ESTUDIO COMPARATIVO DE LAS METODOLOGÍAS DE POULOS, MEYERHOF Y CCP14 DE CÁLCULO DE CARGA ÚLTIMA PARA PILOTES PRE EXCAVADOS EN SUELOS GRANULARES Y COMPARACIÓN DE LOS RESULTADOS CON CINCO PRUEBAS DE CARGA

LEÓN SILVA GUSTAVO ADOLFO

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
INGENIERÍA CIVIL
BOGOTÁ D. C.
2017
ESTUDIO COMPARATIVO DE LAS METODOLOGÍAS DE POULOS, MEYERHOF Y CCP14 DE CÁLCULO DE CARGA ÚLTIMA PARA PILOTES PRE EXCAVADOS EN SUELOS GRANULARES Y COMPARACIÓN DE LOS RESULTADOS CON CINCO PRUEBAS DE CARGA

LEÓN SILVA GUSTAVO ADOLFO

Monografía para optar al título de: Ingeniero Civil

Director Ingeniero
Hernando Villota Posso

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
INGENIERÍA CIVIL
BOGOTÁ D. C.
2017
Nota de aceptación

Firma del Presidente del Jurado

Firma del Jurado

Firma del Jurado
Agradezco especialmente al Ingeniero Hernando Villota por su constante guía en el proceso de convertirme en un profesional competente y con las habilidades necesarias para aportar al desarrollo de esta nación.

Al ingeniero Hildebrando Ciendua por mostrarme el mundo de la geotecnia y los pavimentos y contagiarme con la necesidad de búsqueda de nuevos conocimientos.

A mi familia por la paciencia y el apoyo en este largo camino de tropiezos y crecimiento personal, sin ellos nada de esto sería posible.

A Daniela Silva por su infinita compresión y amor que han acompañado este camino y este sueño, sin su apoyo y ayuda no habría sido posible.

A la Universidad Distrital Francisco José de Caldas por las oportunidades de crecimiento como estudiante y ahora como profesional.
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSARIO</td>
<td>9</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>11</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>12</td>
</tr>
<tr>
<td>1. IDENTIFICACIÓN Y DESCRIPCIÓN DEL PROBLEMA</td>
<td>13</td>
</tr>
<tr>
<td>2. JUSTIFICACIÓN</td>
<td>15</td>
</tr>
<tr>
<td>3. OBJETIVOS</td>
<td>16</td>
</tr>
<tr>
<td>3.1 GENERAL</td>
<td>16</td>
</tr>
<tr>
<td>3.2 ESPECÍFICOS</td>
<td>16</td>
</tr>
<tr>
<td>4. ALCANCE</td>
<td>17</td>
</tr>
<tr>
<td>5. MARCO DE REFERENCIA</td>
<td>18</td>
</tr>
<tr>
<td>5.1 MARCO DE ANTECEDENTES</td>
<td>18</td>
</tr>
<tr>
<td>5.1.1 THEORETICAL AND ACTUAL BEARING CAPACITY OF DRIVEN PILES USING MODEL PI</td>
<td>18</td>
</tr>
<tr>
<td>5.1.2 EVALUACIÓN COMPARATIVA DE LA CAPACIDAD DE CARGA EN CIMENTACIONES PROFUN</td>
<td>20</td>
</tr>
<tr>
<td>5.2 MARCO CONCEPTUAL</td>
<td>26</td>
</tr>
<tr>
<td>5.2.1 METODOLOGÍAS DE CÁLCULO DE CAPACIDAD DE CARGA SEGÚN POULOS</td>
<td>26</td>
</tr>
<tr>
<td>5.2.2 METODOLOGÍA DE CÁLCULO DE CAPACIDAD DE CARGA SEGÚN MEYERHOF</td>
<td>29</td>
</tr>
<tr>
<td>5.2.3 METODOLOGÍA DE CÁLCULO DE CAPACIDAD DE CARGA SEGÚN CCP</td>
<td>33</td>
</tr>
<tr>
<td>6. METODOLOGÍA</td>
<td>44</td>
</tr>
<tr>
<td>6.1 LOCALIZACIÓN DE LAS MUESTRAS</td>
<td>44</td>
</tr>
<tr>
<td>6.2 DESARROLLO DEL PERFIL ESTRATIGRÁFICO PROMEDIO</td>
<td>44</td>
</tr>
<tr>
<td>6.3 DETERMINACIÓN DE LOS PARÁMETROS DE RESISTENCIA DEL SUELO</td>
<td>44</td>
</tr>
<tr>
<td>6.4 CÁLCULO DE CAPACIDAD DE CARGA SEGÚN POULOS</td>
<td>44</td>
</tr>
<tr>
<td>6.5 CÁLCULO DE CAPACIDAD DE CARGA SEGÚN MEYERHOF</td>
<td>45</td>
</tr>
<tr>
<td>6.6 CÁLCULO DE CAPACIDAD DE CARGA SEGÚN LA CCP-14</td>
<td>45</td>
</tr>
<tr>
<td>6.7 COMPARACIÓN DE RESULTADOS</td>
<td>45</td>
</tr>
<tr>
<td>6.8 ANÁLISIS DE RESULTADOS</td>
<td>46</td>
</tr>
<tr>
<td>6.9 COMPARACIÓN DE RESULTADOS MODIFICADOS</td>
<td>46</td>
</tr>
<tr>
<td>7. LOCALIZACIÓN DE LAS MUESTRAS Y CARACTERIZACIÓN DE LA ZONA DEL PROYECTO</td>
<td>47</td>
</tr>
<tr>
<td>7.1 PROYECTO 1</td>
<td>47</td>
</tr>
<tr>
<td>7.2 PROYECTO 2, 3 Y 4</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Capítulo</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>7.3</td>
<td>PROYECTO 5</td>
</tr>
<tr>
<td>8.</td>
<td>DESARROLLO DEL PERFIL ESTRATigráfico PROMEDIO</td>
</tr>
<tr>
<td>8.1</td>
<td>PROYECTO 1</td>
</tr>
<tr>
<td>8.2</td>
<td>PROYECTO 2</td>
</tr>
<tr>
<td>8.3</td>
<td>PROYECTO 3</td>
</tr>
<tr>
<td>8.4</td>
<td>PROYECTO 4</td>
</tr>
<tr>
<td>8.5</td>
<td>PROYECTO 5</td>
</tr>
<tr>
<td>9.</td>
<td>DETERMINACIÓN DE LOS PARÁMETROS DE RESISTENCIA DEL SUELO</td>
</tr>
<tr>
<td>10.</td>
<td>COMPARACIÓN DE RESULTADOS</td>
</tr>
<tr>
<td>11.</td>
<td>ANÁLISIS DE RESULTADOS</td>
</tr>
<tr>
<td>12.</td>
<td>COMPARACIÓN DE RESULTADOS MODIFICADOS</td>
</tr>
<tr>
<td>12.1</td>
<td>MEYERHOF</td>
</tr>
<tr>
<td>12.2</td>
<td>CCP14</td>
</tr>
<tr>
<td>13.</td>
<td>CONCLUSIONES</td>
</tr>
<tr>
<td>14.</td>
<td>RECOMENDACIONES</td>
</tr>
<tr>
<td>15.</td>
<td>BIBLIOGRAFÍA</td>
</tr>
</tbody>
</table>
LISTA DE TABLAS

Tabla 5.1 – Variación de resultados .. 20
Tabla 5.2 – Métodos de cálculo de capacidad ... 21
Tabla 5.3 – Relación entre capacidad real vs capacidad de diseño por pilote KO 22
Tabla 5.4 – Métodos de capacidad de diseño para suelos cohesivos .. 24
Tabla 5.5 – Factores de capacidad de carga para pilotes en suelos no cohesivos 31
Tabla 5.6 – Valores de Nq y \(\phi' \) .. 31
Tabla 5.7 – Valores de Ks para diferentes tipos de pilotes en arenas ... 32
Tabla 5.8 – Correlación de los valores N160 del SPT para el ángulo de fricción de suelos granulares drenados (modificado según Bowles, 1977) ... 34
Tabla 5.9 – Factores de resistencia para la resistencia geotécnica de pilotes perforados 36
Tabla 10.1 – Resultados Capacidad de carga admisible y última .. 66
Tabla 12.1 – Resultados Capacidad de carga última Meyerhof .. 73
Tabla 12.2 – Resultados Capacidad de carga última CCP14 .. 77
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Configuración del modelo.</td>
<td>18</td>
</tr>
<tr>
<td>5.2</td>
<td>Modelo de prueba.</td>
<td>19</td>
</tr>
<tr>
<td>5.3</td>
<td>Modelo de prueba.</td>
<td>23</td>
</tr>
<tr>
<td>5.4</td>
<td>Metodologías semi-empíricas en KO.</td>
<td>24</td>
</tr>
<tr>
<td>5.5</td>
<td>Capacidad técnica: AP y AK.</td>
<td>25</td>
</tr>
<tr>
<td>5.6</td>
<td>Capacidad teórica: MPA.</td>
<td>25</td>
</tr>
<tr>
<td>5.7</td>
<td>Relación entre Nq y φ.</td>
<td>27</td>
</tr>
<tr>
<td>5.8</td>
<td>Valores de K_tanφ para pilotes en arenas.</td>
<td>27</td>
</tr>
<tr>
<td>5.9</td>
<td>Valores de z_c/d.</td>
<td>28</td>
</tr>
<tr>
<td>5.10</td>
<td>Transferencia de carga normalizada en resistencia lateral versus asentamiento en suelos cohesivos (O’Neill and Reese, 1999)</td>
<td>39</td>
</tr>
<tr>
<td>5.11</td>
<td>Transferencia de carga normalizada en resistencia por punta versus asentamiento en suelos cohesivos (O’Neill and Reese, 1999)</td>
<td>39</td>
</tr>
<tr>
<td>5.12</td>
<td>Transferencia de carga normalizada en resistencia lateral versus asentamiento en suelos no cohesivos (O’Neill and Reese, 1999)</td>
<td>40</td>
</tr>
<tr>
<td>5.13</td>
<td>Transferencia de carga normalizada en resistencia por punta versus asentamiento en suelos no cohesivos (O’Neill and Reese, 1999)</td>
<td>41</td>
</tr>
<tr>
<td>7.1</td>
<td>Localización Proyecto 1</td>
<td>47</td>
</tr>
<tr>
<td>7.2</td>
<td>Localización Proyecto 2, 3 y 4.</td>
<td>48</td>
</tr>
<tr>
<td>7.3</td>
<td>Localización Proyecto 5</td>
<td>49</td>
</tr>
<tr>
<td>8.1</td>
<td>Perfil estratigráfico Proyecto 1</td>
<td>52</td>
</tr>
<tr>
<td>8.2</td>
<td>Perfil estratigráfico Proyecto 2</td>
<td>55</td>
</tr>
<tr>
<td>8.3</td>
<td>Perfil estratigráfico Proyecto 3</td>
<td>56</td>
</tr>
<tr>
<td>8.4</td>
<td>Perfil estratigráfico Proyecto 4</td>
<td>58</td>
</tr>
<tr>
<td>8.5</td>
<td>Perfil estratigráfico Proyecto 5</td>
<td>59</td>
</tr>
<tr>
<td>9.1</td>
<td>Parámetros Geotécnicos Proyecto 1</td>
<td>61</td>
</tr>
<tr>
<td>9.2</td>
<td>Parámetros Geotécnicos Proyecto 2</td>
<td>62</td>
</tr>
<tr>
<td>9.3</td>
<td>Parámetros Geotécnicos Proyecto 3</td>
<td>63</td>
</tr>
<tr>
<td>9.4</td>
<td>Parámetros Geotécnicos Proyecto 4</td>
<td>64</td>
</tr>
<tr>
<td>9.5</td>
<td>Parámetros Geotécnicos Proyecto 5</td>
<td>65</td>
</tr>
<tr>
<td>10.1</td>
<td>Comparación gráfica capacidad de carga última y admisible</td>
<td>67</td>
</tr>
<tr>
<td>11.1</td>
<td>Relación entre Nq y φ.</td>
<td>69</td>
</tr>
<tr>
<td>11.2</td>
<td>Relación entre Nq y φ obtenida</td>
<td>70</td>
</tr>
<tr>
<td>12.1</td>
<td>Comparación gráfica capacidad de carga última Meyerhof</td>
<td>74</td>
</tr>
<tr>
<td>12.2</td>
<td>Comparación gráfica capacidad de carga última CCP14</td>
<td>78</td>
</tr>
</tbody>
</table>
GLOSARIO

PILOTE¹

Fundación profunda esbelta, fabricada con distintos materiales tales como concreto, acero, madera o combinaciones de éstas, pueden ser prefabricados o hechos in situ; a continuación se presentan los distintos tipos de pilotes de acuerdo con Tomlinson (2001):

• Pilotes Hincados
 o Madera
 o Concreto prefabricado
 o Concreto pre esforzado
 o Sección H, caja o tubo
• Pilotes hincados y fundidos en sitio
• Pilotes preexcavados
 o Barrenados
 o Micropilotes

PILOTES DE CONCRETO¹

Los pilotes de concreto se dividen en pilotes prefabricados o fundidos in-situ, éstos cuentan con refuerzo longitudinal con el fin de tolerar las cargas horizontales a las que serán sometidos; los pilotes prefabricados son fundidos y curados en el lugar de fabricación, estos pueden ser pre esforzados; los pilotes fundidos in-situ se construyen mediante la excavación del agujero donde se fundirá el concreto, la excavación tiene que ser estable por lo que se podrán utilizar fluidos de excavación o con camisas de acero que son hincadas al terreno previa fundición del concreto

PILOTES HINCADOS¹

Este tipo de pilotes también son conocidos como pilotes de desplazamiento. Los pilotes son hincados por medio de martillos piloteadores o por hincadores vibratorios, los tipos de martillo usados son martillo de caída libre, martillo de aire o vapor de acción simple, martillo de aire o vapor de acción doble y diferencial, y martillo diésel.

Este tipo de instalación en las arcillas puede causar el remoldeo o alteración parcial del suelo alrededor del pilote, alteración del estado de esfuerzos en las inmediaciones del pilote, disipación del exceso de presión de poros alrededor del

pilote y el fenómeno de recuperación de esfuerzo a largo tiempo. Así mismo la resistencia al corte no drenada puede disminuirse considerablemente por el proceso de remoldeo aunque esta resistencia se recuperará con el tiempo debido al reacomodamiento de las partículas con el tiempo y a la consolidación por la disipación del exceso de presión de poros.

Los efectos de este tipo de instalación en arenas corresponden a la compactación del suelo por desplazamiento y vibración, causando el reacomodamiento de las partículas, el incremento de la densidad del suelo puede aumentar la capacidad de carga del pilote.

PILOTES PRE EXCAVADOS

También considerados como pilotes de remplazo debido a que no densifican el suelo al no desplazarlo, sino simplemente remueven el material presente y es remplazado por concreto, este tipo de pilotes pueden ser instalados mediante un barreno mecánico.

En las arcillas los efectos de este tipo de instalación corresponden a la reducción del valor de adhesión, que se reduce respecto al valor de cohesión no drenada antes de la instalación, principalmente por el ablandamiento de las arcillas adyacentes a la superficie del pilote, este fenómeno puede ser a causa de la absorción del agua por el concreto húmedo, migración del agua del suelo hacia alrededor del pilote y el agua usada para la facilidad de instalación. Así mismo la arcilla bajo la punta del pilote puede ablandarse por su alteración y causar unos asentamientos mayores a los estimados.

En arenas usualmente se requieren camisas o fluidos de excavación para el soporte de las paredes de la excavación, al retirar la camisa se puede causar una reducción en la densidad de las arenas. Del mismo modo al retirar el barreno, la arena de la base puede reducir sus parámetros de resistencia.

RESUMEN

En el presente trabajo de grado se realiza la comparación de las metodologías de cálculo de capacidad de carga axial en pilotes de concreto pre excavados definidas por: Poulos, Meyerhof y CCP14, para cinco pilotes localizados en las ciudades de Bogota (1), Santa Marta (3) y Cali (1); estos pilotes fueron fundidos en una estratigrafía mayoritariamente arenosa.

El cálculo realizado para cada una de las metodologías tuvo en cuenta las características geomecánicas del suelo obtenidas mediante correlaciones al ensayo de SPT realizado en cada uno de los proyectos, los factores determinados fueron: Cohesión, Ángulo de Fricción, esfuerzo efectivo, esfuerzo cortante, etc.

Tras obtener los resultados por cada metodología se realizó una comparación con las pruebas de carga realizadas para cada uno de los pilotes; se evaluaron estos resultados y se identificaron grandes diferencias con el valor de la prueba de carga, con el fin de obtener resultados más cercanos a los datos de las pruebas de carga se modificaron los factores utilizados en cada metodología tales como: Nq, φ y β.

Finalmente se realiza una comparación de resultados por cada metodología con el fin de evaluar si el cambio de los factores permitió que los resultados estuvieran más cerca de lo obtenido en las pruebas de carga.

Palabras clave: Factores, capacidad de carga, pilotes pre excavados, pruebas de carga, comparación.
INTRODUCCIÓN

Las distintas características de los materiales de fundación encontrados a lo largo del territorio nacional han requerido el estudio de diferentes tipos de cimentación, así como el comportamiento de éstas en cada estratigrafía, por esta razón la presente monografía tiene como objetivo principal realizar un estudio comparativo de tres metodologías (Poulos, Meyerhof y CCP 14) de cálculo de carga axial última para pilotes pre excavados en suelos fricciónantes.

El cálculo de la capacidad de carga por compresión se realizará teniendo en cuenta los resultados del ensayo de SPT obtenidos en muestras de suelos arenosos, tras esto se compararán los resultados para cada metodología con los resultados del ensayo de prueba de carga realizados en los pilotes construidos en estas zonas. Con los resultados obtenidos se realizará un análisis y se modificarán los parámetros que afectan cada uno de los resultados. Teniendo en cuenta que los resultados para cada metodología pueden presentar variaciones considerables, el principal beneficio será identificar la metodología que tenga una mayor cercanía con los resultados obtenidos en las pruebas de carga.
1. IDENTIFICACIÓN Y DESCRIPCIÓN DEL PROBLEMA

Con el paso del tiempo, las necesidades de expansión de infraestructura vial, comercial y de vivienda han causado una evolución en el estudio de metodologías de construcción, dando principal relevancia al estudio de suelos de fundación, ya que la justificación de descartar un proyecto de infraestructura por las condiciones del suelo no es válida; por lo anterior los suelos blandos y/o con pobres características geomecánicas se han convertido en un inconveniente para la ingeniería geotécnica, haciendo necesario ahondar la investigación entorno a cimentaciones profundas.

Los diferentes tipos de pilotes, las distintas metodologías de construcción de éstos, las diferentes metodologías de cálculo de capacidad de carga axial, así como los diferentes materiales presentes en las zonas del proyecto, han obligado al desarrollo de varias investigaciones, con el fin de identificar cuál es la manera más viable tanto económica como técnicamente para la construcción de pilotes en diferentes condiciones.

La experiencia empírica ha sido un valioso insumo para la construcción de este tipo de cimentaciones durante el siglo XIX, y las distintas teorías desarrolladas desde la publicación del texto *Piles and Pile Driving, editado por Wellington of the Engineering News* en el año 1893, han sido pareja esencial para el estudio de las cimentaciones profundas actualmente.

La investigación sobre distintas metodologías de diseño de pilotes ha avanzado de tal manera, que la combinación entre la experiencia empírica y el conocimiento teórico, permitan un diseño correcto en todos los aspectos, teniendo en cuenta que cumpla con las solicitudes, de acuerdo con las cargas axiales, laterales, asentamientos, etc. pero que además sea económicamente viable, que la obra no sea sobredimensionada con el único fin de impedir su posible falla.

Teniendo en cuenta lo anterior, la diferenciación del cálculo de capacidad de carga de acuerdo con el suelo de fundación en el cuál se instalará la cimentación, permite aproximar más su comportamiento ante estas solicitudes, y además brindar una solución económicamente viable a la necesidad de fundación.

Es por esta razón que las diferentes metodologías de cálculo han sido desarrolladas para el tipo de suelo de fundación tales como: arcillas, roca, arenas, etc. El cálculo de la capacidad de carga axial última para los pilotes tiene en cuenta la capacidad de carga por punta y su capacidad de carga por fuste, teniendo mayor ponderación una de éstas, de acuerdo con el tipo de suelo.
De acuerdo con lo anterior en el presente trabajo de grado se evaluará la capacidad de carga axial en suelos friccionantes en cinco sitios diferentes donde se realizaron pruebas de carga, estos resultados obtenidos se compararán con los obtenidos mediante las metodologías de cálculo de capacidad de carga tales como Poulos, CCP14 y Meyerhof, y se realizarán modificaciones a éstas con el fin de obtener un resultado más acertado.
2. JUSTIFICACIÓN

Debido a las múltiples características de los materiales y a la imposibilidad de tener certeza sobre el comportamiento del material de fundación; diferentes metodologías han sido desarrolladas para calcular la capacidad de carga por compresión de pilotes en arenas, así mismo estas metodologías varían respecto al tipo de instalación de los pilotes.

Es por lo anterior que se ha decidido realizar una comparación entre tres distintas metodologías de cálculo de carga axial última (Poulos, Meyerhof y CCP 14) en suelos granulares para pilotes pre excavados y comparar éstos resultados con cinco pruebas de carga desarrolladas sobre pilotes existentes, y de este modo identificar los motivos por los cuales se generan diferencias de resultados entre ellas.

Con base en la comparación realizada y en los resultados obtenidos en las pruebas de cargas se evaluarán los factores Nq, φ y β definidos por cada uno de los autores de estas metodologías para realizar una modificación de éstos con el fin de obtener una mejor aproximación a los resultados reales.
3. OBJETIVOS

3.1 GENERAL

Realizar la comparación entre las metodologías de Poulos, Meyerhof y la CCP 14 de cálculo de carga axial última para pilotes pre excavados en suelos granulares y realizar su comparación con resultados obtenidos en cinco pruebas de carga.

3.2 ESPECÍFICOS

- Realizar el cálculo de capacidad de carga axial última y admisible para pilotes pre excavados en arenas por las metodologías de Poulos, Meyerhof y la CCP 14.
- Comparar los resultados obtenidos de las metodologías de cálculo de Poulos, Meyerhof y la CCP 14 con lo obtenido en cinco pruebas de carga en pilotes circulares de concreto pre excavados.
- Realizar un análisis de los resultados obtenidos verificando los factores de carga Nq, ϕ y β propuestos por cada autor, con el fin de identificar la variación de resultados tras modificar estos factores.
4. ALCANCE

El resultado del presente estudio permitirá realizar una comparación de tres metodologías (Davis Poulos, Geoffrey Meyerhof y la Norma Colombiana de Diseño de Puentes) de cálculo de carga axial última para pilotes pre excavados en suelos granulares y de los resultados con cinco pruebas de carga en cinco pilotes de concreto fundidos in situ; así mismo realizar una revisión de los factores de carga utilizados por cada uno de los autores de las metodologías.
5. MARCO DE REFERENCIA

5.1 MARCO DE ANTECEDENTES

En los últimos años, con el fin de mejorar la exactitud de los cálculos de la capacidad de carga axial en pilotes, se han realizado diferentes investigaciones evaluando la incidencia de los distintos aspectos en el cálculo de capacidad de carga por compresión para cimentaciones profundas considerando el aporte de fricción; de acuerdo con lo anterior a continuación se presentan algunas de las investigaciones que han sido realizadas.

5.1.1 THEORETICAL AND ACTUAL BEARING CAPACITY OF DRIVEN PILES USING MODEL PILES IN SAND³

Debido a que la instalación por hincado es una de las más utilizadas, muchas de las investigaciones realizadas se han centrado en ésta, en el año 2015, los ingenieros Wong Kok Leong, Nor Azizi Yusoff, Ameer Nazrin Abd Aziz y Zaihasra Abut Talib de la universidad tun Hussein Onn Malaysia, realizaron el trabajo de investigación titulado “Theoretical and actual bearing capacity of driven piles using model piles in sand”, en esta investigación se enfocaron en la influencia de la relación de penetración, teniendo en cuenta que la capacidad de carga aumenta a medida que esta relación también lo haga.

Para esto realizaron la prueba en cinco pilotes con sección hueca para penetrar en suelos sin cohesión con diferentes fuerzas de penetración, utilizaron la prueba de carga en pilotes para determinar la capacidad de carga admisible. Al pilote en estudio se le aplicó una carga exacta para obtener los datos sobre de capacidad de carga del pilote. A continuación se presenta el modelo definido para realizar estas pruebas:

Figura 5.1 – Configuración del modelo.⁴

³ Wong Kok Leong, Nor Azizi Yussof, Ameer Nazrin Abd Aziz, Zaihasra Abu Talib. (2015). Theoretical and actual bearing capacity of driven piles using model piles in sand. Facultad de Ingeniería civil y ambiental, Universidad Tun Hussein Onn. Malasia, Malasia
La fórmula de Meyerhof fue utilizada para determinar la carga por punta (Q_p):

$$Q_p = A_p \cdot q_p = A_p \cdot q' \cdot N' q^2$$

Para determinar la carga por fuste en arenas se utilizaron las dos siguientes metodologías, realizando una media aritmética entre las dos con el fin de obtener un resultado más confiable:

1. \[Q_s = \frac{f_{z=0} + f_{z=0.381}}{2} p L' + f_{z=0.381} p (L - L')^5 \]

4 Wong Kok Leong, Nor Azizi Yussof, Ameer Nazrin Abd Aziz, Zaihasra Abu Talib. (2015). Theoretical and actual bearing capacity of driven piles using model piles in sand. Facultad de Ingeniería civil y ambiental, Universidad Tun Hussein Onn. Malasya, Malasya

20

Tras realizar los cálculos teóricos así como las pruebas de campo, se realizó la comparación entre los resultados obtenidos y se encontraron diferencias que variaban desde el 219% hasta el 539%. A continuación se presenta la tabla de variación de resultados:

Tabla 5.1 – Variación de resultados

<table>
<thead>
<tr>
<th>Drop Height (mm)</th>
<th>Bearing Capacity (kN)</th>
<th>Theoretical</th>
<th>Pile Load Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Meyerhof’s</td>
<td>10%D</td>
</tr>
<tr>
<td>50, Ta</td>
<td>0.163</td>
<td>0.52</td>
<td>-219.02</td>
</tr>
<tr>
<td>150, Tb</td>
<td>0.163</td>
<td>0.62</td>
<td>-280.37</td>
</tr>
<tr>
<td>200, Te</td>
<td>0.163</td>
<td>0.72</td>
<td>-341.72</td>
</tr>
<tr>
<td>250, Td</td>
<td>0.163</td>
<td>1.04</td>
<td>-538.04</td>
</tr>
<tr>
<td>300, Te</td>
<td>0.163</td>
<td>0.92</td>
<td>-464.42</td>
</tr>
</tbody>
</table>

Los resultados mostraron que la capacidad de carga teórica calculada por la teoría de Meyerhof era constante para las diferentes alturas de caída, sin embargo las pruebas de laboratorio mostraron un aumento de hasta el 100% para las diferentes alturas de caída estudiadas.

5.1.2 EVALUACIÓN COMPARATIVA DE LA CAPACIDAD DE CARGA EN CIMENTACIONES PROFUNDAS. FÓRMULAS ANALÍTICAS Y ENSAYOS DE CARGA

Con el fin de realizar una comparación entre los resultados teóricos y los resultados obtenidos de pruebas de carga en cimentaciones profundas, los autores del artículo realizaron una evaluación comparativa de la capacidad de carga en 10 pilotes en diferentes zonas de Colombia, partiendo de datos obtenidos de las exploraciones de campo y ensayos de laboratorio, fueron realizados los cálculos por medios analíticos.

Wong Kok Leong, Nor Azizi Yussof, Ameer Nazrin Abd Aziz, Zaihasra Abu Talib. (2015). Theoretical and actual bearing capacity of driven piles using model piles in sand. Facultad de Ingeniería civil y ambiental, Universidad Tun Hussein Onn. Malasya, Malasya

Para esta investigación los autores tuvieron en cuenta tres metodologías empleadas en el cálculo de capacidad de carga en cimentaciones profundas: inicialmente tuvieron en cuenta los métodos empíricos o semi-empíricos propuestos por Aoki-Velloso (1975), Décourt-Quaresma (1978) y Teixeira (1996); los métodos analíticos tenidos en cuenta fueron los definidos por Terzaghi (1943), Meyerhof (1963), Hansen (1970), Vesic (1975), Janbu (1976) y Coyle Castello (1981); el tercer método investigado por los autores corresponde a las pruebas de carga.

Con el fin de realizar la comparación de una manera más acertada, los autores definieron los métodos de cálculo de capacidad de carga a utilizar para los casos en que los pilotes trabajan por punta y fuste, a continuación se presentan los métodos utilizados:

Tabla 5.2 – Métodos de cálculo de capacidad

Con base en lo anterior, los cálculos fueron realizados y a continuación se presentan los resultados obtenidos por los métodos teóricos vs los ensayos de carga, se hace especial énfasis en esta evaluación teniendo en cuenta que el presente trabajo de grado fue enfocado hacia estos métodos:

Tabla 5.3 – Relación entre capacidad real vs capacidad de diseño por pilote KO

<table>
<thead>
<tr>
<th>Método</th>
<th>Q última Punto (kN)</th>
<th>Q última Fuste (kN)</th>
<th>Q diseño (kN)</th>
<th>Qreal/prueba</th>
<th>Diseño de la fundación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>301</td>
<td>707</td>
<td>454</td>
<td>1,3</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>2</td>
<td>301</td>
<td>533</td>
<td>377</td>
<td>1,6</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>3</td>
<td>301</td>
<td>589</td>
<td>395</td>
<td>1,5</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>4</td>
<td>301</td>
<td>434</td>
<td>317</td>
<td>1,8</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>5</td>
<td>531</td>
<td>707</td>
<td>530</td>
<td>1,1</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>6</td>
<td>531</td>
<td>533</td>
<td>453</td>
<td>1,3</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>7</td>
<td>531</td>
<td>589</td>
<td>471</td>
<td>1,2</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>8</td>
<td>531</td>
<td>434</td>
<td>394</td>
<td>1,5</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>9</td>
<td>225</td>
<td>707</td>
<td>428</td>
<td>1,4</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>10</td>
<td>225</td>
<td>553</td>
<td>351</td>
<td>1,7</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>11</td>
<td>225</td>
<td>589</td>
<td>369</td>
<td>1,6</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>12</td>
<td>225</td>
<td>434</td>
<td>292</td>
<td>2,0</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>13</td>
<td>339</td>
<td>707</td>
<td>466</td>
<td>1,3</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>14</td>
<td>339</td>
<td>533</td>
<td>389</td>
<td>1,5</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>15</td>
<td>339</td>
<td>589</td>
<td>407</td>
<td>1,4</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>16</td>
<td>339</td>
<td>434</td>
<td>330</td>
<td>1,8</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>17</td>
<td>280</td>
<td>707</td>
<td>447</td>
<td>1,3</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>18</td>
<td>280</td>
<td>533</td>
<td>370</td>
<td>1,6</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>19</td>
<td>280</td>
<td>589</td>
<td>388</td>
<td>1,5</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>20</td>
<td>280</td>
<td>434</td>
<td>310</td>
<td>1,9</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>21</td>
<td>313</td>
<td>707</td>
<td>458</td>
<td>1,3</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>22</td>
<td>313</td>
<td>533</td>
<td>380</td>
<td>1,5</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>23</td>
<td>313</td>
<td>589</td>
<td>399</td>
<td>1,5</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>24</td>
<td>313</td>
<td>434</td>
<td>321</td>
<td>1,8</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>25</td>
<td>280</td>
<td>215</td>
<td>201</td>
<td>2,9</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>26</td>
<td>313</td>
<td>341</td>
<td>275</td>
<td>2,1</td>
<td>Sobreestimado</td>
</tr>
<tr>
<td>Media</td>
<td>329</td>
<td>548</td>
<td>384</td>
<td>1,6</td>
<td></td>
</tr>
</tbody>
</table>

Desviación estándar: 93 | 123 | 71 | 0,4 |
Coeficiente de variación: 0,28 | 0,22 | 0,18 | 0,2 |

Figura 5.3 - Modelo de prueba

Como se observa, en general la capacidad de carga real es altamente superior a los resultados obtenidos en los cálculos, las metodologías que más se acercan a los resultados obtenidos en campo son la 5, 25 y 26.

A continuación se presentan los resultados obtenidos por las metodologías semiempíricas:

Figura 5.4 – Metodologías semi-empíricas en KO

Es de anotar que estas metodologías fueron desarrolladas para suelos tropicales ubicados en Brasil, como se puede observar estas metodologías semiempíricas también subestiman la capacidad de carga.

Para evaluar los pilotes que trabajan por fricción, los autores seleccionaron los pilotes construidos en la ciudad de Bogotá donde se encuentran suelos arcillosos y limosos cuya baja capacidad permite descartar el aporte por punta de estos suelos, a continuación se presentan las metodologías estudiadas para este tipo de suelos:

Tabla 5.4 – Métodos de capacidad de diseño para suelos cohesivos

De acuerdo con lo anterior, a continuación se presenta la comparación de los resultados obtenidos por las metodologías vs las pruebas de campo:

Figura 5.5 – Capacidad técnica: AP y Ak

Como se puede observar para el pilote AP, los resultados teóricos son extremadamente conservadores, a diferencia de los resultados para el segundo pilote, en donde se observa que las metodologías F7 y F8 arrojan un resultado bastante cerca de lo obtenido en las pruebas de campo.

Para los pilotes que trabajan por punta el análisis se realizó para una estratigrafía conformada por rocas calizas meteorizadas, a continuación se presentan los resultados:

Figura 5.6 – Capacidad teórica: MPA

Como se observa en la anterior figura, se puede concluir que para los casos de capacidad de carga por punta en suelos rocosos, las diferencias son mayores que para los otros materiales.

Como conclusiones del estudio, los autores hacen especial énfasis en la necesidad de ajustar los métodos de cálculo de capacidad de carga para condiciones particulares de los suelos de la geografía colombiana; así mismo concluyen que manejar diferentes factores de seguridad es recomendable dependiendo del mecanismo de trabajo de los pilotes (fuste o punta).

5.2 MARCO CONCEPTUAL

5.2.1 METODOLOGÍAS DE CÁLCULO DE CAPACIDAD DE CARGA SEGÚN POULOS13

Como punto de partida en el año 1980, los Ingenieros civiles Harry George Poulos y Edwar Davis, publicaron el libro \textit{Pile Foundation Analysis And Design}; para los autores, el método de instalación de pilotes pre excavados no tiene una influencia real sobre la densidad de las arenas que recubren el pilote; del mismo modo tras evaluar distintas metodologías convencionales de cálculo de capacidad de carga en arenas (Broms, 1966; Nordlund; 1963; Vesic, 1967), los autores definieron que el esfuerzo efectivo sobre las arenas aumentaba hasta una profundidad z_c, bajo esta profundidad la resistencia última por fricción se volvía constante hasta la base del pilote; de acuerdo con lo anterior definieron la siguiente formulación:

$$P_u = \int_{0}^{L} C \sigma'_v K_s \tan \phi'_a dz + A_b \sigma'_vb N_q - W$$

\textit{Donde:}

$\sigma'_v = \text{Esfuerzo vertical efectivo a lo largo del pilote}$

Esfuerzo efectivo de sobrecarga para $z \leq z_c$ o valor límite σ'_{vc} para $z \geq z_c$

$\sigma'_{vb} = \text{Esfuerzo vertical efectivo en la base del pilote}$

$C = \text{Perímetro del pilote}$

$A_b = \text{Área de la base del pilote}$

$N_q = \text{Factores de capacidad de carga, se obtiene de acuerdo con la siguiente gráfica donde } \phi^o = 3/4\phi + 10$

Figura 5.7 – Relación entre Nq y ϕ^{14}

$W = \text{Peso del pilote}$

$K_s \tan \phi', se obtiene de acuerdo con la siguiente gráfica definida por Meyerhof (1976) donde } \phi_1 \text{ es el ángulo de fricción antes de la instalación del pilote}$

**Figura 5.8 – Valores de $K_s \tan \phi$ para pilotes en arenas}^{15}$

Z_c, se obtiene utilizando la siguiente gráfica

Figura 5.9 –Valores de z_c/d^{14}

Tras evaluar la teoría formulada por Poulos y Davis, se puede identificar que su formulación tiene en cuenta las distintas investigaciones realizadas previamente tales como las de Vesic y Meyerhof, sin embargo, a su criterio adoptan los factores que deben ser aplicados de acuerdo con el tipo de instalación efectuado.
5.2.2 **METODOLOGÍA DE CÁLCULO DE CAPACIDAD DE CARGA SEGÚN MEYERHOF**16,17

En el año 1963 el ingeniero Michael Tomlinson, publicó el libro *Foundation Design and Construction*; en esta publicación el autor define las arenas con características de compresibilidad y capacidad de carga similar a las gravas, es decir con una alta capacidad de carga y baja compresibilidad; sin embargo considera las arenas sueltas con una capacidad de compresibilidad mayor y menor capacidad de carga.

Las arenas son altamente permeables, de este modo la presión de poros en estos suelos aplicada por las cargas se disipa rápidamente, por este motivo se considera el cálculo en condiciones drenadas, es decir el valor de cohesión será igual a cero. La capacidad de carga por fricción incrementa a medida que se profundiza el pilote, sin embargo, llega a un pico y desde allí se mantiene constante, la formulación definida para calcular la carga última del pilote consiste en:

\[
Q_p = Q_s + Q_b - W_p
\]

Donde:

- \(Q_p\) = Capacidad de carga última
- \(Q_s\) = Capacidad de carga última por fricción
- \(Q_b\) = Capacidad de carga última por punta
- \(W_p\) = Peso del pilote

Para estos cálculos el autor adoptó la formulación expuesta en el año 1951 por el ingeniero Geoffrey Meyerhof en su texto *The Ultimate Bearing Capacity of Foundations*; en este texto el autor se concentra únicamente con la falla total de la fundación, ignorando los esfuerzos provocados por los asentamientos de éstas, la capacidad de carga última de una fundación es definida como la máxima carga a la que se puede someter un suelo, ésta depende de las propiedades mecánicas del suelo, los esfuerzos originales del suelo, las condiciones freáticas, las características físicas de la fundación y el método de instalación.

De acuerdo con sus investigaciones, se manejaron varias metodologías de cálculo, para este documento se estudiará el análisis estático utilizando la resistencia del suelo (Capacidad teórica).

17 PRAKASH, SHAMSHER, SHARMA, HARL (1990). Pile Foundations in Engineering Practice.
Los pilotes instalados en suelos friccionantes con cohesión igual cero alteran las características del suelo hasta una distancia determinada, en caso de pilotes preexcavados, la alteración consiste en el “aflojamiento” o “desacomodamiento” del suelo de fundación, por lo cual se hace necesario el uso de fluidos de excavación o encamisado para la estabilidad de éste durante su instalación; cuándo se usan fluidos, éstos forman un recubrimiento en la superficie del suelo que reduce la fricción entre el suelo y el pilote, si por el contrario se utilizan las camisas, éstas causan el aflojamiento de las arenas alrededor del pilote y en la base de éste. Con base en lo anterior la capacidad de carga de los pilotes debe ser estimada con estas propiedades obtenidas después de la instalación de los pilotes, esto es realizado mediante el coeficiente empírico N_q y la resistencia a la fricción del suelo movilizado f_s.

- **Metodología Teórica**

La formulación propuesta para calcular la capacidad de carga por punta fue definida con la siguiente formulación:

$$Q_p = A_p \gamma D_f N_q \circ Q_p = A_p \sigma' v N_q$$

Donde:

- Q_p: Carga por punta
- A_p: Área del pilote
- γ: Gama del suelo
- D_f: Profundidad de desplante
- N_q: Coeficiente empírico adimensional
- $\sigma' v$: Esfuerzo efectivo vertical sobre la base del pilote

El factor N_q depende de la relación entre D_f/B, el ángulo de fricción interna del estrato de soporte y del método de instalación del pilote, estos valores pueden variar respecto a teoría, a continuación se presentan los valores de N_q de acuerdo con los diferentes autores:
Tabla 5.5 – Factores de capacidad de carga para pilotes en suelos no cohesivos

<table>
<thead>
<tr>
<th>Theories</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Beer (1945)</td>
<td>59</td>
<td>155</td>
<td>380</td>
<td>1150</td>
<td>4000</td>
</tr>
<tr>
<td>Meyerhof (1953)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driven piles</td>
<td>38</td>
<td>89</td>
<td>255</td>
<td>880</td>
<td>4000</td>
</tr>
<tr>
<td>Caquot-Kerisel (1956)</td>
<td>26</td>
<td>55</td>
<td>140</td>
<td>350</td>
<td>1050</td>
</tr>
<tr>
<td>Brinch Hansen (1961)</td>
<td>23</td>
<td>46</td>
<td>115</td>
<td>350</td>
<td>1650</td>
</tr>
<tr>
<td>Skempton, Yassin, and Gibson</td>
<td>46</td>
<td>66</td>
<td>110</td>
<td>220</td>
<td>570</td>
</tr>
<tr>
<td>(1953)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brinch Hansen (1951)</td>
<td>32</td>
<td>54</td>
<td>97</td>
<td>190</td>
<td>400</td>
</tr>
<tr>
<td>Berezantsev (1961)</td>
<td>16</td>
<td>33</td>
<td>75</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Vesic (1963)</td>
<td>15</td>
<td>28</td>
<td>58</td>
<td>130</td>
<td>315</td>
</tr>
<tr>
<td>Vesic (1972): (I_s = 60^b)</td>
<td>20</td>
<td>27</td>
<td>40</td>
<td>59</td>
<td>85</td>
</tr>
<tr>
<td>Vesic (1972): (I_s = 200^b)</td>
<td>29</td>
<td>46</td>
<td>72</td>
<td>110</td>
<td>165</td>
</tr>
<tr>
<td>Terzaghi (1943)</td>
<td>12.7</td>
<td>22.5</td>
<td>41.4</td>
<td>81.3</td>
<td>173.3</td>
</tr>
<tr>
<td>General shear</td>
<td>5.6</td>
<td>8.3</td>
<td>12.6</td>
<td>20.5</td>
<td>35.1</td>
</tr>
<tr>
<td>Localized shear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*[Various references are cited by Vesic (1972, 1977).]

Tabla 5.6 – Valores de Nq y \(\phi \)

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>20</th>
<th>25</th>
<th>28</th>
<th>30</th>
<th>32</th>
<th>34</th>
<th>36</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_q)</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>160</td>
<td>230</td>
</tr>
<tr>
<td>(driven)</td>
<td></td>
</tr>
<tr>
<td>(N_q)</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>115</td>
</tr>
<tr>
<td>(drilled)</td>
<td></td>
</tr>
</tbody>
</table>

*[These values have been obtained from the curves provided by Meyerhof (1976).]

Para el presente trabajo se utilizarán los valores de Nq presentados en la Tabla No. 5.6.

El cálculo de la capacidad de carga por fricción se define por medio de la siguiente metodología:

\[
Q_f = pK_s \tan \delta \sum_{L=0}^{L=L} \sigma' \Delta L
\]

Donde:

- \(p \) Perímetro del pilote

\(\sigma'_{hl} \) Esfuerzo efectivo normal

\(\sigma'_{vl} \) Esfuerzo efectivo vertical

\(\delta = 2/3 \phi \)

\(K_s \) Coeficiente de presión de tierra definido por la siguiente ecuación \(\sigma'_{hl}/\sigma'_{vl} \), o por la siguiente tabla

Tabla 5.7 – Valores de Ks para diferentes tipos de pilotes en arenas

<table>
<thead>
<tr>
<th>Pile Type</th>
<th>(K_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bored pile</td>
<td>0.5</td>
</tr>
<tr>
<td>Driven H pile</td>
<td>0.5–1.0</td>
</tr>
<tr>
<td>Driven displacement pile</td>
<td>1.0–2.0</td>
</tr>
</tbody>
</table>

*These values are based on the data presented by Meyerhof (1976). Similar values have been recommended in Foundations and Earth Structures Design Manual 7.2 (1982).

El coeficiente \(K_s \) así como el valor de fricción es directamente proporcional al volumen de suelo desplazado, es decir que los pilotes pre excavados tendrán un coeficiente menor a los hincados.

De acuerdo con lo anterior la formulación para la capacidad última de un pilote en suelos friccionantes se define como:

\[
(Q_v)_{ult} = Q_p + Q_f = A_p \gamma D_f N_q + pK_s \tan \delta \sum_{L=0}^{L=L} \sigma'_{vl} \Delta L
\]

- **Metodología Empírica**

La formulación definida para realizar el cálculo de capacidad de carga última empírica definida por Meyerhof se presenta como:

\[
Q_P = \frac{1}{3} \left[\left(\frac{0.4N}{B} \right) D_f A_p \right] \rightarrow \text{Carga por punta}
\]

\[
Q_f = \frac{1}{2} \left((f_s) (perimetro) (Longitud del pilote) \right) \rightarrow \text{Carga por fuste}
\]

Donde:

¿: Valor de N corregido

5.2.3 METODOLOGÍA DE CÁLCULO DE CAPACIDAD DE CARGA SEGÚN CCP

Con el fin de estar a la par de los métodos de diseños y construcción utilizados por las naciones del primer mundo, en dónde han incorporado la estadística y la probabilidad al diseño y construcción de puentes como se ve reflejado en la filosofía LRFD (Load Resistant Factor Design) que utiliza la estadística mediante métodos fácilmente aplicables por diseñadores de puentes, el Ministerio de Transporte así como el Instituto Nacional de Vías – INVIAS y la Asociación Colombiana de Ingeniería Sísmica – AIS, unieron esfuerzos para realizar la actualización y complementación del código colombiano de diseño sísmico de puentes originalmente desarrollado por la Asociación Colombiana de Ingeniería Sísmica – AIS en el año 1995.

Como principal actualización se ahondó en el diseño por estados límites, este tipo de diseño le da vital importancia al uso de métodos estadísticos de diseño, dando prioridad a la probabilidad de falla, como es definido en el código CCP 14 un estado límite es: “una condición más allá de la cual una estructura, o uno de sus componentes, no cumple con la función para la cual fue diseñado. La metodología de diseño por estados límites es corrientemente usada en diseño estructural y tiene dos características básicas: (1) trata de considerar todos los estados límites posibles y (2) está basado en métodos probabilistas”. De acuerdo con lo anterior todas las estructuras deben ser diseñadas para los estados límite que permitan obtener resultados de serviciabilidad, seguridad y costo.

5.2.3.1 Propiedades de Diseño

Como primer paso para el diseño de cimentaciones profundas se deben seleccionar las propiedades del suelo que serán usadas para la etapa de diseño mediante ensayos de campo, ensayos de laboratorio o información utilizada con base en el comportamiento del sitio, para el presente trabajo de grado se realizarán los diseños en suelos granulares drenados, para este tipo de suelos esta metodología define que el ángulo de fricción puede ser definido mediante correlaciones del ensayo de penetración estándar SPT como se realizará en este trabajo de grado.

El número de golpes obtenido del ensayo de SPT deberá ser corregido por la presión de sobrecarga mediante la siguiente formulación:

\[N_{corregido} = \frac{N_{obtenido} \times \text{presión de sobrecarga}}{2} \]

\[N_1 = C_N * N \]

Donde:

\(N_1 \): Número de golpes corregido por la presión de sobrecarga

\(C_N \): 0.77 \(\log_{10}(1.92\sigma'_v)\) y \(C_N < 2.0 \)

\(\sigma'_v \): Esfuerzo efectivo vertical

\(N \): \(N \) de campo

Para el presente trabajo de grado, se realizará corrección por la eficiencia del martillo de un 60\% de acuerdo con la recomendación por la norma CCP 14 para un martillo de caída convencional utilizando cuerda y malacate como se presenta a continuación

\[N_{60} = \frac{ER}{60\%} * N \]

Donde:

\(N_{60} \): Número de golpes del ensayo SPT corregido por la eficiencia del martillo

\(ER \): Eficiencia del martillo expresada como porcentaje

\(N \): \(N \) de campo

Tras realizar las correcciones por presión de sobrecarga y de eficiencia del martillo el valor de \(N \) será:

\[N_{1,60} = C_N * N_{60} \]

El ángulo de fricción será determinado teniendo en cuenta la siguiente correlación:

Tabla 5.8 – Correlación de los valores N160 del SPT para el ángulo de fricción de suelos granulares drenados (modificado según Bowles, 1977)\(^{21}\)

5.2.3.2 **Estados límites de resistencia**

Para los pilotes pre excavados, los estados límites deben tener en cuenta:

- Resistencia a la compresión axial
- Resistencia al levantamiento
- Resistencia lateral
- Falla por punzonamiento del pilote hacia el interior de un estrato más débil por debajo del estrato de apoyo

5.2.3.3 **Estado límite de eventos extremos**

5.2.3.3.1 Licuación del suelo

Se deberá realizar la verificación de licuación si se cumplen las siguientes condiciones:

- El nivel freático se encuentra a 15 m de la superficie.
- Los limos de baja plasticidad y las arenas dentro de los primeros 23 m se caracterizan por: (1) el número de golpes de SPT corregido es menor o igual a 25. (2) la resistencia a la penetración del cono CPT corregida es menor o igual a 7.2 MPa (no aplica para este estudio). (3) la velocidad de onda de corte normalizada V_s es menor a 2000 m/s (no aplica para este estudio). O (4) se ha observado que la unidad geológica presente en el sitio se ha licuado ante sismos anteriores.

5.2.3.4 **Factores de resistencia**

5.2.3.4.1 Estados límites de servicio

Los factores de resistencia para los estados límites de servicio deben tomarse como 1.0.

5.2.3.4.2 Estado límite de resistencia

Para los pilotes pre excavados los factores de resistencia deben ser seleccionados de acuerdo con el método seleccionado para determinar la resistencia nominal del pilote. Para el presente trabajo de grado se tendrán en cuenta los factores de

<table>
<thead>
<tr>
<th>N_{10}</th>
<th>ϕ_f</th>
</tr>
</thead>
<tbody>
<tr>
<td><4</td>
<td>25-30</td>
</tr>
<tr>
<td>4</td>
<td>27-32</td>
</tr>
<tr>
<td>10</td>
<td>30-35</td>
</tr>
<tr>
<td>30</td>
<td>35-40</td>
</tr>
<tr>
<td>50</td>
<td>38-43</td>
</tr>
</tbody>
</table>
resistencia dispuestos en la siguiente tabla teniendo en cuenta que el cálculo de capacidad de carga se realizará para un pilote pre excavado individual por lo cual serán reducidos en un 20%:

Tabla 5.9 – Factores de resistencia para la resistencia geotécnica de pilotes perforados22

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Factor & Valor 1 & Valor 2 & Valor 3 \\
\hline
Factor 1 & 1.1 & 1.2 & 1.3 \\
Factor 2 & 0.9 & 0.8 & 0.7 \\
\hline
\end{tabular}
\end{center}

22 ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA – AIS (2014). Norma Colombiana de Diseño de Puentes CCP 14.
5.2.3.5 POZOS PERFORADOS

La CCP 14 recomienda el uso de pozos perforados como una alternativa económica para cimentaciones superficiales o cimentaciones profundas, especialmente cuando el material superficial no tiene unas buenas características para la fundación de zapatas, del mismo modo se recomienda su uso para situaciones en las que las tolerancias de deformaciones laterales son mínimas.

La norma clasifica los pozos perforados de acuerdo con su mecanismo principal para derivar la resistencia de carga, como ejes flotantes para los que obtienen su capacidad de carga por la fricción como se estudiará en este trabajo de grado, y como de transferencia de carga cuando funcionan por punta.

Resistencia
La norma adopta las disposiciones del texto “Ejes Perforados: Procedimientos de construcción y métodos de diseño (O’Neill y Reese, 1999)” como guía para el diseño de este tipo de pilotes.

Determinación de las cargas

- Rozamiento negativo: El desarrollo de la fricción negativa debe ser tenido en cuenta para los siguientes casos:
 - El material de fundación es compresible.
 - Se colocará un relleno que cargue a las pilas lateralmente.
 - El nivel freático ha sido abatido por una temporada seca.
 - Hay posibilidades de licuación

Tal como es descrito en el artículo C.11.8 de la CCP 14, en caso de que exista una posibilidad de rozamiento negativo sobre el pilote debe considerarse el uso de sobrecargas del terraplén, técnicas de mejoramiento del suelo, y/o medidas de registro de drenaje y asentamiento vertical.

Las fuerzas resultantes de una fricción negativa deben determinarse del siguiente modo: (1) Definir el perfil y las propiedades del suelo para calcular asentamientos. (2) Realizar los cálculos de asentamiento a lo largo del perfil del suelo. (3) Determinar la longitud de la pila que será sometida a fricción negativa, en caso de que el asentamiento sea mayor a 1 cm en una capa del suelo, el análisis debe realizarse para toda la pila. (4) Se debe calcular la magnitud de la fricción negativa por los métodos dispuestos en la norma CCP 14.

Para el caso de pilotes que funcionen mediante el fuste, este rozamiento negativo debe analizarse en el servicio, la fuerza y los estados límites extremos.

- Levantamiento debido a suelos expansivos: los pilotes que sean fundidos en suelos de características expansivas deben extenderse hasta una profundidad en suelos de humedad estable con el fin de proporcionar un anclaje adecuado para resistir la elevación como es definido en el artículo C.10.7.1.6.3 de la CCP 14.

Diseño del estado límite de servicio

- Movimientos tolerables: De acuerdo con el artículo C.10.5.2.2 los criterios de movimiento de cimentación deben ser consistentes con la función y el tipo de estructura, vida útil proyectada, y las consecuencias de movimientos
inaceptables sobre el comportamiento de la estructura, incluyendo movimientos verticales, horizontales y de rotación.

Los asentamientos deben ser calculados, los desplazamiento por cargas transitorias pueden obviarse para cimentaciones apoyadas sobre materiales cohesivos sujetos a asentamientos por consolidación. Para los movimientos horizontales y la rotación deben utilizarse todas las combinaciones de carga para el estado límite.

- Asentamientos: El asentamiento de un pilote pre excavado individual debe estimarse teniendo en cuenta lo siguiente como es contemplado en el artículo 10.8.2.2.2 de la CCP 14: (1) Asentamientos de corto plazo. (2) Asentamiento de consolidación en caso de suelos cohesivos y (3) Compresión axial del eje.

A continuación se presentan las curvas normalizadas de asentamiento de carga que deben usarse para limitar la resistencia del eje axial nominal calculada para el límite de resistencia:

Figura 5.10 – Transferencia de carga normalizada en resistencia lateral versus asentamiento en suelos cohesivos (O’Neill and Reese, 1999)\(^{23}\)

![Gráfica 5.10](image)

Figura 5.11 – Transferencia de carga normalizada en resistencia por punta versus asentamiento en suelos cohesivos (O’Neill and Reese, 1999)\(^{24}\)

Figura 5.12 – Transferencia de carga normalizada en resistencia lateral versus asentamiento en suelos no cohesivos (O’Neill and Reese, 1999)

Figura 5.13 – Transferencia de carga normalizada en resistencia por punta versus asentamiento en suelos no cohesivos (O´Neill and Reese, 1999)25

Estas curvas deben ser utilizadas para limitar la resistencia del eje axial nominal calculada según el artículo C.10.8.3 de la CCP 14 así como los valores de asentamiento normalizados. El asentamiento a largo plazo se calcula por medio de la analogía equivalente de zapatas

diseño del estado límite de resistencia

el pilote debe ser verificado para las siguientes resistencias según lo indica el artículo 10.8.3.1 de la CCP 14:

- Resistencia nominal de compresión axial de ejes perforados individuales:
 La resistencia mayorada de ejes perforados R_R se calcula de la siguiente manera de acuerdo con el artículo 10.8.3.5 de la CCP 14:

 \[R_R = \varphi R_n = \varphi_{qp} R_p + \varphi_{qs} R_s \]

 Donde:

 $R_p = q_p A_p$

 $R_s = q_s A_s$

\[R_p = \text{Resistencia de punta nominal del eje (N)} \]
\[R_s = \text{Resistencia lateral nominal del eje (N)} \]
\[\varphi_{qp} = \text{Factor de resistencia por punta según la tabla de factores de resistencia para la resistencia geotécnica de pilotes perforados} \]
\[\varphi_{qs} = \text{Factor de resistencia lateral según la tabla de factores de resistencia para la resistencia geotécnica de pilotes perforados} \]
\[q_p = \text{unidad de resistencia de punta (MPa)} \]
\[q_s = \text{unidad de resistencia lateral (MPa)} \]
\[A_p = \text{área de la punta del eje (mm}^2\text{)} \]
\[A_s = \text{área de superficie lateral del eje (mm}^2\text{)} \]

- Resistencia lateral de pilotes pre excavados en suelos no cohesivos: Según lo estipulado en el artículo 10.8.3.5.2b, a continuación se presenta la metodología para calcular la resistencia lateral:

\[q_s = \beta \sigma_v' \leq 0.19 \text{ para } 0.25 \leq \beta \leq 1.2 \]

En el que, para suelos arenosos:

Para \(N_{60} \geq 15 \) \[\beta = 1.5 - (7.7 \times 10^{-3} \sqrt{Z}) \]

Para \(N_{60} < 15 \) \[\beta = \frac{N_{60}}{15} (1.5 - 7.7 \times 10^{-3} \sqrt{Z}) \]

Donde:
\[\sigma_v' = \text{Esfuerzo vertical en la capa de suelo a media profundidad (MPa)} \]
\[\beta = \text{Coeficiente de transferencia de carga (adim)} \]
\[Z = \text{Profundidad bajo tierra, en la capa de suelo a media profundidad (mm)} \]
\[N_{60} = \text{Número de golpes corregido por la eficiencia del martillo en la zona de diseño bajo consideración} \]

- Resistencia de punta de pilotes pre excavados en suelos no cohesivos: Según el artículo 10.8.3.5.2c, a continuación se presenta la metodología para calcular la resistencia de punta:

Para \(0.057N_{60} \leq 50 \), \[q_p = 1.2N_{60} \]
Donde:

$N_{60} = \text{Número de golpes corregido por la eficiencia del martillo en la zona de diseño bajo consideración}$

El valor de q_p no debe superar los 3.0 MPa.

En caso de que N_{60} sea mayor a 50 se considerará como geomaterial intermedio (IGM), y la carga por punta será:

$$q_p = 0.59 \left[N_{60} \left(\frac{p_a}{\sigma'_v} \right) \right]^{0.8} \sigma'_v$$

Donde:

$p_a = \text{Presión atmosférica (0.101 MPA)}$

$\sigma'_v = \text{Esfuerzo vertical en la capa de suelo a media profundidad (MPa)}$
6. METODOLOGÍA

6.1 LOCALIZACIÓN DE LAS MUESTRAS
Las perforaciones serán localizadas geográficamente mediante Google Earth.

6.2 DESARROLLO DEL PERFIL ESTRATIGRÁFICO PROMEDIO
Teniendo en cuenta las exploraciones realizadas al subsuelo con lo que se establecieron las características geotécnicas de los suelos que conforman el lugar donde se desplantaron los distintos proyectos, se realizará un análisis detallado de estas investigaciones y se determinarán los perfiles típicos encontrados en las exploraciones en la zona del proyecto.

Se presentará la descripción del perfil estratigráfico promedio así como un resumen gráfico de los materiales encontrados.

6.3 DETERMINACIÓN DE LOS PARÁMETROS DE RESISTENCIA DEL SUELO
Tras realizar el análisis de la información geológica y de la información obtenida en las investigaciones del subsuelo, se determinarán los parámetros de resistencia del suelo a tener cuenta para el cálculo de capacidad de carga que se realizará para cada una de las exploraciones realizadas.

Los parámetros que se tendrán en cuenta para el cálculo de la capacidad de carga de los pilotes serán el peso unitario, resistencia al corte y compresibilidad, el primero será determinado de acuerdo con la literatura geotécnica y los dos últimos serán determinados con base en los ensayos de laboratorio ejecutados en las muestras obtenidas de los sondeos y a partir de correlaciones del ensayo de SPT.

El ángulo de fricción será determinado en suelos arenosos como los del presente trabajo de grado a partir de las correlaciones del ensayo de SPT mencionadas en el documento “Estimativos de parámetros efectivos de resistencia con el SPT”

6.4 CÁLCULO DE CAPACIDAD DE CARGA SEGÚN Poulos
De acuerdo con lo descrito en el libro *Pile Foundation Analysis And Design*, se seguirán los siguientes pasos:

- Determinación de esfuerzos efectivos verticales a lo largo del pilote y en su base.
- Cálculo de las características del pilote tales como perímetro, área de su base y peso

26 GONZALES ALVARO (1998). Estimativos de parámetros efectivos de resistencia con el SPT, Alvaro González
Definición de los factores de capacidad de carga N_q y los factores $K_{\tan \theta}$ mediante las gráficas postuladas por Poulos, Davis.

6.5 CÁLCULO DE CAPACIDAD DE CARGA SEGÚN MEYERHOF
Siguiendo los lineamientos descritos en el texto Foundation Design and Construction del ingeniero Michael Tomlinson, a continuación se presentan los pasos para el cálculo de la capacidad de carga:

- Determinación de las características del pilote tales como perímetro, área de su base y peso
- Cálculo de esfuerzos efectivos verticales en la base del pilote y del gama del suelo a lo largo del pilote
- Se selecciona coeficiente empírico N_q adimensional mediante la Tabla presentada en el libro de Prakash Shamsher, Pile Foundations in Engineering Practice
- Se realiza el cálculo de la capacidad de carga por fricción teniendo en cuenta el esfuerzo efectivo normal y vertical para así determinar el coeficiente de presión de tierra

6.6 CÁLCULO DE CAPACIDAD DE CARGA SEGÚN LA CCP-14
A continuación se describen los pasos para realizar el cálculo de capacidad de carga en pilotes según la CCP-14:

- Se determinan las propiedades de diseño mediante el Número de golpes realizando una corrección por presión de sobrecarga teniendo en cuenta el esfuerzo efectivo vertical y por eficiencia del martillo teniendo en cuenta el tipo de martillo a utilizar. Tras lo anterior se determina el ángulo de fricción mediante una correlación de valores.
- Se debe realizar el cálculo de la resistencia lateral nominal del eje teniendo en cuenta el coeficiente de transferencia de carga y el esfuerzo efectivo vertical del suelo a media profundidad
- Para el cálculo de la resistencia por punta se debe tener en cuenta el esfuerzo efectivo vertical, la presión atmosférica y el número de golpes corregido

6.7 COMPARACIÓN DE RESULTADOS
Con el fin de realizar una comparación de la capacidad de carga calculada por las diferentes formulaciones con la capacidad de carga obtenida en las pruebas de carga, se graficarán los resultados obtenidos.
6.8 ANÁLISIS DE RESULTADOS

Teniendo en cuenta las gráficas obtenidas en la comparación de resultados, se realizará un análisis de cada uno de los factores que pudo tener una influencia en la incorrecta estimación de la capacidad de carga con el fin de realizar una modificación a este factor para obtener un valor más cercano a estos.

6.9 COMPARACIÓN DE RESULTADOS MODIFICADOS

Tras realizar la modificación de los factores: Nq, φ y β, se procederá a realizar la comparación gráfica de los resultados obtenidos y se concluirá sobre la validez y pertinencia de estos factores modificados.
7. LOCALIZACIÓN DE LAS MUESTRAS Y CARACTERIZACIÓN DE LA ZONA DEL PROYECTO

7.1 PROYECTO 1
El proyecto se encuentra localizado en la ciudad de Bogotá, localidad de Usaquen, a la altura de la carrera 7a entre las calles 168 y 170. Es un proyecto de uso residencial.

Figura 7.1 – Localización Proyecto 1

Fuente: Google Earth

7.2 PROYECTO 2, 3 Y 4
El proyecto se encuentra localizado en la ciudad de Santa Marta, a la altura de la Playa El Salguero, el proyecto es de uso residencial para edificios de 19 pisos. En esta localización se realizaron tres pruebas de carga para distintos pilotes.
Figura 7.2 – Localización Proyecto 2, 3 y 4

Fuente: Google Earth

7.3 PROYECTO 5

El proyecto se encuentra localizado en el aeropuerto internacional Alfonso Bonilla Aragón en la ciudad de Cali. En este proyecto se realizó una prueba de carga. Uso Oficial.
Figura 7.3 – Localización Proyecto 5

Fuente: Google Earth
8. DESARROLLO DEL PERFIL ESTRATIGRÁFICO PROMEDIO

8.1 PROYECTO 1

Teniendo en cuenta las investigaciones del subsuelo, a continuación se describe el perfil estratigráfico promedio:

SONDEO 1

- De 0,0 m a 1,0 m de profundidad, se encontró limo arcillo arenoso de color negro, consistencia firme a dura. El número de golpes obtenidos del ensayo de SPT fue de 7.
- De 1,0 m a 29,0 m de profundidad, se encontró arena de color gris de densidad muy compactada. El número de golpes obtenidos del ensayo de SPT varió de 42 al rechazo.
- De 29,0 m a 31,0 m de profundidad, se encontró limo de color gris de consistencia firme a dura. El número de golpes obtenido del ensayo de SPT fue de 18.
- De 31,0 m a 40,0 m de profundidad, se encontró arena de color gris y/o habana de densidad muy compacta. El número de golpes del ensayo de SPT varió de 45 al rechazo.

SONDEO 2

- De 0,0 m a 0,2 m de profundidad, se encontró capa vegetal. No se realizó el ensayo de SPT.
- De 0,2 m a 5,0 m de profundidad, se encontró turba negra y/o café de consistencia medio firme a dura. El número de golpes del ensayo de SPT varió entre 6 y 23.
- De 5,0 m a 25,0 m de profundidad, se encontró arena de color habano de densidad compacta a muy compacta. El número de golpes del ensayo de SPT varió de 21 a 45.

SONDEO 3

- De 0,0 m a 0,2 m de profundidad, se encontró recebo.
- De 0,2 m a 1,0 m de profundidad, se encontró limo arcillo arenoso de color carmelito de consistencia blanda a medio firme. El número de golpes del ensayo de SPT fue de 3.
- De 1,0 m a 2,5 m de profundidad, se encontró arcilla arenosa de color habano de consistencia medio firme.
- De 2,5 m a 25,0 m de profundidad, se encontró arena de color habana y/o gris de densidad compacta a muy compacta. El número de golpes del ensayo de SPT varía de 31 a 48.
SONDEO 4

- De 0,0 m a 0,2 m de profundidad, se encontró recebo
- De 0,2 m a 1,5 m de profundidad, se encontró turba de color negro de consistencia firme. El número de golpes del ensayo de SPT es de 8.
- De 1,5 m a 25,0 m de profundidad, se encontró arena de color habano de densidad muy compacta. El número de golpes del ensayo de SPT varía de 42 al rechazo.

SONDEO 5

- De 0,0 m a 0,2 m de profundidad, se encontró limo arenoso de color negro de consistencia muy dura. El número de golpes del ensayo de SPT fue de 24.
- De 0,2 m a 16,0 m de profundidad, se encontró arena arcillosa de color gris de densidad compacta a muy compacta. El número de golpes del ensayo de SPT varía de 22 a 41.
- De 16,0 m a 22,5 m de profundidad, se encontró limo arenoso de color gris de consistencia blanda a medio firme. El número de golpes del ensayo de SPT varía de 3 a 6.
- De 22,5 m a 37,0 m de profundidad, se encontró arena arcillosa de color gris de densidad muy compacta a suelta. El número de golpes del ensayo de SPT varía de 11 a 41.
- De 37,0 m a 40,0 m de profundidad, se encontró limo arcilloso de color gris de consistencia medio firme a blanda. El número de golpes del ensayo de SPT fue de 7

De acuerdo con lo anterior, a continuación se presenta el resumen del perfil estratigráfico promedio:
Estructura y Descripción

<table>
<thead>
<tr>
<th>PROF.m</th>
<th>ESTRATIGRAFÍA</th>
<th>DESCRIPCIÓN</th>
<th>PROF.m</th>
<th>ESTRATIGRAFÍA</th>
<th>DESCRIPCIÓN</th>
<th>PROF.m</th>
<th>ESTRATIGRAFÍA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>Capa vegetal</td>
<td>0,00</td>
<td>Recebo</td>
<td>0,00</td>
<td>Rebec</td>
<td>0,00</td>
<td>Limo arcillo arenoso negro</td>
<td>0,00</td>
</tr>
<tr>
<td>1,00</td>
<td>Turba negra y/o café de consistencia medio firme a dura</td>
<td>2,00</td>
<td>Arcilla arenosa</td>
<td>2,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,00</td>
<td>3,00</td>
<td>4,00</td>
<td>4,00</td>
<td>5,00</td>
<td>5,00</td>
<td>6,00</td>
<td>6,00</td>
<td>7,00</td>
</tr>
</tbody>
</table>

Figura 8.1 – Perfil estratigráfico Proyecto 1

<table>
<thead>
<tr>
<th>PT-2</th>
<th>PT-3</th>
<th>PT-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turba negra y/o café de consistencia medio firme a dura</td>
<td>Arena de color habano de densidad compacta a muy compacta</td>
<td>Arena de color habano y/o gris de densidad compacta a muy compacta</td>
</tr>
</tbody>
</table>

Estratigrafía
- PT-2
- PT-3
- PT-4
ESTRATIGRAFÍA

<table>
<thead>
<tr>
<th>PROF. m</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>Limo arenoso negro</td>
</tr>
<tr>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>6,00</td>
<td></td>
</tr>
<tr>
<td>7,00</td>
<td></td>
</tr>
<tr>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>9,00</td>
<td></td>
</tr>
<tr>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>11,00</td>
<td></td>
</tr>
<tr>
<td>12,00</td>
<td></td>
</tr>
<tr>
<td>13,00</td>
<td></td>
</tr>
<tr>
<td>14,00</td>
<td></td>
</tr>
<tr>
<td>15,00</td>
<td>Arena de color gris de densidad muy compactada</td>
</tr>
<tr>
<td>16,00</td>
<td></td>
</tr>
<tr>
<td>17,00</td>
<td></td>
</tr>
<tr>
<td>18,00</td>
<td></td>
</tr>
<tr>
<td>19,00</td>
<td></td>
</tr>
<tr>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>21,00</td>
<td></td>
</tr>
<tr>
<td>22,00</td>
<td></td>
</tr>
<tr>
<td>23,00</td>
<td></td>
</tr>
<tr>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>26,00</td>
<td></td>
</tr>
<tr>
<td>27,00</td>
<td></td>
</tr>
<tr>
<td>28,00</td>
<td></td>
</tr>
<tr>
<td>29,00</td>
<td></td>
</tr>
<tr>
<td>30,00</td>
<td>Limo de color gris de consistencia firme a dura</td>
</tr>
<tr>
<td>31,00</td>
<td></td>
</tr>
<tr>
<td>32,00</td>
<td></td>
</tr>
<tr>
<td>33,00</td>
<td></td>
</tr>
<tr>
<td>34,00</td>
<td></td>
</tr>
<tr>
<td>35,00</td>
<td></td>
</tr>
<tr>
<td>36,00</td>
<td>Arena de color gris y/o habana de densidad muy compacta</td>
</tr>
<tr>
<td>37,00</td>
<td></td>
</tr>
<tr>
<td>38,00</td>
<td></td>
</tr>
<tr>
<td>39,00</td>
<td>Limo arenoso negro</td>
</tr>
<tr>
<td>40,00</td>
<td></td>
</tr>
</tbody>
</table>

ESTRATIGRAFÍA

<table>
<thead>
<tr>
<th>PROF. m</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>Limo arenoso negro</td>
</tr>
<tr>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>2,00</td>
<td></td>
</tr>
<tr>
<td>3,00</td>
<td></td>
</tr>
<tr>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>5,00</td>
<td></td>
</tr>
<tr>
<td>6,00</td>
<td></td>
</tr>
<tr>
<td>7,00</td>
<td></td>
</tr>
<tr>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>9,00</td>
<td></td>
</tr>
<tr>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>11,00</td>
<td></td>
</tr>
<tr>
<td>12,00</td>
<td></td>
</tr>
<tr>
<td>13,00</td>
<td></td>
</tr>
<tr>
<td>14,00</td>
<td></td>
</tr>
<tr>
<td>15,00</td>
<td>Arena arcillosa de color gris de densidad compacta a muy compacta</td>
</tr>
<tr>
<td>16,00</td>
<td></td>
</tr>
<tr>
<td>17,00</td>
<td></td>
</tr>
<tr>
<td>18,00</td>
<td></td>
</tr>
<tr>
<td>19,00</td>
<td></td>
</tr>
<tr>
<td>20,00</td>
<td></td>
</tr>
<tr>
<td>21,00</td>
<td></td>
</tr>
<tr>
<td>22,00</td>
<td></td>
</tr>
<tr>
<td>23,00</td>
<td></td>
</tr>
<tr>
<td>24,00</td>
<td></td>
</tr>
<tr>
<td>25,00</td>
<td></td>
</tr>
<tr>
<td>26,00</td>
<td></td>
</tr>
<tr>
<td>27,00</td>
<td></td>
</tr>
<tr>
<td>28,00</td>
<td></td>
</tr>
<tr>
<td>29,00</td>
<td></td>
</tr>
<tr>
<td>30,00</td>
<td>Arena arcillosa de color gris de densidad muy compacta</td>
</tr>
<tr>
<td>31,00</td>
<td></td>
</tr>
<tr>
<td>32,00</td>
<td></td>
</tr>
<tr>
<td>33,00</td>
<td></td>
</tr>
<tr>
<td>34,00</td>
<td></td>
</tr>
<tr>
<td>35,00</td>
<td></td>
</tr>
<tr>
<td>36,00</td>
<td>Arena de color gris y/o habana de densidad muy compacta</td>
</tr>
<tr>
<td>37,00</td>
<td></td>
</tr>
<tr>
<td>38,00</td>
<td></td>
</tr>
<tr>
<td>39,00</td>
<td>Limo arenoso negro</td>
</tr>
<tr>
<td>40,00</td>
<td></td>
</tr>
</tbody>
</table>
8.2 PROYECTO 2

Teniendo en cuenta las investigaciones del subsuelo, a continuación se describe el perfil estratigráfico promedio:

SONDEO 1

- De 0,0 m a 35,0 m de profundidad, se encontró Arena limosa de color caramelito y/o gris con lentes de turba de densidad compacta a muy compacta. El número de golpes obtenidos del ensayo de SPT varió de 17 a 54.

De acuerdo con lo anterior, a continuación se presenta el resumen del perfil estratigráfico promedio:
Figura 8.2 – Perfil estratigráfico Proyecto 2

<table>
<thead>
<tr>
<th>PROF. m</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td></td>
</tr>
<tr>
<td>27.00</td>
<td></td>
</tr>
<tr>
<td>28.00</td>
<td></td>
</tr>
<tr>
<td>29.00</td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td></td>
</tr>
<tr>
<td>31.00</td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>33.00</td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td></td>
</tr>
</tbody>
</table>

Arena limosa de color caramelito y/o gris con lentes de turba de densidad compacta a muy compacta
8.3 PROYECTO 3
Teniendo en cuenta las investigaciones del subsuelo, a continuación se describe el perfil estratigráfico promedio:

SONDEO 1
- De 0,0 m a 10,0 m de profundidad, se encontró arena limosa color carmelito y/o gris de densidad media a muy compacta. El número de golpes obtenidos del ensayo de SPT varió de 20 a 52.

SONDEO 2
- De 0,0 m a 10,0 m de profundidad, se encontró arena limosa color carmelito y/o gris de densidad media a muy compacta. El número de golpes obtenidos del ensayo de SPT varió de 10 a 44.

De acuerdo con lo anterior, a continuación se presenta el resumen del perfil estratigráfico promedio:

Figura 8.3 – Perfil estratigráfico Proyecto 3

8.4 PROYECTO 4
Teniendo en cuenta las investigaciones del subsuelo, a continuación se describe el perfil estratigráfico promedio:
SONDEO 1

- De 0,0 m a 5,0 m de profundidad, se encontró arena limosa de color carmelito y/o gris con lentes de limo de densidad suelta a compacta. El número de golpes obtenidos del ensayo de SPT varió de 10 a 22.
- De 5,0 a 7,0 m de profundidad, se encontró limo de color gris con lentes de arena de consistencia firme a dura. El número de golpes obtenidos del ensayo de SPT varía de 5 a 22.
- De 7,0 a 35,0 de profundidad, se encontró arena limosa de color gris con lentes de limo de densidad compacta a muy compacta. El número de golpes del ensayo de SPT varió de 20 a 45.

De acuerdo con lo anterior, a continuación se presenta el resumen del perfil estratigráfico promedio:
Figura 8.4 – Perfil estratigráfico Proyecto 4

<table>
<thead>
<tr>
<th>PROF.m</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>Limo de color gris con lentes de arena de consistencia firme a dura</td>
</tr>
<tr>
<td>2.00</td>
<td>Arena limosa de color carmelito y/o gris con lentes de limo de densidad suelta a compacta</td>
</tr>
<tr>
<td>6.00</td>
<td>Limo de color gris con lentes de arena de consistencia firme a dura</td>
</tr>
<tr>
<td>21.00</td>
<td>Arena limosa de color gris con lentes de limo de densidad compacta a muy compacta</td>
</tr>
</tbody>
</table>
8.5 PROYECTO 5

Teniendo en cuenta las investigaciones del subsuelo, a continuación se describe el perfil estratigráfico promedio:

SONDEO 1

- De 0,0 m a 1,5 m de profundidad, se encontró limo arcilloso inorgánico. El número de golpes obtenidos del ensayo de SPT fue de 6.
- De 1,5 a 2,5 m de profundidad, se encontró arena arcillosa. El número de golpes obtenidos del ensayo de SPT fue de 10.
- De 2,5 a 10,0 de profundidad, se encontró arena limo arcillosa. El número de golpes del ensayo de SPT varió de 5 a 25.

De acuerdo con lo anterior, a continuación se presenta el resumen del perfil estratigráfico promedio:

Figura 8.5 – Perfil estratigráfico Proyecto 5
9. DETERMINACIÓN DE LOS PARÁMETROS DE RESISTENCIA DEL SUELO

Tras realizar el análisis de la información geológica y de la información obtenida en las investigaciones del subsuelo, a continuación se presentan los parámetros de resistencia obtenidos para cada una de las exploraciones realizadas:
Figura 9.1 – Parámetros Geotécnicos Proyecto 1
Figura 9.2 – Parámetros Geotécnicos Proyecto 2
Figura 9.3 – Parámetros Geotécnicos Proyecto 3
Figura 9.4 – Parámetros Geotécnicos Proyecto 4

<table>
<thead>
<tr>
<th>PT-1</th>
<th>N de Campo y N corregido</th>
<th>phi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20 40 60</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Legend: N de campo, N corr, phi
Teniendo en cuenta que el nivel freático fue encontrado en los primeros dos metros de exploración, el peso unitario asumido será el típico de una arena en condición húmeda, es decir 1,9 ton/m³
Tras realizar los cálculos de capacidad de carga por las metodologías de Poulos, Meyerhof y CCP 14, a continuación se presentan la capacidad de carga Admisible y la capacidad de carga última junto a su variación porcentual respecto a la prueba de carga realizada en cada proyecto:

Tabla 10.1 – Resultados Capacidad de carga admisible y última

<table>
<thead>
<tr>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>VARIACIÓN PORCENTUAL</th>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulos</td>
<td>115,00</td>
<td>0,0%</td>
<td>PRUEBA DE CARGA</td>
<td>345,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>Meyerhof teórica</td>
<td>81,05</td>
<td>-29,5%</td>
<td>Poulos</td>
<td>243,14</td>
<td>-29,5%</td>
</tr>
<tr>
<td>Meyerhof empírica</td>
<td>87,70</td>
<td>-23,7%</td>
<td>Meyerhof teórica</td>
<td>263,09</td>
<td>-23,7%</td>
</tr>
<tr>
<td>CCP-14</td>
<td>115,42</td>
<td>0,4%</td>
<td>Meyerhof empírica</td>
<td>171,15</td>
<td>-50,4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>VARIACIÓN PORCENTUAL</th>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulos</td>
<td>176,54</td>
<td>120,7%</td>
<td>PRUEBA DE CARGA</td>
<td>529,61</td>
<td>120,7%</td>
</tr>
<tr>
<td>Meyerhof teórica</td>
<td>110,53</td>
<td>38,2%</td>
<td>Poulos</td>
<td>331,60</td>
<td>38,2%</td>
</tr>
<tr>
<td>Meyerhof empírica</td>
<td>95,38</td>
<td>19,2%</td>
<td>Meyerhof teórica</td>
<td>286,14</td>
<td>19,2%</td>
</tr>
<tr>
<td>CCP-14</td>
<td>78,05</td>
<td>-2,4%</td>
<td>Meyerhof empírica</td>
<td>145,40</td>
<td>-39,4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>VARIACIÓN PORCENTUAL</th>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulos</td>
<td>196,33</td>
<td>0,0%</td>
<td>PRUEBA DE CARGA</td>
<td>175,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>Meyerhof teórica</td>
<td>236,47</td>
<td>20,4%</td>
<td>Poulos</td>
<td>1,108,96</td>
<td>533,7%</td>
</tr>
<tr>
<td>Meyerhof empírica</td>
<td>139,75</td>
<td>-28,8%</td>
<td>Meyerhof teórica</td>
<td>724,49</td>
<td>314,0%</td>
</tr>
<tr>
<td>CCP-14</td>
<td>143,07</td>
<td>145,3%</td>
<td>Meyerhof empírica</td>
<td>429,21</td>
<td>145,3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>VARIACIÓN PORCENTUAL</th>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulos</td>
<td>236,47</td>
<td>20,4%</td>
<td>PRUEBA DE CARGA</td>
<td>589,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>Meyerhof teórica</td>
<td>139,75</td>
<td>-28,8%</td>
<td>Poulos</td>
<td>709,41</td>
<td>24,4%</td>
</tr>
<tr>
<td>Meyerhof empírica</td>
<td>95,82</td>
<td>-51,2%</td>
<td>Meyerhof teórica</td>
<td>419,26</td>
<td>-28,8%</td>
</tr>
<tr>
<td>CCP-14</td>
<td>92,88</td>
<td>-52,7%</td>
<td>Meyerhof empírica</td>
<td>287,45</td>
<td>-51,2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>VARIACIÓN PORCENTUAL</th>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulos</td>
<td>44,00</td>
<td>0,0%</td>
<td>PRUEBA DE CARGA</td>
<td>132,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>Meyerhof teórica</td>
<td>45,67</td>
<td>3,8%</td>
<td>Poulos</td>
<td>137,02</td>
<td>3,8%</td>
</tr>
<tr>
<td>Meyerhof empírica</td>
<td>31,62</td>
<td>-28,1%</td>
<td>Meyerhof teórica</td>
<td>94,86</td>
<td>-28,1%</td>
</tr>
<tr>
<td>CCP-14</td>
<td>72,90</td>
<td>65,7%</td>
<td>Meyerhof empírica</td>
<td>218,69</td>
<td>65,7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>VARIACIÓN PORCENTUAL</th>
<th>PRUEBA DE CARGA</th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poulos</td>
<td>51,31</td>
<td>16,6%</td>
<td>PRUEBA DE CARGA</td>
<td>95,58</td>
<td>-27,6%</td>
</tr>
</tbody>
</table>

De acuerdo con los resultados obtenidos, a continuación se presenta la comparación gráficamente de los resultados con la prueba de carga:
Figura 10.1 – Comparación gráfica capacidad de carga última y admisible
11. ANÁLISIS DE RESULTADOS

Teniendo en cuenta las gráficas obtenidas en la comparación de resultados, se puede observar que la metodología de Poulos sobre estimó la capacidad de carga del suelo en cuatro de los cinco proyectos estudiados, teniendo valores con una diferencia porcentual de hasta 530%, haciendo especialmente antieconómico el uso de esta metodología. El error se originó principalmente en la capacidad de carga por punta, este valor se obtiene teniendo en cuenta el factor de carga Nq que para valores de ángulo de fricción de 37° o más asigna un valor de 100. Es por lo anterior que se realizó una comparación entre los factores de capacidad de carga dados por la siguiente gráfica:

Figura 11.1 – Relación entre Nq y ϕ^{27}

De acuerdo con los resultados obtenidos por la metodología de Poulos y teniendo en cuenta que el principal factor de determinación de la capacidad de carga era el factor de Nq, se realizó un retro cálculo con el fin de encontrar el valor de Nq correcto para obtener la capacidad de carga obtenida en la prueba de carga, a continuación se presentan los valores graficados sobre la gráfica existente:

Como se puede observar en la gráfica, los valores tienen una variación respecto al teórico causando las diferencias en los valores finales obtenidos. Se intentó formular una nueva gráfica para obtener el Nq pero las pocas muestras con las que se realizó el proyecto de grado lo hicieron imposible.

Para el caso de la metodología teórica desarrollada por Meyerhof se observaron que los resultados obtenidos fueron conservadores exceptuando los proyectos dos y tres; analizando la metodología se observa que el origen de las diferencias de resultados se deben posiblemente al ángulo de fricción, por lo anterior se procede a restarle \(3^\circ\) al valor de ángulo de fricción obtenido con el fin de evaluar si esta modificación permite acercar los resultados a la prueba de carga realizada.

En el caso de la metodología empírica desarrollada por Meyerhof los valores tuvieron una desviación considerable en todos los casos, y teniendo en cuenta que es netamente empírica se opta por descartarla y no desarrollar ninguna modificación sobre esta.

La metodología utilizada en la CCP14 fue desarrollada teniendo en cuenta la metodología americana definida en la AASHTO LFRD BRIDGE DESIGN ESPECIFICICATIONS, 2012, el presente trabajo de grado permitió identificar errores en las formulaciones específicamente en las conversiones realizadas, como es el caso de la estimación del factor \(q_p\), en la CCP14 es definido como:
\[q_p = 1.2N_{60} \]

Donde:

- \(q_p \): Unidad de resistencia por punta (MPa)

En la AASTO LFRD BRIDGE DESIGN ESPECIFICATIONS este factor se define como:

\[q_p = 1.2N_{60} \]

Donde:

- \(q_p \): Unidad de resistencia por punta (ksf)

En este caso se evidencia que la unidad de resistencia por punta se calcula del mismo modo pero en diferentes unidades de medida, esto causa un aumento de la resistencia última en casi 4 veces lo correcto, la fórmula correcta de cálculo será:

\[q_p = 0.12N_{60} \]

Donde:

- \(q_p \): Unidad de resistencia por punta (MPa)

Para el presente trabajo de grado se modificó la formulación de acuerdo con lo expuesto, y los valores obtenidos más cercanos a la prueba de carga se obtuvieron mediante esta metodología donde en todos los proyectos exceptuando el número 3 y 4 tuvo unas diferencias porcentuales menores al 20% respecto a lo obtenido en la prueba de carga.

De igual modo se realizaron dos modificaciones a la metodología, teniendo en cuenta el factor \(\beta \) con lo expuesto en el texto DRILLED SHAFTS: CONSTRUCION PROCEDURES AND LRFD DESIGN METHODS, texto base de la metodología desarrollada por la AASHTO, de acuerdo con lo expuesto en la CCP 14 la metodología para el factor \(\beta \) es la siguiente:

- Para \(N_{60} \geq 15 \) \[\beta = 1.5 - (7.7 \times 10^{-3} \sqrt{z}) \]
- Para \(N_{60} < 15 \) \[\beta = \frac{N_{60}}{15} (1.5 - 7.7 \times 10^{-3} \sqrt{z}) \]

Donde:

- \(\sigma_v^' \): Esfuerzo vertical en la capa de suelo a media profundidad (MPa)
- \(\beta \): Coeficiente de transferencia de carga (adim)
Z = Profundidad bajo tierra, en la capa de suelo a media profundidad (mm)

N_{60} = Número de golpes corregido por la eficiencia del martillo en la zona de diseño bajo consideración

Las modificaciones realizadas son las siguientes, que fueron definidas en el texto DRILLED SHAFTS: CONSTRUCCION PROCEDURES AND LRFD DESIGN METHODS

\[\beta = K \cdot \tan \delta \]

Donde:

K = Coeficiente de esfuerzo horizontal \(K = \frac{\sigma' h}{\sigma' v} \)

\(\delta = \) Ángulo de fricción

\[\beta = (1 - \sin \phi) \left(\frac{\sigma' v}{\sigma' p} \right)^{\sin \phi} \tan \phi \]

Donde:

\(\sigma' v = \) Esfuerzo vertical en la capa de suelo a media profundidad (MPa)

\(\sigma' p = 0.15 N_{60} P_a \)
12. COMPARACIÓN DE RESULTADOS MODIFICADOS

De acuerdo con lo expuesto del numeral 11, a continuación se presentan los resultados obtenidos realizando las modificaciones planteadas para cada una de las teorías.

12.1 MEYERHOF

Los resultados de la capacidad de carga con las metodologías originales así como con la modificación realizada se presentan a continuación:

Tabla 12.1 – Resultados Capacidad de carga última Meyerhof

<table>
<thead>
<tr>
<th></th>
<th>CAPACIDAD DE CARGA ÚLTIMA</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAPACIDAD DE CARGA (Ton/m²)</td>
<td></td>
</tr>
<tr>
<td>PRUEBA DE CARGA</td>
<td>345,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA</td>
<td>87,70</td>
<td>-74,6%</td>
</tr>
<tr>
<td>MEYERHOF EMPÍRICA</td>
<td>57,05</td>
<td>-83,5%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA MODIFICADA</td>
<td>205,19</td>
<td>-40,5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAPACIDAD DE CARGA ÚLTIMA</td>
<td>VARIACIÓN PORCENTUAL</td>
</tr>
<tr>
<td></td>
<td>CAPACIDAD DE CARGA (Ton/m²)</td>
<td></td>
</tr>
<tr>
<td>PRUEBA DE CARGA</td>
<td>240,00</td>
<td>66,7%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA</td>
<td>331,60</td>
<td>104,8%</td>
</tr>
<tr>
<td>MEYERHOF EMPÍRICA</td>
<td>286,14</td>
<td>85,9%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA MODIFICADA</td>
<td>228,94</td>
<td>62,1%</td>
</tr>
<tr>
<td></td>
<td>CAPACIDAD DE CARGA ÚLTIMA</td>
<td>VARIACIÓN PORCENTUAL</td>
</tr>
<tr>
<td></td>
<td>CAPACIDAD DE CARGA (Ton/m²)</td>
<td></td>
</tr>
<tr>
<td>PRUEBA DE CARGA</td>
<td>175,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA</td>
<td>724,49</td>
<td>314,0%</td>
</tr>
<tr>
<td>MEYERHOF EMPÍRICA</td>
<td>429,21</td>
<td>145,3%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA MODIFICADA</td>
<td>480,62</td>
<td>174,6%</td>
</tr>
<tr>
<td></td>
<td>CAPACIDAD DE CARGA (Ton/m²)</td>
<td>VARIACIÓN PORCENTUAL</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>PRUEBA DE CARGA</td>
<td>589,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA</td>
<td>419,26</td>
<td>-28,8%</td>
</tr>
<tr>
<td>MEYERHOF EMPÍRICA</td>
<td>287,45</td>
<td>-51,2%</td>
</tr>
<tr>
<td>MEYERHOF TEÓRICA MODIFICADA</td>
<td>295,66</td>
<td>-49,8%</td>
</tr>
</tbody>
</table>

De acuerdo con los resultados obtenidos, a continuación se presenta la comparación gráficamente de los resultados con la prueba de carga:

Figura 12.1 – Comparación gráfica capacidad de carga última Meyerhof
Tras realizar las modificaciones a las metodologías utilizadas se evidencia que el reducir el ángulo de fricción no ejerce un cambio significativo para hacer la metodología más exacta respecto a los resultados de la prueba de carga, es notable que se afecta de una manera que reduce la capacidad de carga, sin embargo, en algunos casos es necesario aumentar la capacidad, por lo cual la modificación a la metodología no cumple con los requerimientos para acercar los resultados a lo obtenido en campo.
12.2 CCP14

Los resultados de la capacidad de carga con las metodologías originales así como con la modificación realizada se presentan a continuación:

Tabla 12.2 – Resultados Capacidad de carga última CCP14

<table>
<thead>
<tr>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>CAPACIDAD DE CARGA (Ton/m2)</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DE CARGA</td>
<td>115,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>CCP 14</td>
<td>115,42</td>
<td>0,4%</td>
</tr>
<tr>
<td>CCP MODIFICADA 1</td>
<td>78,75</td>
<td>-46,0%</td>
</tr>
<tr>
<td>CCP MODIFICADA 2</td>
<td>100,03</td>
<td>-15,0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>CAPACIDAD DE CARGA (Ton/m2)</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DE CARGA</td>
<td>80,00</td>
<td>0,0%</td>
</tr>
<tr>
<td>CCP 14</td>
<td>78,05</td>
<td>-2,4%</td>
</tr>
<tr>
<td>CCP MODIFICADA 1</td>
<td>26,23</td>
<td>-67,2%</td>
</tr>
<tr>
<td>CCP MODIFICADA 2</td>
<td>34,03</td>
<td>-57,5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>CAPACIDAD DE CARGA (Ton/m2)</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DE CARGA</td>
<td>58,33</td>
<td>0,0%</td>
</tr>
<tr>
<td>CCP 14</td>
<td>87,65</td>
<td>50,3%</td>
</tr>
<tr>
<td>CCP MODIFICADA 1</td>
<td>56,65</td>
<td>-2,9%</td>
</tr>
<tr>
<td>CCP MODIFICADA 2</td>
<td>69,29</td>
<td>18,8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACIDAD DE CARGA ADMISIBLE</th>
<th>CAPACIDAD DE CARGA (Ton/m2)</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DE CARGA</td>
<td>196,33</td>
<td>0,0%</td>
</tr>
<tr>
<td>CCP 14</td>
<td>92,88</td>
<td>-52,7%</td>
</tr>
<tr>
<td>CCP MODIFICADA 1</td>
<td>47,94</td>
<td>-75,6%</td>
</tr>
<tr>
<td>CCP MODIFICADA 2</td>
<td>61,61</td>
<td>-68,6%</td>
</tr>
</tbody>
</table>
De acuerdo con los resultados obtenidos, a continuación se presenta la comparación gráficamente de los resultados con la prueba de carga:

Figura 12.2 – Comparación gráfica capacidad de carga última CCP14

<table>
<thead>
<tr>
<th></th>
<th>CAPACIDAD DE CARGA (Ton/m²)</th>
<th>VARIACIÓN PORCENTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DE CARGA</td>
<td>196,33</td>
<td>0,0%</td>
</tr>
<tr>
<td>CCP 14</td>
<td>92,88</td>
<td>-52,7%</td>
</tr>
<tr>
<td>CCP MODIFICADA 1</td>
<td>47,94</td>
<td>-75,6%</td>
</tr>
<tr>
<td>CCP MODIFICADA 2</td>
<td>61,61</td>
<td>-68,6%</td>
</tr>
</tbody>
</table>
Con las modificaciones realizadas a la metodología presentada por la CCP 2014 se puede evidenciar que los resultados no son concluyentes y en general la metodología original es la más cercana a los resultados obtenidos en campo.
13. CONCLUSIONES

- Las metodologías para calcular la capacidad de carga de los pilotes parten de los parámetros geotécnicos obtenidos mediante los resultados de ensayos de campo, en este caso éstos fueron obtenidos utilizando correlaciones del ensayo de SPT presentes en la literatura geotécnica, sin embargo, este ensayo cuando es realizado manualmente no cuenta con la veracidad necesaria ya que los resultados pueden variar según el operario. Por lo anterior los resultados de capacidad de carga pueden no ser totalmente confiables ya que los parámetros tales como N de campo, ángulo de fricción y cohesión fueron obtenidos por correlación.

- Los proyectos estudiados en el presente trabajo de grado no contaban con ensayos de laboratorio por lo cual se asumió un peso específico de 1,9 ton/m3 para las arenas saturadas según la literatura geotécnica, sin embargo este valor no es confiable y afecta directamente el cálculo del esfuerzo efectivo, parámetro importante en los cálculos realizados.

- La metodología por Poulos sobre estimó la capacidad de carga de los pilotes respecto a la prueba de carga realizada, esto principalmente por los factores de carga obtenidos, lo anterior tiene vital importancia teniendo en cuenta que en el 60% de los resultados estuvo por encima más de un 20% y en el 40% estuvo por encima más de un 100%.

- El factor de capacidad de carga Nq dista en gran medida del obtenido mediante el retrocálculo de las pruebas de carga, variando en más de un 20% para el 80% de los proyectos estudiados. Al intentar modificar la gráfica definida por la literatura geotécnica se evidencia que no se genera una línea de tendencia definida, por lo cual se requiere un estudio más detallado para evaluar la validez de esta gráfica.

- Realizados los cálculos por la metodología definida por Poulos se evidencia que a pesar de ser una estratigrafía de arenas, el aporte a la capacidad de carga por el fuste corresponde a valores menores al 25% del total, evidenciando una mayor ponderación a la capacidad de carga por punta en estratigrafías friccionantes.

- La metodología teórica desarrollada por Meyerhof a pesar de tener un sustento teórico más grande solo presenta valores más cercanos a la prueba de carga en el 60% de los resultados que la empírica, tras modificar el ángulo de fricción y reducirlo no se obtuvo un acercamiento al valor determinado en la prueba de carga.

- Tanto en la metodología teórica de Meyerhof como en la empírica la ponderación de capacidad de carga por fuste y por punta varió del 40% al 50% permitiendo concluir que a pesar de ser suelos friccionantes, la
capacidad de carga por punta es un factor determinante en la capacidad de carga especialmente cuando las arenas se encuentran compactas.

- La unidad de resistencia por punta "qp" definida en la metodología CCP14 presenta una inconsistencia en las conversiones realizadas de la versión americana, se evidencia que todas las capacidades de carga calculadas mediante esta metodología estaban afectadas un 400% en la capacidad de carga por punta.
- La unidad de resistencia por punta "qp" solo tiene en cuenta el valor de N de campo, permitiendo dudar de su exactitud teniendo en cuenta si los resultados son obtenidos mediante el ensayo de SPT realizado por operarios sin supervisión y/o experiencia.
- Tras modificar el factor β solo se evidencia una mejora en el 20% de los resultados, por lo cual la fórmula para obtener este factor seleccionada en la CCP 14 es la más acertada.
- Los factores de resistencia utilizados por la CCP14 varían respecto a las demás metodologías ya que ésta tiene en cuenta factores de resistencia que son seleccionados según el tipo de cálculo a realizar y el tipo de material de fundación; se evidencia en los resultados que esta metodología es la que presenta menor variación respecto a los resultados de las pruebas de carga en el 80% de las muestras.
- La metodología más confiable con el 80% de resultados más cercanos a las pruebas de carga y un 60% de resultados con una variación menor al 20% es la CCP14, por lo cual se recomienda utilizar esta metodología en todos los cálculos de capacidad de carga para pilotes pre excavados.
14. RECOMENDACIONES

- Se recomienda la utilización de mínimo 20 muestras con el fin de obtener resultados más concluyentes que permitan definir las modificaciones de la gráfica del factor de Nq así como la metodología más exacta respecto a los resultados de prueba de carga.
- Realizar la búsqueda de proyectos que cuenten con ensayos de laboratorio que permitan obtener los parámetros geotécnicos de una manera más exacta y no únicamente por el uso de correlaciones y valores de la literatura geotécnica. En caso de suelos inundables se recomienda realizar una prueba triaxial y en zonas normalmente secas se recomienda realizar el ensayo de corte directo.
- Verificar las publicaciones originales con el fin de evitar errores que pueden ocasionarse en la edición tal como sucedió con la metodología CCP14 que tenía un error de conversiones.
15. BIBLIOGRAFÍA