DIAGNÓSTICO TÉCNICO OPERATIVO DEL ACUEDUCTO ASOAGUA LAGUNA VERDE

FABIÁN ALEXANDER MORALES CONTRERAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE MEDIO AMBIENTE Y RECURSOS NATURALES

TECNOLOGÍA EN GESTIÓN AMBIENTAL Y SERVICIOS PÚBLICOS

BOGOTÁ D.C.
2017
DIAGNÓSTICO TÉCNICO OPERATIVO DEL ACUEDUCTO ASOAGUA LAGUNA VERDE

FABIÁN ALEXANDER MORALES CONTRERAS

Trabajo de Grado para obtener el título de
Tecnólogo en Gestión Ambiental y Servicios Públicos

Director. YOLIMA AGUALIMPIA
Doctora. Mag. Ingeniero Civil

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE MEDIO AMBIENTE Y RECURSOS NATURALES
TECNOLOGÍA EN GESTIÓN AMBIENTAL Y SERVICIOS PÚBLICOS
BOGOTÁ D.C.
2017
PÁGINA DE ACEPTACIÓN

NOTA FINAL

FIRMA DEL DIRECTOR

FIRMA DEL EVALUADOR
AGRADECIMIENTOS

Agradezco a mis familiares, amigos y personas, quienes han colaborado en la elaboración del presente proyecto, con el acompañamiento emocional y económico, el cual fue importante para culminar con éxito esta fase de mi trayecto académico, de igual manera, agradezco a la Universidad Distrital Francisco José de Caldas y a mi profesora y asesora del proyecto, por brindarme el conocimiento para la formulación de mi proyecto de grado. Por último, a las entidades distritales que permitieron acercarme al lugar, conocer el funcionamiento y detalles de operación del Acueducto Asoagua Laguna Verde.
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>11</td>
</tr>
<tr>
<td>Abstract</td>
<td>12</td>
</tr>
<tr>
<td>Introducción</td>
<td>13</td>
</tr>
<tr>
<td>Objetivo</td>
<td>15</td>
</tr>
<tr>
<td>1. Marco referencial</td>
<td>16</td>
</tr>
<tr>
<td>1.1 Marco teórico</td>
<td>16</td>
</tr>
<tr>
<td>1.2 Marco conceptual</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Marco Normativo</td>
<td>18</td>
</tr>
<tr>
<td>1.4 Marco geográfico</td>
<td>20</td>
</tr>
<tr>
<td>1.4.1 Localización</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2 La División territorial de la localidad</td>
<td>22</td>
</tr>
<tr>
<td>1.4.3 Descripción de la red de drenajes</td>
<td>23</td>
</tr>
<tr>
<td>1.4.4 Balance hídrico para la cuenca del río Blanco</td>
<td>24</td>
</tr>
<tr>
<td>2. Metodología</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Enfoque Metodológico</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Instrumentos Metodológicos</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1 Fuentes primarias</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2 Fuentes Secundarias</td>
<td>26</td>
</tr>
<tr>
<td>2.3 Fases de la metodología</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1 Fase preliminar</td>
<td>26</td>
</tr>
<tr>
<td>2.3.2 Fase Diagnostico</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3 Fase Formulación</td>
<td>26</td>
</tr>
<tr>
<td>3. Diagnóstico y descripción del acueducto Asoagua Laguna Verde</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Captación</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Aducción</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Desarenador</td>
<td>29</td>
</tr>
<tr>
<td>3.4 Conducción</td>
<td>30</td>
</tr>
<tr>
<td>3.5 Planta De Tratamiento</td>
<td>30</td>
</tr>
<tr>
<td>3.6 Sistema de distribución</td>
<td>32</td>
</tr>
<tr>
<td>4. Diagnóstico</td>
<td>40</td>
</tr>
<tr>
<td>5. Resultados</td>
<td>41</td>
</tr>
<tr>
<td>5.1 Propuesta de mejora Acueducto Asoagua Laguna Verde</td>
<td>41</td>
</tr>
<tr>
<td>5.2 Resultados del Proyecto</td>
<td>42</td>
</tr>
<tr>
<td>6. CONCLUSIONES</td>
<td>43</td>
</tr>
<tr>
<td>7. RECOMENDACIONES</td>
<td>44</td>
</tr>
<tr>
<td>REFERENCIAS</td>
<td>45</td>
</tr>
<tr>
<td>ANEXOS</td>
<td>46</td>
</tr>
</tbody>
</table>
TABLAS

Tabla 1-Marco normativo..18
Tabla 2-Vertientes del sistema..24
Tabla 3-Balance hídrico POMCA ..25
Tabla 4-Aspectos del diagnóstico acueducto Laguna Verde ...36
Tabla 5-Clasificación nivel de riesgo IRCA ..39
Tabla 6-Resumen de la demanda de agua ..51
Tabla 7-Datos para diseño..52
Tabla 8-Porcentaje de remoción vs condiciones ..52
FIGURAS

Figura 1-Ubicación localidad Sumapaz. ...20
Figura 2-Corregimiento de Betania...21
Figura 3-Vereda Laguna Verde. ...21
Figura 4-Estratificación de vivienda vereda Laguna Verde48
FOTOGRAFÍAS

Fotografía 1-Muros de contención y cámara de la bocatoma ...27
Fotografía 2-Bocatoma de fondo ..28
Fotografía 3-Río Santa Rosa ..28
Fotografía 4-Vista De Planta Desarenador Convencional ...29
Fotografía 5-Tubería Expuesta Por Procesos De Inestabilidad Del Terreno30
Fotografía 6-Tanque Planta de Tratamiento ...31
Fotografía 7-Dosificador Planta de tratamiento ..31
Fotografía 8-Tanque almacenamiento ...32
Fotografía 9-Caseta -Tanque almacenamiento ...32
ANEXOS

ANEXO 1-REGISTROS IRCA ... 46
ANEXO 2 - DISEÑO HIDRÁULICO DEL ACUEDUCTO...48
ANEXO 3- CARTILLA MANTENIMIENTO Y OPERACIÓN DEL ACUEDUCTO........55
ANEXO 4- FOLLETO PUEAA ..67
ANEXO 5 COTIZACIONES ...68
ANEXO 6 ANÁLISIS DE PRECIOS UNITARIOS ..71
ANEXO 7-LISTA DE CHEQUEO ACUEDUCTO ..74
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARD</td>
<td>Agua Residual Domestica</td>
</tr>
<tr>
<td>CAR</td>
<td>Corporación Autónoma Regional de Cundinamarca</td>
</tr>
<tr>
<td>DANE</td>
<td>Dirección Administrativa Nacional de Estadísticas</td>
</tr>
<tr>
<td>DBO</td>
<td>Demanda Biológica de Oxígeno</td>
</tr>
<tr>
<td>DQO</td>
<td>Demanda Química de Oxígeno</td>
</tr>
<tr>
<td>IANC</td>
<td>Índice de Agua No Contabilizada</td>
</tr>
<tr>
<td>IDEAM</td>
<td>Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia</td>
</tr>
<tr>
<td>IRCA</td>
<td>Índice de Riesgo de la Calidad del Agua</td>
</tr>
<tr>
<td>M.S.N.M.</td>
<td>Metros sobre el nivel del mar</td>
</tr>
<tr>
<td>MTS</td>
<td>Metros</td>
</tr>
<tr>
<td>OD</td>
<td>Oxígeno disuelto</td>
</tr>
<tr>
<td>OMS</td>
<td>Organización Mundial de la Salud</td>
</tr>
<tr>
<td>PH</td>
<td>Potencial de hidrógeno</td>
</tr>
<tr>
<td>PUEAA</td>
<td>Programa de Uso Eficiente y Ahorro del Agua</td>
</tr>
<tr>
<td>PTAP</td>
<td>Planta de tratamiento de agua potable</td>
</tr>
<tr>
<td>RAS</td>
<td>Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico</td>
</tr>
<tr>
<td>QMH</td>
<td>Caudal Medio Horario – Caudal de Diseño</td>
</tr>
</tbody>
</table>
Resumen

El diagnóstico técnico y operativo presenta la identificación y análisis de las condiciones de operación del acueducto Asoagua Laguna Verde en la localidad de Sumapaz, Ciudad Bogotá; para tal finalidad se detalla el sistema de Acueducto general: captación, aducción, tratamiento, conducción y distribución realizando un diagnostico comparativo entre lo hallado en campo y lo expuesto en el RAS 2000 en cuanto a diseño y operación del Acueducto

Este diagnóstico se realizó mediante la metodología de estudio de caso prospectivo para lo cual fue necesario la recopilación de datos de fuentes secundarias mediante la indagación en registros, documentos y procedimientos existentes en el Hospital de Nazareth E.S.E y documentos públicos del entidades del distrito capital encontrados en la web y la recopilación de datos primarios mediante visitas a campo en compañía de personal operativo del acueducto Asoagua Laguna Verde lo que permitió tener como resultado además de una análisis de la situación actual del acueducto, un identificación de problemas asociados al manejo operativo y técnico.

Así, este documento no solo contempla la identificación y análisis del problema, se incorporó la propuesta de mejoramiento dirigida al personal encargado del mantenimiento y operación del acueducto y que según la formación de un tecnólogo en Gestión Ambiental y Servicios Públicos, parte de un diseño de estructuras adecuado en referencia a lo mencionado en el RAS 2000 frente al nivel de complejidad y eficiencias en operación del desarenador, línea de aducción y PTAP, para esto fue necesario realizar cálculos para diseño de estructuras, adicional la realización de la cartilla guía para la operación del Acueducto en el tratamiento del agua-PTAP, limpieza y frecuencia de mantenimientos y un folleto para el Uso eficiente y Ahorro del agua dirigido al personal de la vereda Lagua Verde que se abastece del agua. Finalmente, esta propuesta busca responder al cumplimiento de requerimientos normativos y las necesidades de calidad de agua potable para la población

Palabras Claves

Diagnóstico, IRCA, Infraestructura, Mantenimiento, Operación, PTAP, Sistema Acueducto Veredal,
Abstract

The technical and operational diagnostic presents the identification and analysis of the operating conditions of the Asoagua Laguna Verde aqueduct in the town of Sumapaz, Bogota city; For this purpose, the general aqueduct system is detailed: capture, adduction, treatment, conduction and distribution, making a comparative diagnosis between what was found in the field and what was exposed in RAS 2000 in terms of design and operation of the Aqueduct

This diagnosis was made using the prospective case study methodology, which required the collection of secondary data through the investigation of existing records, documents and procedures of Hospital de Nazareth ESE and documents of public entities of Bogota found on the web and the collection of primary data through field visits with operating personnel of the Asoagua Laguna Verde aqueduct, which resulted in an analysis of the aqueduct’s current situation, identifying problems associated with operational and technical management.

Thus, this document not only contemplates the identification and analysis of the problem, it incorporated the proposal of improvement directed to people in charge of the maintenance and operation of the aqueduct and that according to the formation of a technologist in Environmental Management and Public Services, part of a design of Adequate structures in reference to the mentioned in the RAS 2000 in front of the level of complexity and efficiencies in operation of the sandblaster, line of adduction and PTAP, for this it was necessary to make calculations for design of structures, additional the realization of the guide for the operation of the aqueduct in the treatment of the water-PTAP, cleaning and frequency of maintenance and a brochure for the Efficient Use and Saving of the water directed to people of Laguna Verde that are supplied of water. Finally, this proposal seeks to respond to the fulfillment of normative requirements and the drinking water quality requirements for people.

Key Words

Diagnostic, IRCA, Infrastructure, Maintenance, Operation, PTAP, Veredal Aqueduct System,
Introducción

El documento presenta el diagnóstico técnico y operativo del acueducto Asoagua Laguna Verde, situado en la localidad de Sumapaz, en la ciudad de Bogotá, donde en el marco de la gestión del recurso hídrico para el país, el Sumapaz es de gran relevancia, considerándose el complejo de paramos más grande del mundo, donde según el Instituto Alexander von Humboldt (2012) abarca una extensión total de 333.420 Ha.

El proyecto contempla la descripción del proceso de conducción del agua desde la bocatoma hasta distribución final con la infraestructura existente, a su vez la comparación de la calidad del agua apta para el consumo humano con la normatividad vigente aplicable y las recomendaciones para que este acueducto cumpla con parámetros de calidad del agua físicos, químicos y microbiológicos.

En el diagnóstico como parte de la argumentación de las mejoras propuestas a Asoagua Laguna Verde, está el análisis del indicador de calidad llamado IRCA (índice de riesgo de calidad del agua); el cual muestra la clasificación de riesgos y rangos para el nivel correspondiente del acueducto.

Finalmente la pretensión del proyecto es mediante la elaboración del diagnóstico técnico y operativo, construir una propuesta de mejora por parte de un estudiante de la Tecnología en Gestión Ambiental y Servicios Públicos que busca dar la solución integral a los problemas del sistema de acueducto Asoagua Laguna Verde con una visión científica, técnica, operativa, ambiental y económico-administrativo, integrando el servicio público de Acueducto con el concepto de desarrollo sostenible cuyo eje principal es el medio ambiente.
Justificación

La localidad de Sumapaz es extensa y cuenta con alta disponibilidad de agua, además expuesta por Parque Nacionales Naturales como un ecosistema importante en la regulación del recurso hídrico, “una fábrica natural de agua dulce en la cual su población es de 6460 habitantes aproximadamente” (Secretaría Distrital del Habitat, 2011) se beneficia por medio de organizaciones comunitarias que ellos mismos articulan para la prestación del servicio público de acueducto. El agua principalmente es captada de fuentes superficiales teniendo entre varios parámetros el valor de color y turbiedad alto con referencia a la normatividad vigente. (Asociación colombiana de ingeniería sanitaria y Ambiental, 2009)

La política del gobierno distrital Bogotá humana 2012- 2016 “un territorio que se enfrenta al cambio climático y se ordena alrededor del agua” existe un programa encaminado al mejoramiento de los acueductos veredales, en el cual su principal objetivo es mejorar la calidad de vida de sus residentes.

También es necesario argumentar que la necesidad de mejoras de los acueductos veredales responden a la situación actual mencionada por la secretaria del hábitat en su documento del diagnóstico de la localidad de Sumapaz donde para ellos “los servicios inadecuados se refieren a la falta de acceso a condiciones vitales y sanitarias mínimas, lo que significa la ausencia de acueducto y el aprovisionamiento de agua en el río o de agua lluvia” (2011). Cabe mencionar como argumento final la correlación existente entre el mejoramiento continuo en el proceso del tratamiento de agua potable y el mantenimiento de un acueducto con respecto al nivel de riesgo de contraer enfermedades relacionadas con el consumo de agua potable, para ello el indicador IRCA.
Objetivo

General:

Diagnosticar técnico/operativamente el acueducto Laguna Verde, que abastece la vereda Laguna Verde de la localidad de Sumapaz en Bogotá, en lo referente a infraestructura y calidad del agua.

Específicos:

- Analizar el sistema de acueducto Asoagua Laguna Verde contemplando la información de infraestructura, gestión comercial y condiciones de calidad de agua en el abastecimiento de la población en comparación con la normatividad vigente aplicable al proyecto (RAS 2000 y Resolución 2115/2007).

- Presentar una propuesta para el acueducto Asoagua Laguna Verde encaminada al manejo adecuado del sistema que permita mejorar deficiencias a nivel técnico y operativo.
1. Marco referencial

1.1 Marco teórico

Desde 1991 con la constitución política de Colombia en sus Artículos 365 – 370, los servicios públicos son inherentes a la finalidad social del estado y es su deber asegurar la prestación eficiente a todos los habitantes del territorio nacional dando solución a las necesidades insatisfechas en saneamiento ambiental y agua potable. Por ello mediante encuentros Ciudadanos para la formulación del Plan de Desarrollo Local 1998-2001 se estableció priorización para la terminación del acueducto de Laguna Verde, por problemas técnicos no se logró terminar completamente el acueducto.

Paralelo a la Resolución 1096 de 2000 por la cual se adopta el Reglamento Técnico para el Sector de Agua Potable y Saneamiento Básico – RAS, el cual señala los requisitos técnicos que deben cumplir los diseños, las obras y procedimientos correspondientes al Sector de Agua Potable y Saneamiento Básico, la Alcaldía en conjunto con la EAAB contrata la consultoría de elaboración de diseños y estudios de diagnóstico para construcción, mejoramiento y ampliación de varios sistemas de acueducto y alcantarillado sanitario en la localidad de Sumapaz, entre ellos el acueducto Laguna Verde (Secretaria Distrial de Planeación. 2004). Teniendo (Plan de Desarrollo Local 2001-2003) un énfasis en la necesidad de la organización comunitaria para la administración y el buen uso de dichos acueductos veredales.

En el 2007 mediante el Decreto 1575 y la Resolución 2115 se establece respectivamente el sistema para la protección y control de la calidad del agua y las características e instrumentos básicos para la calidad del agua de consumo humano, donde se observa los niveles de riesgo medidos en el índice de consumo de agua potable “IRCA”; así para el año 2012, según la Secretaria de Salud, el IRCA fue del 83,22% el cual demuestra un nivel de riesgo alto (Alcaldía Local de Sumapaz, 2012), esta información a su vez fue recopilada en el 2013 en el Documento Técnico de Soporte de la Cuenca del Río Blanco menciona que el acueducto no presenta buenas condiciones, existe deterioro de infraestructuras, como en cámaras de reparto, No existe concesión de aguas y la planta de tratamiento no opera siendo una de las principales causas para la mala calidad del agua.

Teniendo la necesidad de mejoras de infraestructura y calidad del agua para el acueducto el 04 de marzo de 2013 se realiza la contratación (# contrato 19-2013) para realizar el diagnóstico, estudios y diseños detallados para optimizar y rehabilitar el acueducto de Laguna Verde en el corregimiento de Betania por un valor de $ 200,000,000. Lo que hasta la fecha No se ha ejecutado, por otro lado, hasta el 2015 mediante radicado No. 2015-460-007652-2 se solicita a Parques Nacionales Naturales de Colombia, la concesión de aguas superficiales para derivar un caudal de la fuente hídrica de uso público denominada "Quebrada Santa Rosa".
1.2 Marco conceptual

En la elaboración del presente diagnóstico del acueducto Laguna Verde fue necesario realizar una revisión del concepto de acueducto, el cual fue importante en la fase preliminar y formulación del proyecto.

SISTEMA DE ACUEDUCTO: La palabra acueducto significa conducción de agua, pero su función no es solo transportarla, también tratarla, es decir, convertir el agua cruda en agua potable. La importancia del acueducto recae en potabilizar y transportar el agua para contribuir al bienestar de la población.

Las condiciones mínimas que debe cumplir el agua son:

- Calidad estética: Libre de partículas, Color y turbiedad
- Calidad físico-química: Temperatura agradable, libre de sustancias químicas nocivas para la salud, sin olores, sin sabores
- Calidad microbiológica: Libre de organismos patógenos

El acueducto también se puede analizar como un conjunto de instalaciones, equipos personas que se requiere para la potabilización y transporte de agua

Fuente: (SENA, Sistemas de Acueductos)
Para el desarrollo del proyecto es necesario conocer el proceso y función de cada elemento de la figura anterior:

El sistema de acueducto inicia con la captación del agua por medio de una estructura denominada *Bocatoma*, una vez captada el agua cruda, es decir, que no ha sido sometida a ningún proceso de tratamiento, es transportada por medio de canales o tuberías hasta el desarenador, este tramo se conoce como Línea de aducción. Al llegar al desarenador cuya característica principal es una estructura de pretratamiento que retira arenas y material flotante del agua es transportada a la Planta de Tratamiento en la cual se lleva a cabo procesos de floculación, coagulación y desinfección del agua teniendo como propósito principal, convertir el agua cruda en agua potable es decir, aquella agua que por cumplir las características físicas, químicas y microbiológicas, señaladas en la normatividad es apta para consumo humano (Decreto 1575, 2007). Finalmente el agua es conducida (conducción) hasta tanques de almacenamiento, los cuales se consideran como un componente en la regulación y suministro de agua para su posterior distribución a la población (SENA, Sistemas de Acueductos).

Para consumo de agua es necesario conocer el Índice de Riesgo de la Calidad del Agua para Consumo Humano – IRCA, siendo el grado de riesgo de ocurrencia de enfermedades por las características físicas, químicas y microbiológicas del agua para consumo humano”. (Decreto 1575, 2007).

1.3 Marco Normativo

El presente diagnóstico se elaboró bajo la guía de la normatividad colombiana aplicable Vigente al proyecto. A continuación se muestra la normatividad.

<p>| Tabla 1-Marcos normativo |
|-------------------------|-----------------|--------------------------|
| Documento | Fecha | Entidad que Emite | Propósito |
| Ley 2811 | 1974 | El presidente de la república de Colombia | Código Nacional de Recursos Naturales Renovables y de Protección al Ambiente por el cual se busca usar racionalmente los recursos naturales renovables para su desarrollo sostenible |
| Ley 99 | Diciembre 22 de 1993 | Congreso de la república de Colombia | Por la cual se crea el Ministerio del Medio Ambiente, se organiza el SINA y da los primeros lineamientos para el uso eficiente y... |</p>
<table>
<thead>
<tr>
<th>Documento</th>
<th>Fecha</th>
<th>Entidad que Emite</th>
<th>Propósito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley 142</td>
<td>Julio 11 de 1994</td>
<td>Congreso de la república de Colombia</td>
<td>Establece el régimen de los servicios públicos domiciliarios (Acueducto, alcantarillado y demás)</td>
</tr>
<tr>
<td>Ley 373</td>
<td>Junio 11 de 1997</td>
<td>Congreso de la república de Colombia</td>
<td>Se establece el programa para el uso eficiente y ahorro del agua y su obligatoriedad en los planes ambientales y a los prestadores del servicio Acueducto</td>
</tr>
<tr>
<td>Decreto 302</td>
<td>Febrero 25 de 2000</td>
<td>El presidente de la república de Colombia</td>
<td>Por el cual se reglamenta la Ley 142 de 1994, en materia de prestación de los servicios públicos domiciliarios de acueducto y alcantarillado.</td>
</tr>
<tr>
<td>Resolución 1096</td>
<td>Noviembre 17 de 2000</td>
<td>Ministerio de Desarrollo Económico Dirección de Agua Potable y Saneamiento Básico</td>
<td>Adopta el Reglamento Técnico del Sector De Agua Potable y Saneamiento Básico (RAS)</td>
</tr>
<tr>
<td>Resolución No. CRA 150</td>
<td>2001</td>
<td>Comisión de Regulación de Agua Potable y Saneamiento Básico</td>
<td>Definir consumos básicos y máximos en el servicio de acueducto</td>
</tr>
<tr>
<td>Decreto 1575</td>
<td>Mayo 09 de 2007</td>
<td>El presidente de la república de Colombia</td>
<td>Establece el Sistema para la Protección y Control de la Calidad del Agua para Consumo Humano</td>
</tr>
<tr>
<td>Resolución 2115</td>
<td>Junio 22 de 2007</td>
<td>Ministerio protección social- Ministerio Ambiente y desarrollo territorial</td>
<td>Señala características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano.</td>
</tr>
<tr>
<td>CIRCULAR EXTERNA 2008100000 0074</td>
<td>Abril 04 de 2008</td>
<td>Superintendencia de servicios públicos</td>
<td>Aplicación de la norma técnica de calidad del agua Decreto 1575 de 2007 y resoluciones complementarias</td>
</tr>
<tr>
<td>Resolución CRA 440</td>
<td>2008</td>
<td>Comisión de Regulación de Agua Potable y Saneamiento Básico</td>
<td>Lineamiento para la excepción de las metas de cobertura en la macro y micro medición</td>
</tr>
<tr>
<td>Decreto 3930</td>
<td>Octubre 25 de 2010</td>
<td>El presidente de la república de Colombia</td>
<td>Se reglamenta los usos del agua y residuos líquidos.</td>
</tr>
</tbody>
</table>

Fuente: Autor
1.4 Marco geográfico.

1.4.1 Localización.

La localidad 20 (Sumapaz) está situada en el sur del Distrito Capital, esta localidad fue creada como Alcaldía Menor Rural de Bogotá mediante el Acuerdo 9 de 1986, que a su vez fijó límites:

- NORTE: desde el Alto de los Juncos siguiendo los límites del corregimiento de Nazareth hasta Bocagrande.
- ORIENTE: Alto de las Oseras en los límites con el Departamento del Meta.
- SUR: desde el Alto de las Oseras siguiendo por los límites del Distrito con el Departamento del Huila.
- OCCIDENTE: de los límites con el Departamento del Huila continuado por los límites del Distrito hasta el punto de partida en el Alto de los Juncos.”

Según (Secretaria Distrital de Planeación, 2011); de las 75.761 hectáreas del territorio de la localidad de Sumapaz, 34.556 hectáreas hacen parte del Parque Nacional Natural del Sumapaz, el cual divide el territorio en dos zonas de concentración de la población y de ocupación agrícola, la de Nazareth-Betania y la de San Juan.

Figura 1-Ubicación localidad Sumapaz.(Unidad Administrativa Especial de Catastro Digital, 2016)
En el Sumapaz se genera uno de los más grandes complejos de recursos hídricos de Colombia, el cual hace parte de las cuencas de los ríos Magdalena y Orinoco. Es muy posible que en un futuro Sumapaz se convierta en el abastecedor principal de agua para Bogotá. El acueducto veredal Asoagua Laguna Verde objeto del presente diagnóstico técnico y operativo se encuentra ubicado en el corregimiento de Betania como se muestra en la figura 2 y figura 3.

Figura 2-Corregimiento de Betania. (Unidad Administrativa Especial de Catastro Digital, 2016)

Figura 3-Vereda Laguna Verde. (Unidad Administrativa Especial de Catastro Digital, 2016)
El centro poblado Laguna Verde se ubica según (Secretaria Distrial de Planeación, 2004) en el corregimiento de Betania y tiene una superficie de 991 hectáreas, su principal cuenca hidrográfica es el río Blanco. El ecosistema característico de la localidad de Sumapaz es el de montaña, que presenta un relieve conformado por sectores quebrados, además de amplios valles como el del río Santa Rosa.

1.4.2 La División territorial de la localidad.

En la actualidad la localidad de Sumapaz se encuentra dividida en 3 corregimientos y 28 veredas, así: el corregimiento de Nazareth con 8 veredas, el corregimiento de Betania con 6 y el corregimiento de San Juan de Sumapaz con 14 veredas.

La estructura rural, según el POT, la conforma la porción del territorio destinada a la población que preserva formas de vida rural, a las actividades agrícolas, forestales, extractivas y pecuarias, compatibles con el medio rural y a la preservación de la riqueza escénica, biótica y cultural propias de este entorno. La división política de la localidad es descrita a continuación según el diagnóstico (Hospital de Nazareth E.S.E., 2011).

Corregimiento de Nazareth

- Centro poblado de Nazareth.
- Los Ríos.
- Las Auras.
- Las Palmas.
- Las Sopas.
- Taquecitos.
- Las Animas
- Santa Rosa.

Corregimiento de Betania

- Centro poblado de Betania.
- El Istmo.
- Tabaco.
- Raizal.
- Peñaliza.
- Laguna Verde.
Corregimiento de San Juan

- Centro poblado de San Juan de Sumapaz.
- La Unión.
- Chorreras.
- Tunal Alto.
- Tunal Bajo.
- San Antonio.
- Las Vegas.
- Capitolio.
- San José.
- Concepción.
- El Toldo.
- Santo Domingo

1.4.3 Descripción de la red de drenajes.

La riqueza hídrica de la localidad está en la posesión de dos grandes vertientes: la oriental, que sigue hacia los llanos orientales y la Orinoquía, y la vertiente occidental, que va hacia el valle del río Magdalena.

La vertiente oriental da origen al sistema río Blanco, Guayuriba, Meta y Orinoco. La vertiente occidental da origen a los ríos Sumapaz y Magdalena. Además, las aguas que se vierten de su páramo irrigan las cuencas de los ríos Guape, Ariari, Duda y Tunjuelo que en su nacimiento se caracteriza por lo cristalino de sus aguas, pero a la altura de la Bogotá urbana alcanza un alto nivel de contaminación. (Secretaria Distrital del Habitat, 2011)

La tabla No 2 presenta el cuadro global de la cuenca del río Blanco y sub cuencas que alimenta las veradas de su territorio, es importante aclarar que el presente cuadro solo refleja las vertientes del sistema oriental río Blanco - río Meta - río Orinoco.
1.4.4 Balance hídrico para la cuenca del río Blanco.

El balance oferta– demanda en la cuenca, supone un alto índice de escasez en las cuencas Santa Rosa, Portezuela y el Chochal, por ello, es necesario considerar que la mayor parte del área debe ser de uso de conservación, por el hecho de contar con ecosistema estratégico. En la tabla No 3 se resumen los valores de oferta y demanda del recurso hídrico para las cuencas Portezuela,
Santa Rosa, Chochal y Gallo, considerando el caudal medio de la cuenca, en el mes más seco, para cada una de las cuencas de tercer orden, presentado en el estudio del POMCA Río Blanco.

Tabla 3-Balance hídrico POMCA

<table>
<thead>
<tr>
<th>Cuenca-Id</th>
<th>Subcuenca</th>
<th>Área (Ha)</th>
<th>Caudal Ecológico M³/S (25% De Caudal Medio)</th>
<th>Caudal Disponible M³/S</th>
<th>Demanda Total M³/S</th>
<th>Relación D/O %</th>
<th>Índice de Escasez</th>
</tr>
</thead>
<tbody>
<tr>
<td>3502-02</td>
<td>Río Portezuela</td>
<td>1912.5 ha</td>
<td>0.358</td>
<td>1.21</td>
<td>0.70</td>
<td>57.89</td>
<td>Alto</td>
</tr>
<tr>
<td>3502-03</td>
<td>Santa Rosa</td>
<td>7.625 ha</td>
<td>0.353</td>
<td>1.20</td>
<td>1.17</td>
<td>97.89</td>
<td>Alto</td>
</tr>
<tr>
<td>3502-04</td>
<td>Río Chochal</td>
<td>12.722 ha</td>
<td>0.596</td>
<td>2.02</td>
<td>1.36</td>
<td>67.46</td>
<td>Alto</td>
</tr>
<tr>
<td>3502-05</td>
<td>Río Gallo</td>
<td>6.997 ha</td>
<td>0.662</td>
<td>2.24</td>
<td>0.81</td>
<td>35.94</td>
<td>Medio - Alto</td>
</tr>
</tbody>
</table>

Fuente: (Alcaldía Local Sumapaz, 2013)

2. **Metodología**

2.1 **Enfoque Metodológico**

El presente proyecto se desarrolló mediante la metodología de estudio de caso prospectivo con el fin de partir de un problema asociado a la prestación del servicio de acueducto y brindar soluciones a futuro para la población de la vereda Laguna Verde, contemplando evidencia cualitativa y cuantitativa.

2.2 **Instrumentos Metodológicos**

Para el desarrollo de la metodología fue necesario contemplar los siguientes instrumentos metodológicos

2.2.1 **Fuentes primarias.**

La información obtenida por fuentes primarias consistió en visitas de campo para la toma de fotografías, medición de estructuras, recopilación de información por medio de entrevista al
operario del acueducto, es decir, recopilación de datos in situ analizándolo con la situación actual del acueducto en referencia a la gestión técnica y operativa.

2.2.2 Fuentes Secundarias

Las fuentes secundarias utilizadas básicamente fueron documentos de entidades públicas como Hospital de Nazareth E.S.E, Alcaldía de Bogotá, Secretaria municipal de planeación, Dirección Administrativa Nacional de Estadísticas DANE, alcaldía local de Sumapaz e información de páginas web oficiales, normas técnicas, leyes evidenciadas en la Tabla No 1 – Tabla Normativa y cartografía del lugar tomada en google Earth y el IGAC.

2.3 Fases de la metodología.

Para lograr el desarrollo del presente proyecto se llevó a cabo en las siguientes fases:

2.3.1 Fase preliminar

Lo primero que se realizo fue recopilación de información importante acerca de conceptos, antecedentes normativos e información geográfica del lugar, condiciones hídricas con el fin de realizar el marco de referencia del documento, esto mediante la consulta de fuentes de información secundaria y primaria.

2.3.2 Fase Diagnostico

En esta fase se realiza el análisis de la información recolectada en la fase anterior, para plantear los problemas observados y verificar las condiciones actuales del acueducto, de igual manera en esta fase se realiza el análisis comparativo frente al RAS 2000 de las condiciones adecuadas del acueducto en cuanto a encerramiento bocatoma, distancia de aducción, cálculos de desarenador según el QMH, el tratamiento de Agua Potable, para así tener como resultado de esta fase el planteamiento de los problemas o condiciones a mejorar.

2.3.3 Fase Formulación

Finalmente, después de analizada la información recolectada es necesario plantear el diagnostico en referencia a la comparación con el RAS 2000 y así mismo plantear la propuesta para mejorar las condiciones o gestión técnica, operativa, económico-administrativo y ambiental del acueducto Asoagua Laguna Verde.
3. Diagnóstico y descripción del acueducto Asoagua Laguna Verde

El sistema de suministro de agua para el sector Laguna Verde del corregimiento de Betania es por gravedad y está interceptado por una bocatoma de fondo ubicada en la quebrada santa rosa a una altura sobre el nivel del mar de 3488 mts (Fotografía No 1), cerca de una base de control del ejército de Colombia sobre la vía Bogotá al parque nacional natural Sumapaz.

Los elementos que componen la bocatoma son los siguientes:

- Muros de contención en concreto reforzado
- Cámara de recolección en concreto
- Vertedero de excesos
- Rejilla rectangular en hierro
- Canal de aducción en concreto
- Conducción al desarenador tubería en PVC y diámetro de 4”.

El agua es conducida a lo largo de 920 mts desde la bocatoma hasta la estructura desarenadora mediante una tubería de material PVC de 4” de diámetro y enterrada.

El desarenador es una estructura rectangular de tipo convencional en concreto reforzado y de la cual sigue la línea de conducción en tubería de 4” de diámetro hasta la planta de tratamiento compacta en donde no se está llevando a cabo ningún proceso de potabilización; en seguida, el agua es conducida al tanque de almacenamiento construido en concreto reforzado, después en tuberías de 4” el agua recorre hacia unas cámaras de quiebre y es distribuida a la vereda Laguna Verde en tuberías de 2½” de diámetro con el fin de cubrir la demanda de agua en la vereda.

Fotografía 1-Muros de contención y cámara de la bocatoma. (Autor.2016)
3.1 Captación

El sistema de captación es por gravedad mediante una bocatoma de fondo construida en el año 2005 en material de concreto reforzado, en periodo de lluvias aumenta notablemente los sedimentos. (Asociación colombiana de ingeniería sanitaria y ambiental ACODAL, 2009)

La bocatoma de fondo tiene bolsas de contención para hacer presa y que el agua ingrese mejor a la cámara en épocas de poca lluvia.

Por inestabilidad en el terreno se construyeron gaviones en el año 2005, pero a marzo de 2016 como se evidencia en la fotografía No 3, han sido derrumbados por la inestabilidad del terreno. (Asociación colombiana de ingeniería sanitaria y ambiental ACODAL, 2009)
3.2 Aducción
El transporte de agua captada, desde la bocatoma ubicada sobre la Quebrada Santa Rosa hasta el desarenador, se realiza mediante tubería en material de PVC y diámetro de 4”, con una longitud aproximadamente de 920 mts, visualmente en buen estado, no presenta ni se tienen reportes de filtraciones o desempate entre uniones. (Asociación Colombiana de Ingeniería Sanitaria y Ambiental, 2009)

3.3 Desarenador
Esta estructura es de tipo convencional, construido en concreto reforzado, está dotado de las siguientes estructuras: cámara de entrada compuesta por: zona de quietamiento y eliminación de excesos, zona de sedimentación o decantación (con casi nula o escasa pendiente longitudinal en el fondo debido a que su longitud es pequeña) y cámara de salida que permite evacuar y recoger el agua decantada, la zona de des-arenación o lodos, tiene las siguientes dimensiones: longitud 4.84 mts, ancho 0.82 mts, 2.23 mts de profundidad (punto más bajo), espesor de muros variable entre 0.14 mts y 0.32 mts; se encuentra ubicado a 920 mts de la Bocatoma, a una altura de 3486 m.s.n.m., con coordenadas latitud 4°14’10.2” longitud 74°11’19.6”, actualmente se encuentra en buen estado, no presenta fisuras, ni deterioros considerables, no existen problemas de inestabilidad del geológica, tiene tapas de protección en lámina y candados para evitar la manipulación de personal no autorizado, No hay registros de limpieza periódica. (Asociación colombiana de ingeniería sanitaria y Ambiental, 2009)

Fotografía 4-Vista de Planta Desarenador Convencional. (Asociación colombiana de ingeniería sanitaria y Ambiental, 2009)
3.4 Conducción

La conducción se realiza por medio de una línea a presión por gravedad que se encuentra enterrada siguiendo la topografía del terreno, sin embargo ha quedado expuesta en algunos tramos debido a procesos de remoción en masa como se evidencia en la fotografía No 5; la tubería es en PVC con diámetro 4”, se presenta problemas de desempates por inestabilidad geológica a las laderas, dificultando el suministro continuo de agua a la comunidad, tienen una longitud aprox. de 5722 mts, con cota inicial de 3486 m.s.n.m. cota final de llegada a la planta de tratamiento PTAP de 3412 m.s.n.m. (Asociación colombiana de ingeniería sanitaria y Ambiental, 2009)

![Fotografía 5-Tubería expuesta por procesos de inestabilidad del terreno. (Autor.2016)](image)

3.5 Planta De Tratamiento

El proceso de tratamiento está diseñado para recibir el agua cruda de la línea de conducción con la presión suficiente para dosificar las sustancias químicas y mezclar completamente con el agua en la cámara del vórtice. Adicional la floculación, está diseñada para realizarse en la primera cámara en un compartimiento cónico, donde el flujo ascendente crea un efecto de micro turbulencia perfectamente calculada y provista de sus orificios difusores. Se cuenta en esta cámara con drene de lodos y vertedero rectangular a la cámara de sedimentación, esta se encuentra especialmente dispuesta en un módulo de sedimentación de alta tasa de flujo laminar ascendente y constituido esencialmente por un módulo multi-tubular inclinado, colocado a 60°.
Así el agua clarificada es descargada mediante un vertedero a la unidad de filtración, donde el agua llega en forma vertical descendente y es filtrada a presión por medio de la cabeza hidráulica disponible la cual a la vez la envía al tanque de almacenamiento.

Durante la visita se evidencia que el proceso de tratamiento no se realiza, los dosificadores se han retirado y en la actualidad el agua pasa por la planta sin aplicar ningún producto químico tales como coagulantes y/o desinfectante, adicional se encuentra en inadecuado estado de limpieza y corrosión el principal tanque de la Planta de Tratamiento de Agua potable como se presenta en la fotografía No 6 y fotografía No 7 (Asociación colombiana de ingeniería sanitaria y Ambiental, 2009)

Fotografía 6-Tanque Planta de Tratamiento. (Autor.2016)

Fotografía 7-Dosificador Planta de tratamiento. (Autor. 2016)
3.6 Sistema de distribución

El almacenamiento consiste principalmente en un tanque semi-enterrado en concreto reforzado, con capacidad de 46 m3, ubicado a 3412 m.s.n.m., de compartimiento simple, cubierto mediante una placa maciza del mismo material, sus dimensiones son:
1) 5.88 m de ancho, 2) 34.88 m de largo, 3) profundidad de 2.14 m (borde de libre de 0.20 m) y 4) espesor de paredes de 23 cm a lo largo de la longitud del perímetro. Cuenta además con cuatro (4) tubos de ventilación en su superficie de diámetro 3”; igualmente presenta un conducto de entrada de 2” que alimenta el tanque y dos conductos: uno de lavado de 6” en material PVC, a una altura aproximada de 2.0 m. medidos desde el fondo del tanque y otro de 4” que distribuye a la red. No tiene construido sistema de paso directo.

En caso de alguna eventualidad en el sistema de acueducto, aguas arriba o aguas abajo del tanque de almacenamiento, se tienen instaladas dentro de compartimentos o cámaras exteriores construidas en concreto, tres (3) válvulas de cierre de diámetro 2”, 4” y 6”, la primera se encuentra operando en el tramo de tubería normal al tanque de almacenamiento, que viene desde la planta de tratamiento, las siguientes válvulas operan aguas abajo del tanque de almacenamiento. La entrada o suministro al tanque de almacenamiento, se realiza por medio de una tubería de 2” en PVC, a una altura de 2 mts aproximadamente desde el fondo del tanque.

Sobre el tanque de almacenamiento se construyó la caseta de operación presenta dimensiones en planta de 2.10 mts x 2.75 mts y altura de 2.40 mts, ladrillo a la vista, cubierta en placa de concreto reforzado; estas estructuras no cuentan con cerramiento, prestando un nivel de bajo o nulo de seguridad. (Asociación colombiana de ingeniería sanitaria y Ambiental, 2009)
Tabla 4-Aspectos del diagnóstico acueducto Laguna Verde

<table>
<thead>
<tr>
<th>COMPONENTE</th>
<th>PROCESO</th>
<th>ESTADO ACTUAL</th>
<th>CRITERIO RAS</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPTACIÓN</td>
<td>Aguas arriba de la bocatoma se encuentra una base militar del ejército nacional. La bocatoma está en buen estado y está en funcionamiento. Sus tapas de inspección están en buen estado y está construida de concreto reforzado</td>
<td>1. Lejanía de toda fuente de contaminación. 2. Accesos 3. Cerramientos 4. Rejillas de bocatoma</td>
<td>Aguas arriba se encuentra la base militar del ejército esta podría ser un foco de contaminación del río santa rosa dependiendo de la disposición de aguas residuales que allí tengan. El acceso a la bocatoma es fácil ya que se encuentra al costado de la carretera que comunica a la localidad de Usme con el Sumapaz. La bocatoma no presenta ninguna clase de cerramiento. Las rejillas de la bocatoma están ubicadas de manera transversal a la corriente del río.</td>
<td></td>
</tr>
<tr>
<td>ADUCCIÓN</td>
<td>Es un ducto cerrado de 4 pulgadas de diámetro en material PVC, con una longitud aproximada de 920 metros.</td>
<td>1. Condiciones geológicas 2. longitud</td>
<td>Los taludes hechos para la aducción presentan deslizamientos por procesos de remoción en masa. El diámetro actual es el indicado ya que tiene más capacidad de la que se está transportando actualmente. Las distancias de la aducción deben ser la menor posible entre 50 y 300 m de la bocatoma.</td>
<td></td>
</tr>
<tr>
<td>TÉCNICO</td>
<td>El desarenador es de tipo convencional, no se le hace mantenimiento por tal motivo se incrementa la turbiedad.</td>
<td>Ubicación capacidad</td>
<td>El desarenador debería estar ubicado lo más cerca a la bocatoma. Su capacidad es la adecuada para atender el QMH por tal motivo no es necesario otro modulo.</td>
<td></td>
</tr>
</tbody>
</table>
| CONDUCCIÓN | Conductor cerrado en material de PVC con diámetro de 4 pulgadas, de una longitud de 5722 m aproximadamente, algunos lugares expuesto y otros enterrado, presenta tramos expuestas por actividad de remoción en masa. | 1. Geológicas.
2. capacidad | Se podría evaluar la alternativa de cambiar trazados en algunas partes ya que el terreno es altamente vinculado a procesos de remoción en masa. La capacidad de transporte es la adecuada ya que podría soportar un caudal más grande que el que se necesita. |
| --- | --- | --- | --- |
| TRATAMIENTO | Planta compacta con: mezcla rápida, floculación, sedimentación y Desinfección con cloro. No está operando actualmente, evidenciándose un alto grado de deterioro. No tiene cerramiento total | 1. unidades de dosificación
2. dosificación
3. mezcla rápida
4. laboratorio | La PTAP compacta no presenta ninguna de estas actividades ya que no posee los dosificadores de los productos químicos con los que se lleva a cabo la potabilización del agua; no se tiene laboratorio para llevar a cabo los análisis físicos, químicos y bacteriológicos del agua. |
| ALMACENAMIENTO | Es un tanque semienterrado de forma rectangular en concreto reforzado, no se evidencio fisuras o gritas; en su superficie está ubicada la caseta de guardia ya que en el mismo predio está ubicada la PTAP, | 1. seguridad
2. obras complementarias
3. aspectos de mantenimiento | No presentan cerramiento total del predio donde está ubicado, el tanque presenta 4 codos en la parte superior para aireación; no se evidencia un mantenimiento periódico ya que se evidencio que hay formas vegetales creciendo en su superficie. |
<p>| DISTRIBUCIÓN | Redes construidas en material PVC, la primera línea de 4 pulgadas y las secundarias de 2 pulgadas y | --- | --- |</p>
<table>
<thead>
<tr>
<th>OPERATIVO</th>
<th>½ de pulgadas.</th>
<th>COBERTURA</th>
<th>La cobertura del acueducto es del 100%</th>
<th>1. cobertura</th>
<th>Según el ras 2000 debe ser en un nivel de complejidad bajo como mínimo del 95% por consiguiente está dentro de los parámetros estipulados de cobertura.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBERTURA</td>
<td></td>
<td>MICRO MEDICIÓN</td>
<td>No presenta micro medición en las acometidas de las casas.</td>
<td>1. micro medición</td>
<td>No se tiene, no hay la cultura del pago por el servicio público de acueducto.</td>
</tr>
<tr>
<td>MACRO MEDICIÓN</td>
<td></td>
<td></td>
<td>No presenta macro medición, a la salida de la PTAP para saber la cantidad de agua tratada</td>
<td>1. macro medición</td>
<td>No se tiene, entonces no se llevan registros en el SUI, y no se podrá determinar el IANC.</td>
</tr>
<tr>
<td>GESTIÓN COMERCIAL</td>
<td>Ninguna</td>
<td></td>
<td>1. costo beneficio 2. PQR</td>
<td></td>
<td>Se debe trabajar en este aspecto ya que es determinante en la auto sostenibilidad del acueducto veredal; no se dispone de los mecanismos consagrados en la ley 142 de 1994 sobre la gestión de PQR.</td>
</tr>
<tr>
<td>CONCESIÓN DE AGUA</td>
<td>En la actualidad la asociación está llevando a cabo el proceso de la concesión de agua con el parque nacional natural Sumapaz</td>
<td></td>
<td></td>
<td></td>
<td>Según fuentes del hospital de Nazareth y la alcaldía local de Sumapaz, el proceso de concesión de agua con parques naturales es más demorado, y aun no cuentan con la concesión.</td>
</tr>
</tbody>
</table>

Fuente: Autor
Como parte complementaria al análisis, se efectúa la comparación en cuanto a calidad del agua con respecto a la resolución 2115/2007, la cual indica los valores permisibles de parámetros físicos, químicos y microbiológicos en consumo humano, esto la finalidad de esta clasificación es verificar el índice de riesgo de calidad del agua IRCA, la cual para el caso del presente proyecto se tomó la información del libro de registros IRCA para el acueducto veredal Asoagua Laguna Verde, del hospital de Nazareth E.S.E de los últimos 6 meses del año 2015. Anexo No 1

Con base en la tabla (Anexo No. 1) y según los registros del libro IRCA 2015, en el cual se tomaron los últimos meses donde había información sobre los análisis físicoquímicos y microbiológicos que efectúa el hospital de Nazareth a los acueductos veredales de la localidad 20 del distrito capital para este caso el acueducto Asoagua Laguna Verde, se evidencia que la calidad del agua es inviavemente sanitaria ya que el valor del IRCA supera el 80% en todos los meses donde hay información sobre los análisis.

Tabla 5-Clasificación nivel de riesgo IRCA

<table>
<thead>
<tr>
<th>Clasificación IRCA (%)</th>
<th>Nivel de Riesgo</th>
<th>IRCA por muestra (Notificaciones que adelantará la autoridad sanitaria de manera inmediata)</th>
<th>IRCA mensual (Acciones)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.1 -100</td>
<td>INVIVABLE SANITARIAMENTE</td>
<td>Informar a la persona prestadora, al COVE, Alcalde, Gobernador, SSPD, MPS, INS, MAVDT, Contraloría General y Procuraduría General.</td>
<td>Agua no apta para consumo humano, gestión directa de acuerdo a su competencia de la persona prestadora, alcaldes, gobernadores y entidades del orden nacional.</td>
</tr>
<tr>
<td>35.1 - 80</td>
<td>ALTO</td>
<td>Informar a la persona prestadora, COVE, Alcalde y Gobernador y a la SSPD.</td>
<td>Agua no apta para consumo humano, gestión directa de acuerdo a su competencia de la persona prestadora y de los alcaldes y gobernadores respectivos.</td>
</tr>
<tr>
<td>5.1 - 14</td>
<td>BAJO</td>
<td>Informar a la persona prestadora y al COVE.</td>
<td>Agua no apta para consumo humano, susceptible de mejoramiento.</td>
</tr>
<tr>
<td>0 - 5</td>
<td>SIN RIESGO</td>
<td>Continuar el control y la vigilancia.</td>
<td>Agua apta para consumo humano. Continuar la vigilancia.</td>
</tr>
</tbody>
</table>

Fuente: (Minsiterio protección social, Ministerio de Ambiente, 2007)

Los datos indican que hay carencia en el tratamiento, considerando que son altos los índices de riesgo calidad del agua, lo que puede referirse al tratamiento con cloro, este es el compuesto que elimina patógenos presentes en el agua.

Teniendo la tabla sobre la clasificación de riesgos en salud según el IRCA, la calidad del agua no es apta para consumo humano, en especial por los parámetros microbiológicos que la resolución 2115 de 2007 indica, estos deben registrar cero.
Lo anterior evidencia como la salud de la población de Laguna Verde en la localidad de Sumapaz se encuentra en riesgo, al abastecerse con agua NO apta para consumo humano, siendo este el principal problema en el saneamiento básico del sector, adicional la presencia de vertimientos aguas arriba de la bocatoma, no es alentador para el estado actual del sistema de acueducto.

4. Diagnóstico

Durante la visita realizada el día 15 de marzo de 2016 se evidencio que no hay acciones de mejora en cuanto al mantenimiento de infraestructura, tratamiento del agua, distribución de agua a la comunidad ni seguimiento a pérdidas de agua (Índice de Agua No Contabilizada-IANC), por lo cual se podría argumentar que el sistema de acueducto presenta una gran falencia en su operación y esto se refleja desde la gestión comercial al no existir un pago por el servicio de acueducto, lo que hace que sea complejo el sostenimiento económico y operativo del acueducto Asoagua Laguna Verde.

En lo referente a la calidad del agua que consume la vereda Laguna Verde en el corregimiento de Betania, se evidencia que hay alto riesgo de enfermedades por agua no apta para consumo humano, donde en comparación con la resolución 2115 de 2007 el IRCA presentado para el acueducto Asoagua Laguna Verde en algún punto supera el 80 %, lo que significa que se debe fortalecer la implementación de la línea de intervención de Calidad de Agua y Saneamiento Básico de la Política Distrital de Salud Ambiental para Bogotá D.C. 2011-2023.

Lo evidenciado en el acueducto Asoagua Laguna Verde no solo responde al problema de continuidad del servicio de abastecimiento de agua, es también un problema de salud pública donde el consumo de agua no apta repercute en la salud de la población, generando enfermedades como la esquistosomiasis, cólera y disenterías microbianas que tiene parte de su ciclo de vida en el agua. (OMS, 2011)

Estas son las falencias generales encontradas en el acueducto en Laguna Verde, Sumapaz:

- La bocatoma no presenta encerramiento, lo cual permite el ingreso a cualquier persona al lugar de captación del agua.
- Las distancias de aducción son altas (900 m), considerándose necesario tan solo 300m
- No se presenta una justificación entre la capacidad del desarenador y el QMH manejado en el acueducto, siendo necesario realizar cálculos de estructuras.
- No se cuenta con la concesión de agua para el rio Santa Rosa donde se capta el agua para abastecer la vereda Laguna Verde.
- No hay un tratamiento químico ni desinfección del agua antes de ser entregada a la comunidad de Laguna Verde, en la localidad de Sumapaz
No se realiza limpieza periódica a la estructuras como líneas de aducción, desarenador y línea de conducción, esto con el fin de retirar microorganismos o adherencia de suciedad.

Hay vertimientos aguas arriba de la bocatoma proveniente de una base de control del ejército de Colombia

En relación a lo anterior el IRCA, evidencia que el agua que consume la comunidad de Laguna Verde en Sumapaz no es apta y que puede presentar problemas de salud para la población.

Finalmente, del acueducto Asoagua Laguna Verde se puede diagnosticar que existe una estructura organizacional pero que falta incluir conocimientos técnicos de manejo del Acueducto, dotar a operativos de información frente a mantenimientos y tratamiento del agua y como un aporte importante del diagnóstico es que no se ha priorizado el tema de Calidad de Agua y el riesgo que tiene para la salud de las personas.

5. Resultados

Los resultados se explican desde la propuesta de mejora y el aporte documental que se ofrece desde el conocimiento de la Gestión Ambiental y los servicios públicos, siendo guía para el acueducto Asoagua Laguna Verde en la ejecución.

5.1 Propuesta de mejora Acueducto Asoagua Laguna Verde.

En consecuencia se propone dos acciones encaminadas a mejorar el abastecimiento de agua con condiciones de calidad de agua óptima para consumo humano y mejoras a la infraestructura diseñada para abastecer toda la población del corregimiento Santa Rosa y Laguna Verde.

- Mejoras de infraestructura y cálculos para toma de decisiones.

Considerando las falencias expuestas en el Numeral 4 del presente documento se debe encerrar la bocatoma, considerando que no debe permitirse el paso a personal No autorizado por temas de seguridad y calidad del agua, revisar y ajustar distancias de aducción, puesto que esto puede convertirse en un factor de pérdidas y tiempo en el recorrido del agua y verificar la capacidad del desarenador frente al QMH, considerando NO necesario otro modulo para esta estructura, para ejecutar estas acciones debe realizarse un diseño de estructuras o memoria de cálculos donde se tenga en cuenta la población, nivel de complejidad, la dotación que menciona el RAS 2000, es decir, un diseño técnico y operativo acorde a lo exigido en el norma en condiciones al acueducto Asoagua Laguna Verde.
- Mantenimientos, limpieza del Acueducto y tratamiento del Agua potable

Para ello se recomienda elaborar una cartilla que sirva de guía en la operación del acueducto es decir, para frecuencias de mantenimiento del acueducto, limpieza de infraestructuras y procedimiento para el tratamiento del agua, junto al control de calidad que debe realizarse. También un marco normativo para que se verifique el cumplimiento en calidad de agua que se ofrece a la población de Laguna Verde.

Esta cartilla debe incluir aspectos mínimos como: Descripción del sistema de acueducto, mantenimiento de infraestructura y accesorios, el procedimiento o flujo para un tratamiento físico, químico y microbiológico el agua, así mismo que parámetros según la norma debe tenerse en cuenta junto con sus valores límites y los programas que pueden realizarse con la población.

Para poder ejecutar lo expuesto en la dos acciones anteriores el acueducto debe tomar decisiones que prioricen la atención a los problemas mencionados en el Numeral 4.

5.2 Resultados del Proyecto.

El aporte documental a las propuestas mencionadas, es el resultado directo al proyecto, donde conforme a la identificación de falencias por diagnostico técnico operativo del acueducto se:

- Identificó (7) siete problemas en el sistema de abastecimiento de agua para la vereda Laguna Verde, trabajados desde el diseño técnico del acueducto (cálculos de estructuras) en el cual se especifica nivel de complejidad y proyección de la población para el consumo y demanda de agua, diseño de elementos estructurales para eficiencia del desarenador, línea de aducción y conducción, Planta de Tratamiento de Agua Potable y red de distribución donde en este último se planteó mejoras desde la gestión comercial del servicio de Acueducto, se puede verificar en el Anexo No 2 del presente documento.

- Presenta en el Anexo No 3 la cartilla de operación del acueducto donde se muestra la descripción del sistema de acueducto, mantenimiento de infraestructura y accesorios, el procedimiento o flujo para un tratamiento físico, químico y microbiológico el agua, así mismo que parámetros según la norma debe tenerse en cuenta junto con sus valores límites y los programas que pueden realizarse con la población, esta cartilla es de manera didáctica y está dirigida tanto al personal operativo como al administrativo del acueducto Asoagua Laguna Verde.

- Se incorpora finalmente como un documento apoyo o extra a la gestión del acueducto un folleto acerca de la importancia de conservación el recurso hídrico con algunas estrategias para que la comunidad implemente el uso eficiente y ahorro del Agua, teniendo en cuenta, que aún el acueducto Asoagua Laguna Verde no ha formulado e implementado el
Programa de Uso Eficiente y Ahorro del Agua – PUEAA establecido por la Ley 373 de 1997, este folleto el cual se presenta en el Anexo 4, permitirá que la comunidad conozca su rol en el cuidado del agua.

6. CONCLUSIONES

1. Se analizó la infraestructura existente del sistema de abastecimiento de agua en la vereda Laguna verde, encontrando un acueducto obsoleto desde el tema de tratamiento de agua, mantenimiento de infraestructuras y con alto nivel de escasez (97%) en la cuenca abastecedora, de igual manera, se reportó un IRCA del 93%, considerado alto, siendo el principal problema de saneamiento básico que enfrenta la vereda laguna verde.

2. Con respecto al diagnóstico, el acueducto Asoagua Laguna Verde aunque tiene una cobertura del 100% se encuentran en inadecuado estado de mantenimiento y limpieza el desarenador y dosificadores de químicos, no se cuenta con tratamiento para potabilización del agua, y no se realiza un seguimiento al IANC, debido a que no hay micromedicion y macromedición, adicional se reporta un alto IRCA con 93% en promedio correspondiente a la contaminación del agua por vertimiento ARD aguas arriba de la bocatoma.

3. Las propuestas en el acueducto Asoagua Laguna Verde están dirigidas a mejorar la prestación del servicio de abastecimiento y la calidad de agua que consumen los habitantes, teniendo 3 ejes principales el primero es económico y operativo: como punto de partida un diseño de estructuras, siendo este necesario para la toma de decisiones en lo referente a línea de aducción y esperando que se minimice el tiempo del recorrido del agua hasta la PTAP y en el desarenador frente a la posibilidad de evitar un módulo de esta estructura, el segundo eje en procesos técnicos, operativos y calidad de vida con la cartilla guía de mantenimiento y tratamiento de agua que permitirá un conocimiento apropiado acerca de actividades operativas del acueducto y un aseguramiento de la calidad de agua que consume la población y el tercer eje en el aspecto social y ambiental considerando importante para la población conocer por medio de folletos acerca del Uso Eficiente y Ahorro del Agua y la contribución al medio ambiente.
7. RECOMENDACIONES

Las siguientes son las recomendaciones específicas adicionales a las propuestas planteadas para optimizar el sistema de acueducto Asoagua Laguna Verde.

- Se recomienda solicitar a la autoridad ambiental seguimiento y control con referencia al efluente del sistema séptico del batallón de montaña ubicado agua arriba de la bocatoma.

- Es propicio que el acueducto inicie el cobro por el servicio de abastecimiento de agua a la población o busque fondos para realizar las mejoras estructurales y tratamiento del agua, lo anterior en principio de suficiencia financiera en la gestión comercial del servicio de acueducto.

- Es necesario elevar la oferta y reducir la demanda, por medio de acciones encaminadas al cuidado de la fuente hídrica abastecedora, toma de conciencia de la comunidad sobre el uso eficiente del agua. Esto acompañado de la formulación e implementación del PUEAA.
REFERENCIAS

Red Iberoamericana de Potabilización y Depuración del Agua. Agua potable para comunidades rurales, reuso y tratamientos avanzados de aguas residuales domésticas. 2003

<table>
<thead>
<tr>
<th>DATOS BÁSICOS</th>
<th>AÑO</th>
<th>JULIO</th>
<th>AGOS</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMA MUESTRA</td>
<td></td>
<td>21/08</td>
<td>09/10</td>
<td>13/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMBRE PUNTO DE MUESTREO</td>
<td>ULTIMO PUNTO DE LA RED</td>
<td>TANQUE</td>
<td>ULTIMO PUNTO DE LA RED</td>
<td>TANQUE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| RADICADO LSP | 34699 | 44248 | 50425 |

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS</th>
<th>PARÁMETROS</th>
<th>UNIDA DES</th>
<th>EXPRESADAS</th>
<th>VALOR DE LA NORMA</th>
<th>VALORES DE LAS MUESTRAS EN SU RESPECTIVO MES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>FÍSICO QUÍMICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td></td>
<td>6.5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>TURBIEDAD</td>
<td>UNT</td>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>COLOR</td>
<td>UPC</td>
<td></td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>CONDUCTIVIDAD</td>
<td>mS/cm</td>
<td></td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>CLORO</td>
<td>mg/L</td>
<td></td>
<td>0.3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OLOR</th>
<th>ACEPTABLE</th>
<th>INOBJETABLE</th>
<th>CARACTERÍSTICO</th>
<th>CARACTERÍSTICO</th>
<th>CARACTERÍSTICO</th>
<th>CARACTERÍSTICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SABOR</td>
<td>ACEPTABLE</td>
<td>CARACTERÍSTICO</td>
<td>CARACTERÍSTICO</td>
<td>CARACTERÍSTICO</td>
<td>CARACTERÍSTICO</td>
<td>CARACTERÍSTICO</td>
</tr>
<tr>
<td>pH</td>
<td>6.5</td>
<td>9</td>
<td>7.15</td>
<td>7.59</td>
<td>7.38</td>
<td>7.49</td>
</tr>
<tr>
<td>TURBIEDAD</td>
<td>0</td>
<td>2</td>
<td>5.28</td>
<td>2.09</td>
<td>2.45</td>
<td>2.16</td>
</tr>
<tr>
<td>COLOR</td>
<td>0</td>
<td>15</td>
<td>40</td>
<td>23</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>CONDUCTIVIDAD</td>
<td>0</td>
<td>1000</td>
<td>18</td>
<td>37</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>CLORO</td>
<td>0.3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Característica</td>
<td>Símbolo</td>
<td>Unit.</td>
<td>mg/L</td>
<td>0</td>
<td>200</td>
<td>7.7</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>RESIDUAL LIBRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALCALINIDAD TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloruros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureza Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIERRO TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureza Carbonatada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureza No Carbonatada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiológicas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNPPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicológicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∑ puntajes de riesgo asignado a las características no aceptables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>∑ puntajes de riesgo asignados a todas las características analizadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>VALOR IRCA DE LA MUESTRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel de Riesgo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro con base en el libro de registro IRCA 2015 acueducto laguna verde hospital de Nazareth E.S.E
ANEXO 2 - DISEÑO HIDRÁULICO DEL ACUEDUCTO

El siguiente diseño permite mejorar el abastecimiento de agua actual y asegurar la prestación de este servicio para el futuro.

COMPONENTE TÉCNICO

- **Nivel de complejidad**

 De acuerdo al RAS 2000 el nivel de complejidad del sistema es bajo, ya que cuenta con menos de 2500 habitantes, y a su vez la capacidad económica de los usuarios es baja.

 De acuerdo a capacidad económica del usuario y a la cantidad de habitantes de la vereda Laguna Verde, el nivel de complejidad del proyecto es **bajo**, ya que la población atendida a 2011 por el sistema es de 100 personas en 26 usuarios, como lo indica el diagnóstico hábitat del año 2011.

 ![Figura 4-Estratificación de vivienda vereda Laguna Verde. (Hospital de Nazareth E.S.E., 2011)](image)

- **Proyección de la población.**

 De acuerdo con la proyecciones de población realizadas a partir del censo general de 2005, la población de Bogotá para el año 2011 es de 7’467.804 personas y la de Sumapaz de 6.258, lo que representa el 0.1 % de los habitantes del distrito capital. Se proyecta un aumento de la población del 2.2% de 2011 a 2015 en Sumapaz, siendo menor en comparación con la ciudad que será del 5.5%, en consecuencia resulta que para el año 2015 habrán 6.460 personas en la localidad 20. (DANE, 2005)
Según lo anterior es necesario proyectar la población al 2031 por ello, se utilizó el método geométrico.

\[
P_f = P_{uc} \left(1 + r\right)^{T_f - T_{uc}}
\]

Pf= población proyectada
Puc= población actual al censo
r = tasas de crecimiento anual en forma decimal
Tf= año a proyectar la población
Tuc= año actual con información de la población

Entonces tenemos lo siguiente:

\[
P_f = 100(1 + 0.022)^{2031-2011} = 155 \text{ habitantes}
\]

La población proyectada a 15 años (2016-2031) es de 155 habitantes, es decir un abastecimiento de agua con aumento de la población 2.2% anual.

Consumo agua

- **Dotación neta**

En base con el nivel de complejidad del sistema y estar ubicada la vereda laguna verde a más de los 3000 msnm la dotación neta máxima será de 90 litros habitante por día, como se menciona (Resolución 2320, 2009) del ras 2000.

- **Dotación bruta.**

\[
d_{bruta} = \frac{d_{neta}}{1 - \%p}
\]

\[
\%p = \text{porcentaje de pérdidas, debe ser de 25% como máximo}
\]

\[
d_{bruta} = \frac{90}{1 - 0.25} = 120 \text{ L/habitante por día}
\]

Demanda de agua
• **Caudal medio diario.**

Es el caudal medio de agua de la población proyectada se define mediante la siguiente ecuación.

\[
Q_{md} = \frac{p \cdot d_{bruta}}{86400}
\]

Aplicando la fórmula entonces se tiene:

\[
Q_{md} = \frac{155 \cdot 120}{86400} = 0.216 \frac{L}{s}
\]

• **Caudal máximo diario**

Corresponde al consumo máximo registrado durante 24 horas durante un período de un año, y se define multiplicando el caudal medio diario por un coeficiente K1, que a su vez es dado por el nivel de complejidad y está plasmado en la tabla B2.7.4 del RAS 2000.

Aplicando la fórmula entonces se tiene:

\[
Q_{MD} = 0.216 \cdot 1.30 = 0.29 \frac{L}{s}
\]

• **Caudal máximo horario.**

Corresponde al consumo máximo registrado durante una hora en un período de un año sin tener en cuenta el caudal de incendio y se define multiplicando el QMD por un coeficiente k2, que a su vez es dado por el nivel de complejidad y está plasmado en la tabla B2.7.5 del RAS 2000.

\[
Q_{MH} = 0.29 \cdot 1.60 = 0.47 \frac{L}{s}
\]

• **Caudal de incendios:**

Para la Unidad de Planeamiento Rural Río Blanco, no se tiene registro de eventos asociados a incendios forestales; sin embargo, los eventos que se presentan han sido controlados por la comunidad, el batallón de alta montaña del Ejercito Nacional y/o por la Corporación Autónoma Regional, sin la movilización de recursos Distritales. Tomado de: DTS río Blanco

Con base en las premisas anteriores, no se tiene en cuenta el caudal de incendios para el diseño del acueducto veredal, además de que es una zona bastante fría y no esta tan expuesta a incendios forestales.
Tabla 6-Resumen de la demanda de agua

<table>
<thead>
<tr>
<th>ítem</th>
<th>valor</th>
<th>magnitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población</td>
<td>155</td>
<td>habitantes</td>
</tr>
<tr>
<td>Dotación neta (dneta)</td>
<td>90</td>
<td>Litros/hab/por día</td>
</tr>
<tr>
<td>Dotación bruta (dbruta)</td>
<td>120</td>
<td>Litros/hab/por día</td>
</tr>
<tr>
<td>Caudal medio diario (Qmd)</td>
<td>0.216</td>
<td>Litros/segundo</td>
</tr>
<tr>
<td>Caudal máximo diario (QMD)</td>
<td>0.29</td>
<td>Litros/segundo</td>
</tr>
<tr>
<td>Caudal máximo horario (QMH)</td>
<td>0.47</td>
<td>Litros/segundos</td>
</tr>
</tbody>
</table>

Fuente: (Autor. 2016)

- **Fuente de abastecimiento de agua.**
 La fuente superficial descrita para la optimización del acueducto vereda Laguna Verde es el mismo río Santa Rosa que está ubicado a una cota superior de 3488 msnm. Para esta fuente abastecedora de agua se sugiere: primordial la concesión de agua donde se establezca caudal de captación, caudal ecológico, actividades de restauración o conservación.

- **Captación de agua superficial.**
 Debido a que la zona del río Santa Rosa es de terreno rocoso y no se encuentra encerrada la bocatoma, se sugiere realizar el cerramiento de aproximadamente 20 m², correspondiente a la zona de acceso a la bocatoma y río

- **Línea de aducción.**
 Para determinar el causal máximo que en este momento transporta la línea de aducción, se tiene: tubería instalada de 4 pulgadas, por medio de la ecuación de Manning se halla:

 \[
 Q = 0.312 \left(\frac{D^{8/3} \cdot S^1}{n} \right)
 \]

 \(D=\)diámetro del tubo
 \(S=\)pendiente
 \(N=\)coeficiente de rugosidad de manning

 Aplicando la fórmula tenemos:

 \[
 Q = 0.312 \left(\frac{0.1016^{8/3} \cdot \left(\frac{3488 - 3486}{920} \right)^{1/2}}{0.009} \right) = 0.003632 \, m^3/s
 \]

 Pasándolo a litros por segundo se tiene:

 \[
 \frac{0.003632 \, m^3}{s} \cdot \frac{1000 \, litro}{1 \, m^3} = 3.632 \, L/s
 \]

 La capacidad máxima calculada teóricamente que transporta el tubo de 4 pulgadas es 3.632 \(L/\) segundo, caudal el cual está por encima de las necesidades de abastecimientos anteriormente
descritas en el estudio de demanda efectuado, por consiguiente se podría inferir que él tubo está sobredimensionado a las necesidades, pero también cabe destacar que todas estas obras deben hacerse con tubos de uso comercial, para este caso el de 4 pulgadas, lo cual lleva a inferir que a futuro se podría hacer expansiones del sistema en cuanto a demanda.

- **Diseño del desarenador.**

Para optimizar el tratamiento del agua se sugiere adecuar el desarenador que actualmente se tiene con los cálculos correspondientes al diseño de el QMH ya que se considera que la tubería de 4 pulgadas instalada, soporta este caudal.

<table>
<thead>
<tr>
<th>Tabla 7-Datos para diseño</th>
<th>Datos Básicos para el Diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal de diseño (QMH)</td>
<td>0.47 litros /s o 0.00047 m³/s</td>
</tr>
<tr>
<td>Diámetro de la partícula</td>
<td>0.05 mm o 0.005 cm</td>
</tr>
<tr>
<td>Viscosidad cinemática del agua a 10º apróx</td>
<td>0.0130 cm² /s</td>
</tr>
<tr>
<td>Peso específico de la partícula (arena)</td>
<td>2.65 gr/m³</td>
</tr>
<tr>
<td>Peso específico del fluido (agua)</td>
<td>1gr/m³</td>
</tr>
</tbody>
</table>

Fuente: (Mott, 2006)

Velocidad de sedimentación (V_s)

$$V_s = \frac{981 \frac{cm}{s^2} \left(2.65 \frac{gr}{cm^3} - 1 \frac{gr}{cm^3}\right) 0.005^2 \frac{cm}{s}}{18 \times 0.0130 \frac{cm^2}{s}} = 0.1730 \frac{cm}{s} \simeq 0.001730 \frac{m}{s}$$

Profundidad útil del desarenador es de 1.2 m con el objetivo de que a menor altura mayor será la rapidez con la que se sedimenta la partícula. La profundidad de lodos será de 0.4 m. la relación L/B de construcción del desarenador será de 3/1 con el fin de que la limpieza sea más cómoda para el operario.

<table>
<thead>
<tr>
<th>Tabla 8-Porcentaje de remoción vs condiciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentajes de remoción</td>
</tr>
<tr>
<td>87.5 %</td>
</tr>
<tr>
<td>condiciones</td>
</tr>
<tr>
<td>n=1 regulares reflectores</td>
</tr>
<tr>
<td>n=2 buenos deflectores</td>
</tr>
<tr>
<td>n=3 excelentes deflectores</td>
</tr>
<tr>
<td>Máximo teórico</td>
</tr>
</tbody>
</table>
Para este diseño se tomará la condición n=2 (buenos deflectores) y un porcentaje de remoción del 87.5 %, por lo tanto el número de Hazen a emplear es el 2.75.

Tiempo de caída de la partícula: \(t_c = \frac{H}{V_s} \)

\[
tc = \frac{120 \text{ cm}}{0.1730 \text{ cm/s}} = 693.65 \text{ segundos} \approx 0.193 \text{ horas}
\]

Periodo de retención hidráulico (\(\Theta \)): \(\Theta = \# \text{Hazen} \times t_c \)

\[
\Theta = 2.75 \times 0.193 = 0.53 \text{ Horas} \approx 1910.7 \text{ segundos}
\]

Calcule de la capacidad del desarenador: \(\gamma = Q \times \Theta \)

\[
\gamma = 0.47 \frac{L}{s} \times 1910.7 \text{ s} = 898.03 \text{ L} \approx 0.90 \text{ m}^3
\]

Calcule del área superficial: \(As = \gamma / H \)

\[
As = \frac{0.90 \text{ m}^3}{1.2 \text{ m}} = 0.75 \text{ m}^2 \approx 7500 \text{ cm}^2
\]

Calcule de L y B a partir de As y relación L/B:

\[
L \times B = 7500 \text{ cm}^2
\]

\[
3 \times 1 = L = 3B
\]

\[
3B \times B = 7500 \text{ cm}^2
\]

\[
\sqrt{B^2} = \sqrt{\frac{7500 \text{ cm}^2}{3}}
\]

\[
B = 50 \text{ cm}
\]

\[
L = 3B
\]

\[
L = 150 \text{ cm}
\]

Entonces la relación L/B = 150 cm / 50 cm

Calcule de la carga hidráulica superficial \(q_s = Q / As \)

\[
q_s = \frac{0.00047 \frac{m^3}{s} \times 86400 \frac{s}{\text{dia}}}{0.75 \text{ m}^2} = 54.14 \frac{m^3}{\text{dia}/m^2}
\]
línea de conducción.

Como quedo descrito anteriormente en la descripción del sistema existente la línea de conducción con longitud de 5722 metros y de un diámetro de 4 pulgadas como consecuencia transporta fácilmente el QMH, es importante realizar un estudio de suelos para poder determinar cuáles son las zonas más propensas a remoción en masa para realizar el nuevo trazado de esta línea de conducción.

Como se evidenció durante el recorrido del día 15 de marzo de 2016, en el terreno por donde pasa el sistema de aducción hay procesos de remoción en masa, quedando expuesta la tubería.

Planta de Tratamiento

Se debe garantizar fondos para la compra de sustancias químicas necesarias en el tratamiento de potabilización del agua - Anexo 3.

Tanque de almacenamiento

Se debe asegurar mantenimientos periódicos de las estructuras de la PTAP y el tanque de almacenamiento – Anexo 3

Se propone de igual manera no utilizar actualmente el tanque de almacenamiento existente, ya que las líneas de aducción y conducción de 4 pulgadas cada una, lleva fácilmente el QMH con lo cual no es necesario la construcción de nuevos tanques de almacenamiento en un futuro, esto beneficiaría en cuanto a costos de mantenimiento y operación, ya que es un elemento menos del sistema de abastecimiento de agua.

Gestión comercial

Se sugiere implementar cobro por el servicio de acueducto que garantice el auto sostenimiento del sistema o búsqueda de fondos para puesta en marcha de la optimización propuesta para el acueducto veredal Asoagua Laguna Verde, para la opción de fondos se sugiere la intervención de La Secretaría de Hábitat y la Superintendencia de Servicios Públicos Domiciliarios.

Macro medición y Micro medición.

Este aspecto operativo permitirá dar continuidad a actividades como cobro del servicio e igualmente para acciones encaminadas al uso eficiente y ahorro del agua pues permitirá conocer el volumen de agua que consume el usuario del sistema de acueducto.
INTRODUCCIÓN
La presente cartilla explica el mantenimiento y operación del acueducto Asoagua Laguna Verde, el cual es de suma importancia en el aprovisionamiento de agua para la población de la vereda Laguna Verde, considerando que desde el diagnóstico realizado el principal motivo es mejorar las condiciones de agua, salud, calidad de agua y por ende enfermedades de origen hídrico.

OBJETIVOS
Orientar al acueducto Asoagua Laguna Verde en el mantenimiento de infraestructuras, frecuencia de limpieza y posibles mejoras físicas del sistema.

Dar las pautas para un adecuado proceso de tratamiento de agua potable, entregando datos de dosificación y valores de parámetros de referencia acerca de la calidad del agua.
DESCRIPCIÓN DEL SISTEMA ABASTECIMIENTO

El sistema de suministro de agua para el sector Laguna Verde del corregimiento de Betania es por gravedad y está interceptado por una bocatoma de fondo ubicada en la quebrada santa rosa a una altura sobre el nivel del mar de 3488 mts, los elementos que componen el sistema son:
MANTENIMIENTO DEL SISTEMA DE ACUEDUCTO

BOCATOMA
Medición de caudales a la quebrada, entre métodos y equipos se sugiere la Batimetría o un molinete.

Adicional vigilancia y control en las actividades de conservación de fuentes de abastecimiento con la participación de la comunidad y las autoridades ambientales.

ELEMENTOS COMO VALVULAS, REJILLAS Y CAJAS

- Las válvulas deben accionarse semanalmente para evitar oxidación, adicional el operador mediante la utilización de palas realizará la limpieza de material arrastrado.

- Las rejillas deben limpiarse con los rastrillos retirando hojas, ramas o cualquier material que dificulte el paso del agua, de igual manera las partes que se encuentren oxidadas deben limpiarse con un cepillo metálico para retirar todos los vestigios de oxido.

- Las cajas y cámaras de derivación, deben ser limpiadas mínimo 1 vez al mes e inspeccionadas semanalmente para evitar acumulación de material que deje en inadecuado estado de limpieza.
MANTENIMIENTO DEL SISTEMA DE ACUEDUCTO

DESARENADOR Y TUBERÍAS

Se debe evitar la acumulación de sedimentos, por ello se debe retirar elementos que floten sobre el agua, adicional se debe inspeccionar el estado de las estructuras en mampostería y posibles fugas de agua en la tuberías de aducción y conducción.

TANQUES DE ALMACENAMIENTO

Los tanques de almacenamiento necesitan limpieza, se sugiere desinfectar con Hipoclorito de Calcio o de Sodio y drenar hacia el alcantarillado. Se deben mantener cerrados evitando el ingreso de animales u objetos.
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenización</td>
<td>El agua cruda se recibe de la línea de conducción por gravedad</td>
</tr>
<tr>
<td>Coagulante y mezcla rápida</td>
<td>El hidroxicloruro de aluminio se debe adicionar en un pH de 5 y 9, las dosificación adecuada depende de la pruebas de jarras, según condiciones de turbiedad del agua cruda.</td>
</tr>
<tr>
<td>Floculación</td>
<td>La cámara de compartimiento cóncico, el flujo ascendente crea un efecto de micro turbulencia con sus orificios difusores, generando el floc, producto de la reacción del coagulante.</td>
</tr>
<tr>
<td>Cámara de Lodos – Sedimentación</td>
<td>Se cuenta con cámara de drene de lodos y vertedero rectangular a la cámara de sedimentación, la cual está dispuesta en un módulo de sedimentación de alta tasa de flujo laminar ascendente y constituído esencialmente por un módulo multitubular inclinado, colocado a 60°.</td>
</tr>
<tr>
<td>Filtración</td>
<td>En la unidad de filtración, el agua llega en forma vertical descendente y es filtrada a presión por medio de la cabeza hidráulica</td>
</tr>
<tr>
<td>Desinfección</td>
<td>Desinfección por cloración con sustancias químicas como hipocloritos de calcio y sodio (González)</td>
</tr>
</tbody>
</table>

Fuente: Autor
FLUJO DEL TRATAMIENTO AGUA POTABLE

NOTA: Se realiza el cambio de coagulante convencional (sulfato de aluminio) por Hidroxicloruro de aluminio teniendo en cuenta que este último es capaz de formar con mayor rapidez y perfección flóculos de sedimentación y poder clarificante logrando remociones más altas de turbiedad respecto al sulfato de aluminio. (Unacional 2010)

Para ajuste pH puede realizarse por medio de cal, por ventajas económicas y de fácil acceso para el tratamiento de agua potable en zona rural.
PARÁMETROS MICROBiolÓGICOS DE CALIDAD AGUA

El valor del IRCA es cero (0) puntos cuando cumple con los valores aceptables para cada una de las características físicas, químicas y microbiológicas y cien puntos (100) para el más alto riesgo cuando no cumple ninguno de ellos. (Resolución 2115 de 2007)

Adicional el valor máximo aceptable de microorganismos mesofílicos será de 100 UFC en 100 cm³

Ninguna muestra de agua para consumo humano debe contener E. coli en 100 cm³ de agua

El valor aceptable para Giardia es de cero (0) quistes

Cryptosporidium debe ser de cero (0) quistes por volumen de agua
PARAMETROS FISICOS Y QUIMICOS EN LA MEDICION DE CALIDAD DEL AGUA POTABLE

<table>
<thead>
<tr>
<th>Caracteristicas Fisicas</th>
<th>Valor maximo aceptable</th>
<th>Expresadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>15</td>
<td>Unidades de Platino Cobalto (UPC)</td>
</tr>
<tr>
<td>Olor y Sabor</td>
<td>Aceptable</td>
<td>Aceptable o no aceptible</td>
</tr>
<tr>
<td>Turbiedad</td>
<td>2</td>
<td>Unidades Nefelometricas de turbiedad (UNT)</td>
</tr>
<tr>
<td>conductividad</td>
<td>1000</td>
<td>microsiemens/cm.</td>
</tr>
<tr>
<td>Potencial de Hidrogeno (pH)</td>
<td>6,5 y 9,0</td>
<td></td>
</tr>
<tr>
<td>Antimonio</td>
<td>0,02</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Arsénico</td>
<td>0,01</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Bario</td>
<td>0,7</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Cadmio</td>
<td>0,003</td>
<td>(mg/L)</td>
</tr>
</tbody>
</table>

Fuente: Resolucion 2115 de 2007
<table>
<thead>
<tr>
<th>Características Físicas</th>
<th>Valor máximo aceptable</th>
<th>Expresadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cianuro libre y disociable CN-</td>
<td>0,05</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Cobre</td>
<td>1,0</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Cromo total</td>
<td>0,05</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0,001</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Niquel</td>
<td>0,02</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Plomo</td>
<td>0,01</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Selenio</td>
<td>0,01</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Trihalometanos Totales THMs</td>
<td>0,2</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Carbono Orgánico Total COT</td>
<td>5,0</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Nitritos</td>
<td>0,1</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Nitratos</td>
<td>10</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Fluoruros</td>
<td>1,0</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>Calcio</td>
<td>60</td>
<td>(mg/L)</td>
</tr>
</tbody>
</table>

Fuente: Resolución 2115 de 2007
PROGRAMAS ANUALES

- Plan de trabajo Anual con presupuesto y cronograma de actividades.

- Programa de capacitación fontanero y usuarios del sistema de Acueducto Asoagua Laguna Verde - Una vez cada semestre.

- Programa preventivo de Infraestructura, Maquinaria y herramientas.

“El agua es la fuerza motriz de toda la naturaleza”

Leonardo da Vinci
REFERENCIAS

- Oficial 46.679 de julio 4 de 2007.

- Universidad Nacional Clarificación De Aguas Usando Coagulantes Polimerizados: Caso del Hidroxicloruro de Aluminio. Medellín. 2010

- http://www.minambiente.gov.co/images/GestionIntegraldelRecursOhidrico/pdf/LegislacionC3%B3n_del_agua/ResolucionesC3%B3n_2115.pdf

- http://mct.dgf.uchile.cl/AREANAT/hidro_mod1.htm
El agua es la fuerza motriz de toda la naturaleza.

— Leonardo da Vinci

Uso Eficiente y Ahorro del Agua

Por qué debes cuidar el agua

El agua es esencial para el desarrollo de vida en el planeta, este recurso natural se ve afectado cada día por el uso irracional, ocasionando índices altos de escasez y por ende crisis de agua potable en varios lugares del mundo.

Cuida el agua, cada gota cuenta y estamos a tiempo de hacer un Uso Eficiente y Ahorro del agua

Que logramos al cuidar el agua

La conservación del recurso hídrico nos permitirá prevenir la escasez de agua y alimentos necesarios para la vida de todos los seres vivos, contribuye a dar manejo a quebradas y ecosistemas como páramos afectados por las sequías prolongadas como respuesta al cambio climático actual.

Principalmente permitirá ver estrategias de ahorro de agua como una oportunidad de aportar a la naturaleza.
ANEXO 5 COTIZACIONES

- COAGULANTE

Bogotá, 07 de Febrero de 2017

Señor
Fabian Alexander Morales Contreras

A continuación encontrara la cotización de los siguientes productos los cuales son utilizados para el tratamiento de aguas.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>Unidades</th>
<th>Presentación</th>
<th>Valor Unitario</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulante VGC 1102</td>
<td>Kg</td>
<td>Tambor 275</td>
<td>$ 1.950</td>
<td>$ 536.250</td>
</tr>
<tr>
<td>Coagulante VGC 1102</td>
<td></td>
<td>Hidroxiclururo de aluminio</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota 1: A los siguientes productos se les debe sumar el 19% de IVA.

Condiciones comerciales

Vigencia cotización: 31 diciembre de 2017
Tiempo de entrega: Cuatro días hábiles, recibida la OC
Forma de pago: 90 días; transferencia electrónica banco
Nombre de Voda Grupa S.A.S.

Para cualquier información técnica y/o comercial, comuníquese con nosotros, Diego Herrera al teléfono 312 4769152 o al correo diegoherrera@vodagraupa.com.

Diego A. Herrera Molina
Ing. Líder de proyectos

www.vodagraupa.com
Cra 59 # 5° 07 – (571) 7534989
Bogotá – Colombia
OPERADOR Y DOTACIÓN

OPERARIO VALOR MÍNIMO

<table>
<thead>
<tr>
<th>Item</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALARIO MÍNIMO</td>
<td>$737.717.00</td>
</tr>
<tr>
<td>SALUD</td>
<td>$62.800.00</td>
</tr>
<tr>
<td>AUX.TRANSporte</td>
<td>$83.100.00</td>
</tr>
<tr>
<td>VACACIONES</td>
<td>$30.738.00</td>
</tr>
<tr>
<td>PENSION</td>
<td>$88.600.00</td>
</tr>
<tr>
<td>CAJA COMPENSACIÓN-ICBF-SENA</td>
<td>$66.400.00</td>
</tr>
<tr>
<td>PRIMA</td>
<td>$68.405.00</td>
</tr>
<tr>
<td>CESANTIAS</td>
<td>$68.405.00</td>
</tr>
<tr>
<td>INTERÉS CESANTES</td>
<td>$8.209.00</td>
</tr>
<tr>
<td>TOTAL MENSUAL</td>
<td>$1.214.374.00</td>
</tr>
<tr>
<td>VALOR SEMANAL</td>
<td>$303.593.50</td>
</tr>
<tr>
<td>VALOR HORA</td>
<td>$6.324.86</td>
</tr>
</tbody>
</table>

DOTACIÓN

<table>
<thead>
<tr>
<th>Item</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTAS CAUCHO</td>
<td>$15.900.00</td>
</tr>
<tr>
<td>OVEROL</td>
<td>$47.900.00</td>
</tr>
<tr>
<td>DELANTAL</td>
<td>$25.900.00</td>
</tr>
<tr>
<td>GUANTES</td>
<td>$26.900.00</td>
</tr>
<tr>
<td>PROTECTOR RESPIRATORIO</td>
<td>$25.900.00</td>
</tr>
<tr>
<td>TOTAL DOTACIÓN</td>
<td>$142.500.00</td>
</tr>
<tr>
<td>AL AÑO</td>
<td>$427.500.00</td>
</tr>
<tr>
<td>MENSUAL</td>
<td>$35.625.00</td>
</tr>
</tbody>
</table>

Precio corresponde a la ubicación CUNDINAMARCA. El precio puede cambiar al modificar el envío o retiro.
S.O.S FOTOCOPIADORAS
Juan Pablo Morales Nit 11185990-0 Régimen Simplificado
LANIER-TOSHIBA-PANASONIC-RICOH-GESTETNER
MINOLTA-MITA-SHARP-CANON

Bogotá, febrero 09 de 2017

Fabián Alexander Morales Contreras

Atendiendo su solicitud envío cotización de folletos en impresión full color, tamaño carta en papel blanco comercial Reprograf.

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Vr unitario</th>
<th>Vr total</th>
</tr>
</thead>
<tbody>
<tr>
<td>máx.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docena</td>
<td>Folleto muestra full color carta</td>
<td>$1000</td>
<td>$12.000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$12.000</td>
</tr>
</tbody>
</table>

Atentamente,

S.O.S. Fotocopiadoras
Juan Pablo Morales

Juan Pablo Morales U.
Asesor Técnico
Fotocopiadoras

Transversal 40 Bis No 3ª-21
Teléfono 4087012 Celular 316 4636615 -312
4047405
ANEXO 6 ANÁLISIS DE PRECIOS UNITARIOS

6.1 ADECUACIONES ESTRUCTURALES: (Solo inicio de actividades)

CERRAMIENTO DE LA BOCATOMA

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>VLR Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poste o tubo galvanizado</td>
<td>UN.</td>
<td>10</td>
<td>3246</td>
<td>$324.660</td>
<td></td>
</tr>
<tr>
<td>Malla cerramiento</td>
<td>M2</td>
<td>20</td>
<td>8943</td>
<td>$178.860</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal $503.520

TRANSPORTE

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>VLR Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furgón</td>
<td>VJ</td>
<td>2</td>
<td>55000</td>
<td>$110.000</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal $110.000

MANO DE OBRA

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Salario Real</th>
<th>Rendimiento (Hora)</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadrilla albañería of + ayudante</td>
<td>HC</td>
<td>15560</td>
<td>45</td>
<td></td>
<td>$70.020</td>
</tr>
</tbody>
</table>

Subtotal $70.020

Valor Total Unitario Costo Directo $683.540

ADECUACIÓN DESARENADOR

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>VLR Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto corriente 3000 PSI</td>
<td>M3</td>
<td>0,06</td>
<td>313316</td>
<td>$18.799</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal $18.799

TRANSPORTE

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>VLR Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furgón</td>
<td>VJ</td>
<td>3</td>
<td>55000</td>
<td>$165.000</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal $165.000
MANO DE OBRA

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UN.</th>
<th>SALARIO REAL</th>
<th>RENDIMIENTO (HORA)</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUADRILLA ALBANERIA OF + AYUDANTE</td>
<td>HC</td>
<td>15560</td>
<td>5</td>
<td>$ 77.800</td>
</tr>
</tbody>
</table>

| VALOR TOTAL UNITARIO COSTO DIRECTO $ | TOTAL | $ 261.599 |

ANALISIS DE PRECIOS UNITARIOS

TRATAMIENTO AGUA

COAGULANTE

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>UN.</th>
<th>CANTIDAD</th>
<th>VLR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIDROXICLORURO ALUMINIO</td>
<td>KG</td>
<td>1</td>
<td>1950</td>
<td>$ 1.950</td>
</tr>
<tr>
<td>IVA</td>
<td></td>
<td></td>
<td>19%</td>
<td>$ 371</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$ 2.321</td>
</tr>
</tbody>
</table>

DESINFECCIÓN

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>UN.</th>
<th>CANTIDAD</th>
<th>VLR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPOCLORITO DE SODIO</td>
<td>LT</td>
<td>1</td>
<td>2350</td>
<td>$ 2.350</td>
</tr>
<tr>
<td>IVA</td>
<td></td>
<td></td>
<td>19%</td>
<td>$ 447</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$ 2.797</td>
</tr>
</tbody>
</table>

ESTABILIZACIÓN PH

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>UN.</th>
<th>CANTIDAD</th>
<th>RENDIMIENTO (HORA)</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
<td>KG</td>
<td>10</td>
<td></td>
<td>$ 8.300</td>
</tr>
<tr>
<td>IVA</td>
<td></td>
<td></td>
<td>19%</td>
<td>$ 1.577</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$ 9.877</td>
</tr>
</tbody>
</table>

| VALOR TOTAL UNITARIO COSTO DIRECTO $ | TOTAL | $ 14.994 |

El valor contemplado en la casilla de cantidad Total corresponde al valor de tratamiento de 1 metro cúbico de agua, considerando que el agua presenta un color claro y visualmente no es turbia.
6.3 PERSONAL OPERADOR DE LA PLANTA DE TRATAMIENTO Y ADMINISTRACIÓN ACUEDUCTO - AÑO

ANÁLISIS DE OTROS GASTOS

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UN.</th>
<th>CANTIDAD</th>
<th>VLR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERADOR /FONTANERO PTAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABOR : 1 MES = 192 HORAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOTACIÓN (3 POR AÑO ZAPATOS Y OVEROL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FONTANERO O AYUDANTE PTAP</td>
<td>HC</td>
<td>192</td>
<td>$6.324</td>
<td>$1.214.400</td>
</tr>
<tr>
<td>DOTACIÓN (3 POR AÑO ZAPATOS Y OVEROL)</td>
<td>UN</td>
<td>3</td>
<td>$142500</td>
<td>$35.700</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$1.250.100</td>
</tr>
</tbody>
</table>

VALOR GASTOS NO ESPECIFICADOS - CAJA MENOR PARA UNA EMERGENCIA

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UN.</th>
<th>CANTIDAD</th>
<th>VLR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTOS EXTRAORDINARIOS</td>
<td>-</td>
<td>-</td>
<td></td>
<td>$1.000.000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$1.000.000</td>
</tr>
</tbody>
</table>

PERSONA TECNICA - ADMINISTRATIVA PARA GESTIÓN COMERCIAL

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UN.</th>
<th>CANTIDAD</th>
<th>VLR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMINISTRATIVO</td>
<td>HC</td>
<td>192</td>
<td>7050</td>
<td>$1.353.600</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$1.353.600</td>
</tr>
</tbody>
</table>

TOTAL GASTOS

$3.603.700

El valor total de las adecuaciones y recomendaciones ofrecidas del presente documento considerando desde lo físico lo que en primera medida se puede ejecutar es:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERRAMIENTO DE LA BOCATOMA</td>
<td>$683.540</td>
</tr>
<tr>
<td>ADECUACIÓN DESARENADOR</td>
<td>$261.599</td>
</tr>
<tr>
<td>TRATAMIENTO AGUA - M3</td>
<td>$14.994</td>
</tr>
<tr>
<td>OPERARIO MES-ACUEDUCTO</td>
<td>$1.250.100</td>
</tr>
<tr>
<td>OTROS GASTOS</td>
<td>$1.000.000</td>
</tr>
<tr>
<td>ADMINISTRATIVO MES-ACUEDUCTO</td>
<td>$1.353.600</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$4.563.833</td>
</tr>
</tbody>
</table>
ANEXO 7-LISTA DE CHEQUEO ACUEDUCTO

LISTA DE CHEQUEO CONTROL MANTENIMIENTO Y LIMPIEZA ACUEDUCTO.

<table>
<thead>
<tr>
<th>Nombre Responsable de la verificación:</th>
<th>Fecha verificación:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo del Responsable de la verificación:</td>
<td>Revisión No</td>
</tr>
</tbody>
</table>

BOCATOMA

<table>
<thead>
<tr>
<th>ASPECTO</th>
<th>SI</th>
<th>NO</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¿La captación del agua se realiza libre de cualquier contaminación?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ¿La bocatoma se encuentra con rejas o cerramiento de seguridad?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ¿La bocatoma está libre de sólidos como palos, hojas u otros residuos?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ¿Está funcionando adecuadamente el sistema de captación?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEMENTOS COMO VALVULAS, REJILLAS Y CAJAS

<table>
<thead>
<tr>
<th>ASPECTO</th>
<th>SI</th>
<th>NO</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ¿Las válvulas presentan estado de oxidación o suciedad?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 ¿Las válvulas se han limpiado periódicamente, retirando con la pala el material de arrastre?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ¿Las válvulas se han accionado semanalmente?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 ¿Las rejillas se han limpiado con los rastrillos retirando hojas, ramas o cualquier material que dificulte el paso del agua,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ¿Las partes que están oxidadas se limpiaron con un cepillo metálico para retirar todos los vestigios de oxidación?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ¿Las cajas y cámaras de derivación se han limpiado como mínimo 1 vez al mes?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 ¿Las cajas y cámaras se han inspeccionado como mínimo 1 vez semanalmente para evitar acumulación de material que deje en inadecuado estado de limpieza?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESARENADOR Y TUBERIAS

<table>
<thead>
<tr>
<th>ASPECTO</th>
<th>SI</th>
<th>NO</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ¿Las estructuras en mampostería están en adecuado estado de limpieza?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 ¿El desarenador, tuberías de aducción y conducción no presenta fugas de agua?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRATAMIENTO DEL AGUA

<table>
<thead>
<tr>
<th>ASPECTO</th>
<th>SI</th>
<th>NO</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 ¿Se realiza el test de jarras para medir la dosificación de químicos?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>¿Se realiza el proceso de coagulación, floculación, sedimentación y desinfección del agua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>¿Se realizan mediciones de Calidad de Agua para estimar el IRCA?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANQUES DE ALMACENAMIENTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>¿Los tanques de almacenamiento se han desinfectado con Hipoclorito de Calcio o de Sodio?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>¿Los tanques se mantienen cerrados evitando el ingreso de animales u objetos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMPLIMIENTO NORMATIVIDAD CALIDAD DE AGUA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>¿Se cumple la resolución 2115/2007 en cuenta a parámetros físicos, químicos y microbiológicos de calidad de agua para consumo humano?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USO EFICIENTE Y AHORRO DEL AGUA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>¿Se realiza capacitación a las personas acerca del uso eficiente y ahorro del agua y/o hay publicidad acerca del tema?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>