IMPLEMENTACIÓN DE MEJORA EN RENDIMIENTO DE AZÚCAR MEDIANTE LA METODOLOGÍA KAIZEN EN LÍNEA 6 PLANTA JUGOS DE GASEOSAS LUX S.A.S

PAOLA ANDREA CAMARGO CRISTANCHO
JUAN CARLOS HUERTAS BERMÚDEZ

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
PROYECTO CURRICULAR INGENIERÍA DE PRODUCCIÓN
BOGOTÁ, D.C.
2017
IMPLEMENTACIÓN DE MEJORA EN RENDIMIENTO DE AZÚCAR MEDIANTE LA METODOLOGÍA KAIZEN EN LÍNEA 6 PLANTA JUGOS DE GASEOSAS LUX S.A.S

PAOLA ANDREA CAMARGO CRISTANCHO
20152377008

JUAN CARLOS HUERTAS BERMÚDEZ
20132377040

Trabajo de Grado para Optar por el Título de Ingeniero de Producción

Ing. MANUEL ALFONSO MAYORGA MORATO
Director

PASANTÍA CONTRATO DE APRENDIZAJE.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
PROYECTO CURRICULAR INGENIERÍA DE PRODUCCIÓN
BOGOTÁ, D.C.
2017
<table>
<thead>
<tr>
<th>Sección</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERALIDADES</td>
<td>PROBLEMA: 1.1 Descripción. 1.1.2 Formulación.</td>
</tr>
<tr>
<td></td>
<td>OBJETIVOS: 1.2.1. Objetivo General. 1.2.2 Específicos.</td>
</tr>
<tr>
<td></td>
<td>METODOLOGÍA:</td>
</tr>
<tr>
<td></td>
<td>DELIMITACIÓN Y ALCANCE</td>
</tr>
<tr>
<td>2. MARCO REFERENCIAL</td>
<td>MARCO HISTÓRICO: 2.1.2 Postobón S.A</td>
</tr>
<tr>
<td></td>
<td>MARCO TEÓRICO: 2.2.1 Metodología Kaizen. 2.2.2 Conceptos Fundamentales. 2.2.3 Beneficios del Kaizen. 2.2.4 Pasos Para Implementar El Kaizen. 2.2.5 Metodología 5w+1h(Quién, Qué, Dónde, Cuándo, Cual, Cómo). 2.2.6 Análisis Causa Raíz. 2.2.7 Análisis ¿por qué? ¿Por qué?</td>
</tr>
<tr>
<td></td>
<td>2.2.8 Beneficios del Kaizen:</td>
</tr>
<tr>
<td></td>
<td>2.2.9 Pasos Para Implementar El Kaizen:</td>
</tr>
<tr>
<td></td>
<td>2.2.10 Metodología 5w+1h(Quién, Qué, Dónde, Cuándo, Cual, Cómo):</td>
</tr>
<tr>
<td></td>
<td>2.2.11 Análisis Causa Raíz:</td>
</tr>
<tr>
<td></td>
<td>2.2.12 Análisis ¿por qué? ¿Por qué?:</td>
</tr>
<tr>
<td>3. SITUACIÓN ACTUAL</td>
<td>PLATAFORMA ESTRATÉGICA: 3.1.1. Misión. 3.1.2. Visión. 3.1.3. Política Integral.</td>
</tr>
<tr>
<td></td>
<td>3.1.2. Productos:</td>
</tr>
<tr>
<td></td>
<td>3.3 PROCESO</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Descripción Del Proceso Productivo Línea 6 - Producción De Jugos.</td>
</tr>
<tr>
<td></td>
<td>RECURSOS</td>
</tr>
<tr>
<td></td>
<td>3.4 DIAGNÓSTICO LÍNEA 6 – PRODUCCIÓN DE JUGOS</td>
</tr>
<tr>
<td></td>
<td>3.5.1 Aplicación Metodología 5w+1h (Quién, Qué, Dónde, Cuándo, Cual, Cómo):</td>
</tr>
</tbody>
</table>
3.5.2. Análisis Causa Raíz ... 39
3.5.3 ANÁLISIS ¿POR QUÉ? ¿POR QUÉ? ... 40
3.5.4 Matriz De Vester ... 41
4. APLICACIÓN METODOLOGÍA KAIZEN 44
 4.1 PROCEDIMIENTO DE APLICACIÓN ... 44
 4.2 PLANEACIÓN ... 47
 4.3 HACER ... 48
 4.3.1 Limpieza de tuberías usando Pigs .. 48
 4.3.2 Limpieza de tuberías usando empujes de aire estéril 48
 4.3.3 Comparación de alternativas .. 49
 4.3.4 Plan de Acción ... 50
 4.4 RELACIÓN COSTO / BENEFICIO DE LA PROPUESTA. 51
 4.4.1 Costos Del Proyecto .. 51
 4.4.2 Beneficios del proyecto .. 52
5. CONCLUSIONES ... 54
6. RECOMENDACIONES .. 55
7. BIBLIOGRAFÍA E INFOGRAFÍA ... 56
LISTA DE TABLAS

Tabla 1. “Bebidas Producidas – Planta Gaseosas Lux” .. 22
Tabla 2. Selección y priorización línea de producción. .. 24
Tabla 3. Causantes de Desperdicios ... 31
Tabla 4. Consolidación de datos formato 250 ml ... 35
Tabla 5. Consolidación de datos formato 350 ml ... 35
Tabla 6. Formato para recolección de datos. .. 36
Tabla 7. Resumen de producción .. 37
Tabla 8. Matriz cruce y puntuación de problemas ... 42
Tabla 9. Determinación de puntos activos, pasivos y ejes. .. 42
Tabla 10. Costos del proyecto .. 52
Tabla 11. Seguimiento rendimiento y ahorro de azúcar ... 53

LISTA DE IMÁGENES

Imagen 1. Proceso productivo línea 6 – Producción de Jugos ... 29
Imagen 2. Reconocimiento de Planta .. 33
Imagen 3. Jarabe desperdiciado .. 33
Imagen 4. Reuniones Equipo Kaizen .. 46
Imagen 5. Ciclo PHVA (Planear, hacer, verificar, actuar) .. 47
Imagen 6. Pig de limpieza .. 48

LISTA DE GRÁFICAS

Gráfica 1. Porcentaje de participación en producción de bebidas Planta Gaseosas Lux .. 22
Gráfica 2.Diagrama de flujo del proceso productivo de la línea 6 – producción de jugos. .. 27
Gráfica 3. Perda de azúcar y rendimiento 2016 Línea 6 – Producción de Jugos 30
Gráfica 4. Porcentaje Pérdida de azúcar por causante ... 32
Gráfica 5. Diagrama de Ishikawa.. 39
Gráfica 6. Resultados matriz de Vester ... 42
Gráfica 7. Equipo Kaizen .. 44
Gráfica 8. Rendimiento y ahorro en pesos de azúcar ... 53
LISTA DE CUADROS

Cuadro 1. Recursos Planta de Producción gaseosas Lux .. 29
Cuadro 2. Aplicación 5W+1H .. 38
Cuadro 3. Análisis ¿Por qué? ¿Por qué? ... 40
Cuadro 4. Puntuación y problemas .. 41
Cuadro 5. Equipo Kaizen ... 45
Cuadro 6. Comparación de alternativas .. 49
RESUMEN

El cambiante entorno al que actualmente se enfrentan las empresas requiere por parte de ellas buscar llegar cada día más lejos, superando los diversos retos del mercado generados por fenómenos como la globalización, que permite una alta interacción económica a nivel mundial haciendo cada vez mayor el nivel de competencia entre empresas nacionales e internacionales.

Los conceptos y teorías organizacionales han evolucionado a través del tiempo, permitiendo la generación de filosofías y/o metodologías enfocadas en el alcance de la productividad y competitividad teniendo en cuenta el factor humanístico en las organizaciones. Una de estas metodologías es la Kaizen, este concepto parte de dos vocablos japoneses: Kai (cambio) y zen (mejora), su principio básico consiste en buscar la mejora continua a partir de pequeños cambios en las organizaciones, permitiéndoles a estas ser más productivas al reducir sus costos de producción como resultado de su estado de mejora continua.

La empresa de bebidas no alcohólicas Postobón S.A es una compañía líder con alto porcentaje de participación en el mercado nacional, actualmente cuenta con un portafolio de más de 35 marcas y 250 referencias. Para cumplir con su alta demanda la compañía cuenta con 66 sedes entre plantas de producción y centros de distribución, los cuales le permiten llegar al 90% del territorio nacional.

Como es natural en las organizaciones y en sus procesos productivos, en la empresa Postobón S.A existen problemas que generan reprocesos, desperdicios, sobrecostos y retrasos. Sin duda este es un aspecto bastante crítico ya que por el alto nivel de demanda que maneja la empresa, este tipo de problemas pueden generar significativas pérdidas económicas.

Teniendo en cuenta esta situación se elaboró la presente propuesta de mejora generada bajo los principios de la metodología kaizen aplicados en la planta 6 de producción de jugos de la empresa Postobón S.A, la cual parte de la identificación del alto nivel de desperdicio de azúcar en esta planta, siendo esta una de las materias primas principales y de mayor costo.

Teniendo en cuenta esta situación se elaboró la presente propuesta de mejora la cual parte de la identificación del alto nivel de desperdicio de azúcar, siendo esta una de las materias primas principales y de mayor costo.

El procedimiento metodológico y estructuración de la propuesta se desarrollaron bajo los principios de la metodología kaizen aplicados en la planta 6 de producción de jugos de la empresa Postobón S.A.
Con el presente trabajo tiene como fin la aprobación e implementación de la propuesta realizada por parte de la empresa Postobón S.A, ya que esta generara ahorros significativos en desperdicios y en todos los costos que se generan por los reprocesos.
Los principales objetivos bajo los cuales se orienta el desarrollo del trabajo son los siguientes:

Elaborar un diagnóstico en la línea 6 de producción de la planta de jugos, que permita identificar las variables que afectar el rendimiento de azúcar.

Elaborar un análisis de las variables que permita establecer su nivel de incidencia en el desperdicio de azúcar.

Aplicar la metodología kaizen mediante un plan de trabajo que permita estructurar una propuesta de mejora para optimizar el rendimiento de azúcar.

Establecer la relación costo/beneficio que permita establecer la factibilidad de la propuesta.

Palabras Clave: KAIZEN, BREXIT, POE

ABSTRACT

The changing environment that the companies are facing today requires, for each part of them, to reach everyday further, overcoming the various market challenges generated by phenomena such as globalization, which allow a high economic interaction at a global level making the Level of competition between national and international companies.

Organizational concepts and theories have evolved over time, allowing the generation of philosophies and / or methodologies focused on the scope of productivity and competitiveness taking into account the humanist factor in organizations. One of these methodologies is the Kaizen, this concept is part of two Japanese words: Kai (change) and zen (improvement), its basic principle is to seek continuous improvement from small changes in organizations, allowing them more productive. Their production costs as a result of their continuous improvement.

The non-alcoholic beverage company Postobón S.A. is a leading company with a high percentage of participation in the national market, currently has a portfolio of more than 35 brands and 250 references. To meet the demand of the company has 66 offices between production plants and distribution centers, which 90% of the national territory.

As is natural in companies and in production processes, Postobón S.A. Company stocks problems that generate reprocessing, waste, overcharges and delays. Undoubtedly this is a very critical aspect and because of the high level of demand that the company maneuver, these types of problems can generate significant losses.

In view of this situation, the present proposal for the improvement generated under the principles of the sugar application methodology in the juice production plant 6 of Postobón
SA, which starts with the identification of the high level of Sugar in this plant, being this one of theme in raw materials and of greater cost.

Taking into account this situation, the present proposal has been elaborated to improve which part of the identification of the high level of despair of sugar, being this one of them an in raw materials and of the cost mayor.

The methodological method and the structuring of the proposal were developed under the principles of the methodology of those applied in the plant 6 of juice production of the company Postobón S.A.

With the present work is aimed at the approval and implementation of the company has launched the company Postobón S.A, as it generates significant savings in desperation and all costs that are generated by reprocessing.

The main objectives under which to guide the development of the work are the following:

Elaborate a diagnosis in line 6 of production of the juice plant, that allow to identify the variables that affect the yield of sugar
To elaborate an analysis of the variables that allow to establish the level of incidence in the desperate sugar
Apply the kaizen methodology through a work plan that allows to structure a proposal of improvement to optimize the yield of sugar.
Establish the cost / benefit ratio that allow se establishing the feasibility of the proposal.

Key Words: KAIZEN, BREXIT, POE
INTRODUCCIÓN

Postobón S.A, es una compañía líder en el mercado nacional de bebidas no alcohólicas, en el centro de producción Gaseosas Lux S.A.S, se producen y envasan alrededor de 101.000 litros de bebida diariamente, una de las materias primas básicas es el azúcar, el cual se encuentra en los costos directos de producción con una participación de un 33%, siendo bastante representativo dentro del total de los costos de producción. Existe una gran oportunidad de mejora como lo es aumentar el rendimiento de azúcar ya que debido a diferentes variables que se presentan en el proceso se generan pérdidas lo que impacta de manera negativa los costos y rendimiento de esta materia prima. Por esta razón se desarrolla esta propuesta con el objetivo principal de mejorar los rendimientos de azúcar y disminuir los costos asociados a las pérdidas de esta materia prima, esto mediante la metodología Kaizen y apoyados en herramientas de análisis de información. Esta investigación tiene como determinar cuáles son aquellas variables que generan las pérdidas de azúcar realizando un recorrido por todo el proceso, desde la sala de preparación donde se realiza el jarabe simple el cual es la disolución de agua y azúcar, el envío a la línea por medio de tuberías lo cual es realizado por medio de un empuje con agua lo que genera miscibilidad es decir mezcla entre agua y jarabe lo que genera productos por fuera de variables físico químicas y no pueden ser usados y la zona de envasado, operación que es realizada en la llenadora de botellas, esta es la encargada de llenar y tapar cada una de las botellas dando cumplimiento al nivel de llenado y cierre hermético de cada uno de los productos.
JUSTIFICACIÓN

A lo largo de la historia el proceso de manufactura ha evolucionado como consecuencia de sucesos históricos tales como la revolución industrial y las guerras mundiales, que permitieron cambiar la concepción del funcionamiento del proceso productivo de las organizaciones.

Han surgido una gran variedad de corrientes ideológicas con una marcada tendencia hacia la mejora continua con el fin hacer cada vez más eficientes y productivos los procesos, esto ha generado un interés en las organizaciones que deja a un lado la competencia directa que recae en las fallas de las demás empresas y busca hacer una evaluación con una mirada hacia adentro donde sean las propias organizaciones las que identifiquen sus debilidades y fortalezas de manera que se generen estrategias que la hagan más competitiva en el fuerte mercado que existe actualmente.

Una de las metodologías aplicadas actualmente en las organizaciones es la metodología Kaizen ya que esta permite la generación de estrategias a partir de equipos de trabajo, los cuales tienen como principal fin la implementación de pequeñas mejoras que permitan mejorar la eficiencia de los procesos.

Con la aplicación de la metodología kaizen en la planta de jugos en Gaseosas Lux S.A.S, se pretende involucrar a los diferentes trabajadores (operarios, jefes, coordinadores, supervisores, etc.) en la búsqueda y estructuración de propuestas de mejora que permitan solventar los problemas existentes en el proceso productivo que generan ineficiencias, sobrecostos y desperdicios. Lo anterior da la oportunidad además de la generación de una posibilidad de mejora, la creación de una cultura organizacional orientada al cambio y constante mejora.
1. GENERALIDADES

1.1 PROBLEMA

1.1.1 Descripción.

La alta competitividad en la industria de las bebidas, requiere que todos los procesos dentro de la compañía estén orientados a una continua mejora, donde el control de las eficiencias y los rendimientos son factor fundamental para reducir costos, aumentar utilidades y satisfacer de manera rápida las necesidades del mercado.

Postobón S.A, es una compañía líder en el mercado nacional de las bebidas no alcohólicas, que se encarga de producir y comercializar bebidas dando cubrimiento a todo el territorio nacional y parte del mercado de centro América, sur América y Europa. Los productos que produce la compañía se dividen en 6 (seis) categorías. Gaseosas, Te, Jugos, Aguas, Energizantes e Hidratantes. Cada una de estas tiene una funcionalidad diferente, pero sin olvidar que el principal objetivo es satisfacer la necesidad en nuestros clientes de calmar la sed. Su proceso productivo consta de los siguientes pasos: tratamiento de agua, preparación de jarabe simple, preparación de jarabe terminado, mezcla, carbonatación y envasado.

La preparación de jarabe simple tiene como componente principal el azúcar siendo este el que tiene la mayor participación dentro de los costos directos de producción. En el proceso de elaboración de jarabe se tienen pérdidas de azúcar asociadas a diferentes variables lo que genera una afectación a los costos de producción y disminuye los rendimientos de esta importante materia prima dentro del proceso productivo. Por lo tanto, bajo la metodología Kaizen y por medio de las herramientas que esta ofrece se busca aumentar los rendimientos de azúcar, disminuyendo las pérdidas de esta importante materia prima, generando un impacto positivo en los costos de producción, estandarizando y controlando los procesos y aquellas operaciones donde se pueden generar estas posibles pérdidas.

1.1.2 Formulación.

¿Cómo mejorar el rendimiento de azúcar y reducir los de producción en la línea 6 planta jugos de la planta de jugos de gaseosas lux S.A.S empleando la metodología Kaizen?
1.2 OBJETIVOS

1.2.1. Objetivo General

Elaborar una propuesta de mejora bajo la metodología Kaizen, orientada a optimizar el rendimiento de azúcar y los costos asociadas a esta materia prima en la Línea 6 de producción de la planta de jugos en Gaseosas Lux S.A.S.

1.2.2 Específicos

- Elaborar un diagnóstico en la línea 6 de producción de la planta de jugos, que permita identificar las variables que afectan el rendimiento de azúcar
- Elaborar un análisis de las variables que permita establecer su nivel de incidencia en el desperdicio de azúcar
- Aplicar la metodología kaizen mediante un plan de trabajo que permita estructurar una propuesta de mejora para optimizar el rendimiento de azúcar.
- Establecer la relación costo/beneficio que permita establecer la factibilidad de la propuesta.

1.3 METODOLOGÍA

A continuación, se describe el proceso que se realizó para el desarrollo de la investigación y ejecución del proyecto.

- Diagnóstico: En esta etapa se realizó una evaluación de impacto, de las diferentes líneas de producción con respecto al desperdicio de azúcar, se identificará el proceso productivo y estadísticas de consumo de azúcar de la línea de producción que se encuentre en estado más crítico y se identificaran las variables y fallas que inciden en el desperdicio de azúcar.
- Análisis e interpretación de la información: una vez identificada la línea de producción crítica y la información correspondiente en esta, se analizó el nivel de impacto de las problemáticas identificadas en relación a los costos de producción.
- Estructuración de propuesta de mejora: Se planteó una meta a alcanzar y se estructurará un plan de acciones que permita mejorar el rendimiento del azúcar.

1.3 DELIMITACIÓN Y ALCANCE

El alcance del presente proyecto es estructurar una propuesta de mejora orientada a optimizar el rendimiento de azúcar aplicando la metodología kaizen en la Línea 6 de producción de la planta jugos en Gaseosas Lux S.A.S, basada en el diagnóstico del proceso de producción de jarabe y la cuantificación de los sobrecostos generados por las mermas, de manera que sea posible justificar ante gerencia la necesidad de implantar una solución que genere un impacto positivo directo sobre estos y sobre la productividad del proceso en general.
2. MARCO REFERENCIAL

2.1 MARCO HISTÓRICO

2.1.1. Clasificación Industrial de Postobón - CIIU 1104 Elaboración de bebidas no alcohólicas, producción de aguas minerales y otras aguas embotelladas.

La empresa Postobón se clasifica según el código CIIU con el número 1104, el cual corresponde a “la elaboración de bebidas no alcohólicas, producción de aguas minerales y otras aguas embotelladas”

1. Esta categoría incluye la elaboración de bebidas no alcohólicas aromatizadas y/o edulcoradas: gaseosas, bebidas a base de jugos de frutas, aguas tónicas, entre otros productos como aguas minerales, helados, bebidas isotónicas.

En Colombia el consumo de bebidas no alcohólicas es una actividad que forma parte de la rutina diaria de sus habitantes, las ventas de este tipo de productos supera los $3,5 billones y los 2.000 millones de litros, lo que lo hace de este sector uno de los más representativos del país, alcanzado un significativo crecimiento del 9% en 2014.

El mercado de las bebidas no alcohólicas, listas para consumir, está compuesto de acuerdo con sus volúmenes de ventas por: bebidas gaseosas, con un 64%; los jugos de frutas, con un 17%; el agua embotellada, con un 9%; el té, con un 3%; las bebidas energizantes 4% e isotónicas, con un 4%, esto según la misma fuente de información anteriormente citada.

Una correcta clasificación de las bebidas no alcohólicas es según su participación en venta, en donde las gaseosas representan el 64%, los jugos de frutas, con un 17%; el agua embotellada, con un 9%; el té, con un 3%; las bebidas energizantes 4% e isotónicas, con un 4%. La fuente de esta información corresponde a la anterior cita.

Gracias a estudios realizados se ha permitido evidenciar que los consumidores colombianos y de América Latina prefieren bebidas que se caractericen y distingan de las demás por ser saludables y aun así conservar un sabor agradable, de manera que los usuarios puedan tener una sensación balanceada entre sabor y salud, que ofrezcan diversidad y disponibilidad en cuanto a tamaño y tipo de presentaciones.

En cuanto a los jugos, según su comportamiento de venta se ha evidenciado que esta categoría de bebidas tiene un crecimiento del 20% anual a nivel país. Esta tendencia se ha dado gracias a la constante innovación de la industria con este tipo de productos, de

1 Recuperado de http://linea.ccb.org.co/descripcionciiu/
manera que sea posible tener una mejor oferta a precios asequibles y favorables con los consumidores.

En el transcurso del último año se ha registrado un incremento de puntos de venta de jugo, los cuales ascendieron entre 13.000 y 15.000 nuevos establecimientos, esto según las estadísticas presentadas en el documento que corresponde a la primera cita.

En cuanto al mercado de los jugos también es importante destacar que este segmento del mercado hay dos categorías que están creciendo a un ritmo acelerado, por un lado están las bebidas que son 100% jugo de fruta, con o sin contenido de azúcar y son denominados jugos Premium. Por otra parte, los otros jugos que representan un alto nivel de venta son los jugos que tienen poco contenido de fruta pero que tienen precios más económicos.

2.1.2 Postobón S.A.

Postobón se ha destacado a lo largo de los años por ser una empresa con un alto nivel de innovación, proyección en los negocios y capacidad de afrontar el cambio mediante la transformación y adaptación, lo cual ha permitido que la empresa sobresalga en el mercado nacional y aporte de manera sostenible al desarrollo del país.

Respecto a la posición de Postobón en el mercado nacional de bebidas no alcohólicas, se destaca que la empresa cuenta con el mayor porcentaje de participación y recibe los mayores ingresos del sector con un capital totalmente colombiano.

Postobón cuenta con un amplio portafolio de bebidas clasificadas como gaseosas, aguas, jugos, hidratantes, energizantes y té, estos productos participan en el mercado con 35 marcas que cuentan con 250 referencias, las cuales ha desarrollado en sus 111 años de historia, logrando hacer que sus productos sean pioneros en el consumo de los colombianos. Un ejemplo de esto es su éxito en las marcas de gaseosas Postobón, Colombiana, Pepsi, Bretaña, Hipinto, Popular, Seven Up, MontainDew, Jugos Hit, Tuttifrutti, Mr. Tea, Agua Cristal, Agua Oasis, H2Oh!, Gatorade, Squash, Peak y Lipton Tea, entre otras.³

En cuanto a su estructura logística, la empresa cuenta en la actualidad con varios centros de producción y centros de distribución ubicados en diferentes lugares del el país, que en total equivalen a 66 sedes en las que hay un capital de trabajo aproximadamente de 12.000 personas. Gracias a estos recursos e infraestructura le es posible a Postobón alcanzar una cobertura del 90% del territorio a nivel nacional.

Además de su fortaleza a nivel logístico, su habilidad en ventas permite que los productos sean asequibles desde diversos lugares y se encuentren en todo tipo de tiendas, supermercados, superficies de cadena y restaurantes. Los productos de Postobón también hacen parte del mercado internacional, ofreciendo sus productos en países como Estados Unidos, Reino Unido, Aruba, España, Curazao, Panamá e Italia.

La compañía pertenece a la Organización Ardila Lülle, una de las principales organizaciones industriales de América Latina.\(^4\)

2.2 MARCO TEÓRICO

2.2.1 Metodología Kaizen

La palabra KAIZEN se deriva de la unión de dos ideogramas japoneses: la primera parte, “Kai” tiene como significado el cambio y la segunda parte, “Zen” hace referencia a mejorar. Por lo tanto, cuando hablamos de “Kaizen” queremos decir “cambio para mejorar” o “mejoramiento continuo”. Los dos principios bajo los cuales funciona el Kaizen son los equipos de trabajo y la práctica de la Ingeniería Industrial, ya que con esta tiene como enfoque ara mejorar los procesos productivos.

El Kaizen se orienta tanto en las personas como en la estandarización y optimización de los procesos, por lo tanto para ponerlo en práctica se requiere la conformación de un equipo de trabajo integral en el que participe personal de diferentes áreas como producción, mantenimiento, calidad, ingeniería y compras entre otras. Su principal objetivo es aumentar la productividad por medio del control de los procesos de manufactura, la reducción de tiempo, la estandarización de parámetros de calidad y de los métodos de trabajo y la eliminación de desperdicio.\(^5\)

2.2.2 Conceptos Fundamentales

El significado de Kaizen es:

KAIZEN = KAI (Cambiar) + ZEN (Bien)

Básicamente El Kaizen funciona bajo cuatro principios fundamentales que son:

1. Principio de Restricciones Positivas.
2. Principio de Restricciones Negativas.
3. Principio de Enfoque.
4. Principio de facilitador.

El Principio de Restricciones Positivas: Consiste en implementar a los procesos limitantes o condicionantes que impidan la generación de productos defectuosas y la presencia de fallas en los procesos.

El Principio de Restricción Negativa: este tipo de restricción hace referencia las restricciones que se dan durante los procesos productivos, los cuales denominamos usualmente como “cuellos de botella”. Estos tienden a afectar negativamente el tiempo y desarrollo de las actividades y procesamiento de los productos o servicios.

El principio de Enfoque: este principio hace referencia a la importancia de aprovechar los recursos de la empresa enfocando su uso y disposición a las actividades que en las que la empresa es más competitiva.

Principio de facilitador: es importante hacer que las actividades y procesos estén cada vez más simplificados, ya sea por medio de automatización o por medio de la aplicación del pokayoke, la reingeniería, entre otros.

Básicamente estos principios son la base de metodologías como el Kaizen y el Just in Time, ya que la combinación de estos permite superar las dificultades, limitaciones y cuellos de botella, mejorar la calidad, la estructura de los procesos, permitiendo alcanzar una mayor productividad y eficiencia en los procesos.

2.2.3 Beneficios del Kaizen:
- Desarrollar una forma de pensar orientada a la optimización de procesos.
- Realizar una mejor planeación.
- Dar prioridad a los asuntos más relevantes.
- Participación y contribución activa por parte de todos los involucrados con los procesos.
- Reducción de productos defectuosos, reducción de reprocesos e inventarios.
- Reducción en fallas de los equipos y herramientas.
- Reducción en los tiempos de alistamiento de maquinarias y herramientas.
- Mayor satisfacción de clientes, consumidores y trabajadores.
- Disminución de fallas y errores.
- Mejoramiento motivación del personal y ambiente laboral.
- Incremento de productividad.
- Reducción en los costos.
- Mejoramiento en los diseños y funcionamiento de los productos, procesos y servicios.
- Mayor rentabilidad.
- Menores niveles de desperdicios, lo cual permite reducción de costos y de efectos negativos sobre el medio ambiente.
- Reducción de tiempos en los ciclos de diseño y operación.
- Mejor y más rápido tiempo de respuesta.
- Mejoramiento flujo de efectivo.
- Menor rotación de clientes y trabajadores.
- Ventaja estratégica en el mercado.
- Mejora en la actitud y aptitud del personal, mayor disposición para asumir los cambios.
- Adquisición de conocimientos y experiencias aplicables a los procesos.
- Capacidad para competir en los mercados globalizados.
- Fomento del trabajo en equipo.
- Capacidad de afrontar los cambios del mercado.
2.2.4 Pasos Para Implementar El Kaizen.

Planear:
Paso 1 Definir el problema
Pasó 2 Estudiar la situación actual
Pasó 3: Analizar las causas potenciales

Hacer:
Pasó 4 Implemente la solución

Verificar:
Pasó 5 Verifique los resultados

Actuar:
Pasó 6 Estandarice la mejora
Pasó 7 Establezca futuros planes

2.2.5 Metodología 5w+1h(Quién, Qué, Dónde, Cuándo, Cual, Cómo)

La 5W+H es una metodología de análisis empresarial que apoya la identificación de los factores y condiciones que provocan problemas en los procesos de trabajo, consiste en contestar las siguientes seis preguntas básicas.

• Que es el problema (What), aquí se deben definir las características del problema y su origen como materiales, humanos, logísticos, financieros, relaciones e impactos y efectos generados por el problema.
• Cuando ocurre el problema (When), se debe identificar el momento, horario o época en la que ocurre el problema, así como el punto en el diagrama de flujo de actividades en el que este sucede.
• Donde (Where) Se debe definir en donde ocurre el problema, ya sea su ubicación física en la organización o el proceso del que se trate.
• Quien (Who), se debe definir quien participa en el problema, como por ejemplo trabajadores, proveedores, clientes entre otros que forman parte de la situación a resolver.
• Como (How) Como es el método o procedimiento.
• Cual (Wich) Se debe responder e identificar si hay una tendencia del problema y/o un patrón de comportamiento.

Esta regla creada por Lasswell (1979) puede considerarse como una lista de verificación mediante la cual es posible generar estrategias para implementar una mejora.7

2.2.6 Análisis Causa Raíz

El diagrama de Ishikawa o también llamado causa-raíz consiste en una representación gráfica la cual nos permite identificar de manera rápida, clara y ordenada una relación entre la variedad de factores que están relacionados con un determinado efecto o problema.

Esta es una herramienta que representa la relación entre un problema y todas las posibles causas que lo generan. Es denominado Diagrama de Ishikawa o Diagrama de Espina de Pescado por ser parecido con el esqueleto de un pescado.\(^8\)

2.2.7 Análisis ¿por qué? ¿Por qué?

La técnica de “los por qué” es un método que consiste en realizar preguntas para explorar las relaciones de causa-efecto que generan un problema en particular. El objetivo final de los Porqué es determinar la causa raíz de un defecto o problema.

Los Cinco Por Qués es una técnica sistemática de preguntas utilizada durante la fase de análisis de problemas para buscar posibles causas principales de un problema. Durante esta fase, los miembros del equipo pueden sentir que tienen suficientes respuestas a sus preguntas.

Esto podría resultar en la falla de un equipo en identificar las causas principales más probables del problema debido a que el equipo ha fallado en buscar con suficiente profundidad. La técnica requiere que el equipo pregunte “Por Qué” al menos cinco veces, o trabaje a través de cinco niveles de detalle. Una vez que sea difícil para el equipo responder al “Por Qué”, la causa más probable habrá sido identificada.\(^9\)

\(^8\) Sociedad latinoamericana para la calidad. (s.f). Diagrama causa y efecto
\(^9\) Puga, M. (2015). Los cinco por qués (Five Whys)
3. SITUACIÓN ACTUAL

3.1 PLATAFORMA ESTRATÉGICA

3.1.1. Misión

A continuación se presenta la misión que ha sido definida por la empresa Postobón S.A, la cual fue actualizada por última vez en el año 2014. Esta información se encuentra disponible en el sitio web de la empresa.

“Fortalecer el liderazgo en el desarrollo, producción, mercadeo y ventas de bebidas refrescantes no alcohólicas, para satisfacer los gustos y necesidades de los consumidores, superando sus expectativas mediante la innovación, la calidad y la excelencia en el servicio. Generamos oportunidades de desarrollo profesional y personal apoyándonos en el talento humano organizado en equipos alrededor de los procesos.

Trabajamos con los proveedores para convertirlos en nuestros socios comerciales. Contribuimos decisivamente al crecimiento económico de la Organización Ardila Lülle y del País, actuando con responsabilidad frente al medio ambiente y la sociedad”.

3.1.2. Visión

A continuación se presenta la visión que ha sido definida por la empresa postobón S.A, la cual fue actualizada por última vez en el año 2014. Esta información se encuentra disponible en el sitio web de la empresa.

“Ser una Compañía Multilatina, con operaciones propias en el continente, reconocida por su dinamismo en innovar, desarrollar y ofrecer bebidas no alcohólicas de calidad, penetrando otros mercados e incursionando en otras categorías de producto”. La fuente de esta información corresponde a la anterior cita.

3.1.3. Política Integral

A continuación se presenta la política integral de que ha sido definida por la empresa Postobón S.A, donde se destacan los pilares bajo los cuales está orientado el funcionamiento de la empresa. Esta información se encuentra disponible en el sitio web de la empresa.

“A través del Sistema de Gestión tenemos el propósito de satisfacer los requerimientos y expectativas de nuestros clientes, trabajadores, proveedores, accionistas, la Sociedad y el Estado.

10 Recuperado de http://www.postobon.com/
Mantenemos la confianza y garantizamos procesos capaces y productos de calidad consistente, íntegros y confiables, trabajamos constantemente en el mejoramiento continuo, cumpliendo la legislación aplicable y los requisitos de los productos; además velamos por la inocuidad y la seguridad en la cadena de suministro nacional e internacional que prevea actividades relacionadas con el lavado de activos, narcotráfico y la financiación del terrorismo.

Incorporamos la sostenibilidad (ambiental, económica y social) a nuestra estrategia de negocio, optimizamos el uso de los recursos naturales, prevenimos y minimizamos el impacto en el entorno de nuestros procesos industriales. Apoyamos la responsabilidad social a través de iniciativas que se ejecuten bajo estrategias de valor compartido. En cuanto a la seguridad vial, contribuimos a la formación de hábitos, comportamientos y conductas seguras que minimicen los riesgos de accidentalidad en las vías.

Es fundamental para nosotros, la formación de los colaboradores para asegurar su nivel de competencia, así como una comunicación permanente, respetuosa, directa y clara.

Brindamos condiciones de trabajo seguro y saludable, promovemos la cultura de la prevención y el autocuidado. Mantendremos nuestro liderazgo como protagonistas del desarrollo nacional a través de la oferta de productos y servicios de calidad y nos fortaleceremos para enfrentar los retos de la globalización.11

3.2 PRODUCTOS.

Postobón cuenta con un amplio portafolio de bebidas no alcohólicas clasificadas como gaseosas, aguas, jugos, hidratantes, energizantes y té, estos productos participan en el mercado con 35 marcas que cuentan con 250 referencias. Las marcas más reconocidas son gaseosas Postobón, Colombiana, Pepsi, Bretaña, Hipinto, Popular, Seven Up, Montain Dew, Jugos Hit, Tutti Frutti, Mr. Tea, Agua Cristal, Agua Oasis, H2Oh!, Gatorade, Squash, Peak y Lipton Tea, entre otras.

En la planta de producción “Gaseosas Lux” ubicada en Bogotá, se producen las bebidas que se indican a continuación en la Tabla 1 y en la gráfica 1 con su respectiva participación según su nivel de producción.

11 Recuperado de http://www.postobon.com/
Tabla 1. “Bebidas Producidas – Planta Gaseosas Lux”

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>PARTICIPACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIT 200</td>
<td>47,52%</td>
</tr>
<tr>
<td>TUTTI 200</td>
<td>0,00%</td>
</tr>
<tr>
<td>VITAL 200</td>
<td>1,71%</td>
</tr>
<tr>
<td>MR T200/HIT BEB CON JUGO</td>
<td>7,35%</td>
</tr>
<tr>
<td>HIT BEBIDA CON JUGO</td>
<td>0,00%</td>
</tr>
<tr>
<td>BOLSA</td>
<td>0,00%</td>
</tr>
<tr>
<td>TEA 1000</td>
<td>0,00%</td>
</tr>
<tr>
<td>TUTTI 1000</td>
<td>0,00%</td>
</tr>
<tr>
<td>HIT 1000</td>
<td>0,00%</td>
</tr>
<tr>
<td>HIT 350</td>
<td>19,73%</td>
</tr>
<tr>
<td>NECTAR 250</td>
<td>1,74%</td>
</tr>
<tr>
<td>HIT 250</td>
<td>17,10%</td>
</tr>
<tr>
<td>MR TEA 250</td>
<td>3,18%</td>
</tr>
<tr>
<td>TUTTI 250</td>
<td>1,68%</td>
</tr>
<tr>
<td>HIT EDGE 250X24</td>
<td>0,00%</td>
</tr>
<tr>
<td>TEA EDGE 250X24</td>
<td>0,00%</td>
</tr>
<tr>
<td>TUTTI EDGE 250X24</td>
<td>0,00%</td>
</tr>
<tr>
<td>TUTTI EDGE 250X24</td>
<td>0,00%</td>
</tr>
<tr>
<td>TEA 500 ml PRISMA</td>
<td>0,00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Departamento de producción Postobón S.A 2017

Gráfica 1. Porcentaje de participación en producción de bebidas Planta Gaseosas Lux

Fuente: Departamento de producción Postobón S.A 2017
Según la información registrada por el departamento de producción de la planta Gaseosas Lux de Postobón ubicada en Bogotá, el producto que representa un mayor nivel de producción es el jugo Hit en presentación de 200 ml.

Hit es un marca líder en bebidas de fruta en Colombia, actualmente se producen sabores jugos con sabor a mora, mango, guayaba, frutas tropicales, naranja-piña, lulo y durazno. También existen en el mercado diferentes tipos de jugo hit como, Hit Light, bajo en azúcar; Hit con Gas, Hit Néctar, Hit 100% jugo de manzana, Hit 100% jugo de naranja, Hit bebida con jugo de naranja y pulpas de fruta Hit con jugo 100% natural de mango, guanábana, mora, mango orgánico, maracuyá y banano-mora, aunque esta otra línea tiene una muy poca participación en el mercado.

3.3 PROCESO

El entorno altamente competitivo de las organizaciones requiere que estas sean cada vez más rigurosas en el control de sus procesos productivos y orienten sus objetivos a la reducción de reprocesos, desperdicios, sobrecostos y productos defectuosos, ya que del rendimiento de estos depende en muchos casos la rentabilidad de la operación realizada por la organización y, por ende, la posibilidad poder ser competitivos en el mercado con un producto de buena calidad a un precio razonable.

Es por esto que una de las principales preocupaciones actuales del personal directivo de la empresa Gaseosas Lux S.A.S es la perdida de dinero que se ha estado generando en los últimos años debido al desperdicio de azúcar en los procesos productivos de sus diferentes productos. Con el fin de identificar las causas de esta problemática y buscar una solución eficiente, se elaboró la siguiente tabla donde se evalúa el impacto, la urgencia y la tendencia de los problemas relacionados con el rendimiento de azúcar que se presentan en las diferentes líneas de producción, que en general son desperdicios, reprocesos y productos no conformes.

Las líneas de producción se evaluaron dando una puntuación de 0 a 4 a cada aspecto, donde el cero (0) representa la menor incidencia y cuatro (4) representa la mayor incidencia.
Al evaluar las diferentes líneas de producción, como se puede ver en la tabla 2, Selección y priorización línea de producción, se identificó que por el nivel de impacto, la tendencia y la urgencia que se generan con los desperdicios de azúcar, la línea 6 que corresponde a la producción de jugos es la más crítica, por esta razón se todo el análisis y las propuestas de mejora se basarán en esta.

A continuación, se describe el actual proceso de producción correspondiente a la línea 6 de producción de jugos.

3.3.1 Descripción Del Proceso Productivo Línea 6 - Producción De Jugos

El proceso productivo correspondiente a la elaboración de Jugos consta de las siguientes etapas:

- **Enjuagar línea, solicitar, enviar y recibir el jarabe terminado**

Esta operación es coordinada por el jefe o el Supervisor o el Auxiliar de Producción y ejecutada por el Mecánico de línea y el Operario de la llenadora, quienes deben garantizar que las condiciones de operación de los equipos sean las establecidas para la línea y el producto a envasar (Temperatura y presión al interior del carboenfriador, caudal...}

Tabla 2. Selección y priorización línea de producción.

<table>
<thead>
<tr>
<th>Línea</th>
<th>Gaseosas</th>
<th>Jugos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Línea 1</td>
<td>Impacto</td>
<td>1</td>
</tr>
<tr>
<td>Línea 2</td>
<td>Impacto</td>
<td>3</td>
</tr>
<tr>
<td>Línea 3</td>
<td>Impacto</td>
<td>1</td>
</tr>
<tr>
<td>Línea 4</td>
<td>Impacto</td>
<td>2</td>
</tr>
<tr>
<td>Línea 5</td>
<td>Impacto</td>
<td>2</td>
</tr>
<tr>
<td>Línea 6</td>
<td>Impacto</td>
<td>3</td>
</tr>
<tr>
<td>Línea 8</td>
<td>Impacto</td>
<td>1</td>
</tr>
<tr>
<td>Línea 10</td>
<td>Impacto</td>
<td>3</td>
</tr>
<tr>
<td>Línea 1</td>
<td>Urgencia</td>
<td>1</td>
</tr>
<tr>
<td>Línea 2</td>
<td>Urgencia</td>
<td>3</td>
</tr>
<tr>
<td>Línea 3</td>
<td>Urgencia</td>
<td>1</td>
</tr>
<tr>
<td>Línea 4</td>
<td>Urgencia</td>
<td>1</td>
</tr>
<tr>
<td>Línea 5</td>
<td>Urgencia</td>
<td>2</td>
</tr>
<tr>
<td>Línea 6</td>
<td>Urgencia</td>
<td>4</td>
</tr>
<tr>
<td>Línea 8</td>
<td>Urgencia</td>
<td>2</td>
</tr>
<tr>
<td>Línea 10</td>
<td>Urgencia</td>
<td>3</td>
</tr>
<tr>
<td>Línea 1</td>
<td>Tendencia</td>
<td>0</td>
</tr>
<tr>
<td>Línea 2</td>
<td>Tendencia</td>
<td>2</td>
</tr>
<tr>
<td>Línea 3</td>
<td>Tendencia</td>
<td>0</td>
</tr>
<tr>
<td>Línea 4</td>
<td>Tendencia</td>
<td>0</td>
</tr>
<tr>
<td>Línea 5</td>
<td>Tendencia</td>
<td>1</td>
</tr>
<tr>
<td>Línea 6</td>
<td>Tendencia</td>
<td>4</td>
</tr>
<tr>
<td>Línea 8</td>
<td>Tendencia</td>
<td>2</td>
</tr>
<tr>
<td>Línea 10</td>
<td>Tendencia</td>
<td>3</td>
</tr>
<tr>
<td>Línea 1</td>
<td>TOTAL</td>
<td>2</td>
</tr>
<tr>
<td>Línea 2</td>
<td>TOTAL</td>
<td>8</td>
</tr>
<tr>
<td>Línea 3</td>
<td>TOTAL</td>
<td>2</td>
</tr>
<tr>
<td>Línea 4</td>
<td>TOTAL</td>
<td>3</td>
</tr>
<tr>
<td>Línea 5</td>
<td>TOTAL</td>
<td>5</td>
</tr>
<tr>
<td>Línea 6</td>
<td>TOTAL</td>
<td>11</td>
</tr>
<tr>
<td>Línea 8</td>
<td>TOTAL</td>
<td>5</td>
</tr>
<tr>
<td>Línea 10</td>
<td>TOTAL</td>
<td>9</td>
</tr>
</tbody>
</table>

Fuente: Autores año 2017
de carbotrol, caudal del reflujo, orificio de paso de jarabe al vaso de mezcla, posición del tornillo para caudal de agua, etc.)

- **Arrancar, inspeccionar y controlar el funcionamiento de los equipos involucrados en la elaboración de las bebidas**

Estas actividades se deben llevar a cabo según los procedimientos existentes sobre arranque, inspección y control del funcionamiento de los equipos empleados en la elaboración de las bebidas.

- **Suministrar envases, tapas y etiquetas**

Los operarios de la llenadora y de la etiquetadora deben retirar la tapa y/o etiqueta sobrante de lotes anteriores y suministrar la nueva referencia, luego se debe dejar ingresar el envase lavado a la llenadora para iniciar el proceso de envasado, lo anterior cumpliendo con las normas internas de la empresa. El envase debe ser suministrado en la cantidad necesaria, con la referencia correspondiente al producto que se va a envasar y en las condiciones de limpieza adecuadas.

- **Cambiars bebida en la llenadora**

Cuando se requiera hacer un cambio de sabor, una vez solicitado y recibido el jarabe, el Mecánico de línea y el Operario de la llenadora deben llevar a cabo el enjuague de la llenadora y realizar el cambio de bebida requerido según la información registrada en la programación diaria de producción. Dependiendo de la bebida a envasar, se siguen protocolos específicos de limpieza que presentan algunas variaciones.

Al iniciar la producción o cuando haya cambio de sabor, el Jefe o el Supervisor o el Auxiliar de Producción deben verificar que las condiciones de operación de los equipos correspondan a lo estipulado para el sabor y presentación que se va a envasar.

- **Iniciar el proceso de llenado, verificar y registrar las características del producto terminado.**

Al iniciar la producción o cuando haya cambio de sabor, el Jefe o el Supervisor o el Auxiliar de Producción debe verificar y registrar las características del producto terminado del sabor que se va a envasar de acuerdo a las siguientes instrucciones: Se debe iniciar la operación de llenado y suspender una vez hayan sido tapadas las dos (2) primeras botellas. Inmediatamente se deben tomar dos botellas llenas destapadas del equipo y evaluar sensorialmente, en forma individual por el Operario de la llenadora y el Jefe o el Supervisor o el Auxiliar de Producción:

Si son aprobadas, el jefe o el Supervisor o el Auxiliar de Producción debe autorizar la continuación del llenado, si el producto es defectuoso, el Jefe o el Supervisor o el Auxiliar de Producción conjuntamente con el Personal de Mantenimiento, deben proceder a eliminar las causas que lo generan, descartar el producto defectuoso y reiniciar el proceso de envasado.
- **Controlar las variables del proceso, realizar inspección y ensayo del producto terminado.**

Durante el proceso de envasado el jefe o el Supervisor o el Auxiliar de Producción debe controlar las variables y realizar las inspecciones al producto terminado, esta información debe ser registrada. Si alguna característica se encuentra fuera de los parámetros establecidos, se debe realizar el registro y si después de realizar las actividades de inspección y ensayo se detectan productos no conformes, éstos deben ser manejados según los instructivos de la empresa.

- **Finalizar el proceso de llenado**

Se deben realizar análisis de volumen de CO2, grados Brix o acidez titulable a una muestra de la última vuelta de la llenadora. Los datos obtenidos al realizar dicha verificación se deben registrar en el sistema SAP.

Aunque los procedimientos correspondientes al proceso productivo que se realiza en la línea 6 – producción de jugos se encuentran estandarizados y documentados, cuando se requiere cambiar de bebida suelen presentarse altos niveles de desperdicio ya que aunque se lleven a cabo los protocolos de limpieza, se realicen las actividades y las verificaciones anteriormente descritas, la estructura de la tubería impide que sean totalmente evacuados los residuos de agua que quedan luego de la limpieza, alterando así el jarabe y su porcentaje de concentración de agua requerida en el nuevo lote de producción, lo cual da como resultado una bebida que no cumple con los estándares de calidad requeridos, desperdicios y pérdidas económicas.

A continuación se presenta el respectivo diagrama de flujo del proceso productivo de la línea 6 – producción de jugos.
Gráfica 2. Diagrama de flujo del proceso productivo de la línea 6 – producción de jugos.

- **INICIO**
 - **Enjuagar línea, solicitar, enviar y recibir el jarabe terminado**
 - Responsables: Supervisor o Auxiliar de Producción, Mecánico de línea, Operario de Jarabe Terminado
 - **Arrancar, inspeccionar y controlar el funcionamiento de los equipos involucrados en la elaboración de las bebidas**
 - Responsables: Ingeniero Electricista, Mecánicos y Operarios de línea
 - **Suministrar envases, tapas y etiquetas**
 - Responsables: Operarios de la línea y de la etiquetadora
 - **Cambiar bebida en la llenadora**
 - Responsables: Mecánico de línea, Operario de la llenadora
 - **Verificar condiciones de operación al iniciar producción o por cambio de sabor**
 - Responsables: Jefe o Supervisor o Auxiliar de Producción
 - **SI**
 - Condiciones de operación son las establecidas?
 - **SI**
 - **NO**
 - **Ajustar condiciones de operación**
 - Responsables: Jefe o Supervisor o Auxiliar de Producción
Actualmente, para el proceso de producción en la planta de gaseosas Lux, se emplean los recursos que se indican en la tabla 3.

Cuadro 1. Recursos Planta de Producción gaseosas Lux

<table>
<thead>
<tr>
<th>RECURSOS LÍNEA 6</th>
<th>ASIGNACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALA DE PREPARACIÓN</td>
<td>1</td>
</tr>
<tr>
<td>LLENADORA</td>
<td>1</td>
</tr>
<tr>
<td>CAPSULADORA</td>
<td>1</td>
</tr>
<tr>
<td>LAVADORA DE BOTELLAS</td>
<td>1</td>
</tr>
<tr>
<td>INSPECTOR DE ENVASE VACÍO</td>
<td>1</td>
</tr>
<tr>
<td>INSPECTOR DE ENVASE LLENO</td>
<td>1</td>
</tr>
<tr>
<td>CODIFICADOR</td>
<td>1</td>
</tr>
<tr>
<td>DESPALETIZADORA</td>
<td>1</td>
</tr>
<tr>
<td>PALETIZADORA</td>
<td>1</td>
</tr>
<tr>
<td>OPERARIOS</td>
<td>5</td>
</tr>
<tr>
<td>SUPERNUMERARIO</td>
<td>2</td>
</tr>
<tr>
<td>MONTACARGUISTA</td>
<td>1</td>
</tr>
<tr>
<td>SUPERVISOR</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Postobón S.A Año 2016
3.4 DIAGNÓSTICO LÍNEA 6 – PRODUCCIÓN DE JUGOS

Con el fin de identificar el comportamiento que ha tenido la línea respecto al rendimiento de azúcar, se recogieron datos históricos de producción correspondientes al consumo y desperdicio de esta materia prima en la línea 6 durante cada mes en el año 2016. Esta información se plasma a continuación en el Gráfico 2.

El cálculo correspondiente al rendimiento de azúcar se derivó de la siguiente fórmula.

\[
Rendimiento
de
azúcar = \frac{Azucar
necesaria\ para\ producir\ las\ cajas\ entregadas\ a\ Empaque\ y\ producto}{Azucar\ real\ adicionada\ en\ la\ preparación} \times 100\%
\]

Fuente: Departamento de Producción de Postobón S.A

Gráfica 3. Perdida de azúcar y rendimiento 2016 Línea 6 – Producción de Jugos

En la gráfica número 3 se tienen los datos que corresponden a rendimiento de azúcar y kilogramos perdidos esta información fue tomada durante 9 meses. En las líneas de rendimiento con valores dados en % pueden observarse dos datos, en color azul se pueden observar la variación en los rendimientos de azúcar para la planta total, la cual...
 está compuesta por 3 líneas de producción. La otra línea color rojo nos representa el rendimiento únicamente para la línea 6. En las barras encontramos representada la perdida en kg de azúcar. Estos datos históricos representan la variabilidad en el rendimiento y nos muestra una oportunidad de mejora significativa, debido a que el mejor rendimiento que podemos encontrar es el de 96,35% para el mes número 5.

Según las estadísticas presentadas y estudiadas, en el transcurso de nueve meses se perdieron en total 123734 Kg de azúcar, esto además de afectar el rendimiento de la producción en general, impacta negativamente los costos del proceso ya que el azúcar en una de las materias primas que más se consume y que tiene mayor costo.

Las pérdidas significativas de azúcar que se registraron se atribuyen a incidentes de calidad y a incidentes que ocurren durante la preparación, a continuación, en la tabla 4.Causantes de Desperdicios, se clasifican por porcentaje de participación las principales razones y/o situaciones por la que se da el desperdicio de azúcar en la línea 6 – Producción de Jugos

<table>
<thead>
<tr>
<th>Causante Desperdicio</th>
<th>Porcentaje</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remanente en Bultos</td>
<td>1%</td>
<td>1237 kg</td>
</tr>
<tr>
<td>Al momento de desocupar los bultos de azúcar suelen quedar restos en los bultos, generándose así un desperdicio de materia prima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferencia de peso en bultos</td>
<td>3%</td>
<td>3712 kg</td>
</tr>
<tr>
<td>El peso real de los bultos suele ser diferente del peso teórico.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desperdicios</td>
<td>5%</td>
<td>6187 kg</td>
</tr>
<tr>
<td>Durante algunas etapas del proceso suelen generarse desperdicios en el traspaso de azúcar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotura</td>
<td>2%</td>
<td>2475 kg</td>
</tr>
<tr>
<td>La rotura se presenta en las operaciones que se realizan después del llenado, cuando se explotan los envases y se pierde el producto envasado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajas por tiempo de reposo</td>
<td>7%</td>
<td>8661 kg</td>
</tr>
<tr>
<td>En algunos casos el jarabe se queda en reposo más del tiempo necesario, esto genera cambios químicos que hacen que el jarabe sea no conforme y por lo tanto deba ser descartado. Esto representa pérdidas de materias primas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajas por preparación</td>
<td>2%</td>
<td>2475 kg</td>
</tr>
<tr>
<td>Varios de los procesos requieren de un tiempo específico para su realización, sin embargo, en algunos casos este tiempo se excede, lo cual genera que el producto cambie sus características físico – químicas y deje de ser un producto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Esta situación genera desperdicios de materias primas. La mayoría de los desperdicios se generan por el cargue y corte de lotes de diferentes productos, esto se debe a que en muchos casos en las tuberías quedan residuos del lote anterior que se mezclan con el jarabe del lote que se está produciendo. Esto genera que el producto a envasar sea no conforme y por lo tanto se desperdicien materias primas.

<table>
<thead>
<tr>
<th>Cargues-Cortes</th>
<th>Porcentaje</th>
<th>Total</th>
<th>Desperdicio de azúcar por causante</th>
<th>Fuente: Autores Año 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80%</td>
<td>98987 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>123734 Kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teniendo en cuenta el que el mayor desperdicio de azúcar se genera en los cargues y cortes de producto, se emplearon algunas herramientas de diagnóstico las cuales se describen de manera detallada más adelante, en esta etapa del proceso con el fin de identificar las principales causes que están generando el desperdicio de azúcar y evaluar sus efectos en la línea 6 de producción de jugos.

La recolección de la información necesaria poder hacer uso de las diferentes herramientas de diagnóstico se obtuvo gracias al trabajo de campo realizado por el equipo de trabajo, el cual consistió en hacer diferentes visitas a la planta de producción de la línea 6 – planta de jugos.
Con esto se logró hacer un reconcomiendo del proceso y obtener importante información por medio de observación, colaboración de los trabajadores de la planta del área operativa y de mantenimiento y del software empleado por la empresa para registrar y controlar la producción (SAP), como se evidencia a continuación en la imagen 2 y la imagen 3.

Imagen 2. Reconocimiento de Planta.

Imagen 3. Jarabe desperdiciado

Fuente: Autores 2017

Para realizar un análisis detallado y recoger la información correspondiente al desperdicio de azúcar en la línea 6 – planta de jugos, fueron diseñadas y empleadas las siguientes tablas (Tabla 4, 5, 6 7), las cuales nos dan información sobre el rendimiento del jarabe y los puntos donde se está perdiendo producto, este análisis se realiza por cada lote de producción y sabor.

En las tablas número 4 y 5, las cuales fueron tomadas para obtener la información en campo necesaria y determinar así los puntos donde se generan las perdidas. La manera
más fácil de comprender estas tablas es tomando la primera columna de la izquierda, la cual corresponde al Batch de semielaborado preparado, el cual corresponde es el 100% de la preparación, la columna rendimiento de azúcar tiene como objetivo obtener un valor del 100% y como se puede evidenciar arroja valores por debajo del objetivo, lo que traduce en diferentes perdidas en el proceso las cuales se clasifican en las columnas perdidas por rotura, perdidas por desperfectos y perdida no caracterizada.

La segunda columna producción neta, es la producción real y conforme entregada al almacén para su posterior almacenamiento y despacho es el total del líquido, envasado y la diferencia entre esta cantidad envasada y el lote preparado es lo que corresponde a

De estas tablas se puede obtener información como la producción neta, que es la cantidad de producto conforme que se entrega a la bodega de empaque y producto, También se puede determinar la pérdida de jarabe empleando la siguiente fórmula:

\[
\text{Pérdida de jarabe} = \frac{\text{Azúcar inicial}}{\text{Azúcar contenida en la producción neta}}
\]

Fuente: Autores 2017
Tabla 4. Consolidación de datos formato 250 ml.

<table>
<thead>
<tr>
<th>Sabor</th>
<th>Producción Neta (botellas)</th>
<th>Cantidad Rotura Llenadora (botellas)</th>
<th>Milenaje Rotura Llenadora</th>
<th>Cantidad Desperfectos (botellas)</th>
<th>Milenaje Desperfectos</th>
<th>Rendimiento Azúcar</th>
<th>Pérdida por rotura</th>
<th>Pérdida por desperfecto</th>
<th>Pérdida No Caracterizada</th>
<th>Pérdida Total</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>186930</td>
<td>392</td>
<td>2,10</td>
<td>63</td>
<td>0,34</td>
<td>96,01%</td>
<td>0,20%</td>
<td>0,03%</td>
<td>3,76%</td>
<td>3,99%</td>
<td>2,6</td>
</tr>
<tr>
<td>Naranja Piña</td>
<td>146700</td>
<td>228</td>
<td>1,55</td>
<td>96</td>
<td>0,65</td>
<td>93,91%</td>
<td>0,15%</td>
<td>0,06%</td>
<td>5,88%</td>
<td>6,09%</td>
<td>2</td>
</tr>
<tr>
<td>Mr Tea Limon</td>
<td>187500</td>
<td>588</td>
<td>3,14</td>
<td>476</td>
<td>2,54</td>
<td>92,95%</td>
<td>0,29%</td>
<td>0,24%</td>
<td>6,52%</td>
<td>7,05%</td>
<td>4,5</td>
</tr>
<tr>
<td>TF Salpicon</td>
<td>150960</td>
<td>984</td>
<td>6,52</td>
<td>838</td>
<td>5,55</td>
<td>94,12%</td>
<td>0,61%</td>
<td>0,52%</td>
<td>4,74%</td>
<td>5,88%</td>
<td>2,5</td>
</tr>
<tr>
<td>Mango</td>
<td>433602</td>
<td>286</td>
<td>0,66</td>
<td>1021</td>
<td>2,35</td>
<td>96,93%</td>
<td>0,06%</td>
<td>0,23%</td>
<td>2,78%</td>
<td>3,07%</td>
<td>2</td>
</tr>
<tr>
<td>Mora</td>
<td>195570</td>
<td>254</td>
<td>1,30</td>
<td>200</td>
<td>1,02</td>
<td>97,53%</td>
<td>0,13%</td>
<td>0,10%</td>
<td>2,24%</td>
<td>2,47%</td>
<td>6</td>
</tr>
<tr>
<td>Frutas Tropicales</td>
<td>152970</td>
<td>659</td>
<td>4,31</td>
<td>720</td>
<td>4,71</td>
<td>95,97%</td>
<td>0,41%</td>
<td>0,45%</td>
<td>3,16%</td>
<td>4,03%</td>
<td>2</td>
</tr>
<tr>
<td>Naranja Piña</td>
<td>107400</td>
<td>137</td>
<td>1,28</td>
<td>320</td>
<td>2,98</td>
<td>91,38%</td>
<td>0,12%</td>
<td>0,27%</td>
<td>8,23%</td>
<td>8,62%</td>
<td>1,5</td>
</tr>
<tr>
<td>Mora</td>
<td>198600</td>
<td>459</td>
<td>2,31</td>
<td>320</td>
<td>1,61</td>
<td>96,29%</td>
<td>0,22%</td>
<td>0,16%</td>
<td>3,33%</td>
<td>3,71%</td>
<td>3</td>
</tr>
<tr>
<td>Mr tea Durazo</td>
<td>193860</td>
<td>499</td>
<td>2,57</td>
<td>45</td>
<td>0,23</td>
<td>95,95%</td>
<td>0,25%</td>
<td>0,02%</td>
<td>3,78%</td>
<td>4,05%</td>
<td>2,5</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores 2017

Tabla 5. Consolidación de datos formato 350 ml.

<table>
<thead>
<tr>
<th>Sabor</th>
<th>Producción Neta (botellas)</th>
<th>Cantidad Rotura Llenadora (botellas)</th>
<th>Milenaje Rotura Llenadora</th>
<th>Cantidad Desperfectos (botellas)</th>
<th>Milenaje Desperfectos</th>
<th>Rendimiento Azúcar</th>
<th>Pérdida por rotura</th>
<th>Pérdida por desperfecto</th>
<th>Pérdida No Caracterizada</th>
<th>Pérdida total</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>351450</td>
<td>138</td>
<td>0,521</td>
<td>403</td>
<td>1,15</td>
<td>99,09%</td>
<td>0,027%</td>
<td>0,114%</td>
<td>0,769%</td>
<td>0,910%</td>
<td>6,6</td>
</tr>
<tr>
<td>Lulo</td>
<td>111210</td>
<td>129</td>
<td>1,160</td>
<td>46</td>
<td>0,41</td>
<td>100,93%</td>
<td>0,135%</td>
<td>0,042%</td>
<td>-1,106%</td>
<td>-0,930%</td>
<td>2</td>
</tr>
<tr>
<td>Hit Durazno</td>
<td>49470</td>
<td>22</td>
<td>0,445</td>
<td>30</td>
<td>0,61</td>
<td>94,69%</td>
<td>0,020%</td>
<td>0,057%</td>
<td>5,233%</td>
<td>5,310%</td>
<td>1</td>
</tr>
<tr>
<td>Mora</td>
<td>195570</td>
<td>254</td>
<td>1,299</td>
<td>200</td>
<td>1,02</td>
<td>96,57%</td>
<td>0,169%</td>
<td>0,099%</td>
<td>3,163%</td>
<td>3,430%</td>
<td>4,5</td>
</tr>
<tr>
<td>Frutas Tropicales</td>
<td>304650</td>
<td>58</td>
<td>0,190</td>
<td>541</td>
<td>1,78</td>
<td>98,30%</td>
<td>0,004%</td>
<td>0,175%</td>
<td>1,522%</td>
<td>1,700%</td>
<td>5,5</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores 2017
La anterior es la información consolidada que se obtuvo posterior al análisis de cada uno de los formatos y sabores, a continuación se relaciona una de las tablas ejemplo usadas para obtener dichos datos.

Tabla 6. Formato para recolección de datos.

<table>
<thead>
<tr>
<th>N° BATCH</th>
<th>AZÚCAR FORMULA (kg)</th>
<th>AZÚCAR REAL (kg)</th>
<th>°BRIX FÓRMULA JARABE SIMPLE</th>
<th>°BRIX REAL JARABE SIMPLE</th>
<th>AGUA JARABE SIMPLE REAL (LITROS)</th>
<th>MASA FÓRMULA SEMIELABORADO (kg)</th>
<th>MASA SCADA SEMIELABORADO (kg)</th>
<th>MASA PANEL SEMIELABORADO (kg)</th>
<th>AZÚCAR AJUSTE (kg)</th>
<th>°BRIX FINAL SEMIELABORADO TEÓRICO</th>
<th>°BRIX FINAL SEMIELABORADO REAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCH 1</td>
<td>1725</td>
<td>1750</td>
<td>(40 ± 1)</td>
<td>40,02</td>
<td>2200</td>
<td>19166</td>
<td>22100</td>
<td>19800</td>
<td>10,95 - 11,05</td>
<td>11,01</td>
<td></td>
</tr>
<tr>
<td>BATCH 2</td>
<td>1725</td>
<td>1750</td>
<td>(40 ± 1)</td>
<td>39,98</td>
<td>2200</td>
<td>19166</td>
<td>20525</td>
<td>19490</td>
<td>10,95 - 11,05</td>
<td>10,98</td>
<td></td>
</tr>
<tr>
<td>BATCH 3</td>
<td>1725</td>
<td>1725</td>
<td>(40 ± 1)</td>
<td>39,45</td>
<td>2300</td>
<td>19166</td>
<td>19920</td>
<td>19915</td>
<td>10,95 - 11,05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>BATCH 4</td>
<td>1725</td>
<td>1750</td>
<td>(40 ± 1)</td>
<td>39,48</td>
<td>2300</td>
<td>19166</td>
<td>22110</td>
<td>19240</td>
<td>10,95 - 11,05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>BATCH 5</td>
<td>1725</td>
<td>1725</td>
<td>(40 ± 1)</td>
<td>40</td>
<td>2200</td>
<td>19166</td>
<td>20179</td>
<td>19100</td>
<td>10,95 - 11,05</td>
<td>11,01</td>
<td></td>
</tr>
<tr>
<td>BATCH 6</td>
<td>1725</td>
<td>1730</td>
<td>(40 ± 1)</td>
<td>40,1</td>
<td>2200</td>
<td>19166</td>
<td>19000</td>
<td>19050</td>
<td>10,95 - 11,05</td>
<td>11,02</td>
<td></td>
</tr>
<tr>
<td>BATCH 7</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>10350</td>
<td>10430</td>
<td>(40 ± 1)</td>
<td>39,84</td>
<td>2233,33</td>
<td>114996</td>
<td>123834</td>
<td>116595</td>
<td>50</td>
<td>10,45 - 10,55</td>
<td>11,0033333333</td>
</tr>
</tbody>
</table>

Fuente: Autores 2017

En la tabla número 6, podemos obtener información acerca del Brix, o contenido de azúcar en cada uno de los lotes preparados. Encontramos también la columna Azúcar real que son los kg reales adicionados a la preparación del lote, este dato se puede comparar contra la columna número dos la cual nos da la información de los datos que deberían agregarse de acuerdo a la formulación y lo cual ya nos genera alguna perdida. En la columna masa Scada semielaborado nos da el dato de cuanto jarabe se produjo y un sugerido de acuerdo a la información de la columna masa formula semielaborado, lo que nos arroja información directa de que es necesaria una calibración en los instrumentos de medida de los tanques.
Finalmente, con toda la información rectada del proceso productivo de cada lote podemos hacer un balance sobre las unidades producidas.

Tabla 7. Resumen de producción.

<table>
<thead>
<tr>
<th>Botellas Inicio Llenadora</th>
<th>Botellas Final Llenadora</th>
<th>Botellas Perdidas en Llenadora</th>
<th>Botellas Entregadas a E&P</th>
<th>Desperfectos de producción (botellas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>434909</td>
<td>434623</td>
<td>286</td>
<td>433602</td>
<td>1021</td>
</tr>
</tbody>
</table>

Fuente: Autores 2017

En este resumen de producción se puede identificar el total de botellas envasadas y las botellas entregadas al final a EyP (empaque y producto), esta diferencia es lo que se conoce como desperfectos de producción los cuales son atribuibles a diferentes variables en el proceso, tales como botella con bajo nivel de llenado, mal tapado o botellas que no cumplen con las condiciones de soplado. Para el ejemplo se puede ver que la pérdida es de 1021 botellas, lo que es equivalente en formato de 350ml a 357,35 lts de bebida perdidos.
3.5.1 Aplicación Metodología 5w+1h (Quién, Qué, Dónde, Cuándo, Cual, Cómo)

De acuerdo a la información analizada en las tablas anteriores, la segmentación de las perdidas y el trabajo de campo realizado tenemos la información suficiente para determinar que la gran pérdida de jarabe y a su vez de azúcar se da en los cargues y los cortes de producción esto por residuales de agua y mezcla durante los empujes con agua. En las tablas 5,6 y 7 se puede observar que la perdida más significativa no se encuentra en los desperfectos de producción ni en los ajustes de azúcar, se encuentra representada en la perdida por cargues y cortes siendo este el factor a analizar.

A continuación en el cuadro numero dos se aplica la metodología de los 5W + 1H esta se aplica analizando cada uno de los factores empezando en el ¿Qué?, posterior a este análisis se determina el fenómeno este análisis se realizó durante una reunión del equipo Kaizen y por medio de la metodología o método del pizarrón donde cada uno de los participantes pone su idea en un post it y posteriormente se coloca en el pizarrón, luego se clasifican por afinidad, se realiza una puntuación de cada uno de los grupos formados y así se obtiene la información para contestar a cada una de las preguntas que nos pide la metodología.

La metodología 5W+H fue aplicada al proceso productivo de la línea 6 - producción de jugos, a continuación, se presentan los resultados obtenidos. Esta información fue determinada a partir de los datos históricos obtenidos de SAP y de la experiencia del personal con experiencia en el área de proceso, personal operativo de la sala de preparación, de la línea de producción supervisores de línea, mecánicos y supervisores de mantenimiento.

Cuadro 2. Aplicación 5W+1H

¿QUÉ?	Se está desperdiciando bebidas ya que el producto a envasar no contiene mayor cantidad de agua o residuos de otros productos.
¿CUÁNDO?	Cuando se realiza el cargue y corte de otra bebida.
¿DÓNDE?	En la llenadora, tubería y equipos de del proceso de la línea de producción 6 – planta de jugos
¿QUIÉN?	Puede depender de la habilidad de las personas encargadas de los procesos de llenado
¿CUÁL?	Se pierde bebida siempre que se realizan cambios de sabor
¿CÓMO?	Se presenta con la variación de los parámetros químicos del producto final.
Fenómeno: Se está desperdiciando bebida que presenta variación de parámetros debido a la disolución de agua durante el cargue y corte de producto en la llenadora, tubería y los equipos del proceso productivo de la línea 6 – Planta de jugos, esto se presenta cada vez que se realizan cambios de sabor y representa el 80% de la perdida de azúcar total en la planta de jugos.

Fuente: Autores año 2017

3.5.2. Análisis Causa Raíz

A continuación, se presenta el diagrama causa – raíz correspondiente a la línea 6 - producción de jugos. Es importante aclarar que cuando se menciona el Brix, se hace referencia a al cociente de azúcar disuelta en el líquido.

El método usado para la recolección de la información se basa en trabajo de campo, donde son analizados cada uno de los cinco componentes del diagrama Ishikawa, esto se realiza mediante una observación realizada durante un mes.

Gráfica 5. Diagrama de Ishikawa

Con la aplicación de la herramienta de la espina de pescado se concluye que el agua en los empujes de cortes y cargues genera desperdicios debido a la mezcla que se presenta entre agua y jarabe en el momento del empuje, es un factor en común que se presenta...
en las variables de mano de obra, método, materiales y maquinaria por lo cual se determina que un factor clave en el desperdicio es la bebida con bajo brix donde encontramos el azúcar. Por esta razón es fundamental trabajar en una mejora que mitigue o elimine este procedimiento de empuje con agua.

3.5.3 Análisis ¿por qué? ¿Por qué?

A continuación, se presenta los por qué identificados en la problemática de la línea 6 - producción de jugos. Como método de recolección de la información para esta herramienta se toma como base cada uno de los posibles problemas identificados en el diagrama de Ishikawa, dando así mayor alcance al análisis de cada una de estas causas por medio de los ¿Por qué?

Para obtener esta información y dar respuesta a cada uno de los por qué, fue fundamental el apoyo del departamento de mantenimiento quienes cuentan con información tales como planos y conocimiento en general de la infraestructura y procesos.

Cuadro 3. Análisis ¿Por qué? ¿Por qué?

<table>
<thead>
<tr>
<th>POR QUÉ 1</th>
<th>POR QUÉ 2</th>
<th>POR QUÉ 3</th>
<th>POR QUÉ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscibilidad del agua y la bebida</td>
<td>Es una propiedad intrínseca de algunas sustancias líquidas</td>
<td>No hay un sistema que permita drenar el agua posterior al enjuague y/o empuje de producto en los cortes de producción</td>
<td>El diseño del sistema fue concebido hace 18 años</td>
</tr>
<tr>
<td>No hay un sistema que permita drenar el agua posterior al enjuague y/o empuje de producto en los cortes de producción</td>
<td>No está contemplado en el diseño original de los equipos instalados para el proceso</td>
<td>El equipo consta de 4 celdas independientes donde fluye el producto simultáneamente</td>
<td>Es un equipo con diseño multibob</td>
</tr>
<tr>
<td>No hay un dispositivo que permita drenar el agua posterior al enjuague y/o empuje de producto en los cortes de producción</td>
<td>El diseño de las celdas de pasteurización no permite el paso de un dispositivo que empuje el agua o producto</td>
<td>El diseño isométrico de las tuberías obliga a realizar cambios de nivel</td>
<td>El diseño de la sala de preparación tiene un rack principal donde se ubican todas las redes de servicios</td>
</tr>
<tr>
<td>No todas las tuberías permiten evacuar agua y/o producto en su totalidad</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores 2017
Posterior al análisis por medio de la herramienta de los 5 porque se concluye que también es clave evitar la mezcla entre agua y producto en los empujes para los cargues y cortes de línea. Además, existen varias variables asociadas a la tecnología que es usada en la actualidad y la capacitación del personal en los POE (procedimiento operativo estándar) a realizar ya que no se encuentran documentados los procedimientos para este tipo de operaciones las cuales son ejecutadas diariamente por el personal de planta, pero se ha evidenciado que no todos tienen la misma metodología para realizarlo.

3.5.4 Matriz De Vester

La matriz de Vester es un instrumento que permite la priorización de los problemas de una determinada situación, estos problemas deben ser previamente identificados por medio de diferentes herramientas de análisis. Lo que se busca con la aplicación de matriz es facilitar la identificación de la problemática que genera un mayor impacto.12

Por medio de la matriz de vester y tomando en cuenta todos los problemas analizados con las diferentes herramientas, se determina cual es el problema crítico, el cual es el punto donde nos vamos a enfocar en este proyecto. A continuación, se relacionan los datos y la tabla de esta matriz.

<table>
<thead>
<tr>
<th>Cuadro 4. Puntuación y problemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz de Vester</td>
</tr>
<tr>
<td>Puntuación</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

12 De la fuente, O. (2015). La matriz de marco lógico.
Problema 10 Miscibilidad de agua y bebida

Problema 11 Tuberías no aptas

Fuente: Autores año 2017

<table>
<thead>
<tr>
<th>Problemas</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
<th>P11</th>
<th>Eje X</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>P2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>P3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>P4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>P5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>P6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>P7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>P8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>P9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>P10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>P11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Eje Y</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>20</td>
<td>19</td>
<td>29</td>
<td>31</td>
<td>36</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores año 2017

Tabla 9. Determinación de puntos activos, pasivos y ejes.

<table>
<thead>
<tr>
<th>Problemas</th>
<th>Pasivos (eje Y)</th>
<th>Activos (eje X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>P2</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>P3</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>P4</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>P5</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>P6</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>P7</td>
<td>42</td>
<td>29</td>
</tr>
<tr>
<td>P8</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>P9</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>P10</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>P11</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td>Ejes</td>
<td>26</td>
<td>23</td>
</tr>
</tbody>
</table>

Fuente: Autores año 2017

Gráfica 6. Resultados matriz de Vester
De acuerdo al análisis de los problemas previamente identificados, realizado mediante la matriz de vester se obtiene que el problema P7, cargues y cortes es un problema crítico. De acuerdo a este resultado y teniendo en cuenta la información recolectada en la etapa de diagnóstico, el proyecto será enfocado en mitigar el impacto negativo en el rendimiento de azúcar a causa de los cargues y cortes el cual respalda el resultado obtenido en el análisis de causas inicial donde la mayor merma se encuentra en este procedimiento. Después de este análisis se procede a establecer las actividades a realizar teniendo en cuenta que la principal causa que afecta el corte es la miscibilidad del agua y la bebida.
4. APLICACIÓN METODOLOGÍA KAIZEN

4.1 PROCEDIMIENTO DE APLICACIÓN

Para estructurar una propuesta de mejora que permitiera aumentar la productividad del proceso de producción que se realiza en la línea 6 de la planta de jugos de gaseosas Lux, se tuvieron en cuenta los siguientes pilares principales de la metodología Kaizen:

- Aportes de todos los empleados
- Trabajo en equipo
- Mejora en pequeños pasos sin grandes inversiones
- Aumentar el valor Enfoque en la disminución de desperdicios.

El equipo kaizen se conformó con la participación de diez trabajadores de la empresa, quienes conocen el proceso e intervienen en el realizando actividades correspondientes a diferentes áreas como producción, calidad y mantenimiento. Ver gráfica 6.

Gráfica 7. Equipo Kaizen.

Fuente: Autores año 2017

Se realizaron diferentes sesiones de trabajo en el que todos los integrantes del equipo realizaron sus aportes, los cuales tuvieron igual peso y nivel de importancia independientemente de su estatus jerárquico. El hecho de que el equipo estuviera conformado por personas de diferentes áreas y por una persona externa permitió buscar una solución que contemplara diferentes perspectivas de la causa de la problemática.

Las reuniones estuvieron encaminadas al establecimiento de tareas, recolección de la información y entrega de resultados. Se realizaron una vez a la semana y tu desarrollo estuvo orientado por los líderes del equipo, quienes se encargaron de llevar el control sobre las actividades.

Cada reunión tuvo una duración de una hora donde cada integrante desempeña un rol asignado dentro de los que están los estándares, la seguridad, los indicadores y la calidad.

Estos son algunos de los registros y el tipo de actividades definidas en cada una de las reuniones, el control se llevó para dar cumplimiento al cronograma de actividades propuesto y cada participante es el responsable de la ejecución de su actividad.

Cuadro 5. Equipo Kaizen.

<table>
<thead>
<tr>
<th>REUNIÓN 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Actividad</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Lluvia de ideas focalizada para cargues y cortes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Garantizar que no haya agua en las líneas de envió, retorno y tanques</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Barrido de producto con aire estéril en el cambio de sabor</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Verificar procedimientos de montaje y desmontaje</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Procedimiento en toma de brix en el cargue</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Verificar con calidad le paso de naranja piña a frutos tropicales</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Plan ideal de producción</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REUNIÓN 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Actividad</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Revisión y registro de tareas pendientes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Verificación de rendimientos con cierre del mes anterior</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Toma de muestra remanentes en bultos</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Realizar trazabilidad, ajustes y adiciones de azúcar en sala de formatos</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REUNIÓN 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Actividad</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Revisión de tareas pendientes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Verificación de puntos críticos, desperdicios</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Revisión de bajas por desperfectos y rotura</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pesaje de bultos, verificación contra ficha técnica de proveedor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REUNIÓN 4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Actividad</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Revisión de tareas pendientes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bajas por mala calidad en preparación</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pesaje de remanente de azúcar</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Revisar cotizaciones para compra de bascula para pesaje de azúcar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REUNIÓN 5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>Actividad</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Revisión de tareas pendientes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Solicitud de estudio para compra de basculo al departamento de metrología</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>revisión de rotura en línea</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Revisión de bajas por tiempo en reposo</td>
<td></td>
</tr>
</tbody>
</table>
REUNIÓN 6
<table>
<thead>
<tr>
<th>Nº</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revisión de tareas pendientes</td>
</tr>
<tr>
<td>2</td>
<td>Preparación presentación entrega</td>
</tr>
<tr>
<td>3</td>
<td>Revisión de resultados con cierre del mes anterior</td>
</tr>
</tbody>
</table>

REUNIÓN 7
<table>
<thead>
<tr>
<th>Nº</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revisión de tareas pendientes</td>
</tr>
<tr>
<td>2</td>
<td>Evaluación del proyecto de empujes con aire estéril con mantenimiento</td>
</tr>
<tr>
<td>3</td>
<td>Seguimiento al montaje del aire estéril</td>
</tr>
<tr>
<td>4</td>
<td>Elaboración de estándares para pesajes, procedimientos, etc.</td>
</tr>
</tbody>
</table>

REUNIÓN 8
<table>
<thead>
<tr>
<th>Nº</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revisión de tareas pendientes</td>
</tr>
<tr>
<td>2</td>
<td>Seguimiento a rendimientos y empujes</td>
</tr>
<tr>
<td>3</td>
<td>Capacitaciones al personal</td>
</tr>
</tbody>
</table>

Fuente: Autores año 2017

Imagen 4. Reuniones Equipo Kaizen

La aplicación de la metodología kaizen se desarrolló realizando las siguientes etapas. Ver imagen 5. Ciclo PHVA (Planear, hacer, verificar, actuar):
Imagen 5. Ciclo PHVA (Planear, hacer, verificar, actuar).

Cada etapa consta de la aplicación de los siguientes pasos:

1. **Planear:**
 - Paso 1 Definir el problema
 - Pasó 2 Estudiar la situación actual
 - Pasó 3: Analizar las causas potenciales

2. **Hacer:**
 - Pasó 4 Implemente la solución

3. **Verificar:**
 - Pasó 5 Verifique los resultados

4. **Actuar:**
 - Pasó 6 Estandarice la mejora
 - Pasó 7 Establezca futuros planes\(^{14}\)

4.2 **PLANEACIÓN**

En la etapa de planeación se realizó la recolección de datos y el análisis de la información mediante el uso de diferentes herramientas como 5W+1H, análisis causa raíz, análisis ¿Por qué ¿Por qué? y la matriz de vester. Los resultados obtenidos con la aplicación de estas herramientas permitieron la identificación de una problemática crítica presente en

la línea 6 de producción de jugos que es el desperdicio de azúcar, lo cual actualmente representa para la empresa altos niveles de desperdicios que tiene un alto impacto económico.

4.3 HACER

Una vez identificado el principal origen de la causa de desperdicio de azúcar, que es la mezcla de jarabe con residuos del agua que se emplea para limpiar las tuberías cada vez que se realiza un cambio de producto en la línea de producción, se procedió a buscar soluciones a esta problemática con el equipo kaizen conformado. Luego de varias sesiones surgieron las siguientes propuestas.

4.3.1 Limpieza de tuberías usando Pigs

Los Pigs de limpieza son herramientas diseñadas para remover residuos sólidos o líquidos acumulados en tuberías, son cuerpos metálicos de acero o aluminio los cuales tiene sellos en su interior (ver imagen 4. Pig de limpieza) . El diseño de los pigs permite que estos circulen por las tuberías con alta presión, permitiendo hacer un barrido interno en su estructura.

Este es un sistema recomendado para las industrias que procesan diferentes productos por las mismas tuberías y que se requiera una limpieza total para pasar de uno a otro. Sus principales usos son en la industria química, cosmética, farmacéutica, alimentaria, de hidrocarburos entre otras.

La idea de implementar este tipo de herramientas para limpiar las tuberías de la línea 6 de producción de jugos surge por conocimiento de los integrantes del equipo, quienes saben que los pigs son utilizados por otras empresas de la industria que también se dedican a la producción de bebidas no alcohólicas, teniendo resultados exitosos en su proceso de limpieza.

Imagen 6. Pig de limpieza

4.3.2 Limpieza de tuberías usando empujes de aire estéril

Posterior al análisis de causas realizado por el equipo kaizen y con el apoyo del departamento de mantenimiento se plantea la opción de realizar empujes con aire estéril
y no con agua, para evitar así la mezcla del producto, la cual implica desperdicios de materia prima y un alto nivel de residuos líquidos. Esta idea surge del equipo kaizen, el cual se apoyó técnicamente en el departamento de mantenimiento, quien conoce los equipos, tuberías y posibles modificaciones que permitan mejorar el sistema.

4.3.3 Comparación de alternativas.

A continuación, en el cuadro 5 se comparan las dos alternativas contempladas para solucionar la problemática de desperdicio de azúcar presente en la línea 6 de producción de jugos.

Cuadro 6. Comparación de alternativas

<table>
<thead>
<tr>
<th></th>
<th>VENTAJAS</th>
<th>DESVENTAJAS</th>
</tr>
</thead>
</table>
| **PIGS** | • Con su utilización es posible incrementar la eficiencia y bajar los costos de operación.
• Con su utilización se evita la necesidad de enjuagar las tuberías, ahorrando agua, tiempo y dinero.
• Reducción de agua o producto residual como consecuencia de la limpieza. | • Aunque es una alternativa usada frecuentemente en industrias con procesos similares al realizado en la línea 6 de producción de jugos, no es posible emplear esta herramienta ya que la tubería tiene varios ángulos rectos, que impiden el desplazamiento del pig. |
| **EMPUJES DE AIRE ESTÉRIL** | • Reducción en costo de accesorios para limpieza de tuberías.
• Reducción de consumo de agua y generación de desperdicios
• Con su utilización se evita la necesidad de enjuagar las tuberías, ahorrando agua, tiempo y dinero.
• Permite remover partículas de diferentes tamaños
• El personal de mantenimiento cuenta con el conocimiento para la implementación y aplicación del proceso de limpieza con empuje de aire. | |

Fuente: Autores año 2017
Una vez realizada la comparación de las dos alternativas se determinó que la opción más viable para solucionar la problemática que se presenta en la línea 6 de producción de jugos, es la limpieza de tuberías con empujes de aire estéril, esto debido a que esta alternativa se puede implementar fácilmente pues se acopla con la estructura del sistema de tuberías y los procesos de la planta, sin necesidad de incurrir en costos demasiado elevados los cuales pueden ser compensados con los ahorros que se generarían al evitar desperdicios.

4.3.4 Plan de Acción

Una vez definida la alternativa a implementar, se definió el siguiente plan de acción (Ver cuadro 5. Acciones o contramedidas) el cual tiene como fin solventar las diferentes problemáticas identificadas con la aplicación de las diferentes herramientas de diagnóstico.

4.3.4.1 Contramedida N°1: Uso de aire estéril.

- **Causa:** No hay un sistema que permita drenar el agua posterior al enjuague y/o empuje de producto en los cargues y cortes de producción.

- **Propuesta:** Realizar diseño e instalación de sistemas de filtración de aire que permitan evacuar los remanentes de agua y de producto en los diferentes pasos del proceso, a fin de eliminar las pérdidas de producto que se presentan en los cargues y cortes.

- **Situación Actual:** No existe empuje de aire estéril.

- **Ideal Proyectado:** Realizar la instalación de sistemas de filtración de aire estéril en 3 puntos del proceso.

4.3.4.2 Contramedida N°2: Establecer el POE para el nuevo sistema.

- **Causa:** No existe un procedimiento estandarizado para el proceso de empuje que permita drenar el agua posterior al enjuague y/o empuje de producto en los cargues y cortes de producción.

- **Propuesta:** Realizar el diseño de un POE (procedimiento operativo estándar) para el sistema de empuje con aire estéril que permita evacuar los remanentes de agua y de producto en los diferentes pasos del proceso.

- **Situación Actual:** No hay procedimientos creados para este proceso ya que hasta el momento no existe.

- **Ideal Proyectado:** Creación de Procedimientos operativos estándar.
4.3.4.3 Contramedida N°3: Capacitación.

- **Causa:** No existe conocimiento por parte de los trabajadores sobre el correcto procedimiento para realizar el empuje de aire a fin de drenar el agua y/o producto en los cargues y cortes de producción.

- **Propuesta:** Capacitar al personal sobre el correcto procedimiento para realizar el sistema de empuje con aire estéril a fin de evacuar los remanentes de agua y de producto en los diferentes pasos del proceso.

- **Situación Actual:** No hay capacitaciones sobre este proceso ya que hasta el momento no existía.

- **Ideal Proyectado:** Capacitaciones a los trabajadores que intervienen en el proceso.

4.4 RELACIÓN COSTO / BENEFICIO DE LA PROPUESTA.

4.4.1 Costos Del Proyecto.

A continuación se presenta un cuadro resumen de los costos necesarios para la ejecución del proyecto, algunos de estos no tienen ningún valor ya que pueden ser realizados por el personal de planta, lo cual ya se encuentra contemplado dentro de la nómina y las funciones diarias de cada uno de los trabajadores de la compañía.
Tabla 10. Costos del proyecto

<table>
<thead>
<tr>
<th>DESCRIPCIÓN ACTIVIDAD</th>
<th>MÉTODO</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Evaluación del proyecto</td>
<td>Levantamiento de la información y trabajo de campo</td>
<td>$ -</td>
</tr>
<tr>
<td>2 Definir los puntos donde deben ser establecidos los empujes con aire estéril</td>
<td>Análisis técnico en cada uno de los puntos, garantizando la funcionalidad de los mismos</td>
<td>$ -</td>
</tr>
<tr>
<td>3 Compra de elementos para la ejecución del proyecto</td>
<td>Por medio de fichas técnicas identificar los elementos que se adapten a las necesidades requeridas</td>
<td>$ 14.876.519</td>
</tr>
<tr>
<td>4 Compra de materiales para el montaje y mano de obra para la ejecución del proyecto. Inicio de montaje</td>
<td>Por medio de fichas técnicas identificar los elementos que se adapten a las necesidades requeridas</td>
<td>$ 4.067.851</td>
</tr>
<tr>
<td>5 Levantamiento de la información y desarrollo de POE’S para puesta en marcha de la operación</td>
<td>Estudio de movimientos y variables del proceso con el personal involucrado en cada una de las operaciones.</td>
<td>$ -</td>
</tr>
<tr>
<td>6 Divulgación de los POE’S con el personal involucrado en cada uno de los procesos.</td>
<td>Realizar divulgación y capacitaciones de los POE’S generados</td>
<td>$ -</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$ 18.944.370</td>
</tr>
</tbody>
</table>

4.4.2 Beneficios del proyecto

Para calcular el beneficio del proyecto se tuvo como referencia un periodo cero que equivale a al promedio de azúcar teórica, real y perdida de tres meses. Luego se analizaron los resultados obtenidos en los meses siguientes a la implementación del empuje con aire estéril en la línea de producción número 6 y se comparó la diferencia entre estos. A continuación, se relaciona cuadro con los rendimientos y ahorros para lo corrido del proyecto.
Tabla 11. Seguimiento rendimiento y ahorro de azúcar

<table>
<thead>
<tr>
<th>Mes</th>
<th>kg de azúcar Teórico</th>
<th>kg de azúcar Reales</th>
<th>kg azúcar perdidos</th>
<th>kg azúcar ahorrados</th>
<th>$ Ahorrado</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>274.740,58</td>
<td>291.291,04</td>
<td>16.550,46</td>
<td></td>
<td></td>
<td>94,32%</td>
</tr>
<tr>
<td>1</td>
<td>244.640,63</td>
<td>253.157,09</td>
<td>8.516,46</td>
<td>8034</td>
<td>$ 12.634,302</td>
<td>96,6%</td>
</tr>
<tr>
<td>2</td>
<td>250.329,20</td>
<td>259.369,48</td>
<td>9.040,28</td>
<td>7510</td>
<td>$ 12.266,407</td>
<td>96,5%</td>
</tr>
<tr>
<td>3</td>
<td>261.866,28</td>
<td>274.701,66</td>
<td>12.835,38</td>
<td>3715</td>
<td>$ 5.970,132</td>
<td>95,3%</td>
</tr>
<tr>
<td>4</td>
<td>260.751,56</td>
<td>270.002,00</td>
<td>9.250,44</td>
<td>7300</td>
<td>$ 13.114,721</td>
<td>96,6%</td>
</tr>
<tr>
<td></td>
<td>$ 43.985.563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autores año 2017

Gráfica 8. Rendimiento y ahorro en pesos de azúcar

Como se observa en la gráfica 8, el incremento del rendimiento representa una variación significativamente positiva respecto al ahorro económico que obtiene la empresa con la implementación de la estrategia de empuje con aire estéril.
5. CONCLUSIONES

- La puesta en marcha del proyecto no solamente genera valor a la compañía por minimizar los costos debido al rendimiento de materias primas, se generan también beneficios intangibles tales como la formación del personal, la creación de equipos de trabajo, el fortalecimiento del trabajo en equipo, la participación activa del personal y un factor fundamental que es el aumento del conocimiento del proceso productivo aportando así al mejoramiento continuo dentro de la compañía.

- El cambiar el método actual de empuje con agua el cual genera mezcla y baja de brix en el producto terminado, por el método de empuje con aire estéril es fundamental en el desarrollo del proyecto, de acuerdo al análisis de costo beneficio en los dos primeros meses se puede recuperar la inversión económica, generando a su vez impactos positivos a los rendimientos de azúcar siendo esta una de las materias primas básicas con un peso del 30% dentro de los costos directos de producción.

- La estandarización de los procedimientos realizados es factor clave para mantener los buenos resultados en el tiempo.

- El análisis de la información bajo la metodología Kaizen y las pequeñas mejoras realizadas como resultado de este análisis generan impactos positivos y bastante significativos a los procesos y costos de la industria.

- El apoyo y reconocimiento para el desarrollo de este tipo de proyectos por la dirección es vital para la puesta en marcha y la obtención de resultados a mediano plazo.
6. RECOMENDACIONES

- Posterior al impacto positivo, evidente en los costos y los rendimientos de azúcar en la línea 6 de jugos uno de los factores fundamentales es la estandarización de los procedimientos, esto nos ayuda en gran parte a mantener los resultados en el tiempo, para esto se elaboraran 7 POE (Procedimiento Operativo Estandar)

Estos serán divulgados al personal directamente involucrado en el proceso y deben ser retroalimentados al personal nuevo que ingrese a la planta, estos POE deben ser actualizados debido a posibles cambios que se puedan dar en infraestructura o nuevas tecnologías. Los POE a elaborar son los siguientes:
1. Cargue para producción.
2. Enjuague.
3. Corte de producción.
4. Adición de azúcar.
5. Arrastre de jarabe simple.
6. Fraccionamiento de pulpa.
7. Calculo del rendimiento de azúcar.

- Se sugiere la aplicación de la misma metodología dentro de la planta en las líneas 10 de jugos, 2 de gaseosas y 5 de gaseosas, esto debido a que en la matriz inicial para la selección y priorización son las que siguen por puntuación en impacto negativo a los rendimientos de azúcar.
- Se sugiere una acción de réplica a todas aquellas plantas que presenten bajos rendimientos en azúcar y/o requieran incrementarlos y presenten fallas en cargues y cortes.
- Se sugiere como planes a futuro realizar un análisis más detallado y trabajar las bajas de calidad ya que representan un 9% dentro del total de la perdida.
- Se sugiere realizar un seguimiento y ajuste en los equipos y control de proceso para minimizar la variabilidad en el Brix (contenido de azúcar de la bebida), para asegurar que se utilice la cantidad de azúcar exacta que pide la formulación y no adicionar cantidades de más.
- Se sugiere realizar mantenimiento preventivo para minimizar las fallas en las maquinas, en especial en la llenadora ya que esta genera pérdidas por fugas en el llenado.
- Se sugiere la calibración de instrumentos y tara de los tanques de almacenamiento y preparación de jarabes para garantizar las medidas exactas de materia prima como el azúcar.
7. BIBLIOGRAFÍA E INFOGRAFÍA

- Sociedad latinoamericana para la calidad. (s.f). Diagrama causa y efecto.

- Puga, M. (2015). Los cinco por qués (Five Whys)