Y]=pol2cart(C4(:,2),C4(:,1));
% D4=cat(2,X,Y);
% [X,Y]=pol2cart(C5(:,2),C5(:,1));
% D5=cat(2,X,Y);
% [X,Y]=pol2cart(C6(:,2),C6(:,1));
% D6=cat(2,X,Y);

%Armando matrices con la matriz general.
[X,Y]=pol2cart(MCR(:,2),MCR(:,1));
D1=cat(2,X,Y);
[X,Y]=pol2cart(MCR(:,4),MCR(:,3));
D2=cat(2,X,Y);
[X,Y]=pol2cart(MCR(:,6),MCR(:,5));
D3=cat(2,X,Y);
[X,Y]=pol2cart(MCR(:,8),MCR(:,7));
D4=cat(2,X,Y);
[X,Y]=pol2cart(MCR(:,10),MCR(:,9));
D5=cat(2,X,Y);
%Matriz completa 12 x Fil en cartesianas (MCC)
MCC=cat(2,D1,D2,D3,D4,D5,D6);
clear X Y D1 D2 D3 D4 D5 D6

%Script Suma Vectorial.
%Organizando matriz de coordenadas para tener extremidad derecha y luego
%extremidad izquierda.
clear a i MatOrd SumExt
MatOrd(Fil,12)=0;
SumExt(Fil,4)=0;

for i=1:Fil

MatOrd(i,:)=[MCC(i,1),MCC(i,2),MCC(i,5),MCC(i,6),MCC(i,7),MCC(i,8),MCC(i,3),MCC(i,4),MCC(i,9),MCC(i,10),MCC(i,11),MCC(i,12)];
end

%SUMA VECTORIAL DE CADA EXTREMIDAD EN CADA CELDA.
%Algoritmo para sumar valores de X y Y de cada fila
%SumExt será una matriz de 4 x Fil donde Col1,2 serán x,y de extrem derecha
%y Col2,3 serán x,y de ext izq

for a=1:Fil
 for i=1:6
 if mod(i,2)==0
 %Sumo valores de Y de cada extremidad
 SumExt(a,2)=SumExt(a,2)+MatOrd(a,i);
 SumExt(a,4)=SumExt(a,4)+MatOrd(a,i+6);
 else
 %Sumo valores de X de cada extremidad
 SumExt(a,1)=SumExt(a,1)+MatOrd(a,i);
 SumExt(a,3)=SumExt(a,3)+MatOrd(a,i+6);
 end
 end
end

clear a i

%Script Distancia Matriz XY
%Uso de la función distancia para calcular la distancia de cada fila.
clear dis i a b c d ValPaDis L DMax x DPaso
dis(Fil,1)=0;

for i=1:Fil
 dis(i,1)=DistanciaCartesianas(SumExt(i,1),SumExt(i,2),SumExt(i,3),SumExt(i,4));
end

clear i
%Probando Min y Max para encontrar los valores necesarios
[a b]=max(MatGra2);
[c d]=min(MatGra2);
ValPaDis=cat(2,b,d);
ValPaDis=ValPaDis';

%Creando un vector columna con los valores max.
L=length(ValPaDis);
DMax(L)=0;
for x=1:L
 DMax(x)=dis(ValPaDis(x),1);
end
DMax=DMax';
DPaso=max(DMax);
clear i a b c d x L

%Script Búsqueda de pasos.
%Buscando cambios de signo en matriz de grados.
clear VecBus1 VecBus2 actualI posteriorI actualD posteriorD cont a pasosD pasosI tiempo
VecBus=MatGra2(:,1);
VecBus2=MatGra2(:,2);
actualI=0; posteriorI=0; pasosD=0; pasosI=0;
actualD=0; posteriorD=0;
tiempo=(1/Frec)*Fil;

for a=1:Fil
 if a<Fil
 actualD=VecBus(a,1);
 posteriorD=VecBus(a+1,1);
 end

 if a==Fil
 actualD=VecBus(Fil,1);
 posteriorD=VecBus(Fil,1);
 end

 if (actualD>=0 && posteriorD<=0) || (actualD<=0 && posteriorD>=0)
 pasosD=pasosD+1;
 end
end

for b=1:Fil
 if b<Fil
 actualI=VecBus2(b,1);
 posteriorI=VecBus2(b+1,1);
 end

 if b==Fil
 actualI=VecBus2(Fil,1);
 posteriorI=VecBus2(Fil,1);
end

 if (actualI>=0 && posteriorI<=0) || (actualI<=0 && posteriorI>=0)
 pasosI=pasosI+1;
 end
end

clear a b actualD posteriorD actualI posteriorI

%---
%Script parámetros ET
%---
%Calculo Parámetros espacio-temporales de una manera aproximada.
% 1. Longitud de paso.
% 2. Tiempo de paso.
% 3. Cadencia de paso.
% 4. Longitud de la zancada.
% 5. Tiempo de zancada.
% 6. Velocidad de marcha.
% 7. Plus++ Distancia recorrida.
%
% Variables que tengo:
%DPaso = Distancia de paso.
%pasosD = número de pasos pierna derecha.
%pasosI = número de pasos pierna izquierda.
%tiempo = tiempo total de todo el capa.
%Frec = Frecuencia de muestreo de tomas.
%Fil = número de frames realizadas en el formato capa
%---

aDistancia = (pasosD+pasosI)*DPaso;
aLongPaso = DPaso;
aTiemPaso = pasosD/tiempo;
aCadenPaso = (pasosD+pasosI)/tiempo;
aLongZancada = DPaso*2;
aTiemZancada = aTiemPaso*2;
aVelMarcha = aDistancia/tiempo;

end
Anexo 2. Manual de Usuario Software de Identificación de parámetros espacio-temporales de la Marcha Humana a partir del equipo TECH MCS.

1. Se hace entrega de dos carpetas, las cuales tienen el software con la diferencia de que una de ellas es para computadores que disponga del software computacional Matlab R2015a (MarchaHumanaETMatlab). La otra es para computadores que no tengan instalado Matlab el cual consiste en una versión ejecutable (MarchaHumanaET), como se puede muestra en figura 69.

![Fig. 69. Carpetas del software. (Autores, Yara, & Sánchez, 2016).](image)

2. En el caso de tener instalado Matlab R2015a, se agrega la carpeta MarchaHumanaETMatlab al path de trabajo de Matlab y aparecerán los siguientes archivos disponibles, como se muestra en la figura 70.

![Fig. 70. Archivos disponibles en el path. (Autores, Yara, & Sánchez, 2016).](image)
3. Se abre el archivo PruebaGuideTot.m y se ejecuta la opción run (Figura 71).

![PruebaGuideTot.m](image)

Fig. 71. Archivo a ejecutar en Matlab (Autores, Yara, & Sánchez, 2016).

4. En el caso de no tener instalado Matlab, se abre la carpeta MarchaHumanaET, la cual consta de (3) tres subcarpetas. Inicialmente se debe abrir la carpeta for_redistribution e instalar el archivo MyappInstaller_mcr.exe, siguiendo las instrucciones del asistente de instalación. En la figura 72, se muestra la ubicación del instalador.

Para colocar la aplicación como acceso directo en el escritorio, se sugiere que durante el proceso de instalación del MyappInstaller_mcr.exe, se seleccione adicionar acceso directo a escritorio, como se indica en la figura 73. El proceso de apertura de la aplicación puede tardar algunos minutos, una vez se ejecute el acceso directo generado en el proceso de instalación.

![Ubicación de instalador](image)

Fig. 72. Ubicación de instalador MyAppInstaller_mcr.exe. (Autores, Yara, & Sánchez, 2016).
En la Figura 74, se muestra el acceso directo de la aplicación creado en el escritorio del Pc.

(Autores, Yara, & Sánchez, 2016).
Fig. 74. Acceso directo aplicación de identificación de parámetros espacio-temporales de la marcha humana. (Autores, Yara, & Sánchez, 2016).

5. Sin importar los casos descritos anteriormente, (Si dispone o no de Matlab), se abrirá la aplicación como se observa en la figura 75. La ventana principal consta de dos (2) botones, un *acerca de*, el cual tiene como función, mostrar la información del desarrollo del software y un segundo botón, *Empezar*, que permite abrir la siguiente ventana del software.

Fig. 75. Ventana principal y acerca de. (Autores, Yara, & Sánchez, 2016).

6. Luego de pulsar el botón *Empezar*, se mostrará la ventana de captura de antropometría y archivo del TECH-MCS, como se ve en la figura 76. En esta ventana para garantizar la correcta toma e importación de los datos, se debe seguir el proceso que se describe a continuación:
- Digitar nombre y estatura de la persona, seguidamente escoger su sexo, para así, pulsar el botón *Calcular antropometría*, el cual determina automáticamente las distancias antropométricas de los segmentos de las extremidades inferiores.

-Una vez realizado el paso anterior, es visible un segundo botón, *Tomar antropometría*, el cual se debe pulsar para guardar los datos antropométricos calculados; inmediatamente, se visualizaran un botón *(Parámetros ET)* y la herramienta *Archivo-Abrir Capa* como se observa en la figura 77.

![Fig. 76.Inicio ventana 2. (Autores, Yara, & Sánchez, 2016).](image-url)
Fig. 77. Antropometría tomada sin agregar captura TECH-MCS. (Autores, Yara, & Sánchez, 2016).

7. En la barra de herramientas Archivo-Abrir Capa, se realiza el proceso de cargar el archivo en extensión .capa generado previamente en el equipo TECH-MCS o de un dataset que se posea de este mismo equipo (es importante mencionar que este software solo acepta archivos de extensión .capa): si la captura es importada correctamente se visualizará en la interfaz su correcta captura y se procede a pulsar el botón Parámetros ET como se observa en la figura 78.

Fig. 78. Correcta importación archivo capa. (Autores, Yara, & Sánchez, 2016).
8. Al pulsar en el botón Parámetros ET, se abrirá una nueva ventana, en esta ventana se visualizarán los parámetros espacio-temporales de la persona. Si se pulsa el botón Parámetros ET en la ventana 3, se visualizará una gráfica del cambio de ángulos en la extremidad derecha durante la marcha.

El software además, permite generar un breve reporte de los parámetros calculados de la persona pulsando en el botón Reporte, adicionalmente, también permite realizar una nueva captura, pulsando el botón Nueva Captura, o salir completamente del programa, pulsando el botón salir, como se muestra en la figura 79.

![Ventana visualización parámetros espaciotemporales.](Autores, Yara, & Sánchez, 2016)

9. Al pulsar el botón reporte, se abrirá una ventana de Windows, la cual preguntará por el nombre que se le quiere dar al archivo a guardar y su ubicación, para posteriormente generar el reporte en formato plano de extensión .txt, como se observa en la figura 80.
Reporte generado por el software (Autores, Yara, & Sánchez, 2016).