ANÁLISIS DE LA EXPOSICIÓN A PLOMO EN LOS TRABAJADORES QUE DESENSAMBLAN RESIDUOS DE APARATOS ELÉCTRICOS Y ELECTRÓNICOS (RAEE) EN LA EMPRESA ORINOCO E-SCRAP S.A.S.

NATALI JOANNA LORA REYES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN HIGIENE, SEGURIDAD Y SALUD EN EL TRABAJO
BOGOTÁ, D.C.
2017
ANÁLISIS DE LA EXPOSICIÓN A PLOMO EN LOS TRABAJADORES QUE DESENSAMBLAN RESIDUOS DE APARATOS ELÉCTRICOS Y ELECTRÓNICOS (RAEE) EN LA EMPRESA ORINOCO E-SCRAP S.A.S.

NATALI JOANNA LORA REYES

Trabajo de Grado para optar por título de especialista en Higiene, Seguridad y Salud en el Trabajo

Director
MSc. Ing. JHON JAIRO BELTRÁN MOLINA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN HIGIENE, SEGURIDAD Y SALUD EN EL TRABAJO
BOGOTÁ, D.C.
2017
Nota de aceptación:

__
__
__
__
__
__

__

Director

__

Jurado

__

Jurado

Bogotá D.C., Noviembre de 2017
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSARIO Y SIGLAS</td>
<td>9</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>10</td>
</tr>
<tr>
<td>PLANTEAMIENTO DEL PROBLEMA</td>
<td>12</td>
</tr>
<tr>
<td>JUSTIFICACIÓN</td>
<td>13</td>
</tr>
<tr>
<td>OBJETIVOS</td>
<td>14</td>
</tr>
<tr>
<td>OBJETIVO GENERAL</td>
<td>14</td>
</tr>
<tr>
<td>OBJETIVOS ESPECÍFICOS</td>
<td>14</td>
</tr>
<tr>
<td>1. MARCO REFERENCIAL</td>
<td>15</td>
</tr>
<tr>
<td>1.1. MARCO TEÓRICO</td>
<td>15</td>
</tr>
<tr>
<td>1.2. ESTADO DEL ARTE</td>
<td>19</td>
</tr>
<tr>
<td>1.3. MARCO CONCEPTUAL</td>
<td>23</td>
</tr>
<tr>
<td>1.4. MARCO INSTITUCIONAL</td>
<td>28</td>
</tr>
<tr>
<td>1.5. MARCO LEGAL</td>
<td>30</td>
</tr>
<tr>
<td>2. MARCO METODOLÓGICO</td>
<td>35</td>
</tr>
<tr>
<td>2.1. ESTRUCTURA METODOLÓGICA PRINCIPAL</td>
<td>35</td>
</tr>
<tr>
<td>3. RECONOCIMIENTO DE LOS RIESGOS DEL PLOMO PRESENTE EN LOS RAEE</td>
<td>38</td>
</tr>
<tr>
<td>4. CARACTERIZACIÓN DEL RIESGO</td>
<td>45</td>
</tr>
<tr>
<td>4.1. PELIGROSIDAD</td>
<td>46</td>
</tr>
<tr>
<td>4.2. VOLATILIDAD O PULVERULENCIA</td>
<td>51</td>
</tr>
<tr>
<td>4.3. CANTIDAD UTILIZADA</td>
<td>53</td>
</tr>
<tr>
<td>4.4. NIVEL DE RIESGO POTENCIAL</td>
<td>53</td>
</tr>
<tr>
<td>4.5. RESULTADOS DE APLICACIÓN</td>
<td>57</td>
</tr>
<tr>
<td>5. DETERMINACIONES BIOLÓGICAS</td>
<td>66</td>
</tr>
<tr>
<td>5.1. RESULTADOS OBTENIDOS</td>
<td>67</td>
</tr>
<tr>
<td>5.2. ENCUESTAS DE SÍNTOMAS</td>
<td>68</td>
</tr>
<tr>
<td>6. ANÁLISIS DE RESULTADOS</td>
<td>79</td>
</tr>
<tr>
<td>7. CONCLUSIONES</td>
<td>82</td>
</tr>
<tr>
<td>8. RECOMENDACIONES Y MEDIDAS DE CONTROL</td>
<td>84</td>
</tr>
</tbody>
</table>
8.1. CONTROLES DE INGENIERÍA ... 84
8.2. CONTROLES ADMINISTRATIVOS ... 86
8.3. ELEMENTOS DE PROTECCIÓN PERSONAL (EPP) 88
9. BIBLIOGRAFÍA ... 90
10. ANEXOS ... 99
<p>| Tabla 1. Ejemplos frases H según tipos de peligros | 24 |
| Tabla 2. Información de la empresa | 28 |
| Tabla 3. Actividades desarrolladas por Orinoco e-Scrap SAS | 29 |
| Tabla 4. Marco legal | 30 |
| Tabla 5. Metodología desarrollada | 36 |
| Tabla 6. Categorías de los Aparatos Eléctricos y Electrónicos (AEE) según la Directiva RAEE UE del 2012 | 39 |
| Tabla 7. Metales pesados y otros metales y su localización en los RAEE | 41 |
| Tabla 8. Correspondencia Frases R y frases H | 47 |
| Tabla 9. Categorías para establecer la peligrosidad intrínseca de las sustancias | 50 |
| Tabla 10. Reducción del grupo de peligrosidad para algunas frases H según los valores límite | 51 |
| Tabla 11. Pulverulencia de los sólidos | 52 |
| Tabla 12. Cantidad utilizada | 53 |
| Tabla 13. Determinación del nivel de riesgo potencial. | 54 |
| Tabla 14. Acciones a tomar según el nivel de riesgo. | 54 |
| Tabla 15. Riesgo leve cuando la cantidad de agente químico es pequeña (gramos o mililitros) | 56 |
| Tabla 16. Información para evaluar el riesgo potencial. | 58 |
| Tabla 17. Nivel de riesgo potencial para el proceso de desensamble de RAEE | 59 |
| Tabla 18. Efectos del plomo en salud reproductiva | 59 |
| Tabla 19. Resultados de Laboratorio – Toxicidad (TCLP) para tarjetas de circuito impreso | 65 |
| Tabla 20. Resultados determinación de plomo en sangre | 68 |
| Tabla 21. Actividades laborales anteriores de los trabajadores | 71 |
| Tabla 22. Tiempo de permanencia en la empresa Vs tiempo exposición a plomo | 72 |
| Tabla 23. Consumo de cigarrillo | 74 |
| Tabla 24. Enfermedades importantes de los trabajadores y sus hijos | 75 |
| Tabla 25. Síntomas asociados a los principales sistemas y órganos | 76 |
| Tabla 26. Condiciones físicas y síntomas subjetivos de los trabajadores | 77 |</p>
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Proceso de desensamblaje y almacenamiento de RAEE</td>
<td>29</td>
</tr>
<tr>
<td>2.</td>
<td>Modelo biológico del plomo</td>
<td>43</td>
</tr>
<tr>
<td>3.</td>
<td>Distribución del plomo, modelo de los tres compartimentos en el organismo humano</td>
<td>44</td>
</tr>
<tr>
<td>4.</td>
<td>Etapas y variables del modelo COSHH Essentials</td>
<td>46</td>
</tr>
<tr>
<td>5.</td>
<td>Determinación de volatilidad para los líquidos.</td>
<td>52</td>
</tr>
<tr>
<td>6.</td>
<td>Desensamblaje de un monitor TRC</td>
<td>61</td>
</tr>
<tr>
<td>7.</td>
<td>Secciones de un TRC que muestran sus niveles promedio de plomo</td>
<td>62</td>
</tr>
<tr>
<td>8.</td>
<td>Registro fotográfico de la recuperación de cable</td>
<td>63</td>
</tr>
<tr>
<td>9.</td>
<td>Información sociodemográfica de los trabajadores</td>
<td>69</td>
</tr>
<tr>
<td>10.</td>
<td>Grado de escolaridad de los trabajadores</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>Percepción del contacto con plomo</td>
<td>71</td>
</tr>
<tr>
<td>12.</td>
<td>Lavado de manos antes de ingerir alimentos</td>
<td>73</td>
</tr>
<tr>
<td>13.</td>
<td>Frecuencia del consumo de Licor</td>
<td>74</td>
</tr>
<tr>
<td>14.</td>
<td>Síntomas presentados por los trabajadores</td>
<td>77</td>
</tr>
<tr>
<td>15.</td>
<td>Sistema de extracción localizada en el tratamiento de TRC</td>
<td>85</td>
</tr>
<tr>
<td>16.</td>
<td>Extracción capa fosforescente vidrio de pantalla de TRC</td>
<td>86</td>
</tr>
<tr>
<td>17.</td>
<td>Respirador P100</td>
<td>88</td>
</tr>
<tr>
<td>18.</td>
<td>Elementos de protección para el desensamblaje de TRC</td>
<td>89</td>
</tr>
</tbody>
</table>
LISTA DE ANEXOS

Anexo A. Consentimiento Venopunción 99
Anexo B. Protocolo de toma, empaque y transporte de muestras biológicas 101
Anexo C. Registro de datos de muestras biológicas 104
Anexo D. Cuestionario de síntomas asociados a exposición a plomo por el manejo de Residuos de Aparatos Eléctricos y Electrónicos (RAEE) 106
GLOSARIO Y SIGLAS

ACGIH: American Conference Governmental Industrial Hygienists.

AEE: Aparatos Eléctricos y Electrónicos; son todos los aparatos que necesitan corriente eléctrica o campos electromagnéticos para funcionar, incluyendo los aparatos utilizados para generar, transmitir y medir tales corrientes y campos, que están destinados a utilizarse con una tensión nominal no superior a 1.000 voltios en corriente alterna y 1.500 voltios en corriente continua.

EMPA: acrónimo en alemán de: Eidgenössische Materialprüfungs- und Forschungsanstalt, es un Instituto suizo de Investigación en Ciencias de los Materiales y Tecnología.

INSHT: Instituto Nacional de Seguridad e Higiene en el Trabajo.

NIOSH: National Institute for Occupational Safety and Health.

OMS: Organización Mundial de la Salud.

RAEE: Residuos de Aparatos Eléctricos y Electrónicos.

SECO: State Secretariat for Economic Affairs.

TRC: Tubos de Rayos Catódicos, son tubos de vacío de vidrio cubiertos de pequeños elementos fosforescentes, utilizados para la visualización de imágenes en monitores, televisores y osciloscopios antiguos.
INTRODUCCIÓN

Los Residuos de Aparatos Eléctricos y Electrónicos (RAEE) se han incrementado de una manera desbordante durante los últimos años en Colombia y en el mundo, gracias al desarrollo constante de nuevas y mejores tecnologías aplicadas en la fabricación de Aparatos Eléctricos y Electrónicos (AEE).

En virtud de lo anterior, Colombia ha venido ampliando el marco normativo y de política para regular la gestión de RAEE en el país, con lo cual se ha impulsado el surgimiento de oportunidades de negocio en torno al manejo ambientalmente adecuado de este tipo de residuos que, si bien contienen materiales valiosos, también tienen componentes potencialmente peligrosos para la salud humana y el ambiente como lo es el plomo.

El presente documento se construye, de lo general a lo particular, presentando en el primer capítulo el Marco Referencial que contiene el Marco Teórico donde se abordan temas importantes como: la toxicidad del plomo y la higiene de campo; el estado del arte que presenta una revisión de estudios, análisis de exposición, evaluaciones y mediciones de plomo aplicadas a industrias y empresas de reciclaje; el Marco Conceptual que permite identificar los conceptos relevantes para el entendimiento de este documento; el Marco Institucional donde se describen las características principales de la empresa en la que se realizó el proyecto; finalmente, se presenta el Marco Legal que presenta la normatividad aplicable para la gestión ambientalmente adecuada de los RAEE.

El segundo capítulo contiene el marco metodológico donde se presentan las fases de desarrollo del proyecto que responden a cada uno de los objetivos específicos planteados relacionando las actividades desarrolladas y los instrumentos metodológicos utilizados; en los siguientes capítulos se plasma el desarrollo del proyecto, encontrándose en el tercer capítulo el reconocimiento de los riesgos del plomo presente en los RAEE.

En el cuarto capítulo la caracterización del riesgo a través de la aplicación de la evaluación simplificada del riesgo por inhalación basado en el modelo británico COSHH Essentials; en el quinto capítulo se presentan los resultados de las determinaciones biológicas de plomo en sangre para los trabajadores de la empresa realizado por el laboratorio de higiene y toxicología industrial de la
Aseguradora de Riesgos Laborales ARL Positiva mediante espectrofotometría de Absorción atómica en Horno de grafito, así como los resultados de las encuestas de síntomas aplicadas. Posteriormente en el capítulo seis se presenta el análisis de resultados donde se discuten los resultados obtenidos por el método de evaluación simplificado, las mediciones biológicas y las encuestas aplicadas; en el capítulo siete y ocho se presentan las conclusiones y recomendaciones y medidas de control propuestas de acuerdo a los resultados obtenidos y finalmente se presentan la bibliografía consultada para el desarrollo del proyecto.

De esta manera, el proyecto desarrollado responde a la línea de investigación exposición laboral e higiene industrial, sublínea, evaluación de la exposición a sustancias químicas peligrosas, para lo cual se utilizó un estudio de tipo descriptivo con el fin de comprobar la posible asociación de la exposición del plomo en los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S. y el nivel de riesgo químico al que están expuestos los trabajadores, con el fin de determinar la necesidad de adoptar medidas preventivas o correctivas en la empresa.
PLANTEAMIENTO DEL PROBLEMA

Los Aparatos Eléctricos y Electrónicos (AEE) contienen sustancias químicas peligrosas para la salud y el medio ambiente que, si bien durante el uso normal de un aparato no representan ningún tipo de problema, al liberarse al ambiente cuando estos aparatos son descartados y se convierten en Residuos de Aparatos Eléctricos y Electrónicos (RAEE) pueden constituirse como un emergente factor de riesgo ambiental y social.

En Colombia, para la prestación de los servicios de recolección, transporte, almacenamiento, tratamiento, aprovechamiento y/o disposición final de (RAEE) se requiere Licencia Ambiental otorgada por autoridades ambientales competentes, con el fin de garantizar la recolección selectiva y el manejo ambientalmente adecuado de este tipo de residuos, pues de ser entregados para una gestión inadecuada como botaderos a cielo abierto, depósito en rellenos sanitarios de forma conjunta con los residuos ordinarios, incineración sin control de emisiones, los componentes peligrosos de estos residuos llegarán al suelo, el aire y las aguas subterráneas afectando la salud de las personas y la calidad del medio ambiente.

De esta manera, los trabajadores que desarrollan procesos de tratamiento y aprovechamiento de RAEE pueden estar expuestos a sustancias químicas peligrosas para su salud, como el plomo, debido a que los componentes de los RAEE que contienen metales pesados, que son extraídos a través de actividades de desensamble manual, que implican un contacto directo y continuo con estos componentes.

Es así como, las preguntas de investigación que busca resolver este proyecto son: ¿a qué nivel de riesgo químico por exposición a plomo se encuentran los trabajadores que desensamblan Residuos de Aparatos Eléctricos y Electrónicos (RAEE) en la empresa gestora Orinoco e-Scrap S.A.S.? y ¿qué medidas de intervención se deben tomar para prevenir, mitigar o controlar esta exposición?
JUSTIFICACIÓN

El desarrollo de este proyecto constituye una oportunidad importante para aplicar de forma metodológica y práctica los conocimientos adquiridos en el proceso de formación académico, y a su vez para tomar acciones de promoción y prevención de la salud en la empresa Orinoco e-Scrap S.A.S. en relación con el diagnóstico de la exposición a plomo en los trabajadores que desensamblan Residuos de Aparatos Eléctricos y Electrónicos (RAEE) en una fase en la que aparentemente no se han modificado las condiciones de salud de los trabajadores por esta exposición y todavía pueden ser reversibles los posibles efectos sobre la salud.

Es importante resaltar que el plomo es un metal ampliamente utilizado en la fabricación de AEE, de acuerdo con la Cooperación Económica de la Secretaría de Estado para Asuntos Económicos de la Confederación Suiza y el Instituto Federal Suizo de Investigación y Prueba de Materiales y Tecnologías, SECO & EMPA [1] es utilizado en soldaduras, pantallas de Tubos de Rayos Catódicos (TRC), tarjetas de circuito impreso, baterías de plomo-ácido y revestimientos de cables. Es un metal pesado altamente tóxico que tiende a bioacumularse en el organismo por una exposición reiterada, “con daños neurológicos irreversibles, enfermedades renales, efectos cardiovasculares y daños en el aparato reproductor” [2].

Es evidente entonces, hechas las consideraciones anteriores, que desarrollar un análisis descriptivo de la exposición a plomo en todos los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S. resulta ser muy oportuno pues se estaría obteniendo un nuevo insumo para la gestión de la Seguridad y Salud en el Trabajo en la empresa, en relación con la prevención de enfermedades laborales y la protección y promoción de la salud de los trabajadores.

OBJETIVOS

OBJETIVO GENERAL

Analizar la exposición a plomo en los trabajadores que desensamblan Residuos de Aparatos Eléctricos y Electrónicos (RAEE) en la empresa Orinoco e-Scrap S.A.S. con el fin de determinar medidas de control adecuadas a la operación de la empresa.

OBJETIVOS ESPECÍFICOS

• Identificar los riesgos del plomo presente en los Residuos de Aparatos Eléctricos y Electrónicos (RAEE).

• Estimar el riesgo químico al que están expuestos los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S mediante evaluación simplificada del riesgo por inhalación de plomo.

• Evaluar la exposición a plomo en los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S. mediante Indicador Biológico de Exposición.

• Formular medidas de intervención del riesgo químico con base en la medición realizada al grupo de población.
1. MARCO REFERENCIAL

El marco de referencia contiene la recopilación de información y elementos conceptuales que se relacionan directamente con la exposición a plomo por el desensamble de Residuos de Aparatos Eléctricos y Electrónicos (RAEE), este marco está conformado por el marco teórico, conceptual, institucional y legal desarrollados a continuación.

1.1. MARCO TEÓRICO

1.1.1. Toxicidad del plomo

El plomo, se encuentra en diferentes formas químicas; de acuerdo con el Ministerio de Trabajo y asuntos sociales de España “aproximadamente un 40% del plomo se utiliza en forma metálica, un 25% en aleaciones y un 35% en compuestos químicos. Los óxidos de plomo se utilizan en las placas de las baterías eléctricas y los acumuladores (PbO y Pb₃O₄), como agentes de mezcla en la fabricación de caucho (PbO) y en la fabricación de pinturas (Pb₃O₄) y como componentes de barnices, esmaltes y vidrio” [3]

El principal riesgo del plomo es su toxicidad. De acuerdo con la Organización Mundial de la Salud (OMS) [4] los trabajadores pueden verse expuestos al plomo en su puesto de trabajo o en su entorno, principalmente a través de:

- la inhalación de partículas generadas por la combustión de materiales que contienen plomo (por ejemplo, durante actividades de fundición, reciclaje en condiciones no seguras, decapado de pintura con plomo, o al utilizar gasolina con plomo);
- la ingestión de polvo, agua o alimentos contaminados (por ejemplo, agua canalizada a través de tuberías de plomo o alimentos envasados en recipientes con esmalte o soldadura de plomo).

Se puede afirmar que la principal vía de entrada en el organismo del plomo es por inhalación. Según el Ministerio de Trabajo y asuntos sociales de España [5] se absorbe cierta cantidad de plomo por las vías aéreas superiores, sin embargo, la mayor proporción se absorbe a través de la circulación pulmonar. “La velocidad a que se absorbe el plomo depende de su forma química y física y de las características fisiológicas de la persona expuesta (edad y estado nutricional). El plomo inhalado y depositado en las vías respiratorias bajas se absorbe por completo.” [6]

Igualmente, “De acuerdo con la exposición y si se trata de un efecto agudo o crónico, en el primero priman los efectos hematológicos y en el segundo caso los efectos a nivel neurológico central y periférico” [7]. De esta manera, dentro de los efectos hematológicos asociados a la exposición a plomo se encuentran el potencial desarrollo de anemia, e hipertensión arterial que, siguiendo al Ministerio de Trabajo y asuntos sociales de España [8] existen pruebas de asociación entre la exposición a plomo y la hipertensión, efecto que puede estar mediado por mecanismos renales. Puede desarrollarse gota como resultado de la hiperuricemia (Concentraciones de ácido úrico elevadas en la sangre) inducida por el plomo, y una disminución selectiva de la excreción fraccional de ácido úrico previo a una disminución del aclaramiento de creatinina.

De otro lado en relación con los efectos sobre la reproducción, según datos de la Organización Internacional del Trabajo (OIT) [9] el plomo puede ser transmitido de la madre al feto por transferencia placentaria estando expuesto a casi la misma concentración de plomo al que la madre está expuesta. Las consecuencias sobre el desarrollo de una exposición prenatal a plomo son, entre otras, un menor peso al nacer y un mayor número de nacimientos prematuros. [10] Igualmente por exposición a plomo se ha documentado un aumento de abortos espontáneos, así como el aumento de la tasa de morbi-mortalidad en recién nacidos. En el hombre

[5] MINISTERIO DE TRABAJO Y ASUNTOS SOCIALES DE ESPAÑA, op. cit, p. 63.40
[6]ibid., p. 63.41
[8] MINISTERIO DE TRABAJO Y ASUNTOS SOCIALES DE ESPAÑA, op. cit, p. 63.41
[10] MINISTERIO DE TRABAJO Y ASUNTOS SOCIALES DE ESPAÑA, op. cit, p. 63.42
ha sido observada hipospermia (alteración en el volumen de esperma eyaculado por un hombre, por lo general inferior a 1,5 mL) como efecto del plomo [11]

Del mismo modo la OMS [12] manifiesta que el plomo puede causar inmunotoxicidad y toxicidad reproductiva; así, en las embarazadas la exposición a plomo puede ser causa de aborto natural, muerte fetal, parto prematuro, bajo peso al nacer y malformaciones leves en el feto, siendo especialmente vulnerables a los efectos tóxicos del plomo los niños de corta edad, a quienes afecta en particular el desarrollo del cerebro y del sistema nervioso, con efectos conductuales y neurológicos permanentes e irreversibles.

En adultos, dentro de los efectos neurológicos relacionados con la exposición a plomo se tiene que “sobre el SNC con niveles relativamente bajos de plomo en sangre, que se manifiestan en cambios de conducta sutiles, fatiga y problemas de concentración” [13], así mismo “se ha descrito, compromiso de la memoria a largo plazo, alteraciones del habla, alteraciones visuales, compromiso de la atención auditiva, entre otros” [14]

1.1.3. Higiene de campo

La higiene de campo es una rama de la higiene del trabajo que “tiene por misión realizar el estudio de la situación higiénica de un puesto de trabajo concreto, detectando los contaminantes que pueden estar presentes, midiendo sus concentraciones, evaluando en comparación con los límites establecidos y determinando el grado de riesgo que presentan para el trabajador” [15]

De acuerdo con Rodellar [16], la actuación higiénica de campo consta de diferentes fases, la primera de ellas es la identificación de los agentes contaminantes. Se debe determinar el agente o sustancias que en contacto con las personas, pueden superar la capacidad límite del organismo. Es por ello que se deben identificar los procesos en relación con el contaminante, los consumos por jornada en cada puesto de trabajo, las condiciones en que llega el agente al trabajador, la posible adición de otras materias y transformaciones del producto original, el personal expuesto, edad, sexo y antigüedad en el trabajo.

En una segunda fase, siguiendo a Rodellar [17], se cuantifica el agente, dato importante a efectos de peligrosidad, puesto que su presencia per se no implica en sí misma una situación de peligro. De esta manera, en esta fase se determinan los tiempos de exposición al contaminante por cada uno de los trabajadores, a través de métodos de lectura directa o a través de análisis que seguirán a la toma de muestras.

“Para efectuar las medidas existe un instrumental muy variado y también específico para el agente de que se trate” [18]. La utilización de estos medios debe ser dirigida o controlada de forma directa por personal técnico o calificado. No obstante, en ocasiones puede conseguirse un nivel de instrucción suficiente para que existan garantías de correcta utilización y fiabilidad en la medición.

Es de resaltar que en ocasiones la identificación o la medición, incluso ambas no pueden satisfacerse con la higiene de campo, por lo cual se debe recurrir a la higiene analítica. Para ello en campo se realiza la toma de muestras de los contaminantes que serán analizados en el laboratorio.

Posteriormente, en una tercera fase, según Rodellar [19] se valora la situación higiénica con los patrones de referencia y los criterios de valoración ya identificados, que permitirán definir si las condiciones son seguras o peligrosas. En esta fase se concreta propuesta o decisión de las medidas correctivas necesarias en caso de peligro, el control periódico para mantener las condiciones seguras y el control ambiental sobre los posibles contaminantes para su valoración.

[17] Ibíd., p. 94
[18] Ibíd., p. 94
[19] Ibíd., p. 95
1.2. ESTADO DEL ARTE

El presente estado del Arte revisa algunos de los estudios, análisis de exposición, evaluaciones y mediciones de plomo en trabajadores de industrias que fabrican elementos electrónicos con este metal, así como en empresas formales e informales de reciclaje de residuos electrónicos. Igualmente, se consultan artículos de revisión sobre las consecuencias para la salud por el manejo de residuos electrónicos y la importancia de medir niveles de metales pesados en muestras biológicas, los cuales son relevantes para el desarrollo del presente proyecto.

A continuación, se presentan estos estudios de forma cronológica, presentando el tipo de estudio o análisis realizado y los resultados generales encontrados.

1. Correlación de protoporfirina zinc y plomo en sangre en trabajadores de fábricas de baterías, de Bogotá, Colombia (1996). Estudio transversal en 116 trabajadores de fábricas de baterías del sector informal en Bogotá, Colombia. Cárdenas, et al. [20] Emplearon un análisis de regresión lineal para medir la correlación entre los valores logarítmicos de protoporfirina zinc en sangre (PPz) (>70 µg/dl) y plomo en sangre (PbS) (>38 µg/dl). Se encontró un coeficiente de correlación semi logarítmica, entre estos valores y los niveles de plomo de r=0.54, además de posibles asociaciones estadísticamente significativas entre los niveles elevados de PPz y el oficio actual de exposición directa, el emplear plomo como materia prima y cambio poco frecuente de ropa de trabajo. Concluyendo que la PPz puede ser un buen indicador diagnóstico de intoxicación por plomo, y puede ser usada como prueba tamiz para apoyar los programas de vigilancia y seguimiento en el monitoreo biológico en trabajadores expuestos a plomo.

2. Evaluación de plomo en sangre de trabajadores de industrias de baterías (1998). Estudio desarrollado en tres pequeñas industrias de reciclaje y fabricación de baterías, ubicadas en Bogotá, Colombia, con el fin de establecer la existencia de riesgo ocupacional por la exposición a este elemento. Fue desarrollado por Valbuena, et al.[21] quienes indicaron que alrededor del 31% de los trabajadores de estas industrias se encontraban en nivel de exposición peligrosa y de intoxicación de acuerdo con la legislación colombiana; sin embargo, cuando los
resultados se compararon con el valor de 30ug Pb/dL de sangre establecido por la American Conference Governmental Industrial Hygienists (ACGIH), el 91% de estos trabajadores superaron ese nivel, que es el valor de referencia adoptado por muchos países para la evaluación de riesgo ocupacional por exposición a plomo.

3. Exposición a plomo en trabajadores de fábricas informales de baterías (1999-2000) Estudio de tipo observacional y transversal para investigar el estado de salud de trabajadores de fábricas artesanales e informales de baterías en el sur del Perú, usando como indicador de exposición el nivel de plomo en sangre. Realizado por el Médico del Trabajo American College of Occupational and Environmental Medicine [Colegio Americano de Medicina Ocupacional y Ambiental] Ramírez [22] quien encontró que la salud de este grupo ocupacional estaba afectada. El valor medio de plomo sanguíneo encontrado fue 37,7 ug/dL y la hemoglobina hallada en dicha población fue menor de 13,2 g/dL.

4. Evaluación de plomo en el ambiente ocupacional de una industria de baterías (2001). Estudio de evaluación de riesgo ocupacional por la presencia de plomo en el aire, en una mediana industria de reciclaje y fabricación de baterías eléctricas ubicada en Bogotá, Colombia. Hernández, et al. [23] encontraron concentraciones de plomo en el aire entre no detectable y 6,23 mg Pb/m³ de aire. Los resultados indican que se supera el valor límite umbral (TLV) de 0,04 mg Pb/m³ de aire, corregido para la jornada laboral de 48 horas, en actividades de fundición, formación de placas, empaste y oficios varios. La evaluación de riesgo ocupacional confirma el riesgo en todos los puestos de trabajo y en las actividades señaladas durante la mayoría de los muestreos realizados.

5. Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area [El uso de pelo del cuero cabelludo como indicador de la exposición humana a los metales pesados en un área de reciclaje de residuos electrónicos] (2009). En China, Wang et al. [24] recolectaron muestras de cabello del cuero cabelludo humano para detectar la exposición a metales pesados de los trabajadores de sitios de reciclamiento intensivo de residuos

electrónicos. Se encontraron concentraciones más altas de Plomo, Cobre y Bario en el cabello de las personas expuestas que en el cabello de las que formaban el grupo de control. Este estudio muestra que el pelo del cuero cabelludo humano podría ser un biomarcador útil para evaluar el grado de exposición a metales pesados en trabajadores y residentes de áreas dedicadas a actividades de reciclaje de residuos electrónicos.

6. *Investigation of Childhood Lead Poisoning from Parental Take-Home Exposure from an Electronic Scrap Recycling Facility* (2012). [Investigación del envenenamiento por plomo en la niñez por la exposición de los padres de una planta de reciclaje de chatarra electrónica. En Ohio, Newman et al. [25] realizaron un estudio de caso en los hogares de los trabajadores de una industria certificada de reciclaje, encontrando niveles elevados de plomo en la sangre de dos niños, debido al polvo llevado a casa en la ropa de trabajo y cabello del padre que trabajaba triturando tubos de rayos catódicos en una empresa de reciclaje formal de chatarra electrónica, en la cual según los hallazgos de NIOSH, se contaba con un sistema de ventilación de extracción local para la operación de trituración de los tubos de rayos catódicos que recirculaba el aire potencialmente contaminado de nuevo en el área de producción, donde a su vez no se disponían de equipos de protección personal ni duchas para los trabajadores y se usaban escobas para barrer el área de trabajo, creando bastante polvo en el aire, por lo cual se concluyó que los principales riesgos para la salud ambiental se pueden presentar por "llevar a casa" a los miembros de la familia, la exposición de los trabajadores.

7. *Distribución de la contaminación de metales pesados en el suelo superficial en un taller de reciclaje informal de residuos electrónicos.* (2013). Investigación que estudió la distribución de plomo, cobre y zinc en el suelo de un taller informal de reciclaje de residuos electrónicos de 10 metros por 14 metros de superficie, muy cerca del área metropolitana de Manila, Filipinas. Se encontró que la superficie del taller estaba contaminada con plomo, cobre y zinc decenas de veces más que un sitio control. El análisis de la variabilidad de los metales pesados reveló fuga en rangos tóxicos aún a doce (12) metros fuera del taller.

(PubMed, Embase, Web of Science, PsycNET, y CINAHL) del primero de Enero de 1965, al 17 de Diciembre de 2012 [26] con el fin de explorar la asociación entre la exposición a los residuos de aparatos eléctricos y electrónicos y los resultados relacionados con la salud y el desarrollo neurológico mental, salud física (incluyendo eventos mecánicos tales como daños y efectos en el ADN y sobre la expresión genética), la educación, la violencia y el comportamiento criminal. Se encontraron resultados asociados con la exposición a los residuos electrónicos, como el cambio en la función de la tiroides, los cambios en el aspecto y la función celular, los resultados neonatales adversos, cambios en el temperamento y en el comportamiento, y la disminución de la función pulmonar. Los resultados de la mayoría de los estudios asociados con la exposición a los residuos electrónicos demostraron aumentos en abortos espontáneos, en el índice de mortinatalidad y en nacimientos prematuros, además de la reducción de peso al nacer y de longitudes congénitas. Las personas que vivían en las ciudades donde se reciclaban los residuos electrónicos o que trabajaban en el reciclaje de los residuos electrónicos demostraron pruebas de daño extremo en el ADN en comparación con aquellas que vivían en las ciudades controladas.

9. Evaluación de la exposición ocupacional en una planta de reciclaje de chatarra electrónica. (2014). Investigadores del Departamento de Salud y Servicios Humanos de los Estados Unidos, Centros de Control y Prevención de Enfermedades (CDC) y NIOSH visitaron una instalación formal de reciclaje de chatarra electrónica en Estados Unidos por solicitud del gerente de seguridad y salud; como resultado de esta visita elaboraron un informe de evaluación de riesgos para la salud [27] en el cual presentan hallazgos de contaminación con plomo en las manos de ocho de doce trabajadores evaluados incluso después de haberlas lavado con agua y jabón, así como plomo en las camisas de trabajo de doce de trece trabajadores evaluados. Igualmente, en el muestreo de aire se encontró plomo por encima de los límites de exposición ocupacional en el procesamiento y trituración de tubos de rayos catódicos y niveles de plomo en sangre por encima de 10 microgramos por decilitro de sangre en dos trabajadores, para lo cual se dieron recomendaciones para evitar esas exposiciones y para prevenir llevar involuntariamente metales del trabajo a la casa.

10. Niveles de metales pesados en muestras biológicas y su importancia en salud (2015), artículo de revisión, en el cual Tirado, et al. [28] informan sobre los efectos ocasionados en el organismo por niveles excesivos de algunos metales pesados y la utilidad que ofrecen las matrices biológicas en la determinación de estos niveles. Afirman que la exposición ocupacional y la exposición pasiva a metales pesados presentes en un ambiente de trabajo deben ser reguladas, ya que cantidades superiores a las consideradas normales pueden ocasionar ciertas enfermedades. El control de la exposición a metales pesados incluye monitorear los niveles presentes en distintas matrices biológicas como sangre, orina, saliva, cabello y uñas. Cada una de estas matrices es indicada según el tipo de exposición que ha experimentado el individuo; además, ofrecerá algunas ventajas y limitaciones.

1.3. MARCO CONCEPTUAL

Para contextualizar y comprender mejor este documento es necesario definir y precisar algunos conceptos, que son relevantes para el desarrollo del proyecto:

Frases R, de acuerdo con Rubio [29], son frases indicativas de riesgos específicos; constituyen una convención por la que se asigna, a una serie de números precedidos de la letra R, un significado relativo a la naturaleza de los riesgos específicos derivados de los peligros de una sustancia.

Estas frases han sido sustituidas por las actuales Frases H, de conformidad con lo establecido en el Reglamento (CE) 1272/2008 del Parlamento Europeo y del Consejo, (CLP) sobre clasificación, etiquetado y envasado de sustancias y mezclas, por sus siglas en inglés [Classification, Labeling and Packaging].

Frases H, son “frases que, asignada a una clase o categoría de peligro, describe la naturaleza de los peligros de una sustancia o mezcla peligrosas, incluyendo cuando proceda el grado de peligro.” [30] Estas frases H “(de Hazard, peligro), deben indicarse en la etiqueta de sustancias o mezclas peligrosas y sustituyen a las anteriores Frases R” [31]

Tabla 1. Ejemplos frases H según tipos de peligros

<table>
<thead>
<tr>
<th>Tipo de Peligro</th>
<th>Ejemplo Frase</th>
<th>Indicación de Peligro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Físico</td>
<td>H222</td>
<td>Aerosol extremadamente inflamable.</td>
</tr>
<tr>
<td>Para la salud humana</td>
<td>H330</td>
<td>Mortal en caso de inhalación.</td>
</tr>
<tr>
<td>Para el medio ambiente</td>
<td>H400</td>
<td>Muy tóxico para los organismos acuáticos.</td>
</tr>
</tbody>
</table>

Fuente: Adaptado y compilado por la Autora, 2017

“Para algunas indicaciones de peligro se añaden letras al código de tres cifras, usándose unos códigos adicionales para concretar unas advertencias no contempladas en las otras indicaciones” [32]

De esta manera, el Reglamento CLP incluye frases H suplementarias para cubrir los peligros no contemplados en las indicaciones de peligro provenientes del Sistema Globalmente Armonizado (SGA) de clasificación y etiquetado de productos químicos. Así, antes de la H correspondiente, estas frases suplementarias llevan inscritas las siglas EU, e incluyen información adicional de los peligros relacionados con propiedades físicas y los efectos sobre el medio ambiente, las cuales deben aparecer en las etiquetas de determinadas mezclas, como por ejemplo: EUH029: En contacto con agua libera gases tóxicos.

[31] Ibíd.

Por otra parte, es importante resaltar que para homologar las frases R y frases H:

Existe una lista de equivalencias entre R y H, aunque dicha equivalencia no es completa. Hay frases R sin frase H equivalente y, al revés, frases H que no son equivalentes a ninguna frase R. La mayoría de "no equivalencias" corresponden a las propiedades físicas (quimico-físicas) que se han tomado de la legislación internacional sobre transporte de mercancías peligrosas, para evitar las diferencias formales existentes entre el etiquetado del embalaje, necesario para su transporte, de la etiqueta pegada al recipiente de cara al usuario [33]

(Ver Tabla 6)

Índices Biológicos de Exposición, de acuerdo con Repetto [34] son parámetros para poner de manifiesto la absorción o acumulación de una sustancia extraña en un ser vivo; estos pueden ser útiles como criterios para valorar el grado de afectación por cualquier sustancia extraña que interactúa con un organismo.

Se definen como la expresión numérica de un parámetro biológico en relación con la incidencia de un xenobiótico sobre la salud del individuo. Normativas de distinto rango pueden establecer los IBE como valores límites biológicos (BLV o BTL)

Hay varios tipos de IBE:

a) Químicos: concentración del tóxico, o sus metabolitos, en los fluidos o tejidos biológicos. b) Bioquímicos: Modificación de parámetros bioquímicos fisiológicos (metahemoglobina, iones, glucosa, glucógeno, actividades enzimáticas, etc.). c) Funcionales: Alteraciones objetivables de funciones fisiológicas (capacidad respiratoria, volumen-minuto circulatorio, conductividad nerviosa, reflejos, reacción muscular, diuresis, etc.) d) Histológicos: Lesiones tisulares. [35]

De esta manera, los BEI químicos por sus siglas en inglés [Biological Exposure Index] "constituyen una de las formas más prometedoras para llevar a cabo un programa eficaz de la prevención de los efectos potencialmente tóxicos de los compuestos químicos en el ambiente laboral. Su característica más interesante consiste en la posibilidad de predecir las enfermedades de origen toxicológico en

[33] Ibíd.
[35] Ibíd., p. 26
su fase inicial por medio de la determinación de los indicadores de dosis y efectos". [36]

Cada año la ACGIH “publica una relación de valores límites permisibles en los ambientes laborales para sustancias químicas, agentes físicos e índices biológicos de exposición; denominado «Documentation of TLV’s and BEI’s» donde se divulga la información y referencias en que se han basado para proponer dichos valores” [37]

Método de Evaluación simplificada, de acuerdo con el Instituto Nacional de Seguridad e Higiene en el Trabajo de España (INSHT) [38] constituye una metodología que permite evaluar de forma cualitativa el riesgo de exposición a agentes químicos sin recurrir a mediciones ambientales. Permite realizar una estimación o diagnóstico inicial de la situación de riesgo en base al análisis de una serie de variables que afectan la concentración ambiental y otras relacionadas con el trabajador, aportan como ventaja que el análisis de los factores de riesgo se puede realizar de una forma sistemática, lo que aumenta la posibilidad de que distintas personas lleguen a la misma conclusión. Algunos métodos de evaluación simplificada hacen uso de frases R y frases H anteriormente definidas.

Igualmente, según Prevención de Riesgos Laborales de la Universidad Miguel Hernández de Elche, [39] un método de evaluación simplificado constituye una primera aproximación al procedimiento de evaluación de productos o sustancias químicas que permite: filtrar tareas, puestos o agentes químicos que requieren un estudio pormenorizado y un seguimiento posterior, así como establecer o mejorar las medidas preventivas, después de lo cual habría que volver a evaluar.

Igualmente,

Cualquier método de evaluación del riesgo químico simplificado, aplicado ya sea a un producto o a la realización de una tarea, implica la consideración simultánea del

El término **Residuos de Aparatos Eléctricos y Electrónicos (RAEE)** hace referencia a todos aquellos aparatos obsoletos o en desuso que son descartados por el usuario o consumidor cuando considera que estos han terminado su vida útil. En este término se incluyen todos los aparatos desechados que para funcionar necesitan corriente eléctrica o campos electromagnéticos, aparatos desechados para transmitir y medir corrientes eléctricas, así como los materiales, componentes, consumibles y subconjuntos que los componen. Otras definiciones de RAEE que ha recopilado el actual Ministerio de Ambiente y Desarrollo Sostenible, de Colombia son las siguientes:

Según la OCDE, RAEE se puede definir como “Cualquier dispositivo que utilice un suministro de energía eléctrica, que haya alcanzado el fin de su vida útil”. [41]. Según BAN (Basel Action Network), 2002: “Los residuos electrónicos incluyen una amplia y creciente gama de aparatos electrónicos que van desde aparatos domésticos voluminosos, como refrigeradores, acondicionadores de aire, teléfonos celulares, equipos de sonido y aparatos electrónicos de consumo, hasta computadores desechados por sus usuarios”. [42]

En inglés, el término más conocido es e-waste, una versión práctica del término oficial de la Unión Europea: WEEE (*Waste Electrical and Electronic Equipment*). Este término se impuso a nivel internacional contra otros términos como e-scrap o e-trash.

En español, a pesar de que muchos hablan de chatarra o basura electrónica, o residuos-e, se promueve el uso del término RAEE que es el equivalente de WEEE en los países de habla española.

[40] Ibíd.
1.4. MARCO INSTITUCIONAL

El presente proyecto se desarrolló en la empresa Orinoco e-Scrap S.A.S., compañía legalmente constituida en la ciudad de Bogotá en Noviembre del 2011, con operación en el municipio de Funza, Cundinamarca que ofrece los servicios de gestión integral y ambientalmente adecuada de RAEE, con el fin de que sus clientes y grupos de interés puedan responder a los requisitos legales ambientales y las exigencias del mercado en relación con la prevención y minimización de los impactos ambientales adversos originados por la generación de residuos peligrosos provenientes de los RAEE.

En este sentido, la empresa cuenta con Licencia Ambiental emitida por la Corporación Autónoma Regional de Cundinamarca CAR, mediante Resolución No. 0619 del 26 de Abril de 2013, para el almacenamiento y aprovechamiento (desensamble parcial) de RAEE y de residuos de pilas y/o acumuladores. En la Tabla 2 se presenta información relevante de la empresa para el desarrollo de este proyecto en materia de riesgo laboral.

<table>
<thead>
<tr>
<th>Tabla 2. Información de la empresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de trabajadores y distribución por área</td>
</tr>
<tr>
<td>Aseguradora de Riesgos Laborales (ARL)</td>
</tr>
<tr>
<td>Clase de Riesgo</td>
</tr>
<tr>
<td>Código y Actividad económica (Decreto 1607/2002)</td>
</tr>
</tbody>
</table>

Es importante resaltar que la compañía desempeña primordialmente operaciones de desensamble y almacenamiento temporal de RAEE, para posterior recuperación de componentes, materiales y subproductos o esfuerzos de re comercialización y/o disposición final adecuada de los mismos. En la Figura 1 se presentan de manera general y esquemática las etapas que comprenden las actividades desarrolladas por la empresa Orinoco e-Scrap SAS.
Figura 1. Proceso de desensamble y almacenamiento de RAEE

En la Tabla 3 se describe de manera general en qué consiste cada una de las actividades señaladas en la Figura 1 realizadas por la empresa Orinoco e-Scrap SAS en materia de gestión de RAEE.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recibo en bodega</td>
<td>Los RAEE son recibidos en la bodega en vehículos que cumplen con las especificaciones para el transporte de este tipo de residuos, de acuerdo con los requerimientos establecidos en la normatividad ambiental y de transporte.</td>
</tr>
<tr>
<td>Descargue de RAEE</td>
<td>Los RAEE son descargados de los vehículos de transporte de forma manual y/o mecánica, haciendo uso de montacargas y se colocan sobre estibas de madera que se ubican en la zona de descargue.</td>
</tr>
<tr>
<td>Clasificación de RAEE</td>
<td>Los RAEE recibidos son clasificados según su tipo, con el fin de determinar la ubicación adecuada de almacenamiento en bodega.</td>
</tr>
<tr>
<td>Pesaje y registro</td>
<td>Una vez clasificados, los RAEE se pesan y se deja registro de...</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>de RAEE clasificados</td>
<td>esta actividad.</td>
</tr>
<tr>
<td>Almacenamiento producto sin procesar</td>
<td>Los RAEE clasificados luego de la recepción son almacenados en el área de producto sin procesar junto con otros residuos de su misma categoría a la espera de una orden de trabajo para el desensamble.</td>
</tr>
<tr>
<td>Desensamble de RAEE</td>
<td>Una vez emitida la orden de trabajo se realiza el desensamble de los RAEE, el cual consiste básicamente en separar los principales componentes que conforman estos residuos, con el fin de realizar una gestión más eficiente de los mismos; dicho proceso se lleva a cabo de forma manual.</td>
</tr>
<tr>
<td>Pesaje y registro de RAEE desensamblados</td>
<td>Una vez desensamblados los RAEE, los componentes y partes resultantes se pesan y se deja registro de esta actividad.</td>
</tr>
<tr>
<td>Almacenamiento de material procesado</td>
<td>Los componentes desensamblados se embalan de acuerdo con las características de los mismos y se almacenan en el área de producto procesado.</td>
</tr>
<tr>
<td>Cargue de camión y despacho</td>
<td>Los RAEE desensamblados, adecuadamente empaquetados y embalados de conformidad con los requerimientos técnicos y legales, se cargan de forma manual y/o mecánica en camiones que los llevarán a otros gestores de residuos debidamente autorizados según se vaya a realizar aprovechamiento y/o disposición final.</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017

1.5. MARCO LEGAL

A continuación, la Tabla 4 presenta la legislación aplicable para la actividad de desensamble de RAEE en el país y su relación con la exposición a plomo en los trabajadores que se dedican a esta actividad, mostrando en orden cronológico la normatividad aplicable a nivel nacional, regional y local.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>NORMA</th>
<th>ENTE QUE LA EXPIDE</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>Ley 9</td>
<td>Congreso de la República</td>
<td>Se establecen restricciones para el almacenamiento, manipulación, transporte y disposición final de residuos sólidos peligrosos. Establece que en la importación, fabricación, almacenamiento,</td>
</tr>
<tr>
<td>AÑO</td>
<td>NORMA</td>
<td>ENTE QUE LA EXPIDE</td>
<td>OBSERVACIÓN</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>1979</td>
<td>Resolución 2400</td>
<td>Ministerio de Trabajo y Seguridad Social</td>
<td>transporte, comercio, manejo o disposición de sustancias peligrosas deberán tomarse todas las medidas y precauciones necesarias para prevenir daños a la salud humana.</td>
</tr>
<tr>
<td>1979</td>
<td>Ley 253</td>
<td>Congreso de la República</td>
<td>Por la cual se establecen disposiciones sobre vivienda, higiene y seguridad en los establecimientos de trabajo. Fija los niveles máximos permisibles de exposición a substancias tóxicas de acuerdo con la tabla establecida por la ACGIH o con los valores límites permisibles fijados por el Ministerio de Salud.</td>
</tr>
<tr>
<td>1996</td>
<td>Decreto 1609</td>
<td>Ministerio de Transporte</td>
<td>Convenio de Basilea sobre el control de los movimientos transfronterizos y su eliminación, establece la categoría de desechos que hay que controlar entre ellos: el plomo, compuestos de plomo entre otros. Así como la lista de características peligrosas, de acuerdo con la clasificación de Naciones unidas, entre estas H11: Sustancias tóxicas (con efectos retardados o crónicos) Sustancias o desechos que, de ser aspirados o ingeridos, o de penetrar en la piel, pueden entrañar efectos retardados o crónicos, incluso la carcinogenia.</td>
</tr>
<tr>
<td>2002</td>
<td>Decreto 4741</td>
<td>Ministerio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT)</td>
<td>Establece los requisitos técnicos y de seguridad para el manejo y transporte de mercancías peligrosas por carretera en vehículos automotores en todo el territorio.</td>
</tr>
<tr>
<td>2005</td>
<td>Decreto 4741</td>
<td>Ministerio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT)</td>
<td>Reglamenta parcialmente la prevención y manejo de los residuos o desechos peligrosos generados en el marco de la gestión integral. Establece la lista de residuos o desechos peligrosos por procesos o actividades y por corrientes de...</td>
</tr>
<tr>
<td>AÑO</td>
<td>NORMA</td>
<td>ENTE QUE LA EXPIDE</td>
<td>OBSERVACIÓN</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2007</td>
<td>Resolución 62</td>
<td>Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM</td>
<td>Residuos, así como las características de peligrosidad de los residuos o desechos peligrosos. Incluyendo los montajes eléctricos y electrónicos de desecho o restos de estos que contengan componentes como mercurio, plomo, entre otros.</td>
</tr>
<tr>
<td>2007</td>
<td>Resolución 2346</td>
<td>Ministerio de la Protección Social</td>
<td>Adopta los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país</td>
</tr>
<tr>
<td>2008</td>
<td>Ley 1252</td>
<td>Congreso de la República</td>
<td>Regula la práctica de las evaluaciones médicas ocupacionales de ingreso, periódicas y de retiro, específicas a los riesgos de los trabajadores, entre los cuales se encuentran el monitoreo de los niveles de plomo.</td>
</tr>
<tr>
<td>2008</td>
<td>Resolución 0619</td>
<td>Corporación Autónoma Regional de Cundinamarca (CAR)</td>
<td>Establece que el receptor de residuos peligrosos debe asumir la responsabilidad integral del generador una vez reciba del transportador los residuos y haya efectuado o comprobado el aprovechamiento o disposición final del mismo. Este reglamento prohíbe la importación de desechos o residuos peligrosos; requiere minimizar la producción de residuos peligrosos y maximizar la reutilización (el reciclaje).</td>
</tr>
<tr>
<td>2013</td>
<td>Resolución 0619</td>
<td>Corporación Autónoma Regional de Cundinamarca (CAR)</td>
<td>Por medio de la cual se otorga una licencia ambiental, en la cual se incluye dentro del Plan de Manejo Ambiental una ficha para el Programa de Salud Ocupacional y Seguridad Industrial, ahora Sistema de Gestión de Seguridad y Salud en el Trabajo (SG-SST), en el cual la actividad principal es mantener actualizado e implementado e implementar el Programa de</td>
</tr>
<tr>
<td>AÑO</td>
<td>NORMA</td>
<td>ENTE QUE LA EXPIDE</td>
<td>OBSERVACIÓN</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2013</td>
<td>Ley 1672</td>
<td>Congreso de la República</td>
<td>Establece los lineamientos para la adopción de una política pública de gestión integral de RAEE, los cuales son residuos de manejo diferenciado que deben gestionarse de acuerdo con las directrices que para el efecto establezca el Ministerio de Ambiente y Desarrollo Sostenible.</td>
</tr>
<tr>
<td>2014</td>
<td>Decreto 1477</td>
<td>Ministerio del Trabajo</td>
<td>Por el cual se expide la Tabla de Enfermedades Laborales, incluyendo al plomo y sus compuestos tóxicos como agentes etiológicos y/o factores de riesgo a tener en cuenta para la prevención de enfermedades laborales.</td>
</tr>
<tr>
<td>2014</td>
<td>Decreto 2041</td>
<td>Ministerio de Ambiente y Desarrollo Sostenible (MADS)</td>
<td>Reglamenta que la construcción y operación de instalaciones cuyo objeto sea el almacenamiento, tratamiento, aprovechamiento (recuperación/reciclado) y/o disposición final de RAEE y de residuos de pilas y/o acumuladores requieren licencia ambiental otorgada por la Corporación Autónoma Regional Competente con jurisdicción en el área donde se desarrolle.</td>
</tr>
<tr>
<td>2015</td>
<td>Decreto 1072</td>
<td>Ministerio de Trabajo</td>
<td>Constituye el Decreto Único Reglamentario del Sector Trabajo. Establece disposiciones para el diseño y la implementación del Sistema de Gestión de la Seguridad y Salud en el Trabajo (SG-SST) que deben ser aplicadas por todos los empleadores públicos y privados; en aras de garantizar el bienestar de los trabajadores, fomentar entornos de trabajo saludables, el</td>
</tr>
<tr>
<td>AÑO</td>
<td>NORMA</td>
<td>ENTE QUE LA EXPIDE</td>
<td>OBSERVACIÓN</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ministerio de Ambiente y Desarrollo Sostenible (MADS)</td>
<td>aumento de la productividad de las empresas y el crecimiento económico del país.</td>
</tr>
<tr>
<td>2015</td>
<td>Decreto 1076</td>
<td>Ministerio de Ambiente y Desarrollo Sostenible (MADS)</td>
<td>Constituye el Decreto Único Ambiental, en la sección 2 se define el requerimiento de una licencia ambiental de la autoridad ambiental local para la construcción y operación de instalaciones dedicadas al almacenamiento, tratamiento, aprovechamiento (recuperación y reciclaje) o eliminación de RAEE. En el título 6, se definen qué tipo de componentes se clasifican como residuos peligrosos, se exponen las normas para los generadores y receptores de residuos peligrosos y se incluyen especificaciones para el personal, planes y medidas de seguridad para el control de accidentes, etc.</td>
</tr>
<tr>
<td>2015</td>
<td>Decreto 1079</td>
<td>Ministerio de Transporte</td>
<td>Decreto Único Reglamentario del Sector Transporte. Compila el Decreto 1609 y en la sección 8, especifica los requisitos en materia de transporte terrestre de mercancías peligrosas dentro del país.</td>
</tr>
</tbody>
</table>

Fuente: Compilado y adaptado por la autora, 2017.
2. MARCO METODOLÓGICO

El presente trabajado de grado constituye una aplicación práctica de la Higiene de campo, pues estudia y reconoce la presencia del plomo en los residuos electrónicos; igualmente, determina la exposición a este metal por el desensamble de RAEE en la empresa Orinoco e-Scrap S.A.S. en estrecha relación con la estimación del tiempo real de exposición de los trabajadores, toma de muestras biológicas, comparación con valores estándares y adopción de medidas necesarias para su control.

De esta manera, este proyecto es un estudio de tipo descriptivo que identifica características de la exposición a plomo en los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S.; estima y evalúa el riesgo y comprueba relación causal entre la exposición y el nivel de riesgo, considerando para la evaluación de este, un enfoque de tipo cualitativo y cuantitativo.

Las fuentes de información utilizadas fueron fuentes de información primaria, entre ellas toma de muestras biológicas, evaluación cualitativa de riesgo químico. De igual forma se utilizaron algunas fuentes de información secundaria como información oficial de autoridades ambientales, documentos de prensa y estudios preexistentes de exposición a plomo en industrias de reciclaje.

Para la realización del presente documento se llevó a cabo recolección, estudio, análisis y procesamiento de la información de acuerdo al desarrollo de la siguiente metodología.

2.1. ESTRUCTURA METODOLÓGICA PRINCIPAL

La Tabla 5 evidencia una metodología por fases que responden a los objetivos específicos planteados, relacionando las actividades desarrolladas por cada objetivo, así como los instrumentos metodológicos que permitieron la obtención de resultados y la formulación de conclusiones y recomendaciones que responden al objetivo general de este trabajo.
<table>
<thead>
<tr>
<th>Fase</th>
<th>Objetivo Especifico</th>
<th>Actividades</th>
<th>Instrumentos Metodológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Reconocimiento de los riesgos del plomo presente en los RAEE</td>
<td>1. Identificar los riesgos del plomo presente en los RAEE.</td>
<td>Revisión bibliográfica de componentes y sustancias presentes en los RAEE.</td>
<td>Fuentes de información secundarias como: estudios, artículos, información oficial del Centro Nacional de Producción Más Limpia y Tecnologías Ambientales (CNPMLTA), SECO, EMPA, entre otros.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reconocimiento de efectos crónicos de la exposición a plomo presente en los RAEE.</td>
<td></td>
</tr>
<tr>
<td>II. Caracterización del riesgo</td>
<td>2. Estimar el riesgo químico al que están expuestos los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S mediante evaluación simplificada del riesgo por inhalación de plomo.</td>
<td>Determinar la peligrosidad del plomo presente en los RAEE en función de frases H.</td>
<td>Hojas de Seguridad de RAEE, documentos, información oficial de Centros para el Control y la Prevención de Enfermedades como el INSHT, NIOSH, ACGIH, entre otros.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establecer la tendencia a pasar al ambiente del plomo presente en los RAEE, considerando la tendencia a formar polvo.</td>
<td>Método de Evaluación simplificada del riesgo por inhalación de plomo, basado en el “COSHH Essentials” del HSE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asignar la cantidad utilizada en la operación de desensamblaje.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determinar el nivel de riesgo potencial considerando peligrosidad, tendencia a pasar al ambiente y cantidad utilizada.</td>
<td></td>
</tr>
<tr>
<td>III. Determinaciones biológicas</td>
<td>3. Evaluar la exposición a plomo en los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S. mediante Indicadores Biológicos de</td>
<td>Revisión y selección de laboratorio y estrategia de muestreo para el control biológico.</td>
<td>Bases de datos de laboratorios y consulta de métodos analíticos de determinación de plomo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brindar información y participar a los trabajadores de la toma de muestras biológicas a realizar.</td>
<td>Presentación dirigida a los trabajadores y consentimientos informados para toma de muestras.</td>
</tr>
<tr>
<td>Fase</td>
<td>Objetivo Específico</td>
<td>Actividades</td>
<td>Instrumentos Metodológicos</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Análisis de resultados obtenidos del control biológico.</td>
<td>Informe de resultados del laboratorio.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proponer medidas para intervenir el riesgo, de acuerdo a resultados obtenidos.</td>
<td>Encuestas de síntomas aplicadas a los trabajadores.</td>
</tr>
<tr>
<td>IV.</td>
<td>Medidas de control</td>
<td>Elaborar documento de informe Final.</td>
<td>Resultados de análisis e información oficial antes mencionada.</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2016
3. RECONOCIMIENTO DE LOS RIESGOS DEL PLOMO PRESENTE EN LOS RAEE

El riesgo, entendido como la "combinación de la probabilidad de que ocurra una o más exposiciones o eventos peligrosos y la severidad del daño que puede ser causada por estos" [43], en el manejo de RAEE está dado en un gran proporción por el contacto con variedad de elementos y sustancias peligrosas que pueden tener los trabajadores, que "al entrar al organismo, mediante inhalación, absorción cutánea o ingestión puede provocar intoxicación, quemaduras, irritaciones o lesiones sistémicas, dependiendo del grado de concentración y el tiempo de exposición"[44].

De esta manera, es importante iniciar diciendo que los RAEE incluyen una inmensa variedad de artefactos eléctricos y electrónicos de desuso, los cuales aún no han sido clasificados de manera precisa, sin embargo, en Colombia entre las categorías de RAEE más utilizadas se encuentran las dos categorías definidas por la Unión Europea.

La primera corresponde a la vigente desde el 2003 y definida por la Directiva 2002/96/CE (Parlamento Europeo y el Consejo de la Unión Europea, 2003) que clasifica los AEE en 10 categorías de acuerdo con su tipología y la segunda, definida por la Directiva de la Unión Europea 2012/19/UE, que comenzará a regir a partir del 15 de agosto del 2018 y clasifica los AEE en seis categorías considerando las posibles fracciones de recolección y separación de los RAEE. [45]

La primera Directiva del año 2002 realizaba la clasificación desde el punto de vista del AEE, mientras que la Directiva del año 2012 lo hace más desde el punto de vista de la gestión del RAEE como tal. En la Tabla 6 se presentan las seis categorías de la Directiva RAEE del año 2012 con un listado de algunos AEE considerados en cada una y la equivalencia con las categorías de la Directiva RAEE del año 2002.

Tabla 6. Categorías de los Aparatos Eléctricos y Electrónicos (AEE) según la Directiva RAEE UE del 2012

<table>
<thead>
<tr>
<th>Categorías</th>
<th>AEE considerados en la categoría</th>
<th>Equivalencia con la Directiva 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aparatos de intercambio de temperatura</td>
<td>Neveras, congeladores, aparatos que suministran automáticamente productos fríos, aparatos de aire acondicionado, equipos de des humidificación, bombas de calor, radiadores de aceite y otros aparatos de intercambio de temperatura que utilicen fluidos diferentes al agua.</td>
<td>Grandes electrodomésticos (Únicamente de refrigeración y calefacción).</td>
</tr>
<tr>
<td>2. Monitores, pantallas, y aparatos con pantallas de superficie superior a los 100 cm²</td>
<td>Pantallas, televisores, marcos digitales para fotos con tecnología LCD, monitores, computadores portátiles, incluidos los de tipo notebook y tabletas.</td>
<td>Equipos de informática y telecomunicaciones (Únicamente equipos de informática con pantallas de tamaño superior a 100 cm²).</td>
</tr>
<tr>
<td>3. Lámparas</td>
<td>Lámparas fluorescentes rectas, fluorescentes compactas y fluorescentes; lámparas de descarga de alta intensidad, incluidas las de sodio de presión y las de haluros metálicos; lámparas de sodio de baja presión y lámparas LED.</td>
<td>Aparatos de alumbrado excepto las luminarias</td>
</tr>
<tr>
<td>4. Grandes aparatos (con una dimensión exterior superior a 50 cm)</td>
<td>Lavadoras, secadoras, lavavajillas, cocinas, cocinas y hornos eléctricos, hornillos eléctricos, placas de calor eléctricas, luminarias; aparatos de reproducción de sonido o imagen, equipos de música (excepto los órganos de tubo instalados en iglesias), máquinas de hacer punto y tejer, grandes ordenadores, grandes impresoras, copiadoras, grandes máquinas tragamonedas, productos sanitarios de grandes dimensiones, grandes instrumentos de vigilancia y control, grandes aparatos que suministran productos y dinero automáticamente, paneles fotovoltaicos.</td>
<td>Grandes equipos (con una dimensión exterior superior a 50 cm) de todas las categorías excepto los equipos de refrigeración y calefacción y las lámparas.</td>
</tr>
<tr>
<td>5. Pequeños aparatos (sin ninguna dimensión exterior superior a 50 cm)</td>
<td>Aspiradoras, máquinas de coser, luminarias, hornos microondas, aparatos de ventilación, planchas, tostadoras, cuchillos eléctricos, hervidores eléctricos, relojes, maquinillas de afeitar eléctricas, básculas, aparatos para el cuidado del pelo y el cuerpo, calculadoras, aparatos de radio, videocámaras, aparatos de</td>
<td>Pequeños equipos (sin una dimensión exterior superior a 50 cm) de todas las categorías excepto las lámparas.</td>
</tr>
<tr>
<td>Categorías</td>
<td>AEE considerados en la categoría</td>
<td>Equivalencia con la Directiva 2002</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>grabación de vídeo, cadenas de alta fidelidad, instrumentos musicales, aparatos de reproducción de sonido o imagen, juguetes eléctricos y electrónicos, artículos deportivos, ordenadores para practicar ciclismo, submarinismo, carreras, remo, etc., detectores de humo, reguladores de calefacción, termostatos, pequeñas herramientas eléctricas y electrónicas, pequeños productos sanitarios, pequeños instrumentos de vigilancia y control, pequeños aparatos que suministran productos automáticamente, pequeños aparatos con paneles fotovoltaicos integrados.</td>
<td></td>
</tr>
</tbody>
</table>

6. Aparatos de informática y de telecomunicaciones pequeños (sin ninguna dimensión exterior superior a los 50 cm)

| | Teléfonos móviles, GPS, calculadoras de bolsillo, encaminadores, ordenadores personales, impresoras, teléfonos. | Equipos de informática y telecomunicaciones (con pantalla menor a 100 cm\(^2\) o dimensión exterior menor a 50 cm). |

La composición de los RAEE es muy diversa, un solo equipo en desuso perteneciente a cualquiera de las categorías anteriores de acuerdo con United Nations Environmental Programme [46] puede contener más de mil sustancias diferentes que se pueden clasificar de forma general como materiales peligrosos y no peligrosos; entre los materiales no peligrosos que se pueden recuperar se encuentran metales ferrosos, no ferrosos como el cobre, el aluminio y metales preciosos y valiosos como la plata, el oro, el platino y el paladio, así como algunos tipos de plásticos, vidrio, madera, cerámica, caucho y otros componentes.

En relación con los materiales potencialmente peligrosos presentes en los RAEE, estos “pueden representar un 3% de la composición total de los RAEE” [47]. Igualmente, siguiendo con United Nations Environmental Programme [39], entre los materiales peligrosos de los RAEE se pueden encontrar metales como el plomo, mercurio, berilio, arsénico, cadmio, selenio, cromo hexavalente, sustancias halogenadas, clorofluorocarbonos, bifenilos policlorados, policloruros de vinilo, retardantes de llama, entre otros. La presencia de estos componentes depende del tipo de tecnología utilizado en los AEE, el país de origen y el fabricante.

En la Tabla 7 se pueden identificar la mayoría de metales pesados y otros metales presentes en los RAEE y su localización en algunas partes o componentes de estos residuos.

<table>
<thead>
<tr>
<th>Metales</th>
<th>Localización en los RAEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsénico</td>
<td>Pequeñas cantidades en forma de arseniuro de galio en diodos emisores de luz (LED)</td>
</tr>
<tr>
<td>Bario</td>
<td>Captadores (getters) en tubos de rayos catódicos.</td>
</tr>
<tr>
<td>Berilio</td>
<td>Fuentes de potencia que contienen rectificadores controlados de silicio y lentes de rayos X.</td>
</tr>
<tr>
<td>Cadmio</td>
<td>Baterías recargables de NiCd, película fluorescente (pantallas de TRC), tintas de impresora y tóner y máquinas de fotocopiás (tambor de impresión).</td>
</tr>
<tr>
<td>Cromo VI</td>
<td>Cintas de datos y discos flexibles.</td>
</tr>
<tr>
<td>Plomo</td>
<td>Pantallas de TRC, baterías y tarjetas de circuito impreso.</td>
</tr>
<tr>
<td>Litio</td>
<td>Baterías de litio.</td>
</tr>
<tr>
<td>Mercurio</td>
<td>Lámparas fluorescentes que proporcionan iluminación en LCD, en algunas pilas alcalinas y el mercurio como contacto en interruptores.</td>
</tr>
<tr>
<td>Niquel</td>
<td>Baterías recargables de NiCd o NiMH y cañón de electrones en los TRC.</td>
</tr>
<tr>
<td>Tierras raras (itrio, europio)</td>
<td>Capa fluorescente (pantalla de los TRC).</td>
</tr>
<tr>
<td>Selenio</td>
<td>Máquinas de fotocopias antiguas (fototambores).</td>
</tr>
<tr>
<td>Sulfuro de Zinc</td>
<td>Interior de las pantallas de TRC, mezclado con metales de tierras raras.</td>
</tr>
</tbody>
</table>

De esta manera, la presencia de metales pesados como el plomo presente en los RAEE constituye un riesgo potencial para la salud humana y el ambiente, puesto que...
que si estos residuos no se gestionan adecuadamente, llegan a rellenos sanitarios, a los cuales habitualmente llegan únicamente residuos ordinarios y en los cuales no se cuentan con condiciones de seguridad para el manejo de sustancias peligrosas como el plomo que, por el movimiento y compactación de pantallas de tubos de rayos catódicos, baterías, soldaduras y tarjetas de circuito impreso, se libera en forma de polvo y puede llegar al suelo, el aire o a las aguas subterráneas, generando afectaciones relevantes para la salud humana y el ambiente.

Es de resaltar que el plomo también se puede liberar al ambiente de manera accidental y/o espontánea durante el transporte, desensamblaje y almacenamiento de los RAEE, por lo cual los trabajadores que se encargan de estas actividades están potencialmente expuestos a los efectos de este y otros metales, pues a pesar de que en Colombia la gestión de residuos electrónicos aún no es automatizada a través de tratamientos de trituración mecánica que, eventualmente generan mayores fracciones mezcladas de sustancias peligrosas, durante el desensamble manual desarrollado en nuestro país, “el cual consiste en, como su nombre lo indica separar los principales componentes o partes de componentes que conforman los RAEE (desensamble parcial), o el desensamble de los mismos en todos sus componentes y materiales (desensamble completo), los cuales serán clasificados de forma general en plásticos, vidrio, metales ferrosos, metales no ferrosos (como aluminio y cobre) y componentes peligrosos como mercurio y plomo, entre otros” [48] aunque se logra mayor separación de las partes que conforman los RAEE y se extraen con más eficacia las sustancias potencialmente peligrosas, también se genera material particulado con trazas potenciales de metales pesados como el plomo, visible en el ambiente de trabajo, que de omitir o usar de forma incorrecta la protección respiratoria, puede ser inhalado por los trabajadores.

De esta manera, la toxicocinética del plomo presente en los RAEE, inicia con la inhalación y absorción a través del sistema respiratorio del polvo inorgánico generado en el ambiente de trabajo ya sea durante el desensamble, transporte, compactación y almacenamiento de los residuos, el cual podrá conducir a una mayor absorción de plomo “dependiendo de la forma, tamaño, tránsito gastrointestinal, estado nutricional y la edad; hay mayor absorción de plomo si la partícula es pequeña, si hay deficiencia de hierro y/o calcio, si hay gran ingesta de

grasa ó inadecuada ingesta de calorías, si el estómago está vacío" [49]. En la Figura 2 se puede observar el modelo biológico del plomo.

Figura 2. Modelo biológico del plomo

Figura 2. Modelo biológico del plomo

* Competencia en el nivel molecular

Siguiendo con Valdivia, [50] luego de su absorción el plomo (en general) se distribuye en compartimentos como se muestra en la Figura 3; en primer lugar, circula por la sangre unido a los glóbulos rojos, luego se distribuye en los tejidos blandos como hígado, riñón, médula ósea y sistema nervioso central que son los órganos blanco de toxicidad, luego de 1 a 2 meses el plomo difunde a los huesos donde es inerte e inicialmente no tóxico. El metal puede movilizarse del hueso en situaciones como inmovilidad, embarazo, hipertiroidismo, medicaciones y edad avanzada. Finalmente, se excretará por orina en un 90%, y en menor cantidad en la bilis, piel, cabello, uñas, sudor y leche materna.

[50] Ibid., p.23.
Figura 3. Distribución del plomo, modelo de los tres compartimentos en el organismo humano

4. CARACTERIZACIÓN DEL RIESGO

El riesgo potencial de los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap S.A.S en relación con la exposición a plomo metálico, se realizó a través de la evaluación simplificada del riesgo por inhalación basado en el modelo británico COSHH Essentials, (Control of Substances Hazardous to Health) [Control de Sustancias Peligrosas para la Salud] desarrollado por el Health and Safety Executive (HSE), que constituye la comisión de salud y seguridad responsable de la legislación en materia de Seguridad y Salud en Gran Bretaña.

De acuerdo con el Centro Nacional de Nuevas Tecnologías, del INSHT, el modelo COSHH Essentials, [51], permite conocer el nivel de control necesario a aplicar en función del riesgo potencial y proponer medidas adicionales en los casos en que las medidas adoptadas iniciales sean insuficientes.

De esta manera, el nivel de riesgo potencial para la operación de desensamble de RAEE, haciendo uso de este método de evaluación, evalúa el plomo presente en los tres tipos de RAEE que de acuerdo con la bibliografía consultada más contienen plomo: Monitores o televisores TRC, cable telefónico y tarjetas de circuito impreso, determinando a partir de la identificación y categorización de las variables relacionadas en la Figura 4, las cuales son: a) peligrosidad según frases R o H, b) volatilidad o pulverulencia en función del estado físico de la sustancia y c) cantidad utilizada en el proceso. Cada una de estas variables categorizadas se desarrollan paso a paso y en detalle a continuación y los resultados obtenidos se presentan en las tablas 16 y 17.

Es de resaltar que el tiempo de exposición no es contemplado como una variable determinante de análisis por este método de evaluación, “puesto que el modelo proporciona un diagnóstico inicial de la situación desde el punto de vista higiénico en términos de riesgo potencial y no una evaluación del riesgo propiamente dicha” [52]. No obstante, este modelo ofrece una gran variedad de prácticas medidas de intervención, que se presentan en forma de fichas de control, clasificadas por

sectores económicos y sus operaciones asociadas, las cuales constituyen actividades de fácil entendimiento para su implementación.

Figura 4. Etapas y variables del modelo COSHH Essentials

4.1. PELIGROSIDAD

La peligrosidad intrínseca de una sustancia según el método COSHH Essentials, de acuerdo con el Centro Nacional de Nuevas Tecnologías [53], se clasifica en cinco (5) categorías: A, B, C, D y E, las cuales aumentan en su orden de menor a mayor peligrosidad, en función de las frases H o antiguas frases R, según su correspondencia, como se presenta en la Tabla 8 para los peligros para la salud humana.

Cuando las frases R o H de una sustancia dan lugar a distinto nivel de peligrosidad, se elige la de mayor peligrosidad (Ver Tabla 9); estas frases se obtienen directamente de la etiqueta del producto y/o de la sección 15 o 16 de la hoja de seguridad, dependiendo del producto o sustancia objeto de análisis.

Para este método únicamente se consideran las frases R o H relacionadas con riesgos toxicológicos aplicables para inhalación como vía de exposición, demás

[53] CENTRO NACIONAL DE NUEVAS TECNOLOGÍAS, op. cit.
riesgos de accidente, incendio o explosión y otras vías de exposición (dérnica, ocular y digestiva), se deben evaluar mediante otros métodos. [54]

<table>
<thead>
<tr>
<th>Tabla 8. Correspondencia Frases R y frases H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frases R</td>
</tr>
<tr>
<td>R20 Nocivo por inhalación</td>
</tr>
<tr>
<td>R21 Nocivo en contacto con la piel</td>
</tr>
<tr>
<td>R22 Nocivo por ingestión</td>
</tr>
<tr>
<td>R23 Tóxico por inhalación</td>
</tr>
<tr>
<td>R23 Tóxico en caso de inhalación</td>
</tr>
<tr>
<td>R23 Tóxico por inhalación</td>
</tr>
<tr>
<td>R24 Tóxico en contacto con la piel</td>
</tr>
<tr>
<td>R25 Tóxico por ingestión</td>
</tr>
<tr>
<td>R26 Muy tóxico por inhalación</td>
</tr>
<tr>
<td>R27 Muy tóxico en contacto con la piel</td>
</tr>
<tr>
<td>R28 Muy tóxico por ingestión</td>
</tr>
<tr>
<td>R29 En contacto con agua libera gases tóxicos</td>
</tr>
<tr>
<td>R31 En contacto con ácidos libera gases tóxicos</td>
</tr>
<tr>
<td>R32 En contacto con ácidos libera gases muy tóxicos</td>
</tr>
<tr>
<td>R33 Peligro de efectos acumulativos</td>
</tr>
<tr>
<td>R34 Provoca quemaduras</td>
</tr>
<tr>
<td>R35 Provoca quemaduras graves</td>
</tr>
<tr>
<td>R36 Irrita los ojos</td>
</tr>
<tr>
<td>R37 Irrita las vías respiratorias</td>
</tr>
<tr>
<td>R38 Irrita la piel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frases R</th>
<th>Frases H</th>
</tr>
</thead>
<tbody>
<tr>
<td>R39</td>
<td>Sin correspondencia</td>
</tr>
<tr>
<td>R39/23</td>
<td>Tóxico: peligro de efectos irreversibles muy graves (por inhalación, contacto con la piel, ingestión). Muy tóxico: peligro de efectos irreversibles muy graves (por inhalación, contacto con la piel, ingestión).</td>
</tr>
<tr>
<td>R39/24</td>
<td>Se sospecha que provoca cáncer. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».</td>
</tr>
<tr>
<td>R39/25</td>
<td>Provoca lesiones oculares graves</td>
</tr>
<tr>
<td>R39/26</td>
<td>Posibles efectos cancerígenos</td>
</tr>
<tr>
<td>R39/27</td>
<td>Se sospecha que provoca cáncer. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».</td>
</tr>
<tr>
<td>R39/28</td>
<td>Provoca lesiones oculares graves</td>
</tr>
<tr>
<td>R40</td>
<td>Posibles efectos cancerígenos</td>
</tr>
<tr>
<td>R41</td>
<td>Posibilidad de sensibilización por inhalación</td>
</tr>
<tr>
<td>R42</td>
<td>Posibilidad de sensibilización en contacto con la piel</td>
</tr>
<tr>
<td>R43</td>
<td>Puede provocar una reacción alérgica en la piel</td>
</tr>
<tr>
<td>R45</td>
<td>Puede causar cáncer</td>
</tr>
<tr>
<td>R46</td>
<td>Puede causar alteraciones genéticas hereditarias</td>
</tr>
<tr>
<td>R48</td>
<td>Riesgo de efectos graves para la salud en caso de exposición prolongada</td>
</tr>
<tr>
<td>R48/20</td>
<td>Nocivo: riesgo de efectos graves para la salud en caso de exposición prolongada (por inhalación, contacto con la piel, ingestión).</td>
</tr>
<tr>
<td>R48/21</td>
<td>Puede provocar cáncer. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».</td>
</tr>
<tr>
<td>R48/22</td>
<td>Puede provocar cáncer. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».</td>
</tr>
<tr>
<td>R48/23</td>
<td>Puede provocar cáncer. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».</td>
</tr>
<tr>
<td>Frases R</td>
<td>Frases H</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| **R48/23**
R48/24
R48/25** | Tóxico: riesgo de efectos graves para la salud en caso de exposición prolongada (por inhalación, contacto con la piel, ingestión) | H372 | Provoca daños en los órganos. «Indíquense todos los órganos afectados, si se conocen» tras exposiciones prolongadas o repetidas. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».
<p>|
| R49 | Puede causar cáncer por inhalación | H350i | Puede provocar cáncer por inhalación |
| R60
R61** | Puede perjudicar la fertilidad
Riesgo durante el embarazo de efectos adversos para el feto | H360 | Puede perjudicar la fertilidad o dañar al feto. |
| R62
R63** | Posible riesgo de perjudicar la fertilidad
Posible riesgo durante el embarazo de efectos adversos para el feto | H361 | Se sospecha que perjudica la fertilidad o daña al feto. «Indíquese el efecto específico si se conoce» «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía». |
| R64 | Puede perjudicar a los niños alimentados con leche materna | H362 | Puede perjudicar a los niños alimentados con leche materna |
| R65 | Nocivo: Si se ingiere puede causar daño pulmonar | H304 | Puede ser mortal en caso de ingestión y penetración en las vías respiratorias |
| R66 | La exposición repetida puede provocar sequedad o formación de grietas en la piel | EUH066 | La exposición repetida puede provocar sequedad o formación de grietas en la piel |
| R67 | La inhalación de vapores puede provocar somnolencia y vértigo | H336 | Puede provocar somnolencia o vértigo |
| R68 | Posibilidad de efectos irreversibles | H341 | Se sospecha que provoca defectos genéticos. «Indíquese la vía de exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía». |
| R68/20
R68/21
R68/22** | Nocivo: posibilidad de efectos irreversibles (por inhalación, contacto con la piel, por ingestión). | H371 | Puede provocar daños en los órganos. «O indíquense todos los órganos afectados, si se conocen» «Indíquese la vía de...» |</p>
<table>
<thead>
<tr>
<th>Frases R</th>
<th>Frases H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exposición si se ha demostrado concluyentemente que el peligro no se produce por ninguna otra vía».</td>
</tr>
<tr>
<td>R39-41</td>
<td>EUH070 EUH071 Tóxico en contacto con los ojos Corrosivo para las vías respiratorias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel de Peligrosidad</th>
<th>Frases H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H304, H315, H319, H336, EUH066. Cualquier sustancia sin frases H de los grupos B a E.</td>
</tr>
<tr>
<td>B</td>
<td>H302, H312, H332, H371</td>
</tr>
<tr>
<td>C</td>
<td>H301, H311, H314, H317, H318, H331, H335, H370, H373, EUH071</td>
</tr>
<tr>
<td>D</td>
<td>H300, H310, H330, H351, H360F, H360D, H361f, H361d, H362, H372</td>
</tr>
<tr>
<td>E</td>
<td>H334, H340, H341, H350, H350i, EUH070</td>
</tr>
</tbody>
</table>

En algunos casos es posible reducir el grupo de peligrosidad, según la duración de la actividad y según algunas frases H:

- Según la duración de la actividad: atendiendo a esta variable, cuando la actividad a evaluar tenga una duración igual o menor a 30 minutos es posible disminuir la peligrosidad, de tal manera que las sustancias clasificadas con grado C pueden pasar al B y las de grado B al grado A.
- Según algunas frases: en este sentido, siempre que no haya otras frases H de mayor categoría se pueden plantear las siguientes reducciones de los grados de peligrosidad, de acuerdo con los valores límite en vigor establecidos para esa sustancia. En la Tabla 10 aparecen las frases H para
las que se puede reducir el grupo de peligrosidad en función de dos parámetros: el valor límite ambiental de exposición diaria (VLA-ED), que podemos encontrar en las guías de Límites de Exposición Profesional para Agentes Químicos en España que publica cada año el Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT); y el Lowest Observed Adverse Effect Level (LOAEL), que es la mínima dosis de producto para la que se observa algún efecto adverso en la salud.[55]

Tabla 10. Reducción del grupo de peligrosidad para algunas frases H según los valores límite

<table>
<thead>
<tr>
<th>Frases H</th>
<th>Valores límite</th>
<th>Reducción del grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H314</td>
<td>VLA-ED > 0,1 mg/m³ para partículas VLA-ED> 5 ppm para gases y vapores</td>
<td>De C a B</td>
</tr>
<tr>
<td>H335</td>
<td>VLA-ED> 1 mg/m³ para partículas VLA-ED> 50 ppm para gases y vapores</td>
<td>De C a A</td>
</tr>
<tr>
<td>H361</td>
<td>LOAEL> 5 mg/Kg/día (oral) LOAEL> 10 mg/Kg/día (dérmica) LOAEL> 0,025 mg/L/6h (inhalatoria)</td>
<td>De D a C</td>
</tr>
<tr>
<td></td>
<td>LOAEL> 50 mg/Kg/día (oral) LOAEL> 10 0mg/Kg/día (dérmica) LOAEL> 0,25 mg/L/6h (inhalatoria)</td>
<td>De D a B</td>
</tr>
</tbody>
</table>

4.2. VOLATILIDAD O PULVERULENCIA

La tendencia a pasar al ambiente para el modelo COSHH Essentials se clasifica en alta, media y baja y se determina de forma distinta según el estado físico del agente químico objeto de análisis. Así, de acuerdo con Ávila Monroy, et al [56], para los líquidos se determina en función de la volatilidad, tomando como referencia el Punto de Ebullición (PE) y la Temperatura de trabajo (T) (Figura 5); mientras que, para los sólidos, se valora su tendencia a formar polvo.

[56] Ibid.
(pulverulencia), a partir de la forma que presenten sus partículas, como se muestra en la Tabla 11.

En el caso de agentes en estado gaseoso, se asigna siempre una volatilidad alta de acuerdo con las bases técnicas del método:
- Si $PE \leq (2 \times T + 10)$, se trata de una volatilidad alta
- Si $(2 \times T + 10) \geq PE \leq (5 \times T + 50)$, se trata de una volatilidad media
- Si $PE \geq (5 \times T + 50)$, se trata de volatilidad baja [57]

Figura 5. Determinación de volatilidad para los líquidos.

Tabla 11. Pulverulencia de los sólidos

<table>
<thead>
<tr>
<th>Descripción del material sólido</th>
<th>Tendencia a formar polvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polvos finos y de baja densidad. Al usarlos se observan nubes de polvo que permanecen en suspensión varios minutos. Ejemplos: cemento, negro de humo, yeso, etc.</td>
<td>Alta</td>
</tr>
<tr>
<td>Sólidos granulares o cristalinos. Se produce polvo durante su manipulación, que se deposita rápidamente, pudiéndose observar sobre las superficies adyacentes. Ejemplo: polvo de detergente.</td>
<td>Media</td>
</tr>
</tbody>
</table>

[57] Ibid., p. 36.
<table>
<thead>
<tr>
<th>Descripción del material sólido</th>
<th>Tendencia a formar polvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustancias en forma de granza (pellets) que no tienen tendencia a romperse. No se aprecia polvo durante su manipulación. Ejemplos: granza de PVC, escamas, pepitas, etc.</td>
<td>Baja</td>
</tr>
</tbody>
</table>

4.3. CANTIDAD UTILIZADA

La cantidad del agente químico utilizado por la operación se clasifica cualitativamente siguiendo el criterio de la Tabla 12 por orden de magnitud en pequeña, mediana o grande. [58]

Tabla 12. Cantidad utilizada

<table>
<thead>
<tr>
<th>Clase de cantidad</th>
<th>Cantidad utilizada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeña</td>
<td>Gramos o mililitros (g ó mL)</td>
</tr>
<tr>
<td>Mediana</td>
<td>Kilogramos o litros (Kg ó L)</td>
</tr>
<tr>
<td>Grande</td>
<td>Toneladas o metros cúbicos (T ó m³)</td>
</tr>
</tbody>
</table>

4.4. NIVEL DE RIESGO POTENCIAL

A partir de la información recogida por las variables anteriores se determina el nivel de riesgo potencial del agente químico, siguiendo los cruces de estas variables en la Tabla 13, en la cual se consideran cuatro posibles niveles de riesgo.

potencial (de 1 a 4), a cada uno de los cuales en función del nivel de riesgo obtenido le corresponde una acción preventiva para controlar la exposición, que se pueden resumir en la Tabla 14.

Tabla 13. Determinación del nivel de riesgo potencial.

<table>
<thead>
<tr>
<th>Grado de peligrosidad</th>
<th>Cantidad usada</th>
<th>Baja volatilidad o pulverulencia</th>
<th>Media volatilidad</th>
<th>Media pulverulencia</th>
<th>Alta volatilidad o pulverulencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pequeña</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>Pequeña</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>Pequeña</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>Pequeña</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mediana</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Grande</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>En todas las situaciones con sustancias de este grado de peligrosidad, se considerará que el nivel de riesgo es 4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14. Acciones a tomar según el nivel de riesgo.

<table>
<thead>
<tr>
<th>Nivel de riesgo</th>
<th>Acciones a tomar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ventilación general</td>
</tr>
<tr>
<td>2</td>
<td>Medidas específicas de prevención y protección, por ejemplo, extracción localizada.</td>
</tr>
<tr>
<td>3</td>
<td>Confinamiento o sistemas cerrados. Mantener, siempre que sea posible, el proceso a una presión inferior a la atmosférica para dificultar el escape de las sustancias.</td>
</tr>
<tr>
<td>4</td>
<td>Cumplir con la legislación, cuando se trate de sustancias cancerígenas y/o mutágenas de categorías 1 y 2. Adoptar medidas específicas. Realizar una evaluación detallada de la exposición. Verificar con mayor frecuencia la eficacia de las instalaciones de control.</td>
</tr>
</tbody>
</table>

54

Es de resaltar que para el modelo COSHH Essentials, “independientemente del nivel de riesgo obtenido serán siempre de aplicación los principios generales de prevención establecidos en el artículo 4 del RD 374/2001” [59] sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo.

Las acciones a tomar sugeridas por este método, después de categorizar el riesgo potencial se ajustarán en función del nivel del mismo, como se presenta de forma resumida en la Tabla 14 y siguiendo directrices indicadas para cada uno, de la siguiente manera:

Nivel de Riesgo 1. Normalmente, en estas situaciones el control de la exposición podrá lograrse mediante el empleo de ventilación general. Puede asumirse que este nivel de riesgo correspondería al riesgo leve establecido en el Real Decreto 374/2001 y en la Guía Técnica de desarrollo del RD 374/2001, en la que se establece el criterio en función de la peligrosidad de los agentes químicos para determinar si el riesgo es leve. El modelo COSHH Essentials va algo más allá e incorpora la cantidad utilizada o manipulada y la tendencia a pasar al ambiente del agente químico, para obtener un juicio sobre la misma cuestión. [60]

Es de destacar que si se expresa el riesgo leve en función de la cantidad (tal y como se menciona en el artículo 3.3 del RD 374/2001), de la tabla 13 se deduce que cuando la cantidad de agente químico utilizada o manipulada es baja, el riesgo siempre es leve para agentes del nivel de peligrosidad A y B. Para agentes de nivel de peligrosidad C también lo es cuando estos manifiestan poca tendencia a pasar al ambiente (baja volatilidad a la temperatura del proceso para líquidos, y pulverulencia baja o media para sólidos) (tabla 15). No es posible una situación de riesgo leve cuando se trata con agentes de nivel de peligrosidad D o E. [61]

Tabla 15. Riesgo leve cuando la cantidad de agente químico es pequeña (gramos o mililitros)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritantes de la piel o los ojos y los que no tengan asignadas frases R de los otros grupos, para:</td>
<td>Nocivos por inhalación, contacto dérmico o ingestión, para:</td>
<td>Tóxicos por inhalación, ingestión o contacto con la piel, irritantes de las vías respiratorias, para:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- cualquier pulverulencia o volatilidad.</td>
<td>- cualquier pulverulencia o volatilidad</td>
<td>- volatilidad baja o pulverulencia baja o media</td>
</tr>
</tbody>
</table>

Nivel de riesgo 2. En estas situaciones habrá que recurrir a medidas específicas de prevención para el control del riesgo (artículo 5 del RD 374/2001). El tipo de instalación más habitual para controlar la exposición a agentes químicos es la extracción localizada, para cuyo diseño y construcción es necesario, en general, recurrir a suministradores especializados. Es importante elegir el suministrador atendiendo a la experiencia demostrada en este tipo de instalaciones, así como especificar con claridad que el objetivo de la instalación es conseguir que en los puestos de trabajo la concentración de las sustancias químicas se encuentre por debajo del valor de concentración que se le especifique.[62]

Nivel de riesgo 3. En las situaciones de este tipo habrá que acudir al empleo de confinamiento o de sistemas cerrados mediante los cuales no exista la posibilidad de que la sustancia química pase a la atmósfera durante las operaciones ordinarias. Siempre que sea posible, el proceso deberá mantenerse a una presión inferior a la atmosférica a fin de dificultar el escape de las sustancias.

En los niveles de riesgo 2 y 3, una vez implantadas las instalaciones de control adecuadas, o corregidas las existentes para adaptarlas al diseño y funcionamiento apropiados, se procederá a la evaluación cuantitativa de la exposición. Cuando se sospeche que las exposiciones son claramente

[62] Ibíd., p.4.
inferiores a los valores límite, la confirmación de este resultado puede abordarse con procedimientos de evaluación cuantitativos, no necesariamente exhaustivos (el "estudio básico" de la norma UNE-EN 689:1996 puede resultar adecuado). De los resultados de dicho estudio se deducirá la necesidad o no de medidas preventivas adicionales y de un programa de mediciones periódicas de la exposición. En todo caso, será preceptivo verificar periódicamente los parámetros de funcionamiento de las instalaciones de control, para garantizar la continuidad de su eficacia a lo largo del tiempo. [63]

Nivel de riesgo 4. Las situaciones de este tipo son aquéllas en las que, o bien se utilizan sustancias extremadamente tóxicas o bien se emplean sustancias de toxicidad moderada en grandes cantidades y éstas pueden ser fácilmente liberadas a la atmósfera. Hay que determinar si se emplean sustancias cancerígenas y/o mutágenas reguladas por el RD 665/1997 y sus dos modificaciones. En estos casos es imprescindible adoptar medidas específicamente diseñadas para el proceso en cuestión recurriendo al asesoramiento de un experto. Este nivel de riesgo requiere la evaluación cuantitativa de la exposición, así como extremar la frecuencia de la verificación periódica de la eficacia de las instalaciones de control. [64]

4.5. RESULTADOS DE APLICACIÓN

El resultado de la evaluación simplificada del riesgo químico por inhalación anteriormente explicado mediante el modelo COSHH Essentials, para la operación de desensamble de RAEE se presenta en la Tabla 17, para lo cual se recogió información de la cantidad de plomo presente en los tres tipos de RAEE con los que más tienen contacto los trabajadores de la empresa Orinoco e-Scrap SAS, los cuales son: monitores o televisores de Tubos de rayos catódicos, cable y tarjetas de circuito impreso, así como la pulverulencia y las frases H relacionadas con peligros para la salud humana, tal como se muestra en la Tabla 16.

Tabla 16. Información para evaluar el riesgo potencial.

<table>
<thead>
<tr>
<th>RAEE que contiene Plomo</th>
<th>SUSTANCIA: PLOMO - Nº CAS: 7439-92-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frases H</td>
</tr>
<tr>
<td></td>
<td>Código: Texto</td>
</tr>
<tr>
<td>Monitores / Televisores de Tubos de Rayos Catódicos</td>
<td>H302 + H332: Nocivo en caso de ingestión o si se inhala.</td>
</tr>
<tr>
<td>Cable</td>
<td>H360Df: Puede dañar al feto. Se sospecha que perjudica a la fertilidad.</td>
</tr>
<tr>
<td>Tarjeta de Circuito Impreso</td>
<td>H373: Puede provocar daños en los órganos tras exposiciones prolongadas o repetidas</td>
</tr>
</tbody>
</table>

*De acuerdo con Tsydenova y Bengtsson [65] los CRT contienen la mayor cantidad de sustancias de preocupación en los computadores y televisores más antiguos. Un CRT policromado más antiguo puede contener de 2-3 kg de plomo, mientras que uno más reciente normalmente no contiene más de 1 kg de plomo.

** Según cálculos de porcentajes de recuperación y balance de materiales de la empresa Orinoco e-Scrap SAS, para 1 Kg de cable telefónico, se obtienen en promedio 0,3447 Kg de plomo.

***De una muestra de 210 gramos de Tarjetas de Circuito Impreso suministradas por la empresa Orinoco e-Scrap SAS al Laboratorio Ambiental de la Universidad de los Andes, para la aplicación de la Prueba de Lixiviación para Característica de Toxicidad (conocida como prueba TCLP) en la cual se obtuvo como resultado 302 mg/L de plomo, que además de indicar que las tarjetas de circuito impreso deben ser consideradas como residuos o desechos tóxicos, se puede afirmar que en esa muestra de tarjetas habían trescientos dos miligramos de plomo por litro de agua concentrados.

Tabla 17. Nivel de riesgo potencial para el proceso de desensamble de RAEE

<table>
<thead>
<tr>
<th>Tipo de RAEE</th>
<th>Grado de peligrosidad (Tabla 7)</th>
<th>Cantidad Usada (Tabla 10)</th>
<th>Pulverulencia (Tabla 9)</th>
<th>Nivel de Riesgo potencial (Tabla 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitores / Televisores de Tubos de Rayos Catódicos</td>
<td>D</td>
<td>Mediana</td>
<td>Media</td>
<td>4</td>
</tr>
<tr>
<td>Cable</td>
<td>D</td>
<td>Mediana</td>
<td>Baja</td>
<td>3</td>
</tr>
<tr>
<td>Tarjeta de Circuito Impreso</td>
<td>D</td>
<td>Mediana</td>
<td>Baja</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017

De esta manera, a los tres tipos de RAEE evaluados (monitores/televisores de tubos de rayos catódicos, cable y tarjetas de circuito impresos) se les asigna la categoría de peligro alta (D) por tener la frase H360DF (Ver Tabla 9), la cual expresa que el plomo presente en este tipo de residuos se sabe que es tóxico para la reproducción humana, pues existen pruebas convincentes de estudios en humanos que así lo afirman.

En este sentido, el Programa Nacional de Toxicología de los Estados Unidos (NTP) por sus siglas en inglés (National Toxicology Program) [66] publicó una monografía sobre los efectos en la salud por la exposición a bajos niveles de plomo, en la cual se encontró evidencia suficiente de efectos negativos en salud reproductiva con pequeños microgramos de plomo por decilitro de sangre en el cuerpo (Ver tabla 18), como lo es la reducción del crecimiento fetal y un menor peso al nacer, efectos respaldados por varios estudios prospectivos con datos de plomo en sangre materna menor a 5 μg / dL durante el embarazo que se asocian con menor peso, longitud y circunferencia de la cabeza al nacer.

Tabla 18. Efectos del plomo en salud reproductiva

<table>
<thead>
<tr>
<th>Principales efectos en la salud</th>
<th>Población</th>
<th>Conclusión de la NTP</th>
<th>Evidencia de Plomo en Sangre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducción del crecimiento fetal y menor peso al nacer</td>
<td>Mujeres</td>
<td>Suficiente</td>
<td>Sí, <5 μg / dL</td>
</tr>
<tr>
<td></td>
<td>Hombres</td>
<td>Limitado</td>
<td>Poco claro</td>
</tr>
<tr>
<td>Cambios adversos en los parámetros espermáticos</td>
<td>Hombres</td>
<td>Suficiente</td>
<td>Sí, ≥ 15 μg / dL</td>
</tr>
</tbody>
</table>

Igualmente, según el NTP [67] y como se observa en la Tabla 18 existe evidencia suficiente de que niveles sanguíneos de plomo mayores o iguales a 15 μg / dL están asociados con efectos adversos en el semen de los hombres adultos, como la reducción de su volumen, menor recuento, densidad y/o concentración de espermatozoides y un mayor porcentaje de espermatozoides con morfología anormal. Así mismo existen pruebas suficientes de que los niveles de plomo en sangre paterna mayores a 20 μg / dL están asociados con un retraso en el tiempo de concepción de las mujeres, pues siguiendo con la monografía del NTP cuatro estudios informaron aumento del tiempo de embarazo en mujeres cuyas parejas del sexo masculino tenían niveles de plomo en sangre de 20 a 40 μg / dL.

De esta manera, la operación de desensamble de monitores y/o televisores de tubos de rayos catódicos tiene un nivel de riesgo potencial cuatro (4), en el cual es prioritario adoptar medidas de control a corto plazo, incluyendo evaluación cuantitativa para monitorear la exposición, así como la continua verificación de la efectividad de las medidas implementadas (Ver capítulo 8).

Lo anterior considerando que además de que el plomo resulta tener un grado de peligrosidad alto por su toxicidad, el plomo presente en este tipo de residuos representa el 21% de su peso porcentual expresado en kilogramos, considerando un peso promedio aproximado de 12 Kg de monitores/televisores de tubos de rayos catódicos, en los cuales como se mencionó anteriormente en las aclaraciones de la Tabla 16, el plomo representa de 2 a 3 Kg y se presenta en

[67] Ibíd., p. 130.
forma de sólidos cristalinos con tendencia potencial a formar polvo durante el desmantelamiento de un televisor o monitor TRC, el cual como se observa en la Figura 6 durante el desensamble de un monitor TRC puede ser fácilmente liberado a la atmósfera y depositado sobre las superficies de trabajo.

Figura 6. Desensamble de un monitor TRC

Fuente: Autora, 2017

Es de resaltar que según Macgibbon y Zwimpfer [68] el plomo en los TRC se puede encontrar en mayor proporción en la sección del cañón de electrones o (cuello) donde se deposita como se indica en la Figura 7 hasta un 40% de óxido de plomo y en la parte cónica más delgada denominada embudo o cono, hasta un 25% de óxido de plomo. Igualmente, las secciones de vidrio de pantalla o panel y

el embudo o cono son soldadas con una soldadura de vidrio, denominada frita, que contiene aproximadamente de un 70 a 80% de plomo.

Figura 7. Secciones de un TRC que muestran sus niveles promedio de plomo

Por otro lado, el desmantelamiento de cable telefónico tiene un nivel de riesgo potencial tres (3), pues el plomo utilizado en este tipo de cable, representa una cantidad mediana, aproximadamente el 34% del peso total, tal como se mencionó en la nota aclaratoria de la Tabla 16 y como se puede apreciar en la Figura 8, en la cual en la parte (a) se puede observar una muestra de retal de cable telefónico que tiene un peso de 190 gramos, en la parte (b y c) se observan las partes de su desensamble, observándose en la parte (b) el revestimiento de plástico del cable que está mayormente compuesto de Cloruro de Polivinilo (PVC), aislante dieléctrico y un blindaje de plomo que protege contra daños mecánicos externos y/o interferencias electromagnéticas, el cual tiene un peso de 64 gramos; finalmente en la parte (c) de la Figura 8 se puede observar el alambre de cobre recubierto con PVC que tiene un peso de 126 gramos.
Figura 8. Registro fotográfico de la recuperación de cable

Fuente: Orinoco e-Scrap SAS, 2015

De esta manera, se corrobora lo que manifiesta Szymanczyk [69] en relación con que el plomo se constituye solamente en la cubierta exterior de cables telefónicos antiguos y algunos modernos, presentes en canalizaciones subterráneas, enterrados o edificios, el cual, realizando una separación manual del alambre de cobre, como la que realiza la empresa Orinoco e-Scrap SAS (con el único fin de obtener muestras para conocer porcentajes de recuperación) conserva forma de granza (pellets) que no tienen tendencia a romperse, ni apreciarse polvo durante su manipulación, debido a que “estas cubiertas de plomo consisten realmente, en una aleación de plomo con un 0.7% de antimonio. Ello le confiere mayor dureza que el plomo puro y cualidades de resistencia a la fatiga y al envejecimiento” [70].

[70] ibid., p. 15.
No obstante, a lo anterior y a pesar de que la empresa Orinoco e-Scrap SAS no realiza recuperación térmica del cobre presente en el cable, existen empresas y recicladores informales que sí lo realizan, liberando al ambiente varios contaminantes:

como el monóxido de carbono (CO), dióxido de azufre (SO₂), hidrocarburos aromáticos policíclicos, cloruro de hidrógeno, metales pesados y cenizas. La incineración es incompleta debido a las bajas temperaturas de incineración (250 °C a 700 °C), por lo que se generan hidrocarburos y material particulado. Durante el proceso se liberan estabilizadores de plomo, que suelen contener las matrices de polímero de PVC del revestimiento de plástico de los cables. También se libera plomo adicional al quemar los cables de cobre revestidos de plomo. [71]

Con la recuperación térmica del cobre se aumentaría el riesgo potencial de los trabajadores expuestos a plomo, en relación con el factor de tendencia a pasar al ambiente, puesto que como se mencionó en el numeral 4.2, el plomo presente en el cable se liberaría en forma de humo y de acuerdo con la base técnica del modelo COSSH Essentials, con un punto de ebullición como el del plomo (1.740 °C) menor que la temperatura de trabajo (700°C) aplicando el factor (PE ≤ (5 * T +50)) se obtendría una volatilidad media, que al final de la aplicación del modelo, otorgaría al manejo del cable telefónico un nivel de riesgo potencial de cuatro (4).

Por último, en relación con las tarjetas de circuito impreso, como se manifestó en la nota aclaratoria de la Tabla 16, a estas tarjetas en el año 2014 el Laboratorio Ambiental de la Universidad de los Andes (acreditado por el IDEAM mediante Resolución 0502 del 18 de diciembre de 2008) les realizó la prueba de Lixiviación para determinar la característica de Toxicidad (TCLP) bajo el Método EPA SW-846 1311: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods [Métodos de ensayo para evaluar residuos sólidos] que proporciona procedimientos de pruebas y recomendaciones para los métodos de ensayo para determinar los componentes de las características de los residuos (Toxicidad, Inflamabilidad, Reactividad y Corrosividad); en la cual se comprobó que la concentración de plomo es superior en 297 mg/L al nivel máximo permisible establecido por el Decreto 4741 de 2005 del MAVDT (Ver Tabla 19) compilado

64
actualmente en la sección 6 del Decreto 1076 de 2015, con lo que se le atribuye a estas tarjetas la clasificación de residuo o desecho tóxico.

Tabla 19. Resultados de Laboratorio – Toxicidad (TCLP) para tarjetas de circuito impreso

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>UNIDADES</th>
<th>RESULTADO</th>
<th>DECRETO 4741/05</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSENICO</td>
<td>mg/L-As</td>
<td><0.012</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>BARIO</td>
<td>mg/L-Ba</td>
<td>2.37</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CADMIO</td>
<td>mg/L-Cd</td>
<td><0.019</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>CROMO TOTAL</td>
<td>mg/L-Cr</td>
<td><0.012</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>MERCURIO</td>
<td>mg/L-Hg</td>
<td><0.083</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>PLATA</td>
<td>mg/L-Ag</td>
<td><0.031</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>PLOMO</td>
<td>mg/L-Pb</td>
<td>302</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>SELENIO</td>
<td>mg/L-Se</td>
<td><0.006</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:
Los parámetros en negrilla sobrepasa norma

Fuente: Laboratorio Ambiental Universidad de los Andes, 2014

De otro lado, se puede afirmar que la tendencia a pasar al ambiente de las tarjetas de circuito impreso durante el proceso de desensambal y descontaminación realizado en la empresa Orinoco e-Scrap SAS es bajo, pues el plomo está presente en “pilas, baterías y soldaduras blandas” [72] en forma sólida no dispersable, que no tiene tendencia a romperse y no se aprecia polvo durante su manipulación. Sin embargo, la cantidad de tarjetas utilizada durante la operación de desensambal de RAEE es mediana, pues su peso esta dado en kilogramos de residuos, debido a que las tarjetas de circuito impreso están presentes en una gran variedad de aparatos de electrónica con los que los trabajadores están en contacto a diario tales como servidores, computadores, pantallas, entre otros.

En ese sentido, considerando el nivel de riesgo potencial tres (3) obtenido por el cable telefónico y las tarjetas de circuito impreso, el modelo COSHH Essentials sugiere como control el desarrollo de las actividades de desmantelamiento en sistemas cerrados mediante los cuales no exista la posibilidad de que el plomo pase a la atmósfera durante las operaciones ordinarias; este control es relevante en mayor medida para el manejo del cable, que en ocasiones se realiza a la intemperie.

5. DETERMINACIONES BIOLÓGICAS

El laboratorio seleccionado para la realización de la determinación biológica del plomo en los trabajadores que desensamblan RAEE de la empresa Orinoco e-Scrap SAS fue el Laboratorio de Higiene y Toxicología Industrial de la ARL Positiva compañía de seguros de la ciudad de Cali, considerando la facilidad de la empresa para acceder a la asistencia técnica de su ARL; específicamente se trabajó con la sucursal de la ciudad de Cali, debido a que allí se disponía del equipo para realizar la determinación de plomo en sangre.

El método analítico utilizado por el laboratorio fue el método de cámara de grafito/espectrofotometría de Absorción atómica, el cual es un método recomendado por el INSHT. “Como MÉTODO RECOMENDADO se entiende un método evaluado por el INSHT según determinados criterios de validación y que ha sido suficientemente probado mediante ensayos de colaboración entre distintos laboratorios del INSHT”. [73]

“Este método especifica el procedimiento a seguir y el equipo necesario para la determinación de plomo (Nº CAS 7439-92-1) en sangre por espectrofotometría de absorción atómica, en un intervalo de concentración de 5 a 100 µg de Pb/100 ml de sangre (0,24 a 4,82 µmol/litro) aplicable al seguimiento de poblaciones laborales potencialmente expuestas a plomo metálico y sus compuestos iónicos”. [74]

A todos los trabajadores participantes se les presentó el propósito de las mediciones biológicas, así como sus limitaciones y riesgos, para ello se les entregó un consentimiento informado de venopunción (Ver Anexo A). Igualmente, se les indicó que se les informaría de los resultados obtenidos y su análisis; los trabajadores leyeron y firmaron este consentimiento previo a la toma de muestras, notificando a través de su firma que su participación era totalmente voluntaria.

A pesar de que el indicador biológico plomo en sangre no tiene un momento de muestreo crítico por su vida media de eliminación bastante larga y su acumulación en el organismo, la toma de muestras a los siete trabajadores que desensamblan

RAEE en Orinoco e-Scrap SAS fue realizada el día 26 de mayo de 2017 (último día laboral de la semana) en horas de la mañana, en las mismas instalaciones de la empresa, con el fin de considerar una posible acumulación en el organismo durante la semana de trabajo.

La responsable de la toma de las muestras fue una jefe de enfermería, estudiante de la especialización en higiene, seguridad y salud en el trabajo de la Universidad Distrital, quien siguió el Protocolo de toma, empaque y transporte de muestras Biológicas suministrado por el laboratorio (Ver Anexo B) y empleó todo el material entregado por el laboratorio: jeringas, tubos de ensayo en gradilla, aguja hipodérmica y jeringa descartable, así como algodón, guantes, nevera y pilas de frío para conservar las muestras hasta su llegada al laboratorio.

Considerando que el laboratorio está ubicado en la ciudad de Cali, el transporte de las muestras fue realizado por la empresa Deprisa Aeropuerto en la nevera suministrada por el laboratorio, la cual se embaló en una caja rígida y se etiquetó siguiendo la guía sobre la reglamentación relativa al transporte de sustancias infecciosas de la OMS [75], en la cual se establece que las muestras de pacientes incluida la sangre transportada “con fines de estudio, diagnóstico, investigación, y tratamiento y prevención de enfermedades” [76] hace parte de las sustancias infecciosas de categoría B, a las cuales para el transporte se les asigna el número UN 3373 y les aplica la instrucción de embalaje/envasado 650 de las Naciones Unidas (incluida como anexo en esta guía), la cual “comprende todos los requisitos necesarios para el envío de sustancias infecciosas de categoría B”.[77]

Las muestras se entregaron acompañadas del formato de registro de datos de muestras biológicas del laboratorio en el cual se consignaron datos de los trabajadores como nombre, identificación, sexo, edad, oficio y tiempo en el oficio, así como responsable de toma de muestras, fecha y hora de la toma, temperatura de la nevera, responsable del transporte, responsable de la recepción y fecha y hora de recepción. (Ver Anexo C).

5.1. RESULTADOS OBTENIDOS

[76] Ibíd., p.6.
[77] Ibíd., p. 19.
El laboratorio recibió las muestras de plomo en sangre el día 31 de mayo de 2017 y realizó el análisis el 5 de junio de 2017, con unas condiciones ambientales de temperatura de 21°C y un porcentaje de Humedad de 46%. La fecha de emisión del resultado fue el 6 de junio de 2017 y la entrega de resultados a la empresa el 12 de junio de 2017. En dicha fecha se recibieron por medio magnético dos reportes: reporte de resultado individual de plomo en sangre y reporte de resultado grupal de plomo en sangre; en la Tabla 20 se pueden apreciar los resultados de este último reporte.

Tabla 20. Resultados determinación de plomo en sangre

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Oficio</th>
<th>Sexo</th>
<th>Edad</th>
<th>Tiempo de exposición (años)*</th>
<th>μg de Pb/100 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operario</td>
<td>Femenino</td>
<td>51</td>
<td>3</td>
<td>5,22</td>
</tr>
<tr>
<td>2</td>
<td>Operario</td>
<td>Masculino</td>
<td>53</td>
<td>1</td>
<td>15,73</td>
</tr>
<tr>
<td>3</td>
<td>Operario</td>
<td>Masculino</td>
<td>57</td>
<td>1</td>
<td>6,04</td>
</tr>
<tr>
<td>4</td>
<td>Jefe de Bodega</td>
<td>Masculino</td>
<td>28</td>
<td>1</td>
<td>4,73</td>
</tr>
<tr>
<td>5</td>
<td>Operario</td>
<td>Masculino</td>
<td>57</td>
<td>1</td>
<td>5,47</td>
</tr>
<tr>
<td>6</td>
<td>Operario</td>
<td>Masculino</td>
<td>34</td>
<td>1</td>
<td>6,47</td>
</tr>
<tr>
<td>7</td>
<td>Operario</td>
<td>Masculino</td>
<td>34</td>
<td>3</td>
<td>24,61</td>
</tr>
</tbody>
</table>

Fuente: ARL Positiva Compañía de Seguros, 2017
*Exposición expresada por la antigüedad en la empresa Orinoco e-Scrap SAS

El laboratorio tomó como valor de referencia y límite biológico para comparar los resultados obtenidos: 30 μg / 100mL = 300 μg / L (treinta microgramos de plomo por cien mililitros o un litro de sangre entera) y como valor de referencia para mujeres y niños no exceder los índices biológicos de exposición de 10 μg / 100mL = 100 μg / L (diez microgramos de plomo por cien mililitros o un litro de sangre entera). El límite de cuantificación detectado por el método de cámara de grafito/Spectrofotometría de Absorción Atómica fue de 0.5 μg de Pb/100 mL de sangre.

5.2. ENCUESTAS DE SÍNTOMAS
Con el objetivo de recolectar información de síntomas, molestias y percepciones asociados a la exposición a plomo, se aplicó una encuesta de sesenta (60) preguntas a los trabajadores que desensamblan RAEE en la empresa Orinoco e Scrap SAS, distribuidas en siete (7) secciones: i) información general, que contenía además de los datos personales de los trabajadores, algunos datos sociodemográficos; ii) evaluación de la exposición ocupacional y extra ocupacional, que indagaba el tiempo de permanencia en la empresa, así como las actividades laborales anteriores desempeñadas por los trabajadores y la duración aproximada en años y meses; iii) medidas de higiene y seguridad, donde se hacían preguntas de los Elementos de Protección Personal (EPP) y la dotación utilizada en la jornada laboral, su tiempo cambio y lavado, así como el lavado de manos antes de ingerir alimentos, entre otros aspectos de higiene laboral; iv) antecedentes toxicológicos, donde se indagaba sobre hábitos nocivos como el cigarrillo y el consumo de licor; v) antecedentes patológicos, que incluían cuestiones de enfermedades importantes de los trabajadores y sus hijos que pudieran estar relacionadas por la exposición a plomo; vi) síntomas, presentados durante el último año asociados con el sistema nervioso, respiratorio, digestivo, cardíaco, entre otros órganos; vii) condición física y síntomas subjetivos como pérdida de peso, cabello, apetito, entre otros interrogantes que se pueden ampliar en el Anexo D.

De esta manera, en relación con la información sociodemográfica de los trabajadores encuestados y evaluados como se observa en la Figura 9, seis de los siete trabajadores son hombres, en edades que oscilan desde los 28 y hasta los 57 años, se cuenta con una única trabajadora del sexo femenino con edad de 51 años. es de resaltar que, para efectos del análisis de resultados, la numeración de los trabajadores y sus respuestas dadas a las diferentes preguntas que se presentan más adelante, conservan el mismo orden como se presentaron los resultados de la determinación de plomo en sangre de la Tabla 20.

Figura 9. Información sociodemográfica de los trabajadores
Igualmente, en la Figura 10 se puede apreciar el grado de escolaridad de los trabajadores, el cual está representado por dos trabajadores con estudios de secundaria completa, dos trabajadores con estudios de secundaria incompleta y tres trabajadores distribuidos en estudios de primaria completa, técnico completo y formación universitaria incompleta.

Figura 10. Grado de escolaridad de los trabajadores

En relación con la evaluación de la exposición ocupacional y extra ocupacional, en la Tabla 21 se tienen las actividades laborales que los trabajadores manifestaron en la encuesta haber desempeñado antes de ingresar a la empresa Orinoco e-Scrap SAS, relacionando el tiempo aproximado de permanencia expresado en
años y meses. Estas actividades laborales se constituyen en las más representativas y de mayor recordación para los trabajadores, considerando que esta fue la instrucción dada durante la aplicación de la encuesta.

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Actividad laboral anterior</th>
<th>Duración aproximada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Meses</td>
</tr>
<tr>
<td>1</td>
<td>Operario ensamble de equipos de refrigeración</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Jefe producción empresa de químicos</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Jefe planta, empresa de fundición</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Independiente</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Oficinista</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Auxiliar logístico</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Aparejador de grúas, equipos petroleros</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Operario empresa de harinas</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Maestro de construcción</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Operario empresa de reciclaje</td>
<td>6</td>
</tr>
</tbody>
</table>

Con respecto a la percepción de los trabajadores de si están o no en contacto con plomo en su trabajo, se encontró como se ilustra en la Figura 11, que seis de los siete trabajadores manifestaron si estarlo, cuatro de ellos con un tiempo de exposición igual al tiempo de permanencia en la empresa y dos trabajadores con tiempos de exposición acumulados considerando sus actividades laborales anteriores, en las cuales manifestaron haber estado en contacto con plomo como se puede apreciar en las tres primeras columnas de la Tabla 22.

Figura 11. Percepción del contacto con plomo

¿Está en contacto con plomo en su trabajo?

- 86% No
- 14% Sí

Fuente: Autora, 2017
En relación con la frecuencia de contacto, en la encuesta se enlistaban cuatro (4) opciones de contacto: diariamente, semanalmente, mensualmente y otro, siendo esta última como se observa en las últimas dos columnas de la Tabla 22, la opción más seleccionada por cinco de los seis trabajadores que manifestaron estar en contacto con plomo en el trabajo, con cinco (5) horas al día de exposición; igualmente un trabajador manifestó estar en contacto con plomo mensualmente, ocho (8) horas al día de exposición.

Tabla 22. Tiempo de permanencia en la empresa Vs tiempo exposición a plomo

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Tiempo en la empresa (años)</th>
<th>Tiempo contacto con plomo (años)</th>
<th>Frecuencia del contacto</th>
<th>Horas en el día</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>Mensualmente</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>Otro</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Otro: esporádicamente</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>No aplica</td>
<td>Otro: No aplica</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>Otro: esporádicamente</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>Otro</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>8</td>
<td>Otro</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017.

De otro lado, en cuanto a las medidas de higiene y seguridad, todos los trabajadores manifestaron utilizar uniforme para trabajar, cambiarlo luego de la jornada laboral, lavarlo en casa separado del resto de ropa y no ducharse el cuerpo al finalizar la jornada laboral, esto último a causa de la inexistencia de duchas en la empresa.

Todos los trabajadores aseguraron no consumir ningún alimento mientras trabajan, utilizar guantes de poliuretano como principal elemento de protección dérmica, respirador como elemento de protección respiratoria, monogafas como elemento de protección facial y botas en cuero como elemento de protección en miembros inferiores. Como elementos de protección dérmica adicionales, cuatro trabajadores manifestaron utilizar peto o delantal de carnaza y un trabajador utilizar guantes de carnaza, así mismo como elementos de protección personal adicionales seis de los siete trabajadores manifestaron usar casco de seguridad y un trabajador tapa oídos; todos estos elementos de protección suministrados por la empresa, de acuerdo con la normatividad en materia de seguridad y salud en el trabajo.
Siguiendo con las medidas de higiene y seguridad, seis de los siete trabajadores afirmaron cambiarse la ropa de trabajo una vez por semana y un trabajador cambiarse dos veces por semana; igualmente, como se puede observar en la Figura 12, cinco de los siete trabajadores respondieron que siempre lavaban sus manos antes de ingerir alimentos, mientras que dos trabajadores respondieron que antes de ingerir alimentos, a veces lavaban sus manos.

Figura 12. Lavado de manos antes de ingerir alimentos

Continuando con la sección cuatro de antecedentes toxicológicos de la encuesta, como se puede apreciar en la Tabla 23 todos los trabajadores manifestaron haber fumado alguna vez en su vida, sin embargo, dos de los siete trabajadores aseguraron no fumar actualmente. De los trabajadores que hoy día tienen el hábito de fumar, se resalta el consumo de los trabajadores 3 y 5 considerando los años que llevan fumando y la cantidad de cigarrillos que se fuman en un día, así mismo el trabajador 6 a pesar de no fumar a diario lleva también más de la mitad de su vida consumiendo cigarillo; por último, los trabajadores 2 y 7 a pesar de tener pocos años fumando, consumen bastantes cigarillos a diario, pudiendo también sufrir las consecuencias de los efectos del tabaco.
Tabla 23. Consumo de cigarrillo

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Ha fumado alguna vez</th>
<th>Fuma actualmente</th>
<th>Edad</th>
<th>Hace cuánto tiempo fuma (años)</th>
<th>Cuántos cigarrillos fuma al día</th>
<th>Tiempo que dejó de fumar (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Si</td>
<td>No</td>
<td>51</td>
<td>-</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Si</td>
<td>Si</td>
<td>53</td>
<td>4</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Si</td>
<td>Si</td>
<td>57</td>
<td>40</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Si</td>
<td>No</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Si</td>
<td>Si</td>
<td>57</td>
<td>37</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Si</td>
<td>Si</td>
<td>34</td>
<td>19</td>
<td>No diario</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Si</td>
<td>Si</td>
<td>34</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017

En relación con el consumo de licor, seis de los siete trabajadores manifestaron consumir licor, siguiendo una frecuencia de consumo como se ilustra en la Figura 13 de: ocasional en un 43% de los trabajadores, semanal en un 29% de los trabajadores y un 28% de los trabajadores distribuidos entre frecuencia de consumo muy ocasional y no sabe no responde (NS/NR) correspondiente a la respuesta del trabajador que manifestó no consumir licor.

Figura 13. Frecuencia del consumo de Licor

Fuente: Autora, 2017
Por su parte, en la sección de antecedentes patológicos, todos los trabajadores manifestaron no haber presentado ninguna vez epilepsia, párkinson, eventos cerebro vasculares, ni traumas severos con pérdida de conciencia. Igualmente, la única trabajadora del área operativa manifestó no estar embarazada.

Con respecto a enfermedades importantes de los trabajadores como se puede observar en la Tabla 24 sólo un trabajador manifestó sufrir de hipertensión, el resto negaron tener enfermedades importantes; del mismo modo, todos los trabajadores excepto uno afirmaron que sus hijos no han presentado enfermedades importantes desde que nacieron, siendo revelado únicamente un caso de obstrucción intestinal al nacer.

Tabla 24. Enfermedades importantes de los trabajadores y sus hijos

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Tiene alguna enfermedad importante</th>
<th>Enfermedades importantes de hijos desde que nacieron</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Si: Hipertensión</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Obstrucción intestinal al nacer, masculina</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017

En relación con la sintomatología asociada a los diferentes sistemas del cuerpo humano, se encontró que todos los trabajadores negaron haber presentado durante el último año síntomas asociados con el sistema cardiaco; igualmente, como se ilustra en la Tabla 25 sólo un trabajador manifestó no presentar ninguno de los síntomas cuestionados para cada sistema, el resto de los trabajadores manifestaron haber presentado síntomas asociados por lo menos a dos de los seis sistemas y órganos presentados.
<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Síntomas asociados con el sistema nervioso</th>
<th>Síntomas asociados al sistema respiratorio</th>
<th>Síntomas asociados con los órganos de los sentidos</th>
<th>Síntomas asociados con el riñón</th>
<th>Síntomas asociados con el sistema digestivo</th>
<th>Síntomas asociados con el sistema cardiaco</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>Tos</td>
<td>Visión borrosa</td>
<td>Orina con mucha frecuencia</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Micción involuntaria</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Calambres y contracciones musculares</td>
<td>Dolor abdominal</td>
<td>Pérdida de la audición</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatiga</td>
<td>Visión borrosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Fatiga</td>
<td>Pérdida de la audición</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Visión borrosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Calambres y contracciones musculares</td>
<td>Fatiga</td>
<td>Pérdida de la audición</td>
<td>No</td>
<td>Diarrea</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Visión borrosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Calambres y contracciones musculares</td>
<td>Dolor abdominal</td>
<td>Visión borrosa</td>
<td>No</td>
<td>Dolor abdominal</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatiga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Calambres y contracciones musculares</td>
<td>Dolor abdominal</td>
<td>Pérdida de la audición</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatiga</td>
<td>Visión borrosa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autora, 2017

De esta manera, en la Figura 14 se presenta un diagrama de barras que compara visualmente el número de trabajadores que manifestaron haber presentado los síntomas asociados a los diferentes sistemas del cuerpo humano consignados en la Tabla 25.
Por último, en la encuesta se quiso indagar sobre la condición física y síntomas un poco más subjetivos de los trabajadores, encontrándose que todos los trabajadores declararon sentirse saludables y sentirse bien después de una noche habitual de sueño, adicionalmente todos los trabajadores manifestaron no haber presentado ninguna enfermedad renal diferente a la infección urinaria, ni salivación excesiva; sin embargo, como se puede apreciar en la segunda columna de la Tabla 26, el 43% de los trabajadores manifestaron haber presentado sabor metálico en la boca una vez al mes y otro 14% una vez a la semana.

Tabla 26. Condiciones físicas y síntomas subjetivos de los trabajadores

<table>
<thead>
<tr>
<th>Trabajador</th>
<th>Ha presentado sabor metálico en la boca</th>
<th>Cómo es su apetito</th>
<th>Ha perdido peso en el último año</th>
<th>Ha perdido el cabello en el último año</th>
<th>Ha sentido dolor de cabeza</th>
<th>Se ha sentido triste o irritable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nunca</td>
<td>Bueno</td>
<td>No</td>
<td>No</td>
<td>Al menos una vez al mes</td>
<td>Al menos una vez al mes</td>
</tr>
<tr>
<td>2</td>
<td>Al menos una vez al mes</td>
<td>Bueno</td>
<td>Si</td>
<td>Sí, francamente a severo</td>
<td>Al menos una vez al mes</td>
<td>Al menos una vez al mes</td>
</tr>
<tr>
<td>3</td>
<td>Nunca</td>
<td>Bueno</td>
<td>Si</td>
<td>No</td>
<td>Nunca</td>
<td>Al menos</td>
</tr>
<tr>
<td>Trabajador</td>
<td>Ha presentado sabor metálico en la boca</td>
<td>Cómo es su apetito</td>
<td>Ha perdido peso en el último año</td>
<td>Ha perdido el cabello en el último año</td>
<td>Ha sentido dolor de cabeza</td>
<td>Se ha sentido triste o irritable</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Nunca</td>
<td>Bueno</td>
<td>No</td>
<td>No</td>
<td>Nunca</td>
<td>Nunca</td>
</tr>
<tr>
<td>5</td>
<td>Al menos una vez al mes</td>
<td>Medio</td>
<td>Sí</td>
<td>No</td>
<td>Al menos una vez al mes</td>
<td>Al menos una vez a la semana</td>
</tr>
<tr>
<td>6</td>
<td>Al menos una vez a la semana</td>
<td>Bueno</td>
<td>No</td>
<td>No</td>
<td>Al menos una vez al mes</td>
<td>Al menos una vez al mes</td>
</tr>
<tr>
<td>7</td>
<td>Al menos una vez al mes</td>
<td>Bueno</td>
<td>Sí</td>
<td>No</td>
<td>Al menos una vez al mes</td>
<td>Al menos una vez al mes</td>
</tr>
</tbody>
</table>

Siguiendo con el detalle de la información presentada en la Tabla 26, se tiene que seis de los siete trabajadores manifestaron tener un apetito bueno y un trabajador un apetito medio, no obstante, el 57% de la población trabajadora aseguró haber perdido peso en el último año y un trabajador haber perdido el cabello de francamente a severo.

Finalmente, el 71% de los trabajadores manifestaron presentar dolores de cabeza y sentirse tristes o irritables una vez al mes, encontrándose como se observa en la Tabla 26, un trabajador que manifestó no sentir nunca estos dos síntomas y otro trabajador que por el contrario afirmó sentirse triste una vez a la semana.
6. ANÁLISIS DE RESULTADOS

Los resultados de las determinaciones biológicas muestran que el trabajador que más bajo tuvo el nivel de plomo en sangre fue el jefe de bodega (trabajador No. 4 con 4,73 μg de Pb/100 mL, ver Tabla 20) quien al interior de la empresa desarrolla menos actividades de desensamble y almacenamiento de RAEE, y más trabajo de computador y escritorio, motivo por el cual posiblemente fue el único trabajador que en la encuesta aplicada consideró que en su trabajo no está en contacto con plomo. Sin embargo, se debe considerar que es el trabajador del área operativa más joven y por ello con menos tiempo de vida laboral, además sin antecedentes ocupacionales de contacto con plomo, de acuerdo con lo manifestado en la encuesta.

Por su parte, los dos trabajadores con mayores niveles de plomo en sangre manifestaron en las encuestas que antes de ingresar a la empresa trabajaron en empresa de reciclaje para el caso del trabajador No. 7 quien obtuvo 24,61 μg de Pb/100 mL y en empresas de químicos y fundición para el caso del trabajador No. 2 quien obtuvo un resultado de 15,73 μg de Pb/100 mL (Ver tabla 21).

Estas actividades laborales previas pudieron incidir en el resultado de la medición, pues están contempladas en la tabla de enfermedades laborales vigente como ocupaciones o industrias con factores de riesgo ocupacional por varios agentes químicos incluido el plomo, el cual como se ha mencionado con anterioridad se acumula en el organismo durante años y en ocasiones durante toda la vida.

Particularmente, estos dos trabajadores fueron los únicos que, en las encuestas como se mencionó anteriormente incluyeron en el tiempo de contacto con plomo además del tiempo de permanencia en Orinoco e-Scrap SAS, el tiempo que permanecieron en sus actividades laborales anteriores, como se puede apreciar en la Tabla 22.

De otro lado, es importante resaltar que, en la sección de medidas de higiene y seguridad de la encuesta aplicada, todos los trabajadores manifestaron utilizar respiradores como elemento de protección respiratoria; el cual es un respirador de partículas N95 con válvula de exhalación y filtro que, aunque no es resistente al aceite, elimina al menos el 95% de las partículas más penetrantes.
No obstante, en inspecciones frente al uso de EPP en la empresa, se ha encontrado que no todos los trabajadores usan los respiradores de forma correcta ni durante todas las actividades realizadas en el área de bodega, lo cual facilita la inhalación de partículas de plomo, debido a su tendencia a pasar al ambiente, sobre todo en el desensamblaje de monitores y televisores de TRC, como se mencionó en el numeral 4.5 de este documento.

En ese sentido, a pesar de que los resultados de las determinaciones biológicas de todos los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap SAS se encuentran por debajo del límite del BEI plomo en Sangre (30 μg /100 mL) emitido por la ACGIH, tener al 86% de los trabajadores con valores de exposición al plomo mayores a 5 μg/dL o, lo que es igual a 5 μg/100 mL se puede considerar problemático, ya que sobre este nivel de exposición está comprobado que se pueden presentar problemas de salud, considerando la peligrosidad del plomo a bajos niveles de exposición.

Se referencia este valor debido a que en el año 2015 NIOSH, [78] a través del programa de Epidemiología y vigilancia del plomo en sangre de adultos (ABLES) por sus siglas en inglés [Adult Blood Lead Epidemiology and Surveillance] definió que un nivel de plomo en sangre mayor a 5 μg/dL es considerado elevado y a pesar de que no se constituye en un BEI, las directrices actuales para el manejo médico de adultos expuestos al plomo implementadas por parte de la comunidad médica estadounidense consideran este valor como referencia. Estas directrices y recomendaciones están disponibles en el Departamento de Salud Pública de California, la Asociación de Clínicas Ocupacionales y Ambientales, y en el Subcomité de Vigilancia de Salud Ocupacional del Consejo de Estado y Territorio Epidemiólogo (CSTE) de los Estados Unidos.

De esta manera, es importante tener en cuenta este parámetro como medida de protección para la salud de los trabajadores de la empresa y sus familias, de modo que incida en la adopción prioritaria de medidas de control que minimicen la exposición a plomo y eviten que a futuro los trabajadores o miembros de sus familias puedan presentar sintomatología asociada a enfermedades catalogadas como laborales como son: angiosarcoma de hígado, neoplasia maligna de bronquios y de pulmón, neuritis óptica y ambliopía o amaurosis tóxica, alteraciones de la función vestibular y/o nervio vestibular, hipoacusia ototóxica, aterosclerosis,

infertilidad masculina, hipotiroidismo, además de otros trastornos mentales derivados de lesión o disfunción cerebral o enfermedad física e intoxicaciones por los efectos tóxicos del plomo, entre otras.

Es de resaltar que, en la encuesta aplicada dentro de los síntomas más representativos de exposición a plomo asociados a los diferentes sistemas y órganos del cuerpo, se encontró que el 86% de los trabajadores manifestaron presentar visión borrosa, un 71% fatiga, 57% pérdida de la audición, calambres y contracciones musculares y 43% dolor abdominal asociado al sistema respiratorio (Ver Figura 14).

Igualmente, dentro de los síntomas subjetivos de exposición a plomo más representativos manifestados por los trabajadores en la encuesta, se encontró que, como se mencionó anteriormente, el 71% de los trabajadores manifestaron presentar dolores de cabeza y sentirse tristes o irritables una vez al mes, el 57% haber perdido peso en el último año y el 43% haber presentado sabor metálico en la boca una vez al mes (Ver Tabla 26).

En efecto, los dos trabajadores con mayores niveles de plomo en sangre manifestaron en la encuesta haber presentado la totalidad de estos síntomas, los cuales son síntomas asociados a enfermedades laborales por exposición a plomo como las mencionadas anteriormente, por lo cual es prudente presentar especial atención en las medidas de control para estos dos trabajadores.

Finalmente, considerando los riesgos de la exposición a plomo presentados, el nivel de riesgo químico potencial obtenido para los tres tipos de residuos evaluados mediante el método de evaluación simplificada del riesgo por inhalación de plomo, basado en el COSHH Essentials, además de los resultados de las determinaciones biológicas de plomo y las encuestas aplicadas, es posible que exista relación entre el cargo desempeñado en la empresa, los antecedentes ocupacionales y el riesgo potencial de inhalación de plomo.

Es por ello que se debe considerar para futuras mediciones biológicas a todos los trabajadores de la empresa incluyendo los trabajadores administrativos, con el fin de establecer asociaciones más claras en relación con la exposición a plomo y el oficio desempeñado al interior de la empresa, además de actividades laborales anteriores desempeñadas por los trabajadores.
7. CONCLUSIONES

- El plomo presente en los RAEE en forma de polvo inorgánico puede ser inhalado y absorbido a través del sistema respiratorio durante las actividades de desensamble, transporte, compactación y almacenamiento.

- El desensamble manual de monitores y televisores de Tubos de Rayos Catódicos (TRC) desarrollado por los trabajadores operativos de la empresa Orinoco e-Scrap SAS, tiene un nivel de riesgo potencial cuatro (4) de acuerdo con la evaluación simplificada del riesgo por inhalación COSHH Essentials aplicada, debido a la alta peligrosidad del plomo, la media cantidad utilizada y su facilidad para formar polvo y liberarse al ambiente.

- El desensamble manual de cable y tarjetas de circuito impreso desarrollado por los trabajadores operativos de la empresa Orinoco e-Scrap SAS, tiene un nivel de riesgo potencial tres (3) de acuerdo con la evaluación simplificada del riesgo por inhalación COSHH Essentials aplicada, debido a la alta peligrosidad del plomo, la media cantidad utilizada y la baja pulverulencia del plomo durante la operación.

- Todos los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap SAS se encuentran por debajo del límite del Indicador Biológico de Exposición plomo en Sangre (30 μg /100 mL) emitido por la ACGIH.

- El 86% de los trabajadores que desensamblan RAEE en la empresa Orinoco e-Scrap SAS presentaron valores de exposición a plomo mayores a 5 μg/100 mL los cuales a pesar de que no se superan el BEI, se pueden considerar como valores elevados de acuerdo con el programa de Epidemiología y vigilancia del plomo en sangre de adultos (ABLES) de NIOSH.

- Actividades laborales previas al ingreso a Orinoco e-Scrap SAS desempeñadas por dos trabajadores en empresas de reciclaje, químicos y fundición, incidieron en el resultado de la medición, obteniéndose los dos niveles más altos de plomo en sangre, 24,61 μg de Pb/100 mL y 15,73 μg de Pb/100 mL por estas actividades, respectivamente.
• Más del 50% de los trabajadores manifestaron en las encuestas haber presentado calambres y contracciones musculares, fatiga, pérdida de la audición y visión borrosa, además de dolores de cabeza, sentirse tristes o irritables una vez al mes y haber perdido peso en el último año, con lo cual se puede confirmar que ya existen síntomas importantes que podrían estar asociados a enfermedades laborales por exposición a plomo al interior de la empresa.
8. RECOMENDACIONES Y MEDIDAS DE CONTROL

Las recomendaciones y medidas de control e intervención que se presentan a continuación se basan en el enfoque de jerarquía de controles contemplado en la Norma NTC-OHSAS 18001: 2007, el cual busca eliminar, reducir y controlar los riesgos a los que los trabajadores están expuestos considerando ese orden para la adopción e implementación de los controles, de manera que se inicia desde la eliminación, sustitución de sustancias o actividades peligrosas de una operación, la instalación de controles de ingeniería para reducir la exposición o proteger mejor a los trabajadores, hasta la señalización/advertencia o controles administrativos o ambos y por último el uso de equipo de protección personal.

De esta manera, considerando los resultados del método de evaluación simplificado para riesgo químico aplicado y las determinaciones biológicas tomadas se recomienda:

8.1. CONTROLES DE INGENIERÍA

Entendidos como medidas técnicas para el control del riesgo en su origen (fuente) y/o en el medio, tales como:

- Dividir el área de desensamblaje entre desensamblaje de monitores y televisores TRC y demás categorías de RAEE, con el fin de aislar el desensamblaje de monitores y televisores TRC y reducir la contaminación de otras áreas teniendo en cuenta el polvo con contenido de plomo y otros metales, que se genera durante la manipulación de los TRC.

- Instalar un sistema de Ventilación por Extracción Localizada (VEL) para el área de desensamblaje de monitores y televisores de TRC, el cual deberá ubicarse cerca del cañón de electrones, con el fin de que al momento de separarlo del tubo de rayo catódico se logren captar los contaminantes químicos presentes incluido el plomo, impidiendo la incorporación de estos contaminantes al ambiente laboral y evitando así la inhalación por parte de los trabajadores. (Ver Figura 15). Para esta medida es importante que se mantenga
el área de las oficinas bajo presión positiva del aire en relación con el aire del área de bodega, de manera que se tenga en las oficinas mayor flujo de entrada de aire que flujo de aire de salida y que el aire de salida fluya de las oficinas a la bodega, con el fin de que el aire no sea arrastrado desde la bodega a la entrada de aire exterior de las oficinas.

Figura 15. Sistema de extracción localizada en el tratamiento de TRC

- Adquirir un colector de polvo portátil para el proceso de desensamble de monitores y televisores TRC, tarjetas de circuito impreso y demás residuos que se consideren pertinentes, con el fin de realizar extracción localizada y control de pequeños volúmenes de polvo generados durante el desensamble, incluyendo la extracción de la capa fosforescente que se deposita en el interior del vidrio de pantalla de los TRC (Ver Figura 16). Con esta medida además de proteger a los trabajadores, se disminuye el tiempo de barrido y limpieza de las áreas de trabajo y con ello la exposición a polvo metálico con trazas de plomo durante la actividad de limpieza en la empresa.
86

Figura 16. Extracción capa fosforescente vidrio de pantalla de TRC

- Instalar como mínimo una ducha para cada baño (separado por sexo) con toallas y jabones para uso individual, de acuerdo con lo establecido por la normatividad en materia de higiene, seguridad y salud en el trabajo, de tal manera que se pueda exigir a los trabajadores ducharse antes de abandonar las instalaciones de la empresa.

8.2. CONTROLES ADMINISTRATIVOS

En relación con los controles administrativos, entendidos como prácticas y políticas de trabajo que tienen como fin reducir o prevenir el tiempo de exposición al peligro se propone:

- Para tener una evaluación higiénica completa de la empresa en relación con la exposición a plomo: evaluación biológica (ya efectuada) y evaluación ambiental, se recomienda realizar mediciones ambientales periódicas de plomo y otros contaminantes químicos en el área de bodega y oficinas, mediante
muestreo por área y muestreo personal, de manera que se tengan resultados a nivel de sitio y por trabajador, incluyendo al personal del área administrativa, considerando que la empresa es pequeña y puede haber circulación de las sustancias peligrosas de un área a otra. Igualmente, se recomienda continuar con las determinaciones biológicas de plomo en sangre una vez al año, con el fin de monitorear la exposición a este metal.

- Verificar y monitorear con frecuencia la eficacia de los controles de ingeniería implementados, con el fin de asegurar que las concentraciones de sustancias peligrosas en el aire (incluido el plomo) se mantengan por debajo de los límites permisibles.

- Contratar un servicio de lavandería industrial para la ropa de trabajo, con el fin de realizar un proceso completo de limpieza de estas prendas que incluya: lavado, desinfección, secado y planchado, con lo cual además se evita que los trabajadores deban llevar a sus casas los overoles y zapatos de trabajo contaminados y que estos puedan entrar en contacto con la ropa de diario propia y de sus familiares.

- Informar a la institución prestadora de los servicios de salud que realiza las evaluaciones médicas en la empresa, sobre el alto riesgo potencial de exposición a plomo por el desensamble de monitores y televisores TRC en la empresa, con el fin de que se tenga especial atención en la realización de evaluaciones médicas pre ocupacionales o de pre ingreso y en las evaluaciones médicas ocupacionales periódicas de los trabajadores que adicionalmente en su historia clínica tienen antecedentes ocupacionales con plomo.

- Rotar las actividades de desensamble de los diferentes residuos entre los trabajadores, con el fin de reducir el tiempo de exposición a plomo por el desensamble de monitores o televisores TRC, considerando para ello a los trabajadores con mayores niveles de plomo en la sangre.

- Socializar a los trabajadores la técnica adecuada para el lavado de manos y su periodicidad, la cual debe realizarse siempre antes de comer, beber o fumar preferiblemente con agua y jabón con acción para eliminar metales pesados, con el fin de expeler de las manos residuos de metales pesados como el plomo.

- Fortalecer las actividades desarrolladas para el cumplimiento de la política para la prevención de consumo de bebidas alcohólicas, tabaco y sustancias
psicoactivas de la empresa, considerando que el grado de absorción de plomo, se ve favorecido entre otros factores por hábitos nocivos como el fumar y el beber alcohol.

8.3. ELEMENTOS DE PROTECCIÓN PERSONAL (EPP)

A pesar de que los EPP no eliminan o ni reducen los peligros a los que están expuestos los trabajadores, si disminuyen el grado de exposición, para este caso a sustancias tóxicas como el plomo, de esta manera es recomendable:

- Suministrar a los trabajadores que desensamblan monitores y televisores TRC, respiradores desechables con filtro P100 o N100, los cuales ofrecen reducción de exposición a partículas de plomo según normas de la OSHA, con una eficacia de filtrado del 100% de acuerdo con NIOSH, además de “protección respiratoria contra polvos, humos y partículas líquidas” [79] con y sin aceite, respectivamente (Ver Figura 17). Así mismo se recomienda proporcionar entrenamiento y reentrenamiento en el método de uso de este respirador, con el fin de fortalecer su correcta utilización durante toda la jornada laboral.

Figura 17. Respirador P100

• Proporcionar guantes resistentes a cortaduras para uso diario en el desensamble de RAEE, los cuales podrán ser reutilizarlos por los trabajadores cuando estos estén sucios, suministrando para ello guantes limpios para uso interno (por ejemplo de nitrilo o algodón); en esta medida es importante que los guantes sucios y reutilizables resistentes a cortes no salgan del área de trabajo, de manera que se evite la contaminación de otras prendas y se les pueda dar una adecuada eliminación después de su uso.

• Suministrar y verificar la utilización de gafas de protección para uso diario y permanente en el desensamble de todo tipo RAEE, con el fin de proteger los ojos de los trabajadores del polvo fino que se genera durante esta actividad, además de la proyección e impacto de partículas y partes pequeñas resultantes del desensamble.

• Como elementos de protección adicionales, especialmente para el desensamble de TRC (Ver Figura 18) se recomienda el uso de delantal de protección contra cortes, perforaciones y punciones considerando el contacto con vidrios de pantalla y de cono; igualmente se recomienda el uso de mangas de protección para los brazos donde habitualmente queda un espacio entre los guantes y el overol de trabajo.

Figura 18. Elementos de protección para el desensamble de TRC

9. BIBLIOGRAFÍA

COLOMBIA. INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES IDEAM. Resolución 0062. (2, marzo, 2007). Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización físicoquímica de los residuos o desechos peligrosos en el país. [Consultado el 2 de Abril de 2017]. Disponible en internet: http://www.ideal.gov.co/documents/51310/56882/Parte_1_Resolucion_0062_de_2007.pdf/6cd355a-2bfc-403a-83ae-5f4fde24e5dc

COLOMBIA MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL. Decreto 4741 (30, diciembre, 2005). Por el cual se reglamenta parcialmente la prevención y manejo de los residuos o desechos peligrosos generados en el marco de la gestión integral. [Consultado el 2 de Abril de 2017].

COLOMBIA MINISTERIO DE TRANSPORTE. Decreto 1609 (31, julio, 2002). Por el cual se reglamenta el manejo y transporte terrestre automotor de mercancías peligrosas por carretera. [Consultado el 2 de Abril de 2017]. Disponible en internet: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=6101

INSTITUTO NACIONAL DE SEGURIDAD E HIGIENE EN EL TRABAJO. NTP 750: Evaluación del riesgo por exposición inhalatoria de agentes químicos. Metodología simplificada. 2006. [Consultado el 1 de Agosto de 2017]. Disponible en internet:

SPITZBART, Markus. Introducción al desensamble Manual de RAEE. EN Evento de Divulgación Tecnológica Fundamentos en manejo de Resíduos de Aparatos

10. ANEXOS

Anexo A. Consentimiento Venopunción

1. VENOPUNCIÓN

Es la extracción de sangre de una vena, usualmente para pruebas de laboratorio

1.1 en qué consiste la venopunción

Es la introducción de una aguja estéril en una vena. Usualmente se toma la muestra en la parte interior del codo o del dorso de la mano para la extracción de 5-25mL de sangre. La sangre se coloca en un tubo de ensayo estéril preparado para transportarla y conservarla de manera apropiada siguiendo los requerimientos implementados en el laboratorio.

1.2 Riesgos de la venopunción

A pesar de la adecuada elección de la técnica y de su correcta realización, pueden presentarse efectos indeseables y los específicos del procedimiento, como: experimentar incomodidad y dolor en el sitio de la inserción de la aguja, puede sufrir sangrado excesivo, hematomas, lesiones en los nervios, mareo, náusea y desmayos; así como contracciones musculares involuntarias y muy raramente infecciones del sitio de punción, puede presentarse la necesidad de funcionar varias veces antes de lograr una canalización adecuada.

En algunas ocasiones se puede presentar la necesidad de tomar nueva muestra con el fin de confirmar resultados o en el caso de que la muestra no sea apta para su procesamiento.

Ningún procedimiento invasivo está absolutamente exento de riesgos importantes.

Nota: De acuerdo con la Ley 1581 de 2012, el Laboratorio de Higiene y Toxicología Industrial de Positiva Compañía de Seguros S.A., utilizará los datos personales tomados en las muestras solamente para el registro de los resultados de los análisis biológicos.
Los trabajadores relacionados a continuación dan fe de entender la anterior instrucción y autorizan realizar el procedimiento enunciado.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cédula</th>
<th>Empresa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Orinoco Scrap</td>
</tr>
</tbody>
</table>
Toma, empaque y transporte de muestras biológicas

Toma de muestras de sangre

Cuando se requiera, las muestras de sangre serán tomadas directamente en las instalaciones de la empresa, caso en el cual será responsabilidad del personal capacitado del laboratorio quien seguirá lo dispuesto en la misma guía, en el que además se explica cómo se deben identificar las muestras, y luego registrar los datos del paciente en los Registros de Datos de Muestras Biológicas.

Al momento de tomar las muestras se debe firmar el consentimiento de venopunción por parte del paciente.

Empaque y transporte de muestras de sangre

Quien realiza la toma de muestras es responsable de empacarlas adecuadamente y de transportarlas con el suficiente cuidado para evitar derrames, pérdidas o contaminación de las mismas, así como alteraciones debidas a acciones mecánicas, calentamiento o exposición a la luz natural.

- Los recipientes para transporte de muestras deben ser de material irrompible y cierre hermético. Deben tener preferiblemente tapas de rosca.

- Manipular, transportar y enviar las muestras disponiéndolas en recipientes seguros, con tapa y debidamente rotuladas, empleando gradillas limpias para su transporte. Las gradillas a su vez se transportarán en recipientes herméticos de plástico o acrílico que detengan fugas o derrames accidentales. Además, deben ser fácilmente lavables.

- En caso de contaminación externa accidental del recipiente, éste debe desinfectarse, enjuagarse con agua y secarse.

- El espacio físico donde se reciban y tomen muestras debe ser independiente de las otras áreas del laboratorio.

- La persona que reciba o toma las muestras debe conocer las recomendaciones, para evitar tener contacto con secreciones y/o líquidos corporales.

- Las muestras se deben colocar en recipientes hondos para transportarlas del sitio de recepción al lugar de procesamiento.

- Todos los procedimientos se deben realizar con extremo cuidado para evitar formar aerosoles y/o salpicaduras o tener contacto con los fluidos corporales o contacto directo con los microorganismos.

- Al transportar las muestras, éstas deben estar muy bien identificadas.

- Adjuntar la hoja de remisión con los datos del paciente y datos de la muestra.

- Todas las muestras deben taparse herméticamente y colocarse en un recipiente de paredes resistentes, para evitar riesgos de infección en caso de accidente.
Informar al personal, en forma clara y precisa sobre el tipo de muestra que va a transportar y las precauciones que debe observar para evitar riesgo de infección o accidentes.

Las muestras tomadas en las instalaciones de la empresa o en cualquier otra parte por fuera de las instalaciones del laboratorio, deberán ser remitidas refrigeradas y deben llegar al laboratorio el mismo día de la toma de muestras. Las muestras de sangre en sus respectivos tubos, serán empaquetadas en cajas con gradilla de manera que se transporten en posición vertical y se debe asegurar que no exista contacto directo entre el material refrigerado y los tubos con las muestras.

Recolección de muestras de orina

Las muestras de orina puntual serán recolectadas por la persona que requiera el análisis, a quien, la Bacterióloga y/o el Auxiliar de Laboratorio deberán entregar Guía para la Toma de Muestras de Orina y en los casos en que sea necesario entregarán también el recipiente para la toma de la muestra, y luego la bacterióloga y/o el Auxiliar de Laboratorio registrará los datos correspondientes en el Registro de Datos de Muestras Biológicas.

Empaque y transporte de muestras de orina

Quien realiza la toma de muestras es responsable de empaquetarlas adecuadamente y de transportarlas con el suficiente cuidado para evitar derrames, pérdidas o contaminación de las mismas, así como alteraciones debidas a acciones mecánicas o calentamiento.

Las muestras tomadas en las instalaciones de la empresa o en cualquier otra parte por fuera de las instalaciones del laboratorio, deberán ser remitidas refrigeradas y deben llegar al laboratorio el mismo día de la toma de muestras.

Prevención y Control de Accidentes

Desvanecimiento de la persona

Si una persona se desvanece cuando se le está obteniendo la muestra de sangre, se sugiere solicitar que la retenga mientras se retira la aguja. Seguidamente acostar al paciente. Si la víctima usa prendas de vestir apretadas, aflojarlas. Voltear la cabeza de la persona desvanecida hacia un lado, para que en caso de que vomite no se ahogue. Colocar los pies elevados a una altura superior al corazón. Solicitar ayuda médica.

Cortes o pinchazos

Si se produce un corte o pinchazo con material con el que se ha estado obteniendo la muestra al paciente, se debe lavar inmediatamente la zona con abundante agua y jabón oprimiendo la herida de tal forma que se permita la salida de sangre.

Seguidamente debe acudir a cualquier IPS (Clínica u Hospital) más cercana al sitio de ocurrencia del evento para la evaluación correspondiente. Hacer el seguimiento de la
muestra del paciente y de ser posible hacerle exámenes adicionales a la solicitada (HIV y hepatitis) para determinar el riesgo de infección. Ante un accidente de riesgo biológico, el afiliado afectado puede acudir para su atención de urgencias a cualquier IFS (Clínica u Hospital) más cercana al sitio de ocurrencia del evento.

Salpicaduras de muestra a los ojos

Se debe tener cerca un lavador de ojos. El personal debe entrenarse continuamente en llegar con los ojos cerrados al lavador de ojos. Abrir los ojos y permitir que el agua fluya por unos minutos. Reportar el accidente.

Contaminación de la piel

Si alguna parte de la piel se ha expuesto a la muestra del paciente laver profusamente con agua y jabón, siempre y cuando la piel haya estado intacta, de no ser así seguir el procedimiento mencionado en el ítem de cortes o pinchazos.
Anexo C. Registro de datos de muestras biológicas

<table>
<thead>
<tr>
<th>Item</th>
<th>No. Lab</th>
<th>Nombres y Apellidos Completos del Trabajador</th>
<th>No. Affiliación (C.C / T.I / C.E)</th>
<th>Sexo</th>
<th>Edad</th>
<th>Oficio</th>
<th>Tiempo en el oficio</th>
<th>Se rechaza</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td>Operator</td>
<td>30min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>Operator</td>
<td>10min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>Operator</td>
<td>10min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>Jefe de Producción</td>
<td>10min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>Operator</td>
<td>10min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>Operator</td>
<td>10min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>Operator</td>
<td>10min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsable de la toma de muestra</td>
<td>Firmas</td>
<td>Fecha</td>
<td>Hora</td>
<td>Temperatura inicial de la nevada °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 Mayo 2019</td>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportado por</td>
<td></td>
<td>26 Mayo 2019</td>
<td></td>
<td>Temperatura de la recepción de la nevada °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsable de la recepción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo D. Cuestionario de síntomas asociados a exposición a plomo por el manejo de Residuos de Aparatos Eléctricos y Electrónicos (RAEE)

CUESTIONARIO DE SÍNTOMAS ASOCIADOS A EXPOSICIÓN A PLOMO POR EL MANEJO DE RESIDUOS DE APARATOS ELÉCTRICOS Y ELECTRÓNICOS (RAEE) EN LA EMPRESA ORINOCO E-SCRAP SAS

CONFIDENCIAL:

Los datos solicitados en este instrumento son confidenciales. Serán usados únicamente para efectos de análisis y no se publicará información en forma individual.

I. INFORMACIÓN GENERAL

1. **Nombre**
2. **Edad en años cumplidos**
3. **Sexo**
4. **Tipo de documento de identificación**
 - C.C.
 - T.I.
 - D.T.R.C.
5. **Número de identificación**
6. **Municipio**
7. **Teléfono**
8. **¿Hace cuánto tiempo trabaja en la empresa?**
9. **Escolaridad:**
 - Analfabeto
 - Técnico incompleto
 - Primaria incompleta
 - Primaria completa
 - Secundaria incompleta
 - Universitaria incompleta
 - Secundaria completa
 - Universitaria completa
 - Otro

II. EVALUACIÓN DE LA EXPOSICIÓN OCUPACIONAL Y EXTRAOCCUPACIONAL

10. **Durante cuánto tiempo lleva laborando en su oficio actual?**
11. **¿Cuánto tiempo ha trabajado en la misma empresa?**

<table>
<thead>
<tr>
<th>Actividad laboral anterior</th>
<th>Duración aproximada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meses</td>
</tr>
<tr>
<td></td>
<td>Años</td>
</tr>
</tbody>
</table>

12. **¿Está en contacto con plomo en su trabajo?**
13. **¿Desde hace cuánto tiempo?**
14. **Explica la frecuencia del contacto**
 - Diariamente
 - Semanalmente
 - Mensualmente
 - Otro

III. MEDIDAS DE HIGIENE Y SEGURIDAD

15. **¿Cuál es el tipo de ropa que usa para el trabajo?**
 - Técnico de diario
 - Uniforme o ropa de trabajo
16. **¿Se cambia de ropa de trabajo para terminar su jornada laboral?**
 - Sí
 - No
 - NS/NR

<table>
<thead>
<tr>
<th>Diario</th>
<th>Una vez/sem.</th>
<th>2 veces/sem.</th>
<th>Otro</th>
<th>NS/NS</th>
<th>NS/NS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. **¿En qué orden lava la ropa que usa en el trabajo?**
 - En una fuente de agua
 - En el lugar de trabajo
 - En la casa
 - Otro

18. **¿Si la lava en casa, lo hace junto con el resto de ropa?**
 - Sí
 - No
 - NS/NS

19. **Si responde No pase a la pregunta 24**

22. **Con qué frecuencia ingiere estos alimentos?**
 - Siempre
 - A veces
 - Nunca
 - NS/NS

23. **¿Se lava o baña las manos antes de ingerir alimentos?**
 - Siempre
 - A veces
 - Nunca
 - NS/NS

24. **¿Se baña el cuerpo al finalizar la jornada de trabajo?**
 - Siempre
 - A veces
 - Nunca
 - NS/NS

25. **Menciona qué tipo de protección dermica utiliza**
 - Paño o delantal
 - De que material?
CUESTIONARIO DE SÍNTOMAS ASOCIADOS A EXPOSICIÓN A PLOMO POR EL MANEJO DE RESIDUOS DE APARATOS ELÉCTRICOS Y ELECTRÓNICOS (RAEE) EN LA EMPRESA ORINOCO E-SCRAP SAS

Guantes. Si No De que material?

26. Mencione que tipo de protección respiratoria usa
 - Respirador Si No
 - Tapabocas desechable Si No
 - Pañuelo húmedo Si No

27. Mencione que tipo de protección facial utiliza
 - Sombrero o gorra Si No
 - Visor Si No
 - Monogafas Si No

28. Mencione que tipo de protección en miembros inferiores utiliza
 - Botas de caucho Si No
 - Botas en cuero Si No
 - Zapatos Si No
 - Tenis Si No

29. Utiliza algún otro tipo de elemento de protección personal?
 Si No Cual?

IV. ANTECEDENTES TOXICOLOGICOS

30. Ha fumado alguna vez? Si No NS/NR Si la respuesta es NO pase a la pregunta 37
31. Fuma actualmente Si No NS/NR Si la respuesta es NO pase a la pregunta 36
32. Hace cuánto tiempo fuma? Años Meses Días
33. Cuántos cigarrillos fuma al día?
34. Fuma en su sitio de trabajo? Si No NS/NR
35. Cuántos cigarrillos fuma en su sitio de trabajo?
36. Hace cuánto tiempo que dejó de fumar? Años meses días
37. Usted consume licor? Si No NS/NR Si la respuesta es NO pase a la pregunta 40
38. Con qué frecuencia consume licor?
 - Diario
 - Semanal
 - 2 Veces / sem
 - Ocasiona
 - Otro NS/GR

39. Cuánto tiempo hace que usted consume licor? Años meses días

V. ANTECEDENTES PATOLÓGICOS

40. Ha presentado alguna vez: epilepsia, parkinson, evento cerebro vascular Si No Cual?
41. Ha presentado algún trauma severo con pérdida de la conciencia? Si No
42. Actualmente tiene alguna enfermedad importante? Si No Cual?
43. Si es mujer, actualmente se encuentra embarazada? Si No No aplica
44. Si tiene hijos, qué enfermedades importantes han presentado desde que nacieron?
 - Hijo No.1
 - Hijo No.2
 - Hijo No.3
 - Hijo No.4
 - Hijo No.5

VI. SÍNTOMAS

Usted ha presentado alguno de los siguientes síntomas en el último año

45. Síntomas asociados con el sistema nervioso
 - Calsambres y contracciones musculares Si No
 - Temblor
 - Convulsiones
 - Pérdida de fuerza de miembros superiores
 - Pérdida de fuerza de miembros inferiores
 - Pérdida del conocimiento
 - Pérdida de la memoria
 - Alucinaciones

46. Síntomas asociados con el sistema respiratorio