ANALISIS DE LAS PROPIEDADES MECANICAS DE UN ACERO A36 SOMETIDO A UN PROCESO DE SOLDADURA, ANTES Y DESPUÉS DE UN TRATAMIENTO TÉRMICO POST SOLDADURA

ANGEL AUGUSTO ALVAREZ RUBIANO

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

FACULTAD TECNOLÓGICA
TECNOLOGÍA MECÁNICA

BOGOTÁ DC
2015

ANALISIS DE LAS PROPIEDADES MECANICAS DE UN ACERO A36 SOMETIDO A UN PROCESO DE SOLDADURA, ANTES Y DESPUÉS DE UN TRATAMIENTO TÉRMICO POST SOLDADURA
ÁNGEL AUGUSTO ÁLVAREZ RUBIANO

Trabajo de grado para optar por el título de Tecnólogo Mecánico

DIRECTOR DE TESIS:
M.Sc. CARLOS ARTURO BOHÓRQUEZ ÁVILA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
TECNOLOGÍA MECÁNICA
BOGOTÁ DC
2015
TABLA DE CONTENIDO

1-INTRODUCCIÓN ..5
TRATAMIENTOS TÉRMICOS .. 10

DETERMINACIÓN DE TEMPERATURA DE CALENTAMIENTO .. 11

DETERMINACIÓN DEL TIEMPO DE SOSTENIMIENTO DEL TRATAMIENTO TÉRMICO O DURACIÓN .. 11

SELECCIÓN DEL MEDIO DE ENFRIAMIENTO .. 11

DETERMINACIÓN DE LA VELOCIDAD DE CALENTAMIENTO .. 11

DETERMINACIÓN DE LA VELOCIDAD DE ENFRIAMIENTO .. 11

REALIZACIÓN DE LOS TRATAMIENTOS TÉRMICOS ... 11

PREPARACIÓN DE LAS PROBETAS ... 11

12 PULIDO DE LAS MUESTRAS ... 12

ATAQUE METALOGRAFICO .. 12

BARRIDO DE DUREZAS .. 12

ENSAYOS MECÁNICOS .. 13

RESULTADOS .. 13

CONCLUSIONES ... 23

RECOMENDACIONES Y COMENTARIOS .. 24

10-BIBLIOGRAFÍA ... 26

LISTA DE FIGURAS

Figura 1: diseño de la junta en v del material base ... 9
Figura 2: Distribución y distancia de barrido de durezas. Fuente: Autor ... 12
Figura 3: Zonas y puntos de barrido de durezas. Fuente: Autor .. 12
Figura 4: Multigráfica de los resultados del barrido de durezas Rockwell B. Fuente: Autor 16
Figura 5: PWHT en un tanque con quemadores de alta velocidad de gas propano __________________ 24
Figura 6: Quemador de alta velocidad (High Velocity Burner) .. 25
Figura 7: recipiente de alta presión sometido a un PWHT .. 25
Figura 8: PWHT en una tubería con resistencias ... 25
Figura 9: PWHT con resistencias eléctricas en un tanque .. 25
1-Introducción

En este proyecto se examinará uno de las muchos inconvenientes que surgen a los ingenieros no solo mecánicos sino también a todos aquellos que se ven involucrados en el tema, ingenieros de materiales, civiles, metalúrgicos etc. que trabajan con procesos de soldadura o desarrollan proyectos de investigación en cuanto al área de materiales o soldadura se trata o que simplemente en un momento dado de su vida laboral como ingenieros han tenido que lidiar con los efectos indeseables de un proceso de soldadura.

2-Planteamiento del problema

Para todo ingeniero ya sea para un ingeniero mecánico en la fabricación de una máquina, un recipiente a presión, u otro objeto como para un ingeniero civil en la construcción de un edificio, durante la fase diseño es de primordial importancia la selección de los materiales, de acuerdo a unas propiedades específicas que cumplan o se ajusten a las
necesidades de dicho diseño, tales características son por ejemplo la resistencia, ductilidad, dureza, todas con el fin de satisfacer las condiciones al que el producto diseñado será sometido, como cargas estáticas, dinámicas (vibraciones) altas y bajas temperaturas, presiones etc. Pero estos materiales no siempre se ajustan a la geometría o tamaño que se necesitan en el diseño sino que por factores como la distribución comercial se encuentran con diferentes dimensiones y formas, es entonces cuando se requiere un método de unión para estos materiales, en el caso de los metales existen varios tipos, sin embargo, el más utilizado es el proceso de soldadura por economía, facilidad de aplicación y otras ventajas, pero también tiene sus desventajas y la principal de ellas es que **para realizar un proceso de soldadura común se necesita someter los materiales a altas temperaturas, generando una transformación en la macro y microestructura como también de sus propiedades mecánicas**, es entonces que las características por las que se escogieron dichos materiales cambian y traen problemas porque ya no cumplen con las propiedades necesarias para soportar las condiciones al que el producto se ve expuesto, la unión por soldadura se convierte en la parte más vulnerable porque contiene una elevada cantidad de tensiones residuales debido al brusco cambio de temperatura volviéndose propenso a la falla, en algunas situaciones el diseñador consideró los efectos negativos que trae el proceso de soldadura al material, pero en muchos casos se ha visto que no es así, de manera que el producto falla antes de tiempo, durante su uso o en el peor de los casos falla súbitamente, trayendo consecuencias graves como cuantiosas pérdidas económicas que afectan al fabricante hasta llegar en el peor de los casos a tener pérdidas humanas.

3-Antecedentes

Reseña histórica

Resulta dificultoso determinar con exactitud en qué país y en qué momento se han desarrollado ciertas técnicas de soldadura en particular, ya que la experimentación ha sido simultánea en diversos lugares. Aunque los trabajos con metales han existido desde hace siglos, los métodos tal cual como los conocemos hoy, datan desde el principio de este siglo.

Las experiencias que necesariamente se realizaron para determinar las condiciones óptimas de trabajo para lograr una unión metálica sin defectos, permitieron verificar
desde aquel entonces que con el arco eléctrico se podía cortar metal o perforarlo en algún sitio deseado.

Como se ha mencionado desde que existe la soldadura se ha buscado mirar siempre hacia al desarrollo de los procesos, superando algunos inconvenientes como lo son la inestabilidad del arco, la calidad del metal depositado entre otros pero sin embargo siguen quedando problemas inevitables después del proceso como lo son que cuando se suelda se le está haciendo un tratamiento térmico al material, esta problemática en Colombia está desarrollada de manera superficial, algunas empresas solo se limitan a ofrecer servicios como el de alivio de tensiones para recipientes a presión y ya, no hacen verdadero énfasis en el asunto, en cuanto tesis e investigaciones la temática ha sido poco estudiada, si bien existen tesis por parte de estudiantes de ingeniería sobre la metalurgia de la soldadura, nunca tocan la problemática de los efectos residuales por ejemplo en la ZAC, una situación que incita a las empresas a no desarrollar investigaciones o no prestarle mucha importancia al problema es que para ellas le resulta complicado el hacer, por ejemplo, un tratamiento térmico a una estructura ya armada o ensamblada al meterla a un horno esto es inviable, pero este pensamiento es por la falta de conocimiento dado que existen métodos para hacer tratamientos térmicos localizados o parciales.

4-Justificación

La razón principal por la que se trata este problema que surge en la soldadura, es por la importancia que tiene como proceso de fabricación dentro de la mayoría de industrias metalmecánicas y que es un inconveniente que en algunos casos es palpable a simple vista por las consecuencias que se dan por ello.

Tecnológicamente los procesos de soldadura desde su aparición han sido desarrollados con el fin de ser cada vez más eficientes pero, sin embargo, siempre van a quedar secuelas negativas, por más avanzado que sea el tipo de proceso de soldadura con el que se trabaje, es entonces cuando el tratamiento térmico posterior a la soldadura se convierte como la mejor solución alterna al problema, solución que se investigará y desarrollará en este proyecto

5-Objetivos

5.1 Objetivo general
Analizar las propiedades de un acero expuesto a un proceso de soldadura, antes y después de realizar un tratamiento térmico

5.2 Objetivos específicos

1- Realizar la aplicación de proceso de soldadura, usando como proceso SMAW (electrodo manual revestido) y empleando como material de aporte electrodos E6010, E6013 y E7018.
2- Determinar las fase Hierro-carbono presentes a través del material de las probetas, usando como método de análisis la prueba de macroataque empleando como reactivo (nital).
3- Determinar las durezas en las probetas antes y después de aplicar los tratamientos térmicos, utilizando como método la prueba de dureza Rockwell.
4- Determinar la ductilidad en las muestras tratadas y no tratadas térmicamente, empleando como ensayo destructivo, el ensayo de dobles guiado, tanto el dobles de cara como el dobles de raíz
5- Interpretar, analizar y comparar los resultados de las probetas sin Tratamientos Térmicos como de las que fueron tratadas térmicamente, basándose en los datos como dureza, fases Hierro–carbono presentes en el material.
6- Concluir y recomendar los métodos y procedimientos de tratamientos térmicos que pueden ser óptimos para minimizar los efectos negativos de un proceso de soldadura.

1- Marco Teórico

Las propiedades mecánicas. Ciertamente es apropiado que el inspector de soldadura sea entendido en las bases de la metalurgia de la soldadura. Sin embargo, el entender las bases de la metalurgia de la soldadura no sólo ayuda al inspector de soldadura, sino también frecuentemente para muchas funciones de inspección.

6.1 Zona afectada Térmicamente o por el calor (ZAC/ZAT o HAZ en inglés)

Los efectos de soldar pueden ser perjudiciales en el material rodeando la soldadura. Dependiendo de los materiales usados y la entrada de calor del proceso de soldadura

1.1 METALURGIA DE LA SOLDADURA

La Metalurgia es la ciencia que trata sobre la estructura interna de los metales y las relaciones entre las estructuras y las propiedades que exhiben los metales. Cuando se refiere a la metalurgia de la soldadura, concierne a los distintos cambios que ocurren en los metales cuando se unen por soldadura, especialmente aquellos que afectan las
usado, la zona afectada térmicamente (ZAT) puede variar en tamaño y fortaleza. La difusividad térmica del material base es muy importante - si la difusividad es alta, la velocidad de enfriamiento del material es alta y la ZAT es relativamente pequeña.

7-Metodología

La metodología de este proyecto está caracterizado por las siguientes actividades principales.

1- Compra de insumos y materiales
2- Preparación del material base para el proceso de soldadura
3- Aplicación del proceso de soldadura
4- Inspección de la calidad y sanidad de las soldaduras por Ensayos no destructivos (Superficial : Inspección visual (VT)) según los criterios de aceptación de las normas y códigos establecido
5- Corte y elaboración de las probetas tanto para ensayos destructivos como para pruebas de dureza y macroataque
6- Sometimiento de las probetas a los diferentes Tratamientos Térmico.
7- Preparación de probetas para pruebas metalográficas y mecánicas
8- Aplicación de Ensayos y pruebas a probetas sin y con Tratamientos Térmicos
9- Interpretación, análisis y comparación de los resultados de las probetas sin Tratamientos Térmicos como de las que fueron tratadas térmicamente
10- Establecimiento de los procesos de Tratamientos Térmicos que cumplen con el objetivo de mejorar la propiedades mecánicas deseadas, comentarios, conclusiones y recomendaciones sobre los métodos y procedimientos más óptimos para minimizar al máximo los efectos negativos de un proceso de soldadura

8-DESARROLLO DEL PROYECTO

El desarrollo de este proyecto está constituido en 12 partes las cuales son:

1- Preparación de la junta de soldadura
2- Aplicación del proceso de soldadura
PREPARACION DE LA JUNTA DE SOLDADURA

Para la preparación de la junta es necesario que el acero se encuentre totalmente plano y sin curvaturas o pandeos para evitar el high low (desalineamiento entre las platinas), las medidas que se manejaron fueron 19 cm de largo x 8,5 cm de ancho y con espesor de 3/8 de pulgada.

Inicialmente se remueve la capa de pintura y oxido de las platinas con la ayuda de la pulidora y un disco para pulir convencional, ya que es más fácil retirarla que con un esmeril, luego se procede a pulir los cantos o bordes de las platinas a unir de manera que queden perpendiculares (a escuadra) para así realizar los biseles a 30° en ambas platinas en conjunto los biseles formaran un chaflán a 60° que permitirá la introducción del electrodo de soldadura y su fácil aplicación.

Finalmente se elabora los hombros de la junta de una altura aproximada a la del mismo diámetro del electrodo que se utiliza en este caso el electrodo a manejar cuenta con un diámetro de 1/8 de pulgada , de esta manera los hombros tendrán una altura aproximada de 3mm.

APLICACIÓN DEL PROCESO DE SOLDADURA

INSPECCION DE LA SOLDADURA
Análisis de la calidad de la soldadura por ensayos no destructivos (inspección visual testing (VT))

La primera inspección que se realiza a la soldadura realizada es la inspección visual o por sus siglas en inglés Visual Testing VT que es la inspección por una persona que reconoce las discontinuidades en la soldadura a simple vista y con la ayuda de instrumentos que faciliten su visualización del cordón.

ENSAYO MECÁNICO DE DOBLEZ
Como última prueba de calidad se realizó un doblez guiado de cara y de raíz para encontrar posibles defectos en la aplicación de la soldadura interiormente que revelaran en la cara que es sometida a doblez.

Resultados del ensayo de doblez guiado
Los resultados dados por la prueba de doblez guiado fueron satisfactorios ya que cumplen con los criterios de aceptación de algunos códigos o normas de soldadura como AWS D1.1, ASME SEC IX y API 1104.

QW-163 Criterios de Aceptación — Pruebas de doblez.
La soldadura y la zona afectada por el calor de un espécimen de doblez transversal de soldadura, estará completamente dentro de la porción doblada del espécimen después de la prueba. Los especímenes de doblez guiado nada habrán de tener de defectos abiertos en la soldadura o en la zona afectada por el calor que excedan de 1/8 pulgada medido en cualquier dirección sobre la superficie convexa del espécimen después del doblado.

CORTE DE LAS PROBETAS
Con las platinas ya soldadas se cortara las probetas para los diferentes ensayos tanto metalográficos como mecánicos en este caso se empleara probetas con dimensiones de 17 cm de largo x 3 cm de ancho y 3/8 de pulgada de espesor (9,5mm) que se utilizaron tanto para el ataque químico, el barrido de durezas y la prueba de tensión, disminuyendo así la cantidad de probetas a utilizar ya que las mismas probetas para ataque sirven para el barrido de durezas y la prueba de tensión.

TRATAMIENTOS TÉRMICOS
Los tratamientos térmicos que se realizaron en este proyecto fueron de carácter subcrítico ya que ninguno de ellos supera la temperatura crítica o de austenización del material acero A36 que contiene 0,25 % de carbono y en el diagrama hierro-carbono se sitúa el limite Ac3 en 870°.

Determinación de temperatura de calentamiento
Se decidió realizar tratamientos a cuatro temperaturas diferentes los dos primeros de ellos son a 300° y 400° temperaturas a las que se pueden apreciar un cambio de estructura metalográfica, cabe aclarar que en los códigos utilizados para soldadura como el AWS D1.1 código para estructuras metálicas se especifica precalentamientos para las
piezas a unir hasta alrededor de los 250° de temperatura para los mayores espesores y según su contenido de carbono y aleaciones, de esta manera temperaturas como 300° y 400° ya se empiezan a considerar como un PWHT por sus sigla en inglés Post Welding Heat Treatment o en español tratamiento térmico post soldadura o posterior a la soldadura TTPS.

Finalmente las otras dos temperaturas seleccionadas 600° y 700° se hicieron cerca de la temperatura crítica del material con el fin de estudiar la microestructuras que se pueden presentar en esas zonas de temperatura aledañas y como cambia la dureza del material.

Determinación del tiempo de sostenimiento del tratamiento térmico o duración
Los tiempos de sostenimiento se encuentran dentro de los 30 y 60 minutos y se decidieron variar para estudiar también el efecto en las microestructuras de diferentes tiempos de sostenimiento a iguales temperaturas.

Selección del medio de enfriamiento
El método de enfriamiento fue al aire ambiental ya que en dado caso de un PWHT realizado en una situación real será esta casi siempre el método para enfriar el material utilizado.

Determinación de la velocidad de calentamiento
La velocidad de calentamiento está dada por la mufla u horno empleado para los tratamientos térmicos proporcionando al horno el tiempo en el que se quiere alcanzar tal temperatura sin embargo en la mayoría de las veces la mufla no obedece a este dato proporcionado ya que en la mayoría de ocasiones o se necesita un tiempo mayor para alcanzar la temperatura del tratamiento térmico o menor.

Determinación de la velocidad de enfriamiento
La velocidad de enfriamiento no es controlable ya que depende exclusivamente de la interacción de la probeta con la temperatura ambiente, está pendiente o velocidad de enfriamiento se midió con la ayuda de una termocupla, fijando valores de perdida de temperatura a cierto intervalo de tiempo definido.

REALIZACION DE LOS TRATAMIENTOS TÉRMICOS
Los tratamientos se realizaron en una mufla que funciona por resistencias eléctricas que al recibir una corriente eléctrica se calienta generando el aporte calor en la probeta los contornos del interior de la mufla son de material cerámico que sirve como refractario.

La probeta se coloca en un lugar seguro y se deja enfriar a temperatura ambiente evaluando y tomando nota de los valores de disminución de temperatura cada determinado lapso de tiempo con una termocupla.

PREPARACION DE LAS PROBETAS
Pulido de las muestras
Luego de tratadas térmicamente las probetas son lijadas empezando con una lija cuyo tamaño de grano permita remover los rayones y huellas dejados por la pulidora cuando se retiró el cordón de soldadura.

ATAQUE METALOGRAFICO
Con las probetas con un acabado superficial fino a brillo espejo, se hace entonces el ataque químico, el ataque para este material se hizo con una sustancia llamada NITAL que es una mezcla básicamente de ácido nítrico y alcohol convencional en una composición de 95% de alcohol y 5% de ácido nítrico

Una vez las probetas se encontraban atacadas se realiza la toma de imágenes de las probetas a diferentes aumentos ópticos tales como X5, X50, X100, X1000

Las imágenes que se tomaron fueron una de cada zona característica de la probeta y de la zona a estudiar, una correspondiente al material base, otra a la zona afectada por el calor ZAC, el cordón de soldadura y una a bajos aumentos que permitiera caracterizar la transformación micro estructural del acero desde el cordón de soldadura pasando por la ZAC y llegando hasta el material base.

BARRIDO DE DUREZAS
El barrido de durezas se realizó evaluando una zona de 6cm, 3cm a cada lado tomando en cuenta el centro de la soldadura para obtener valores en las zonas de estudio, cordón de soldadura, zona afectada por el calor y el material base, se tomaron durezas en 7 puntos con una separación entre ellos de 1 cm.

![Figura 2: Distribución y distancia de durezas](image)

![Figura 3: Zonas y puntos de barrido de durezas. barrido de](image)

ENSAYOS MECANICOS
La última prueba a realizar una vez hecho el ataque y el barrido de durezas es el ensayo de tensión, aunque por norma la probeta utilizada en estos ensayos en más pequeña de lo habitual se hizo de esta manera con la finalidad que sirviera para el ataque químico y la prueba de dureza ya que una muestra muy grande dificulta su realización.

RESULTADOS
TRATAMIENTOS TERMICOS POST SOLDADURA

Tabla 1: Graficas de los PWHT realizados en cada una de las probetas. Fuente: Autor
PROMEDIO DE DUREZAS en Rockwell B

<table>
<thead>
<tr>
<th>soldadura 1</th>
<th>soldadura 2</th>
<th>300° - Ts 60 min</th>
<th>400° - Ts 30 min</th>
<th>400° - Ts 45 min</th>
<th>600° - Ts 30 min</th>
<th>700° - Ts 30 min</th>
<th>700° - Ts 45 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>73,1</td>
<td>75</td>
<td>65,8</td>
<td>73,6</td>
<td>71,7</td>
<td>65,6</td>
<td>65,3</td>
<td>61,4</td>
</tr>
<tr>
<td>74,5</td>
<td>76,9</td>
<td>67,4</td>
<td>77,6</td>
<td>77,5</td>
<td>65,8</td>
<td>65,8</td>
<td>62,1</td>
</tr>
<tr>
<td>89,6</td>
<td>95</td>
<td>70,8</td>
<td>84,9</td>
<td>84,6</td>
<td>66</td>
<td>67,2</td>
<td>62,8</td>
</tr>
<tr>
<td>100,5</td>
<td>91,6</td>
<td>90,8</td>
<td>88,9</td>
<td>88,1</td>
<td>85,8</td>
<td>76,3</td>
<td>74</td>
</tr>
<tr>
<td>82,7</td>
<td>75,7</td>
<td>85,7</td>
<td>89,5</td>
<td>88,7</td>
<td>66,7</td>
<td>72,8</td>
<td>63,9</td>
</tr>
<tr>
<td>75,5</td>
<td>75,1</td>
<td>71,4</td>
<td>77,3</td>
<td>77,3</td>
<td>66</td>
<td>68,9</td>
<td>61,2</td>
</tr>
<tr>
<td>74,6</td>
<td>72,3</td>
<td>67,8</td>
<td>73</td>
<td>72,9</td>
<td>63</td>
<td>64,3</td>
<td>57,8</td>
</tr>
</tbody>
</table>

Tabla 2: Resultados de los 7 puntos del barrido de durezas hechos en cada probeta, medidos en una escala Rockwell B. Fuente: Autor
Tabla 3: Graficas que revelan el cambio en las durezas en cada una de las probetas durante el barrido. Fuente: Autor
Figura 4: Multigráfica de los resultados del barrido de durezas Rockwell B. Fuente: Autor

<table>
<thead>
<tr>
<th>ESQUEMA BARRIDO DE DUREZAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>soldadura 1</td>
</tr>
<tr>
<td>300°</td>
</tr>
<tr>
<td>soldadura 2</td>
</tr>
</tbody>
</table>

[Diagramas de durezas Rockwell B para soldaduras 1 y 2 con valores de durezas en diferentes zonas.]
Tabla 4: Valores del barrido de durezas ubicados en las zonas de las probetas en las que fueron tomados. Fuente: Autor

Tabla 5: Microscopia 100X del cordón de soldadura y del material base. Fuente: Autor

<table>
<thead>
<tr>
<th>IMÁGENES METALOGRAFICAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>soldadura 1 - metal base</td>
<td>soldadura 1 - soldadura</td>
</tr>
<tr>
<td>Matriz ferrítica con presentación de islas de perlita que evidencia el comienzo de su difusión</td>
<td>Perlita homogéneamente distribuida donde se observa ferrita en los límites de grano</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Matriz ferrítica con islas de perlita de mayor tamaño debido a su mayor difusión</td>
<td>Perlita menos homogénea que la probeta anterior y mayor cantidad de ferrita en los límites de grano</td>
</tr>
</tbody>
</table>
300° - Ts 60 min - metal base
Aparición de perlita laminar acompañada de una matriz ferrítica

300° - Ts 60 min - soldadura
Mayor disolución de la perlita en ferrita dado al tiempo de sostenimiento

400° - Ts 30 min - metal base
Ferrita con pocas zonas de aparición de perlita

400° - Ts 30 min - soldadura
Perlita y ferrita ambas presentan una distribución irregular

400° - Ts 45 min - metal base
Perlita laminar con ferrita donde esta presenta una mayor homogeneidad

400° - Ts 45 min - soldadura
Ferrita en los espacios intergranulares y mayor concentración perlita en los límites de grano circundantes a la ferrita
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>600°C</td>
<td>30 min</td>
<td>Metal base</td>
<td>Estructura en gran medida ferrítica acompañada de perlita disuelta y alguna concentrada en islas</td>
</tr>
<tr>
<td>600°C</td>
<td>30 min</td>
<td>Soldadura</td>
<td>Matriz ferrítica con aparición de perlita concentrada formando islas aisladas</td>
</tr>
<tr>
<td>700°C</td>
<td>30 min</td>
<td>Metal base</td>
<td>Matriz de en su mayor parte perlítica con presencia de ferrita en sus límites de grano y acumulación perlítica formando algunas islas</td>
</tr>
<tr>
<td>700°C</td>
<td>30 min</td>
<td>Soldadura</td>
<td>Distribución irregular entre estructuras ferrítica y perlítica</td>
</tr>
<tr>
<td>700°C</td>
<td>45 min</td>
<td>Metal base</td>
<td></td>
</tr>
<tr>
<td>700°C</td>
<td>45 min</td>
<td>Soldadura</td>
<td></td>
</tr>
<tr>
<td>Estructura con mayor proporción de perlita que de ferrita, la perlita empieza a congregarse en islas mientras se disuelve la perlita formando islas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ZONA DE TRANSICION SOLDADURA-ZAC-METAL BASE |

<table>
<thead>
<tr>
<th>soldadura 1</th>
<th>soldadura 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de grano grueso y más basto, las zonas presentan la disolución brusca de una estructura a otra entre la ZAC y la soldadura y límites de zona definidos</td>
<td>La micrografía muestra una transición entre zonas más homogénea en el cambio del tamaño de grano donde es fácilmente apreciable por los límites entre las zonas</td>
</tr>
</tbody>
</table>

| Refinamiento homogéneo en el tamaño de grano apreciado por falta de límite entre la zona ZAC y la soldadura | Transición irregular de los cambios del tamaño de grano apreciado por la degradación de color entre zonas desigualmente |

<table>
<thead>
<tr>
<th>400° - Ts 45 min</th>
<th>700° - Ts 30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayor homogeneidad en el cambio entre las zonas y mejor refinamiento en el tamaño de grano</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6: Microscopía 50X en donde se muestra los diferentes cambios en la zona de transición Soldadura-ZAC-Material Base. Fuente: Autor
CONCLUSIONES

1- los valores del barrido de durezas concuerdan con los resultados obtenidos de las micrografías, donde se dio valores de dureza entre los 57 HRB y los 100 HRB, valores que pertenecen a microestructuras ferrítica y perlítica.

2- las magnitudes de dureza en el barrido comparado con las zonas en donde se tomaron dichos valores, indican que los valores de dureza mayor se encuentran en la zona de la soldadura donde generalmente las microestructuras reflejan una estructura perlítica a comparación de la ferrítica más blanda del material base.

3- las micrografías revelan una mayor transformación de una microestructura perlítica a una ferrítica dado o bien sea por una mayor temperatura de calentamiento o un mayor tiempo de sostenimiento.

4- el esquema de colores para las diferentes zonas MBASE-ZAC-SOLDADURA muestran que los valores de dureza decrecen conforme los puntos evaluados se acercan desde el cordón de soldadura a hacia el material base.

5- para los PWHT con temperaturas de calentamiento mayores a los 600° se aprecia una mayor homogeneidad entre los valores de dureza, que se confirman también con las micrografías que indican también una homogeneidad en sus microestructuras, siendo predominante la ferrita coincidiendo con los valores de dureza antes mencionados.

6- los PWHT con mayores temperaturas muestran un tamaño de granos más consistentes y finos revalidados por el aumento de la ductilidad del material en los ensayos de tensión.

7- las soldaduras sin tratar térmicamente poseen una dureza y resistencia a la tracción elevada y poca ductilidad dada por su elongación (alrededor de 10%) muy inferior a la del material base A36 y de los materiales de aporte de (22 y 28%) respectivamente evidenciada también por una casi nula zona plástica en la curva esfuerzo vs deformación que produce que el material falle súbitamente.

8- A diferencia de las soldaduras sin PWHT las tratadas térmicamente mejoran las propiedades mecánicas incrementando la ductilidad del material y así el área de la zona plástica, sin embargo se puede evidenciar que una alta temperatura de calentamiento aumenta la ductilidad pero a cambio también disminuye la resistencia a la tracción del material.
9- el tiempo de sostenimiento de un PWHT afecta considerablemente las propiedades mecánicas del material, aún más, que el aumento de la temperatura de calentamiento donde se deja ver por los ensayos mecánicos que un mayor tiempo de sostenimiento es más efectivo que una mayor temperatura de calentamiento.

10- el PWHT que presenta una mejor combinación de propiedades mecánicas entre la resistencia a la tracción y la ductilidad (elongación %) fue el realizado a 300°C y con una hora en el horno como tiempo de sostenimiento.

RECOMENDACIONES Y COMENTARIOS

Se evidenció en este proyecto que un PWHT puede eliminar tensiones residuales como también aumentar la ductilidad y por ende su elongación, sin embargo otros aumentaron la ductilidad pero redujeron la resistencia a la tracción, resultado que tampoco es ideal ya que lo indicado es tener unas propiedades mecánicas equilibradas y muy similares al material base y de aporte que garantice una buena calidad de la unión y que cumpla con las especificaciones para la cual fue diseñada.

Teniendo en cuenta lo anterior dicho se indica que el PWHT que mejor logra esto es uno cuya temperatura de calentamiento sea baja y su tiempo de sostenimiento sea prolongado.

Existen varias formas de realizar un PWHT en la industria una de ellas con resistencias eléctricas que se adecuan a la geometría del elemento específicamente a la soldadura pero esto se da más que todo en geometrías simples, también existe, cuando hay la posibilidad, de introducir el elemento que se va a someter a PWHT a un horno sin embargo tiene la limitación de ver se apegado al tamaño del horno en sí mismo, finalmente una opción práctica es el uso de antorchas, es el caso del uso del proceso oxiacetilénico para relevar tensiones acompañando el proceso con mediciones hechas con termocuvas para la temperatura, este caso es utilizado para cuando la geometría es compleja del elemento o su tamaño muy grande.
Figura 5: PWHT en un tanque con quemadores de alta velocidad de gas propano

Figura 6: Quemador de alta velocidad (High Velocity Burner)

Figura 7: recipiente de alta presión sometido a un PWHT
10-Bibliografía

Infografía

