Zonificación Ambiental para Establecimiento de Sistemas Agroforestales
Compatibles con las Especies Maracuyá (Passiflora edulis f. flavicarpa Degener) y
Cholupa (Passiflora maliformis L.) en los Municipios Productores del
Departamento del Meta, Colombia

Daniel Felipe Ramirez González

Directores:

MSc. Bíol. Luis Fernando Ortiz
Ing. Amb. Ricardo Laiton

Universidad Distrital Francisco José de Caldas
Facultad de Medio Ambiente y Recursos Naturales
Proyecto Curricular de Ingeniería Forestal
Septiembre 2016
RESUMEN

Este trabajo de grado realizado en la modalidad de pasantía fue presentado con el propósito de poner en práctica lo aprendido en el proyecto curricular de ingeniería forestal y en respuesta a las necesidades de la fundación Planeta Vivo Bta, la cual como parte de la formulación de un proyecto piloto de producción de pasifloráceas, requirió como insumo técnico para la toma de decisiones con criterios de sostenibilidad ambiental, que se identificaran áreas con potencial para el establecimiento de sistemas agroforestales que sean compatibles con las especies de maracuyá y cholupa producidas en la Subregión del Ariari, Meta. Por lo anterior se realizó una evaluación de aptitud de tierras, utilizando diferentes criterios y parámetros que permitieron evaluar 1,193,382,18 Ha para la Subregión del Ariari, identificando áreas favorables donde es posible incluir las especies bajo estudio y un componente arbóreo, para la conformación de sistemas agroforestales, asegurando que estas áreas sean biophysicalmente apropiadas, socialmente aceptables, económicamente factibles y que generen el menor impacto negativo sobre el medio ambiente.

ABSTRACT

This undergraduate work carried out in the internship modality was presented with the purpose of putting into practice what was learned in the forest engineering curriculum project and in response to the needs of the Planeta Vivo Foundation Bta, which as part of the formulation of a pilot project for the production of pasifloráceas, required as a technical input for decision making with criteria of environmental sustainability to identify areas with potential for the establishment of agroforestry systems that are compatible with the species of “passion fruit” and “cholupa” produced in the Ariari subregion, Meta. Based on the above, a land suitability assessment was carried out, using different criteria that allowed the evaluation of 1,193,382,18 Ha for the Ariari subregion, identifying favorable areas where it is possible to include the species under study and an arboreal component, for the formation of agroforestry systems, ensuring that these areas are biophysically appropriate, socially acceptable, economically feasible and that generate the least negative impact on the environment.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introducción</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Justificación</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Objetivos</td>
<td>5</td>
</tr>
<tr>
<td>3.1.</td>
<td>Objetivo general</td>
<td>5</td>
</tr>
<tr>
<td>3.2.</td>
<td>Objetivos específicos</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Diseño Metodológico</td>
<td>6</td>
</tr>
<tr>
<td>4.1.</td>
<td>Área de Estudio</td>
<td>6</td>
</tr>
<tr>
<td>4.2.</td>
<td>Evaluación de Aptitud de Tierras</td>
<td>7</td>
</tr>
<tr>
<td>4.3.</td>
<td>Etapas Metodológicas de la Evaluación de Tierras</td>
<td>7</td>
</tr>
<tr>
<td>4.4.</td>
<td>Componente Biofísico de la Evaluación de Tierras</td>
<td>9</td>
</tr>
<tr>
<td>4.4.1.</td>
<td>Selección de las Unidades de Tierra</td>
<td>10</td>
</tr>
<tr>
<td>4.4.2.</td>
<td>Clasificación de Aptitud de Tierras</td>
<td>10</td>
</tr>
<tr>
<td>4.4.3.</td>
<td>Evaluación Unidades Cartográficas de Suelo</td>
<td>12</td>
</tr>
<tr>
<td>4.4.4.</td>
<td>Evaluación Climática</td>
<td>15</td>
</tr>
<tr>
<td>4.4.5.</td>
<td>Evaluación del Relieve</td>
<td>16</td>
</tr>
<tr>
<td>4.4.6.</td>
<td>Evaluación de Coberturas</td>
<td>17</td>
</tr>
<tr>
<td>4.5.</td>
<td>Componente Socioeconómico de la Evaluación de Tierras</td>
<td>18</td>
</tr>
<tr>
<td>4.6.</td>
<td>Análisis Espacial Comparativo</td>
<td>20</td>
</tr>
<tr>
<td>4.7.</td>
<td>Aptitud Continua de la Tierra</td>
<td>21</td>
</tr>
<tr>
<td>4.7.1.</td>
<td>Superposición Difusa</td>
<td>22</td>
</tr>
<tr>
<td>4.8.</td>
<td>Limitantes Ambientales y Legales</td>
<td>23</td>
</tr>
<tr>
<td>4.8.1.</td>
<td>Amenazas Naturales</td>
<td>23</td>
</tr>
<tr>
<td>4.8.2.</td>
<td>Exclusiones Legales</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Descripción y Análisis de Resultados</td>
<td>25</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusiones y Recomendaciones</td>
<td>30</td>
</tr>
<tr>
<td>6.1.</td>
<td>Conclusiones</td>
<td>30</td>
</tr>
<tr>
<td>6.2.</td>
<td>Recomendaciones</td>
<td>32</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
Lista de Tablas

Tabla 1. Estructura de la clasificación de tierras. ... 11

Tabla 2. Relaciones entre las unidades cartográficas de suelos y las interpretaciones. 14

Tabla 3. Matriz de variables de análisis para la evaluación de aptitud de tierras. 19

Tabla 4. Modificaciones para valoración y calificación del uso del suelo 20

Tabla 5. Aptitud de Tierras para Establecimiento de Sistemas Agroforestales 27
Lista de Figuras

Figura 1. Mapa del Área de Estudio del Proyecto ... 6

Figura 2. Etapas desarrolladas durante la evaluación de aptitud de tierras................................. 8

Figura 3. Condicionantes legales del territorio que limitan uso productivo.................................. 25

Figura 4. Relación Posibilidad de Pertenencia y Variación en Área.. 28

Figura 5. Aptitud de tierras para establecimiento de sistemas agroforestales compatibles con maracuyá y cholupa por municipio.. 30
1. **Introducción**

La Fundación Planeta Vivo de Bogotá, es una organización de carácter no gubernamental, que ofrece servicios profesionales en medio ambiente, obras forestales, y disciplinas a fines a empresas privadas y públicas en todo el territorio colombiano, velando siempre por el mayor beneficio social y ambiental (Fundacion Planeta Vivo, 2017).

Dada su razón social, para la organización es de gran interés el abordar las diferentes problemáticas presentes en territorios rurales a nivel socioeconómico y ambiental, problemáticas causadas por la subutilización y sobreexplotación de los recursos; la organización aborda esta temática desde la formulación, desarrollo e implementación de proyectos agroecológicos con criterios de sostenibilidad ambiental y financiera, encontrando así un medio para disminuir los costos ambientales producidos por el conflicto hombre-naturaleza, y al mismo tiempo mejora la competitividad y productividad en parte del sector agrícola.

En este sentido, como parte de la formulación de un proyecto piloto de producción de pasifloráceas, la Fundación Planeta Vivo requiere como insumo técnico para la toma de decisiones con criterios de sostenibilidad ambiental que se identifiquen áreas con potencial para la producción de maracuyá y cholupa en conjunto con especies arbóreas que permitan el establecimiento de sistemas agroforestales, bajo estas circunstancias, la fundación solicita el apoyo de ingenieros forestales de la Universidad Distrital Francisco José de Caldas para conseguir su objetivo. La manera más apropiada para abordar este problema se da desde la visión de la evaluación de tierras con fines agrícolas y fines forestales; se define la evaluación de la tierra como el proceso que permite identificar y valorar los usos específicos que se adaptan a las condiciones específicas de las tierras evaluadas (FAO, 2007), por tanto el proceso de evaluación
de tierras al haber identificado los usos más idóneos se convierte en una herramienta importante para la planificación, de este modo el objetivo principal de la evaluación de tierras es la gestión mejorada del uso sostenible de la tierra para beneficio del pueblo (UPRA, 2014).

Para este caso en particular sabemos que la confrontación de los diferentes requerimientos para las especies de maracuyá, cholupa y un componente arbóreo con la oferta natural de la tierra es el pilar fundamental en el proceso de evaluación que permitirá establecer diferentes niveles de aptitud en el área bajo estudio, cumpliendo así con el requerimiento propuesto por parte de la Fundación Planeta Vivo Bta.

En este documento se muestran los objetivos del proyecto, así como la metodología utilizada para alcanzar dichos objetivos, se explica el orden de los procedimientos, los criterios y los parámetros tenidos en cuenta a lo largo del proyecto y como estos se analizaron y trataron para generar los diferentes mapas requeridos para la zonificación agroforestal. Posteriormente se realiza un análisis de los resultados obtenidos para el área de estudio y a nivel municipal, para finalmente hacer unas conclusiones y recomendaciones sobre estos resultados y el proyecto de zonificación agroforestal en general. También se detalla el cumplimiento de los objetivos con los productos obtenidos durante el desarrollo de la pasantía.
2. Justificación

La agricultura sigue siendo la actividad humana que proporciona la mayor parte de materias primas de uso vital para la humanidad, por ello, la conservación del suelo aparece como algo esencial, ya que sin él sería imposible conseguir un ritmo mantenido de abastecimiento de estas materias primas (FAO, 2007). Es por ello que asegurar un uso correcto a cada uno de los suelos que se utilizan es fundamental para asegurar el mantenimiento de las funciones ecológicas del suelo y una fuente de materias primas constante para el hombre, para lograr esto la evaluación de tierras se convierte en una herramienta indispensable en cualquier proyecto, programa, o proceso que involucre el uso del suelo ya que nos permite identificar el potencial para la producción de cultivos agrícolas y/o forestales según condiciones específicas agroclimáticas y de suelos del área a explotar (Salvatore, Kassam, Gutierrez, Bloise, & Marinelli, 2010).

En la planificación del uso de la tierra con fines productivos es necesaria la búsqueda de la sostenibilidad, esta última entendida como la conjunción de las áreas del desarrollo sostenible, y por lo tanto la necesidad de reconocer tres criterios a veces conflictivos a la hora de hacer política: la eficiencia económica, la equidad social y la sostenibilidad ecológica; lo que se constituye en el reto en el proceso de planificación de tierras con fines ya sean agropecuarios o forestales (UPRA, 2014).

Por lo anterior se recurre al estudio en la implementación de sistemas agroforestales (SAF) para el área de estudio, ya que cuando se implementan correctamente, los SAF combinan las mejores prácticas de cultivo de árboles y de sistemas agrícolas para lograr el uso más sostenible de la tierra (FAO, 2015). Además, cuando se practica en gran escala, los SAF pueden mejorar los ecosistemas mediante el almacenamiento de carbono, la prevención de la
deforestación, la conservación de la biodiversidad y de agua más limpia, la reducción de la erosión, a la vez que ayuda a los suelos agrícolas a soportar mejor el cambio climático y eventos como sequías e inundaciones (Martínez & García, 2006).

Teniendo en cuenta que la Fundación Planeta Vivo Btá, hasta el momento ha logrado definir el proyecto que quiere realizar, ya que ha identificado el potencial de la cadena productiva de las pasifloras en Colombia y se propone como objetivo cultivar maracuyá y cholupa en uno de los núcleos productores del país, el Meta (Calle, Guariguata, Giraldo, & Chara, 2010), precisa conocer en el contexto el comportamiento de las condiciones claves de la tierra que permitan alcanzar su objetivo. Lo anterior es posible realizarlo a través de un estudio de prefactibilidad, cuyo fin es indicar una alternativa prometedora en la cual la fundación puede enfocarse, de esta forma, este trabajo que parte de la evaluación de aptitud de tierras se encuentra enmarcado en una etapa de prefactibilidad de un proyecto de inversión como insumo técnico que permite dar a la fundación como futura usuaria de la tierra una visión global de cuán difícil sería el manejo o cuán favorable sería, si la tierra bajo estudio se dedica a los usos propuestos en el proyecto de inversión, dando así, unas alternativas favorables donde la organización puede enfocar sus esfuerzos en un análisis cuantitativo de mayor detalle que lleve a determinar una localización para el proyecto, cumpliendo así sus expectativas.
3. Objetivos

3.1. Objetivo general

Caracterizar a través de una evaluación espacial comparativa las áreas con aptitud para la implementación de sistemas agroforestales, en los municipios del Meta donde existen cultivos de maracuyá y cholupa.

3.2. Objetivos específicos

- Establecer las variables de tipo ambiental y socioeconómico que determinan el establecimiento de los cultivos de maracuyá y cholupa, en los municipios donde ya existen.

- Evaluar de manera ambiental y socioeconómica los municipios con cultivos de maracuyá y cholupa, para establecer la pertinencia en la integración de un componente arbóreo.

- Realizar la zonificación agroforestal en la que se integren el componente arbóreo, las características socio-económicas y los cultivos de maracuyá y cholupa.
4. Diseño Metodológico

4.1. Área de Estudio

El área de estudio corresponde a la Sub Región de Ariari (Meta) integrada por los municipios de Granada, Fuente de Oro, El Castillo, Puerto Lleras, San Juan de Arama, San Martín y Lejanías, esta región se ubica en la planicie del centro del departamento y corresponde a los municipios que atraviesa el Río Ariari en su recorrido (ver Figura 1). Las actividades de tipo socioeconómico que se realizan en esta región corresponden a la ganadería extensiva y la agricultura con cultivos tecnificados de arroz, cacao, forestales, caña y palma africana, además de cultivos tradicionales de yuca, plátano, cítricos, frutales, entre otros (Garcia & Muñoz, 2011). Para este proyecto se seleccionaron los cultivos frutales de maracuyá y cholupa.

Figura 1. Mapa del Área de Estudio del Proyecto
4.2. Evaluación de Aptitud de Tierras

Para la consecución de los objetivos propuestos en la pasantía se hizo uso del marco para la evaluación de tierras propuesto por la Organización de las Naciones Unidas para la Alimentación y la Agricultura – FAO (FAO, 1976), introduciendo como método de comparación el sistema de puntuación por limitación, sistema empleado por Triantafilis, Ward, & McBratney (2001) como parte de la evaluación de aptitud de tierras del Valle Namoy en Australia, y empleado por Sante & Crecente (2005) para la obtención de mapas continuos de aptitud para usos agroforestales; la aplicación de ambos esquemas permitió expresar la limitación conjunta de las cualidades de la tierra para los usos específicos de interés, es decir, para un uso forestal comercial y de producción de pasifloras de clima cálido (Maracuyá y Cholupa) como parte de un arreglo agroforestal. Finalmente, la aptitud de la tierra fue representada mediante una función de pertinencia, obteniendo mapas continuos de aptitud para cada uso, que luego fueron superpuestos mediante operaciones propias de la lógica difusa. De acuerdo con Sante & Crecente (2005) al emplear este tipo de análisis se reduce la perdida de información a la vez que proporciona resultados que contribuyen a una mayor discriminación entre áreas agroforestales, expresando la posibilidad que tienen las unidades espaciales de pertenecer a una aptitud favorable tanto para el componente forestal como para el componente agrícola bajo estudio.

4.3. Etapas Metodológicas de la Evaluación de Tierras

El esquema propuesto por FAO (1976) y sus posteriores publicaciones, “no constituye un sistema de evaluación en sí mismo, sino que establece unas directrices generales sobre las cuales se puede construir uno” (Sante & Crecente, 2005), el esquema propone un proceso de análisis cualitativo en donde el punto focal es la comparación de las cualidades de la tierra de cada
unidad espacial con los requerimientos de cada tipo de utilización evaluado. El esquema comprende las siguientes etapas (Ver figura 2):

Una vez definida el área de estudio y el alcance de la zonificación, situándolo a una escala 1:100.000 de acuerdo con el nivel de detalle de la información disponible, el tiempo y presupuesto, la segunda etapa (2) consistió en la definición de los tipos de utilización y la determinación de sus requerimientos edafoclimáticos. (3) definición de las unidades de tierra y descripción de sus cualidades. (4) definición de las cualidades socioeconómicas del territorio. (5) comparación de las cualidades de la tierra de cada unidad espacial con los requerimientos de los usos bajo estudio mediante calificación por puntuación. (6) representación de aptitud con función de pertenencia difusa y superposición difusa de la aptitud de los usos. (7) superposición de condicionantes legales y ambientales.

Figura 2. Etapas desarrolladas durante la evaluación de aptitud de tierras. Adaptado de UPRA (2014), Metodología Evaluación de Tierras 1:25.000
4.4. Componente Biofísico de la Evaluación de Tierras

Una vez seleccionada y delimitada el área de estudio se procedió a caracterizar los requerimientos biofísicos de los TUT, los cuales están en función de las características de la tierra en términos climáticos, edafológicos y geomorfológicos para las especies bajo estudio, maracuyá y cholupa, así como la pertinencia de estas para la inclusión de un componente arbóreo. La caracterización se hizo a través de una revisión bibliográfica extensa de publicaciones científicas que dan cuenta de los diferentes requerimientos para la producción de las especies ya mencionadas y las condiciones necesarias para el establecimiento de especies arbóreas en esas áreas. Obteniendo como resultado un inventario general de criterios de evaluación mínimos necesarios para la evaluación de tierras que garantizan el óptimo desarrollo de los cultivos y la mayoría de especies forestales que puedan o pretendan establecerse en el área (Ver Anexos 1, 2 y 3), asegurando un rendimiento constante si se implementan sobre la base de la sostenibilidad ambiental y la viabilidad económica.

Posteriormente se seleccionaron las Unidades de Tierra (UT) para el análisis biofísico, las cuales, “como porciones de la superficie terrestre, constituyen la unidad básica espacial que sustenta la evaluación de tierras” (Flores & Parra, 1998). Puesto que sus características espaciales y atributos diferenciados son utilizados como cualidades y/o características para ser confrontados con los requerimientos de los diferentes TUT, a fin de alcanzar los objetivos de la evaluación de tierras (FAO, 1976), que para este caso es el de determinar el comportamiento de la aptitud de las tierras de la Subregión del Ariari en el departamento del Meta para el establecimiento de sistemas agroforestales compatibles con los cultivos de maracuyá y cholupa.
4.4.1. Selección de las Unidades de Tierra.

Como las unidades de tierras deben ser lo más homogéneas posible y tener un valor funcional practico en relación al uso de la tierra, esta información normalmente es derivada de los estudios de suelos; para este trabajo se usó el Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta, escala 1:100.000, elaborado por el Instituto Geográfico Agustín Codazzi (IGAC, 2004). Por lo que las unidades de tierra (UT) son las Unidades Cartográficas de Suelo (UCS), las cuales reúnen un conjunto de características espacializadas en un mapa, que se identifican con una leyenda de suelos y se describen con los perfiles modales e inclusiones de sus componentes taxonómicos, todos estos contenidos en el estudio mencionado.

Con base en lo anterior, para cada cualidad y característica de la tierra (ver Tabla 3) se evaluaron las unidades cartográficas de suelo comparándolas con los requerimientos de los cultivos de maracuyá y cholupa, así como los requerimientos necesarios para el establecimiento de la mayoría de las especies arbóreas utilizadas en la zona, después se calificó el grado de aptitud individual de cada característica y luego de cada cualidad, con lo cual se obtuvo un mapa intermedio de aptitud edáfica.

4.4.2. Clasificación de Aptitud de Tierras.

El proceso de calificación de aptitud de tierras es básicamente la valoración y agrupamiento de áreas específicas de tierra en términos de su aptitud para un uso definido (FAO, 1976). Para este proyecto en particular las categorías propuestas por las FAO (1976) se utilizaron para reclasificar los criterios y parámetros en cuanto al nivel de limitación para lo biofísico y lo socioeconómico en cuatro categorías, estas categorías nos permitieron realizar una calificación y puntuación para cada criterio y así poder contrastar estos resultados y sus
limitantes para poder obtener un mapa de aptitud agroforestal continuo que integre todos los criterios evaluados.

La estructura propuesta por la FAO para la clasificación de aptitud de tierras reconoce las mismas categorías en todos los tipos de clasificación interpretativa de la siguiente forma:

Tabla 1. Estructura de la clasificación de tierras.

<table>
<thead>
<tr>
<th>Órdenes de aptitud de suelos</th>
<th>Refleja los tipos de aptitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clases de aptitud de suelos</td>
<td>Refleja los grados de aptitud dentro de los órdenes.</td>
</tr>
<tr>
<td>Subclases de aptitud de suelos</td>
<td>Refleja los tipos de limitaciones dentro de las clases.</td>
</tr>
</tbody>
</table>

Los órdenes de aptitud definen si la tierra es apta (A) o no apta (N), para el tipo de uso en estudio, acorde con la FAO (1976) las tierras aptas son aquellas en las cuales se espera que un uso sostenido del TUT otorgué beneficios que justifiquen la inversión sin un riesgo inaceptable al medio ambiente, mientras que las no aptas tienen cualidades que parecen imposibilitar el uso sostenido del TUT bajo estudio.

Las clases de aptitud reflejan el grado de aptitud y son subdivisiones de los órdenes, para la presente evaluación y siguiendo la propuesta de la UPRA (2014) se propusieron cuatro clases dentro de los órdenes de aptitud de tierras aptas y no aptas así:

- Clase A1: son las tierras que no presentan restricciones significativas para el uso sostenible del TUT en estudio.
- Clase A2: son tierras aptas pero que presentan limitantes para su uso sostenible, que reducen la producción o que aumentan los costos pues requieren aplicación de insumos en cantidades mayores que las tierras Clase A1.
- Clase A3: son tierras que en la actualidad presentan fuertes restricciones biofísicas y socioeconómicas las cuales pueden llegar a ser usadas a través de grandes inversiones económicas y tecnológicas.
- Clase N1: son tierras que presentan limitaciones imposibles de superar o que parecen imposibilitar un uso sostenido del TUT.
- Clase N2: correspondiente a las exclusiones legales.

Las subclases reflejan el tipo de limitación de la tierra en términos de las características evaluadas para el estudio, por ejemplo, la Clase A3 de maracuyá puede tener subclase A3-a o A3-n, indicando que la limitante en el primer caso es la disponibilidad de agua en la zona radicular y en el segundo la disponibilidad de nutrientes.

Para la consecución de los objetivos de la evaluación de tierras con aptitud agroforestal, este estudio se estructura desde las dimensiones Biofísica y Socioeconómica, las cuales a su vez se componen de criterios, reflejados en las cualidades de la tierra, que son las unidades básicas de análisis para establecer la aptitud de la tierra a evaluar.

Consecuentemente con lo anterior, y sujeto a que el área de evaluación de tierras y la definición de los TUT responde a los intereses expresados por la Fundación Planeta Vivo Btá, la evaluación de tierras con aptitud agroforestal para los cultivos de maracuyá y cholupa para la Subregión del Ariari, en el departamento del Meta, se desarrolló en las siguientes etapas:

4.4.3. Evaluación Unidades Cartográficas de Suelo.

Una vez definidas las unidades de tierra, se extrajo la información necesaria de las cualidades y características de la tierra, las cuales se describen en los perfiles de las unidades cartográficas de suelo (UCS), pero, ya que los estudios de suelo en el país presentan unidades de
mapeo heterogéneas es necesario ajustar la interpretación de estas para cada caso dependiendo de si se trata de asociaciones, complejos o consociaciones de suelo (ver Tabla 2).

De acuerdo con lo expuesto por la UPRA (2014), las consociaciones de suelo son unidades cartográficas homogéneas en las que el área delimitada está dominada por una clase de suelos de la que se conoce su extensión, forma y localización y por suelos similares, por lo que el análisis en este trabajo se centró en el componente dominante, mientras que para asociaciones y complejos, que se caracterizan porque los componentes principales son suficientemente diferentes en morfología o comportamiento, de tal forma que la unidad toma el nombre de los dos componentes dominantes, fue necesario que la interpretación contrastara las características de los perfiles modales dominantes (dos o más) contra los requerimientos del tipo de utilización seleccionado y esto resulta en dos o más interpretaciones, por lo que la evaluación de una asociación da origen a una asociación de interpretaciones por uso analizado (UPRA, 2014).

En los complejos los suelos se entremezclan tan intrincadamente que es imposible separarlos en los mapas y asociar interpretaciones, por lo que la evaluación se centra en el componente más limitante dentro de esa unidad. Un grupo no diferenciado consiste de dos o más componentes que no están consistentemente asociados geográficamente y que por lo tanto no siempre se encuentran juntos en la misma unidad cartográfica, pero son incluidas en la misma unidad por que el uso y el manejo es muy similar (UPRA, 2014) lo cual se traduce en una sola interpretación.
Tabla 2. Relaciones entre las unidades cartográficas de suelos y las interpretaciones.

<table>
<thead>
<tr>
<th>Unidad Cartográfica</th>
<th>Característica</th>
<th>Tipo de Evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consociación</td>
<td>Un suelo dominante</td>
<td>Interpretación para el suelo dominante.</td>
</tr>
<tr>
<td>Asociación</td>
<td>Dos o más suelos dominantes</td>
<td>Asociación de interpretaciones una para cada uno de los componentes y para inclusiones limitativas.</td>
</tr>
<tr>
<td>Complejo</td>
<td>Dos o más suelos dominantes</td>
<td>Interpretación para cada uno de los componentes, la unidad se califica con el componente más limitativo.</td>
</tr>
<tr>
<td>Grupo no diferenciado</td>
<td>Dos o más suelos dominantes</td>
<td>Una sola interpretación, por compartir el mismo grado de limitación.</td>
</tr>
</tbody>
</table>

Fuente: CIAT (1999). Guía para la cartografía de los niveles de restricción de los suelos, utilizando el sistema de información geográfica “mapmaker popular” y la hoja electrónica EXCEL.

Dado que en el área de estudio se presentan complejos y asociaciones predominantemente, además de consociaciones y grupos no diferenciados en menor medida, el análisis se vuelve complejo por la gran cantidad de interpretaciones de la aptitud del suelo que pueden darse en el área, ante esta situación, se siguió la metodología propuesta por (Rodríguez, Rubiano, Beaulieu, & Muñoz, 1999) para la cartografía de los niveles de restricción de los suelos, según esto, la información extraída del estudio de suelos se codificó según los rangos estandarizados por el IGAC para cada característica del suelo, optimizando el análisis de la información, al poder construir un algoritmo que permite modelar las características y cualidades del suelo y espacializar sus rangos de aptitud en donde sean aptas (A) o donde sean no aptas (N).

Sumado a lo anterior, también se tuvo en cuenta la erosión presente en las UCS, la erosión se evaluó a partir del mapa de zonificación de la degradación de suelos por erosión de Colombia a escala 1:100.000 presentado por el Instituto de Hidrología, Meteorología y Estudios Ambientales
– IDEAM en 2015. Esta cartografía de carácter nacional se consideró suficiente por considerarlo un insumo con la escala apropiada para su uso en el análisis y por ser un insumo de carácter institucional. La valoración se da a partir del grado de erosión definido en seis categorías: sin evidencia, ligera, moderada, severa, muy severa y no suelo, para este caso se consideraron aptos los suelos sin evidencia o con erosión ligera, marginalmente aptos los suelo moderadamente erosionados, y no aptos aquellos con erosión severa o muy severa, junto con el no suelo que corresponde a zonas urbanas o cuerpos de agua.

4.4.4. Evaluación Climática.

Para analizar el comportamiento climático del área de estudio se utilizaron características como la precipitación, la temperatura y la radiación solar, estas se confrontaron posteriormente con los requerimientos climáticos para los TUT, este análisis se hizo mediante el uso software de análisis espacial y utilizando datos de tipo climático de fuentes oficiales. Para las variables de precipitación y temperatura la información utilizada corresponde a la trabajada por (Alarcon & Pabon, 2013) ya que esta cuenta con el detalle y la validez necesaria para el proyecto dado que la fuente base corresponde a la base de datos climáticos del IDEAM. Para la radiación solar se hizo uso del Atlas de Radiación Solar elaborado por el IDEAM (2014), de este se extrajo la información de horas por día para aquellas estaciones que se encontraran dentro y alrededor del área de estudio (Ver Tabla 3). Para cada variable se hizo una interpolación de puntos que permitió ver de manera espacializada el comportamiento de estas sobre el terreno.

Hay que resaltar que la evaluación climática solo se hizo para las especies de maracuyá y cholupa, que corresponden a la parte agrícola, pues debido a que no se tiene una especie forestal definida en el proyecto es imposible establecer los rangos de aptitud para este criterio, pues la cantidad de especies arbóreas que pueden establecerse bajo las condiciones climáticas del área de
estudio es muy amplia y dependerá de otras características adicionales y de la interacción de estas variables con la diversidad de especies potenciales para la zona. La evaluación para el componente forestal se restringe a una evaluación y categorización edáfica y de coberturas principalmente, e incluyendo la pertinencia de este componente en aquellas áreas degradadas por eventos naturales como la remoción en masa y/o las inundaciones, esto debido a los efectos benéficos de restauración y recuperación que promueven las especies arbóreas sobre las áreas degradadas por este tipo de fenómenos como lo son la mejora en la estructura y propiedades de los suelos, así como la mejora en la infiltración del agua a causa, del sistema radicular de muchas especies arbóreas (FAO, 2015).

4.4.5. Evaluación del Relieve.

Para analizar cómo influiría el relieve sobre los TUT se utilizaron características de altura y pendiente, para determinar estas características y hacer la confrontación posterior, se utilizó un modelo de elevación digital (DEM) obtenido del satélite ALOS PALSAR bajo servicio de la Administración Nacional de la Aeronáutica y del Espacio - NASA (ASF, 2017) el cual cuenta con una resolución de 12,5 m. A partir de este DEM y con el uso de software de análisis se pudo observar el comportamiento del relieve en el área de estudio y su aptitud para cada cultivo y el componente arbóreo (Ver Tabla 3).

De nuevo hay que resaltar que la evaluación de relieve solo se hizo para las especies de maracuyá y cholupa, que corresponden a la parte agrícola, pues como se mencionó anteriormente al no tenerse una especie forestal definida para el proyecto es imposible establecer los rangos de aptitud para este criterio, pues la cantidad de especies arbóreas que pueden establecerse bajo las condiciones de relieve en el área de estudio es muy amplia y dependerá de otras características.
adicionales y la interacción de estas variables con la diversidad de especies potenciales para la zona.

4.4.6. Evaluación de Coberturas.

Como se mencionó con anterioridad esta evaluación solo se hizo para el componente arbóreo, la información de coberturas fue obtenida del Mapa de Coberturas de la Tierra para Colombia Metodología CORINE Land Cover adaptada para Colombia escala 1:100.000 periodo (2010-2012) elaborado por el IDEAM (2014). Este mapa es útil como herramienta de apoyo para la gestión sostenible de los recursos naturales del país (IDEAM, 2010). Para la evaluación de este criterio se evaluó la existencia de un componente arbóreo en la Leyenda del Mapa de Coberturas de la Tierra, este componente se definía ya fuera por arboles dispersos en pasturas o cultivos, por cercas vivas de árboles, o áreas de tipo natural en mosaico de pastos y cultivos, así que para un área con mayor presencia de un componente arbóreo mayor puntuación de aptitud tenía la cobertura según lo expuesto por el IDEAM (2010). Se tomaron como no aptas zonas como las áreas urbanas, las zonas arenosas naturales, zonas quemadas, las zonas pantanosas, tierras desnudas y degradadas, ríos, lagos y lagunas, también se excluyeron áreas boscosas de gran importancia ambiental y ecosistémica como los son bosques densos, y los bosques abiertos.

Finalmente, y con todo lo anterior se estableció el contraste entre los requerimientos de los cultivos y un componente arbóreo con la oferta de la tierra, esto mediante un análisis espacial comparativo que permitió evaluar la aptitud de la dimensión biofísica de la Subregión del Ariari en el departamento del Meta para el establecimiento de sistemas agroforestales compatibles con las especies agrícolas de interés para la fundación.
4.5. Componente Socioeconómico de la Evaluación de Tierras

Para el análisis del componente socioeconómico se seleccionaron los criterios considerados como los más importantes para el desarrollo de proyectos tanto agrícolas como forestales, “estos corresponden a la conectividad, reflejada en la densidad vial, y la disponibilidad de mano de obra al interior de cada uno de los municipios del Meta, está valorada sobre la población económicamente activa y la población alfabetizada” (UPRA, 2014). Por otro lado se seleccionaron criterios de importancia para el entorno de inversión en el proyecto, en este sentido se seleccionaron criterios como el índice de vulnerabilidad, calculado a partir de la adaptación hecha a la metodología expuesta por el Departamento Nacional de Planeación en su documento Índice de Vulnerabilidad Territorial: Resultados 2008-2012 (DNP, 2015) que incluye parámetros como las tasas de hurto, de secuestro, de homicidio, desplazamiento forzado y la existencia de cultivos ilícitos (Ver Tabla 3).

Estos criterios fueron evaluados a partir de variables interpretadas por medio de ponderaciones y clasificaciones de información secundaria obtenida de instituciones oficiales como el Instituto Geográfico Agustín Codazzi (IGAC), el Departamento Administrativo Nacional de Estadística (DANE), el Departamento Nacional de Planeación (DNP), la Unidad para la Atención y Reparación Integral a las Víctimas (UARIV), la Dirección para la Acción Integral contra Minas Antipersonal (DAIMAC), el Sistema Integrado de Monitoreo de Cultivos Ilícitos (SIMCI), la Policía Nacional y la Dirección Judicial de Investigación Criminal e Interpol (SIJIN).
Tabla 3. Matriz de variables de análisis para la evaluación de aptitud de tierras.

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>CRITERIO</th>
<th>PARAMETRO</th>
<th>OPERACIÓN</th>
<th>FUENTE</th>
<th>UNIDADES</th>
<th>TIPO DATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOFISICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suelos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Profundidad Efectiva</td>
<td>Estimación a partir del DEM en un SIG</td>
<td>Meteorología IDEAM (2014)</td>
<td>Centímetros</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% Pedregosidad</td>
<td>Estimación a partir del DEM en un SIG</td>
<td>Meteorología IDEAM (2014)</td>
<td>Porcentaje de Pedregosidad</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Textura</td>
<td>Estimación a partir del DEM en un SIG</td>
<td>Meteorología IDEAM (2014)</td>
<td>Clases Textural</td>
<td>Nominal</td>
<td></td>
</tr>
<tr>
<td>Clima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura</td>
<td>Interpolación a partir de datos puntuales en un SIG</td>
<td>Datos Alarcón & Pabón (2013)</td>
<td>Grados centígrados (°C)</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitación</td>
<td>Interpolación a partir de datos puntuales en un SIG</td>
<td>Datos Alarcón & Pabón (2013)</td>
<td>Milímetros (mm)</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brillo solar</td>
<td>Interpolación a partir de datos puntuales en un SIG</td>
<td>Datos Alarcón & Pabón (2013)</td>
<td>Horas/Año</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td>Relieve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pendiente</td>
<td>Estimación a partir del DEM en un SIG</td>
<td>Metodología CORNARE (2012)</td>
<td>Porcentaje de Pedregosidad</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitud</td>
<td>Estimación a partir del DEM en un SIG</td>
<td>Metodología CORNARE (2012)</td>
<td>Porcentaje de Pedregosidad</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td>Amenazas y Riesgos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosión</td>
<td>Calificación por nivel de riesgo</td>
<td>Estaciones IDEAM (2014)</td>
<td>Horas/Año</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inundabilidad</td>
<td>Calificación por nivel de riesgo</td>
<td>Estaciones IDEAM (2014)</td>
<td>Porcentaje de Pedregosidad</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remoción en masa</td>
<td>Calificación por nivel de riesgo</td>
<td>Estaciones IDEAM (2014)</td>
<td>Porcentaje de Pedregosidad</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td>Coberturas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existencia de un Componente Arbóreo</td>
<td>Calificación por nivel de cobertura</td>
<td>Mapa de Coberturas de la Tierra 1:100000 (IDEAM, 2014)</td>
<td>-</td>
<td>Nominal</td>
<td></td>
</tr>
<tr>
<td>SOCIOECONOMICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano de Obra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Densidad de Vías</td>
<td>Análisis espacial (SIG)</td>
<td>Mapa de Coberturas de la Tierra 1:100000 (IDEAM, 2014)</td>
<td>-</td>
<td>Nominal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Población</td>
<td>Revision documental</td>
<td>Cartografía Base IGAC</td>
<td>Hectáreas (ha)</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Económicamente Activa</td>
<td>Revision documental</td>
<td>Cartografía Base IGAC</td>
<td>Tasa X 100000 habitantes</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porcentaje alfabetización</td>
<td>Revision documental</td>
<td>Cartografía Base IGAC</td>
<td>Tasa X 100000 habitantes</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td>Existencia de Cultivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area Sembrada</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Agronet (2017)</td>
<td>Hectáreas (ha)</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Productividad</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Agronet (2017)</td>
<td>Tonalidades/Hectárea/Año (ton/ha/año)</td>
<td>Continuo</td>
<td></td>
</tr>
<tr>
<td>Vulnerabilidad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tasa de Huertos</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Policía Nacional y SIIJIN (2016)</td>
<td>Hectáreas (ha)</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tasa de Secuestrados</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Policía Nacional y SIIJIN (2016)</td>
<td>Hectáreas (ha)</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tasa de Asesinatos</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Policía Nacional y SIIJIN (2016)</td>
<td>Hectáreas (ha)</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hectáreas de Coca</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Policía Nacional y SIIJIN (2016)</td>
<td>Hectáreas (ha)</td>
<td>Categórico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Índice de Desplazamiento</td>
<td>Calificación por nivel de riesgo</td>
<td>Base de Datos Policía Nacional y SIIJIN (2016)</td>
<td>Hectáreas (ha)</td>
<td>Categórico</td>
<td></td>
</tr>
</tbody>
</table>
4.6. Análisis Espacial Comparativo

Para poder alcanzar los objetivos deseados se aplicó una modificación al esquema propuesto por FAO (1976), en cuanto a la valoración y calificación realizada para cada clase de aptitud de las Unidades de Tierra (UT), empleando como método de comparación el sistema de puntuación de la limitación empleado por Triantafilis, et. al. (2001) (ver Tabla 4). En este sistema se establece el grado de limitación de cada cualidad de la tierra para un uso determinado. Se han definido cuatro grados de limitación que expresan la influencia de un determinado valor de una cualidad de la tierra en el rendimiento y sostenibilidad de un uso del suelo.

Tabla 4. Modificaciones para valoración y calificación del uso del suelo

<table>
<thead>
<tr>
<th>Grado Limitación (FAO)</th>
<th>Limitación</th>
<th>Descripción</th>
<th>Puntaje Limitación (Modificaciones)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ninguna</td>
<td>La característica es óptima para ese uso del suelo</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Débil</td>
<td>La característica es casi óptima</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Moderada</td>
<td>La característica tiene una influencia moderada en la viabilidad de un uso sostenido</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Severa</td>
<td>La característica tiene una influencia en la disminución del rendimiento, de la viabilidad del uso o en la degradación del suelo tal que ese uso de la tierra resulta marginal</td>
<td>10</td>
</tr>
</tbody>
</table>

Adaptado de Triantafilis et. al., (2001), Land suitability assessment in the Namoy Valley of Australia, using a continuous model.

Sumado a lo anterior se tomaron algunos elementos de la propuesta metodológica para la evaluación de tierras para zonificación con fines agropecuarios a escala semidetallada 1:25.000 desarrollada por la Unidad de Planificación Rural Agropecuaria – UPRA (2014), esto para
abordar la parte agrícola de la zonificación. También se tomaron algunos elementos de la metodología para evaluación de tierras con fines forestales (FAO, 1986), ya que esta metodología es flexible dependiendo de los objetivos e intereses requeridos en cuanto a la evaluación para las áreas forestales, y dado que se realizó una zonificación agroforestal con maracuyá y cholupa, esta metodología nos permitió adaptarnos a esos usos específicos.

4.7. Aptitud Continua de la Tierra

Para el análisis y presentación de resultados se trabajó con lógica difusa, la cual, ofrece una representación más adecuada la realidad que la que se puede dar en los rígidos arreglos simbólicos de la matemática clásica booleana. De acuerdo con Chivata, (2008) Los paradigmas actuales del conocimiento apuntan inadecuadamente a la idea de cuantificar conceptos como el riesgo, es decir, expresarlos en términos exactos mediante números reales, cuando los altos contenidos de complejidad e incertidumbre de las variables obligan a recurrir a otras formas de estimación y expresión, esto mismo puede ser dicho para los modelos de aptitud de tierras, cada vez “hay una mayor necesidad de predicciones más cuantificadas y precisas del rendimiento de cultivos, pero a expensas de un mayor requerimiento de información” (Sante & Crecente, 2005).

Información con la que no siempre se cuenta, con el detalle requerido, estando sujetos a la incertidumbre.

La lógica difusa es una generalización del álgebra booleana, se utiliza para modelar entidades cuyos atributos tienen zonas de transición gradual, que no presentan fronteras claras o para datos que tienen bastante incertidumbre (Sante & Crecente, 2005). Mientras en la lógica booleana las proposiciones son verdaderas o falsas y no se permiten valores intermedios, la lógica difusa proporciona un enfoque que permite afrontar el estudio de sistemas en los que ciertas partes de estos son desconocidas y no pueden medirse de forma confiable, en general la lógica difusa se
puede usar cuando se quieran representar y operar con conceptos que tengan imprecisión o incertidumbre (Munar, 2010).

Dada la naturaleza cualitativa de la metodología empleada en el presente trabajo, sumada a las imprecisiones o incertidumbres de la información base, la puntuación de limitación acumulada obtenida como resultado de la suma de las puntuaciones de limitación individuales en el análisis espacial comparativo, está asociada a una función de pertenencia que define el grado de creencia, confianza, evidencia o preferencia, sobre determinados valores del conjunto de datos posibles correspondientes a las variables que definen la aptitud territorial.

En la lógica difusa los conceptos pueden tomar un valor cualquiera de veracidad dentro de un conjunto de valores que oscilan entre dos extremos: la verdad absoluta (tierra apta) y la falsedad total (tierra no apta), este valor es cuantificado mediante una función de pertenencia. La lógica difusa se basa en la idea de que, en un instante dado, no es posible determinar el valor de una variable, sino conocer el grado de pertenencia de esta a los conjuntos en que se ha dividido el rango de variación de la variable (Munar, 2010).

4.7.1. Superposición Difusa

La superposición difusa es una técnica de análisis que se basa en la lógica difusa, la cual posibilita transformar valores originales, según ESRI (2017) tal transformación define la posibilidad de pertenecer al conjunto de valores que comprenden el universo original permitiendo resolver aplicaciones de análisis de superposición tradicionales como la selección de sitios y los modelos de adecuación. El análisis de superposición difusa sigue los pasos del análisis de superposición general, pero otorga mayor y menor énfasis a determinados pasos, en el paso de adición o combinación, la lógica difusa explora la interacción de la posibilidad de que el fenómeno estudiado pertenezca a varios conjuntos.
4.8. Limitantes Ambientales y Legales

Para cualquier proyecto pueden presentarse diferentes limitantes ya sea de tipo legal o ambiental dependiendo de los objetivos, y este proyecto no es la excepción ya que se evaluaron algunos limitantes de tipo ambiental y legal, que se resumen en amenazas naturales y exclusiones territoriales y se explican a continuación:

4.8.1.1. Susceptibilidad por movimientos en masa

La susceptibilidad por movimientos en masa se evaluó por medio del mapa nacional integrado de amenaza por movimiento en masa a escala 1:100.000, presentado por el Servicio Geológico Colombiano - SGC en diciembre de 2015, esta cartografía de carácter nacional se consideró suficiente por considerarlo un insumo con la escala apropiada para su uso en el análisis y por ser un insumo de carácter institucional. Este mapa aborda la amenaza por movimiento en masa en las categorías de amenaza baja, media, alta y muy alta, ante lo cual se trató los niveles bajo y medio como aptos para el cultivo de maracuyá y cholupa, y los niveles alto y muy alto se trataron como marginalmente aptos por tratarse de una probabilidad de ocurrencia.

4.8.1.2. Susceptibilidad por inundaciones

El reconocimiento de la amenaza por inundaciones y encharcamientos consistió en la identificación de las zonas inundables, las cuales parten de las unidades cartográficas de suelo en las que coinciden tres aspectos: el primero es la presencia de un cuerpo de agua que genere la inundación; el segundo es el paisaje, centrando el análisis sobre aquellas unidades fisiográficas sometidas a las dinámicas de los ríos, tales como las de los valles aluviales, los vallecitos menores en paisajes de montaña y lomeríos, las cubetas y bacines; y por último, la información
de las unidades de suelo que diga que son suelos anegados, inundados o encharcados (CORNARE, 2012).

El establecimiento de los rangos se dio a través de dos criterios: el porcentaje de pendiente en el que se dio importancia a las pendientes bajas y la curvatura de la pendiente, por el efecto que tiene esta sobre el movimiento del agua sobre una superficie (CORNARE, 2012), una vez evaluado el riesgo se establecieron los niveles de aptitud de la siguiente manera: muy baja, baja y media se consideraron aptos, y los niveles alto y muy alto se consideraron marginalmente aptos por tratarse de una probabilidad de ocurrencia.

4.8.2. Exclusiones Legales.

Con el objetivo de promover la conservación y protección de los recursos naturales, y la asignación de territorios colectivos se realizó un análisis que permitió la discriminación de dichos territorios como áreas de exclusión por su carácter legal, importancia ecológica u oferta de bienes y servicios ambientales (ver Figura 3).

En cuanto a las áreas que se encuentran en condición para la protección de recursos naturales en el área de estudio se encuentran los Parques Nacionales Naturales, como lo son el PNN Sumapaz, el PNN Serranía de la Macarena y el PNN Alto Manacacias; y los Parques Regionales Naturales, para el área de estudio solo se tiene el PRN Laguna de Lomalinda. Por otro lado no se encontraron territorios colectivos dentro del área de estudio.

Además de las exclusiones legales se tuvieron en cuenta las áreas que por su carácter de ecosistemas estratégicos presentan una relación con la oferta de bienes y servicios ambientales como lo son las rondas hídricas, nacimientos de agua, bosques y coberturas estratégicas.
Por último se excluyeron otras áreas que legalmente pueden representar obstáculo para el establecimiento de futuros proyectos como lo son las áreas concesionadas para el desarrollo de proyectos minero-energéticos, para nuestro caso el Área de Perforación Exploratoria CPO-160.

Figura 3. Condicionantes legales del territorio que limitan uso productivo. Fuente: UPRA (2014), Metodología de Evaluación de Tierras 1:25.000

5. Descripción y Análisis de Resultados

A partir de las fuentes de información secundaria ya mencionadas, se extrajo la información necesaria de los criterios seleccionados para el análisis, con lo cual se generó cartografía que permitió apreciar la oferta del territorio en relación a los requerimientos para el establecimiento de sistemas agroforestales con las especies maracuyá y cholupa, para así dar cumplimiento a los objetivos propuestos en la pasantía.

De acuerdo con Chivata (2008) es recomendable emplear un espectro con leyendas y etiquetas ya sean alta, media o baja que, con valores numéricos, porque la mayoría de los usuarios finales del modelo entenderán y utilizaran mejor los mapas de esta manera. Así mismo, para efectos de analizar los resultados este proceso permitirá discriminar de mejor manera diferentes zonas. Por esto, el análisis de resultados parte de una categorización de los resultados
obtenidos en la evaluación de aptitud de tierras para establecimiento de sistemas agroforestales (SAF).

Como se mencionó anteriormente se trabajaron cuatro clases de aptitud: la Clase A1 que corresponde a las tierras de mejor aptitud; la Clase A2 para tierras de aptitud moderada; la Clase A3 correspondiente a tierras con una aptitud marginal; y la Clase N1 que son aquellas tierras cuyos aspectos técnicos imposibilitan llevar a cabo el uso requerido por el proyecto.

Una vez realizado el análisis espacial comparativo y la superposición difusa, la evaluación de aptitud de tierras con fines agroforestales identificó que en la Subregión del Ariari del Departamento del Meta, del total de la superficie evaluada (1.193.382,18 Ha), gran parte del territorio no es apto por cuestiones legales (263.118,55 Ha), otra parte corresponde a tierras sin posibilidad de aptitud (entre 0,04 y 0,42 de posibilidad) estas tierras muestran una baja posibilidad de aptitud con tendencia a lo no apto y corresponden al 33,10% del territorio (395.043,08 Ha). Mientras que el área de tierras que tienen mayor posibilidad de permitir un uso agroforestal para las especies bajo análisis (entre 0,42 y 0,97 de posibilidad) corresponde a un 44,85% del territorio (535.220,56Ha) (Ver Tabla 5).

De este porcentaje de tierras con mayores posibilidades de aptitud, el 17,42% (207.887,29 Ha) corresponde a tierras Muy Aptas, el 10,10% (120.549,92 Ha) a tierras Moderadamente Aptas, y el 17,33% (206783,35 Ha) corresponde a tierras Marginalmente Aptas. Por lo anterior podemos contar con 207.887,29 Ha en las que el establecimiento de SAF con maracuyá y cholupa no presentara limitaciones, y serían estas áreas aquellas que nos permitirían obtener los mejores resultados a nivel agrícola con el maracuyá y la cholupa, y al mismo tiempo nos permitirían establecer un componente arbóreo, atendiendo a las limitaciones específicas que puedan encontrarse, con el fin de generar beneficios tanto ambientales como económicos en
dichas áreas, y a las personas que las ocupan. En el 27,43% restante también se pueden implementar y obtener beneficios del establecimiento de SAF, pero deberán implementarse acciones de manejo para suplir las limitantes que se presenten para su uso sostenible, atendiendo a cada limitante y sitio en particular.

Tabla 5. Aptitud de Tierras para Establecimiento de Sistemas Agroforestales

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>DESCRIPCIÓN</th>
<th>ÁREA (ha)</th>
<th>ÁREA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Muy Apto</td>
<td>207887,29</td>
<td>17,42</td>
</tr>
<tr>
<td>A2</td>
<td>Moderadamente apto</td>
<td>120549,92</td>
<td>10,10</td>
</tr>
<tr>
<td>A3</td>
<td>Marginalmente apto</td>
<td>206783,35</td>
<td>17,33</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>535220,56</td>
<td>44,85</td>
</tr>
<tr>
<td>N1</td>
<td>No apto técnicamente</td>
<td>395043,08</td>
<td>33,10</td>
</tr>
<tr>
<td>N2</td>
<td>Exclusiones legales</td>
<td>263118,55</td>
<td>22,05</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>658161,63</td>
<td>55,15</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1193382,18</td>
<td>100</td>
</tr>
</tbody>
</table>

Al aplicar la lógica difusa se busca romper con estas categorizaciones y las incertidumbres que produce el uso de una categorización. La lógica difusa no considera si un elemento está dentro de una clase o no, sino que define cómo de posible es que el fenómeno sea miembro de un conjunto (o una clase de atributos). La lógica difusa se basa en la teoría de conjuntos y, por lo tanto, se definen las posibilidades, no las probabilidades (ESRI, 2017).

Por lo anterior esta parte del análisis se centra en ver cómo cambia el área disponible de acuerdo a las posibilidades que se tienen de que una porción de tierra pertenezca a todos los conjuntos (criterios) establecidos como clave para el establecimiento de SAF con las especies maracuyá y cholupa en la Subregión del Ariari, Meta.
Figura 4. Relación Posibilidad de Pertenencia y Variación en Área

Como podemos observar en la Figura 4 al aumentar las posibilidades de pertenencia a un uso agroforestal con los mejores valores para los criterios de evaluación del componente agrícola y forestal, se disminuye el área disponible para el establecimiento de SAF, esto se debe a que, al considerar múltiples variables, la posibilidad de que grandes áreas de terreno puedan pertenecer al mismo tiempo a un buen valor de aptitud para ambos componentes según los criterios considerados es bastante baja, esto permite establecer como regla una relación inversa, con los cual las mejores áreas se concentran en pocas áreas muy definidas

Lo anterior permite establecer que los mejores resultados en el establecimiento de SAF que integren el maracuyá y la cholupa se obtienen en 29.643,41 Ha que aseguran una posibilidad del 95% de pertenecer a un buen conjunto de valores en los criterios establecidos y con limitaciones manejables, a una posibilidad del 90% esta área se incrementaría a 90.899,92 Ha, y así el área seleccionada para el establecimiento de SAF dependerá de la capacidad con que se cuente, en términos de capital económico y la tecnología disponible.
Dado que las limitaciones de tipo económico siempre están presentes, la lógica difusa nos permite priorizar algunas áreas para atenuar estas dificultades, seleccionando aquellas áreas con la mayor posibilidad de pertenencia a todos los criterios establecidos, garantizando así algunas condiciones óptimas para el proyecto y reduciendo las limitaciones que se puedan presentar.

A nivel municipal se encontró que los municipios con mayor cantidad de tierras clasificadas como Muy Aaptas (A1) para el establecimiento de SAF corresponde a San Martin (129.813,92 Ha), Puerto Lleras (46.235,19 Ha) y Lejanías (37.045,87 Ha), esto concuerda con lo informado por la Asociación de Maracuyeros del Ariari ASOMARI, pues los municipios de Lejanías y Puertos Lleras presentan los mejores suelos para la producción de pasifloras y es en esos dos municipios es donde se registran los mejores rendimientos (W. Lora, comunicación personal, 31 de agosto de 2017).

En cuanto a las tierras Moderadamente Aaptas (A2), los municipios con mayor área de estas en orden descendente son San Martin (77.279,17 Ha), Puerto Lleras (34.284,17 Ha) y Lejanías (19.392,23 Ha), estos tres municipios al ser los de mayor extensión para el área de estudio, también contribuyen con la mayor cantidad de tierras aptas para el establecimiento de SAF con maracuyá y cholupa. Para las tierras Marginalmente Aaptas (A3), los municipios de mayor representatividad son San Martin (132.567,62 Ha), Puerto Lleras (58.812,36 Ha) y San Juan de Arama (26.278,09 Ha). Aquellos municipios con mayor cantidad de tierras No Aaptas Técnicamente (N1) en orden descendente son San Martin (253.250,05 Ha), Puerto Lleras (112.351,98 Ha) y San Juan de Arama (50200,25 Ha) (Ver Anexo 4).
Como observamos en la Figura 5. San Martin es el que ocupa la mayor cantidad de área en todas las clases de aptitud de tierras y esto se da a razón de ser el municipio de mayor extensión dentro del área de estudio, pues corresponde al 49,68% (592,910,78 Ha). Por lo anterior San Martin sería un municipio interesante de trabajar para el establecimiento de SAF compatibles con maracuyá y cholupa pues permitiría abordar diferentes clases de aptitud, dependiendo de las limitaciones económicas, en una misma unidad administrativa.

6. Conclusiones y Recomendaciones

6.1. Conclusiones

Fue posible zonificar las áreas con aptitud para el establecimiento de sistemas agroforestales compatibles con los cultivos de maracuyá y cholupa en la Subregión del Ariari, Meta, esto se consiguió mediante un análisis espacial comparativo que permitió identificar áreas con aptitud agrícola y áreas con aptitud forestal permitiéndonos evaluar estos componentes por si solos y en conjunto.
Se identificaron un total de 207.887,29 Ha clasificadas como Muy Aptas para el establecimiento de sistemas agroforestales, ubicadas principalmente en los municipios de San Martín, Puerto Lleras y Lejanías, esto nos permite dar una visión global de la favorabilidad del territorio como insumo técnico para la formulación de proyectos relacionadas con el establecimiento de sistemas agroforestales.

Se encontraron 658.161,62 Ha dentro del área de estudio que presentan restricciones legales y técnicas, y por tal razón no pueden ser incluidas dentro de proyectos de inversión que pretendan abordar un uso agrícola, forestal o agroforestal.

La lógica difusa nos permite dar otra mirada al comportamiento de las diferentes variables seleccionadas para la zonificación, pues al reducir la incertidumbre generada por la selección, categorización, y evaluación de las variables, los resultados obtenidos por este método pueden ser usados para la toma de decisiones en donde la incertidumbre generada es bastante alta.

Se identificaron 29.643,61 Ha con una posibilidad del 95% de cumplir con todos los requisitos para el establecimiento de sistemas agroforestales compatibles con las especies de maracuyá y cholupa, esto gracias a la superposición difusa, estas áreas deben considerarse primordiales para trabajar si se pretende llevar a cabo el establecimiento en campo de estos sistemas agroforestales.

San Martín al ser el municipio de mayor superficie dentro del área de estudio, abarca los diferentes tipos de aptitud agroforestal en gran medida, muy por encima de los demás municipios, por tanto si se quisiera explorar el establecimiento de sistemas agroforestales para áreas extensas, se podría trabajar en primera medida con este municipio.
6.2. Recomendaciones

Se recomienda el levantamiento de información primaria para las áreas que como resultado de este estudio se identificaron como favorables para su aprovechamiento en el establecimiento de sistemas agroforestales compatibles con las especies de maracuyá y cholupa.

Se recomienda generar vínculos con las asociaciones de productores presentes en la Subregión del Ariari, ya que este tipo de proyectos puede llegar a generarles interés de participación, dadas las ventajas que ofrecen los sistemas agroforestales a nivel ambiental y social.

En la medida en que el proyecto avance en su formulación se recomienda la inclusión de nuevas variables de tipo socioeconómico, logístico y financiero; con el fin de dar un mayor detalle al componente socioeconómico de este proyecto.

Ya que se tienen establecidas las áreas que permiten la inclusión de un componente arbóreo, se recomienda evaluar estas áreas con mayor detalle, para determinar las especies arbóreas que se podrían incluir en conjunto con las especies de maracuyá y cholupa.
Bibliografía

ASF. (31 de Junio de 2017). Obtenido de Alaska Satellite Facility: https://vertex.daac.asf.alaska.edu/

CORNARE. (2012). *Zonificación de riesgo por movimientos en masa, inundación y avenidas torrenciales. Atenciones de áreas afectadas por eventos desastrosos*. San Rafael: Corporación Autónoma Regional de las Cuencas de los Ríos Negro y Nare - Cornare.

IDEAM. (2014). *Mapa de Coberturas de la Tierra para Colombia*. Bogota: Instituto de Hidrología; Metereología y Estudios Ambientales IDEAM.

Anexos

Anexo 1. Clases de restricciones para el cultivo de maracuyá

<table>
<thead>
<tr>
<th>NIVELES DE RESTRICCIÓN MARACUYÁ</th>
<th>CUALIDAD DE LA TIERRA</th>
<th>CARACTERÍSTICAS DE LA TIERRA</th>
<th>SIN RESTRICCIÓN</th>
<th>RESTRICCIÓN MODERADA</th>
<th>RESTRICCIÓN MARGINAL</th>
<th>NO APTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA</td>
<td></td>
<td></td>
<td>24°-28°</td>
<td>21°-24°</td>
<td>17°-21°; 28°-35°</td>
<td><17° y >35°</td>
</tr>
<tr>
<td>PRECIPITACIÓN</td>
<td></td>
<td></td>
<td>800-1000 mm; 1500-2000 mm</td>
<td></td>
<td><800 mm; >2000 mm</td>
<td></td>
</tr>
<tr>
<td>BRILLO SOLAR</td>
<td></td>
<td></td>
<td>11 horas</td>
<td>8 horas</td>
<td>5 horas</td>
<td><5 horas</td>
</tr>
<tr>
<td>RELIEVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTITUD</td>
<td></td>
<td></td>
<td>800-1200 msnm</td>
<td>0-800 msnm; 1200-1300 msnm</td>
<td>>1300 msnm</td>
<td></td>
</tr>
<tr>
<td>PENDIENTE</td>
<td></td>
<td></td>
<td>0 a 7</td>
<td>7 a 12</td>
<td>12 a 25</td>
<td>>25</td>
</tr>
<tr>
<td>DISPONIBILIDAD DE OXÍGENO EN LA ZONA RADICULAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDICIÓN DE DRENAJE</td>
<td></td>
<td></td>
<td>Bien drenado</td>
<td>Moderado, Moderadamente excesivo</td>
<td>Imperfecto</td>
<td></td>
</tr>
<tr>
<td>DISPONIBILIDAD DE AGUA EN LA ZONA RADICULAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGIMEN DE HUMEDAD</td>
<td></td>
<td></td>
<td>Udico</td>
<td>Ustico</td>
<td>Todos los demás</td>
<td></td>
</tr>
<tr>
<td>TEXTURA</td>
<td></td>
<td></td>
<td>FA, FAr</td>
<td>FArA, F, FL, FArL</td>
<td>Todos los demás</td>
<td></td>
</tr>
<tr>
<td>DISPONIBILIDAD DE NUTRIENTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td>5,5 - 6,5</td>
<td>4,5-5,5; 6,5-7,0</td>
<td>7,0 - 8,0</td>
<td><4,0; >8,0</td>
</tr>
<tr>
<td>% SATURACIÓN DE ALUMINIO</td>
<td></td>
<td></td>
<td>Muy Bajo, Bajo</td>
<td>Medio</td>
<td>Alto, Muy Alto</td>
<td></td>
</tr>
<tr>
<td>% CARBONO ORGÁNICO</td>
<td></td>
<td></td>
<td>Muy Alto, Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>FERTILIDAD</td>
<td></td>
<td></td>
<td>Muy Alta, Alta</td>
<td>Media</td>
<td>Baja</td>
<td>Muy Baja</td>
</tr>
<tr>
<td>CAPACIDAD DE LABOREO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENDIENTE</td>
<td></td>
<td></td>
<td>0 a 7</td>
<td>7 a 12</td>
<td>12 a 25</td>
<td>>25</td>
</tr>
<tr>
<td>PROFUNDIDAD EFECTIVA</td>
<td></td>
<td></td>
<td>>60 cm</td>
<td>50-60 cm</td>
<td><50 cm</td>
<td></td>
</tr>
<tr>
<td>TEXTURA</td>
<td></td>
<td></td>
<td>FA, FAr</td>
<td>FArA, F, FL, FArL</td>
<td>Todos los demás</td>
<td></td>
</tr>
<tr>
<td>% PEDREGOSIDAD</td>
<td></td>
<td></td>
<td>Muy Poca, Poca</td>
<td>Mediana</td>
<td>Abundante</td>
<td>Muy Abundante, Miscelánea</td>
</tr>
</tbody>
</table>

CUALIDAD DE LA TIERRA

CARACTERÍSTICAS DE LA TIERRA

SIN RESTRICCIÓN

RESTRICCIÓN MODERADA

RESTRICCIÓN MARGINAL

NO APTO
Anexo 2. Clases de restricciones para el cultivo de cholupa

<table>
<thead>
<tr>
<th>NIVELES DE RESTRICCION CHOLUPA</th>
<th>CLIMA</th>
<th>RELIVE</th>
<th>DISPONIBILIDAD DE OXIGENO EN LA ZONA RADICULAR</th>
<th>DISPONIBILIDAD DE AGUA EN LA ZONA RADICULAR</th>
<th>DISPONIBILIDAD DE NUTRIENTES</th>
<th>CAPACIDAD DE LABOREO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUALIDAD DE LA TIERRA</td>
<td>CARACTERÍSTICAS DE LA TIERRA</td>
<td>SIN RESTRICCION</td>
<td>RESTRICCION MODERADA</td>
<td>RESTRICCION MARGINAL</td>
<td>NO APTO</td>
<td>SIN RESTRICCION</td>
</tr>
<tr>
<td>TEMPERATURA</td>
<td>24°-26°</td>
<td>20°-24°, 26°-30°</td>
<td><20° y >32°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECIPITACION</td>
<td>1200-1450 mm</td>
<td>1000-1200 mm; 1450-2000 mm</td>
<td>800-1000 mm</td>
<td><800mm; >2000 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRILLO SOLAR</td>
<td>11 horas</td>
<td>8 horas</td>
<td>5 horas</td>
<td><5 horas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTITUD</td>
<td>800-1000 msnm</td>
<td>600-800 msnm; 1000-1300 msnm</td>
<td><600 msnm</td>
<td>>1300 msnm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENDIENTE</td>
<td>0 a 7</td>
<td>7 a 12</td>
<td>12 a 25</td>
<td>>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDICIÓN DE DRENAJE</td>
<td>Bien drenado</td>
<td>Moderado, Moderadamente excesivo</td>
<td>Imperfecto</td>
<td>Todos los demás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGIMEN DE HUMEDAD</td>
<td>Udico</td>
<td>Ustico</td>
<td>Todos los demás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXTURA</td>
<td>FA, FAr</td>
<td>FArA, F, FL, FArL</td>
<td>Todos los demás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>5.5 - 6.5</td>
<td>5.0-5.5 ; 6.5-7.0</td>
<td><5.0 ; >7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% SATURACION DE ALUMINIO</td>
<td>Muy Bajo, Bajo</td>
<td>Medio</td>
<td>Alto, Muy Alto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CARBONO ORGANICO</td>
<td>Muy Alto, Alto</td>
<td>Medio</td>
<td>Bajo</td>
<td>Muy Bajo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FERTILIDAD</td>
<td>Muy Alta, Alta</td>
<td>Media</td>
<td>Baja</td>
<td>Muy Baja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENDIENTE</td>
<td>0 a 7</td>
<td>7 a 12</td>
<td>12 a 25</td>
<td>>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFUNDIDAD EFECTIVA</td>
<td>>50 cm</td>
<td>30-50 cm</td>
<td><30 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXTURA</td>
<td>FA, FAr</td>
<td>FArA, F, FL, FArL</td>
<td>Todos los demás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% PEDREGOSIDAD</td>
<td>Muy Poca, Poca</td>
<td>Mediana</td>
<td>Abundante</td>
<td>Muy Abundante, Miscelanea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 3. Clases de restricciones para el componente arbóreo

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS DE LA TIERRA</th>
<th>SIN RESTRICCIÓN</th>
<th>RESTRICCIÓN MODERADA</th>
<th>NO APTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDICION DE DRENAJE</td>
<td>Moderado, Bien drenado, Moderadamente Excesivo</td>
<td>Excesivamente drenado</td>
<td>Muy pobre, Pobrememente drenado</td>
</tr>
<tr>
<td>% SATURACION DE ALUMINIO</td>
<td>Muy Baja, Baja</td>
<td>Media</td>
<td>Alta, Muy Alta</td>
</tr>
<tr>
<td>% CARBONO ORGANICO</td>
<td>Medio, Alto, Muy Alto</td>
<td>Bajo</td>
<td>Muy Bajo</td>
</tr>
<tr>
<td>PROFUNDIDAD EFECTIVA</td>
<td>Profundo, Muy Profundo</td>
<td>Moderadamente Profundo</td>
<td>Muy Superficial, Extremadamente Superficial</td>
</tr>
<tr>
<td>% PEDREGOSIDAD</td>
<td>No hay, Poca, Mediana</td>
<td>Abundante</td>
<td>Muy Abundante, Miscelanea</td>
</tr>
</tbody>
</table>

Anexo 4. Clases de Aptitud para Establecimiento de Sistemas Agroforestales por Municipio

<table>
<thead>
<tr>
<th>MUNICIPIO</th>
<th>AREA (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>El Castillo</td>
<td>12743,49</td>
</tr>
<tr>
<td>Fuentedeoro</td>
<td>25539,25</td>
</tr>
<tr>
<td>Granada</td>
<td>14272,93</td>
</tr>
<tr>
<td>Lejanías</td>
<td>37045,87</td>
</tr>
<tr>
<td>Pueto Lleras</td>
<td>46235,19</td>
</tr>
<tr>
<td>San Juan de Arama</td>
<td>25732,24</td>
</tr>
<tr>
<td>San Martín</td>
<td>129813,93</td>
</tr>
<tr>
<td>TOTAL</td>
<td>291382,91</td>
</tr>
</tbody>
</table>