ESTIMACIÓN DEL POTENCIAL DE PRODUCCIÓN Y DE COSTOS UNITARIOS DEL VIVERO DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

Karen Carolina Díaz Forero
Diego Alejandro Trujillo Cárdenas

Trabajo de Grado en la Modalidad de
Proyecto de investigación para optar al título de Ingeniero Forestal

DIRECTORA: NIRIA BONZA PEREZ
CODIRECTORA: LIZ F. VILLARRAGA FLÓREZ

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES
PROYECTO CURRICULAR DE INGENIERÍA FORESTAL
BOGOTA D.C.
2015
Acuerdo 028 de Junio 02 de 1998:

“La Universidad Distrital no será responsable de las ideas expuestas por el Graduado en el presente trabajo de grado”.
Nota de Aceptación

Dirección

Codirector

Jurado

Jurado

Bogotá D.C. Agosto 5 de 2015
CONTENIDO

1 INTRODUCCION .. 11

2 PLANTEAMIENTO DEL PROBLEMA .. 14

2.1 PREGUNTAS DE INVESTIGACIÓN .. 15

3 JUSTIFICACION .. 16

4 OBJETIVOS .. 18

4.1 GENERAL ... 18

4.2 ESPECÍFICOS .. 18

5 MARCO DE REFERENCIA .. 19

5.1 ESTADO DEL ARTE .. 19

6 MARCO TEÓRICO .. 21

6.1 VIVERO Forestal .. 21

6.1.1 Clasificación y tipos de viveros forestales ... 21

6.1.2 Sistemas de producción de plántulas forestales ... 22

6.1.3 Selección del área para un vivero permanente .. 22

6.1.4 Preparación del vivero ... 25

6.1.5 Diseño y distribución del vivero .. 26

6.2 PROTECCIÓN DEL VIVERO ... 27

6.2.1 Generalidades sobre costos ... 28

6.2.2 Clasificación de costos .. 28

6.2.2.1 Clasificación de costos por divisionales ... 28

6.2.2.2 Clasificación según su grado de variabilidad ... 29

6.2.2.3 Clasificación costos directos e indirectos ... 30

6.2.2.4 Clasificación según sus comportamientos ... 30

6.3 ESTUDIO DE TIEMPOS Y MOVIMIENTOS .. 31

6.3.1.1 Definición y fines del estudio de métodos .. 32

6.3.1.2 Estudio del trabajo ... 32

6.3.1.3 Estudio de tiempos ... 33

7 METODOLOGIA .. 34

7.1 DIAGNÓSTICO ... 34

7.2 CARACTERIZACIÓN DEL PROCESO PRODUCTIVO Y DE LA CAPACIDAD PRODUCTIVA DEL VIVERO DE LA FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES ... 35

7.3 DETERMINACIÓN DE COSTOS UNITARIOS .. 36

7.4 ESTIMACIÓN DE LA CAPACIDAD DE COMERCIALIZACIÓN ... 36

8 RESULTADOS .. 37

8.1 DIAGNOSTICO .. 37

8.1.1 Descripción del área de estudio ... 37

8.1.1.1 Localización .. 37

8.1.1.2 Clima .. 38

8.1.1.3 Tipo de vivero ... 38

8.1.1.4 Infraestructura ... 39

8.1.1.5 Estado actual de las instalaciones e infraestructura del vivero 51
8.1.2 Matriz DOFA...55
8.1.3 Generalidades, misión y visión del vivero...56
 8.1.3.1 Misión ..56
 8.1.3.2 Visión ...57
 8.1.3.3 Objetivos de producción ...57
 8.1.3.4 Objetivos propuestos ..58
8.1.4 Aspectos administrativos ...58
8.1.5 Estructura organizacional...59
 8.1.5.1 Organigrama ..59
8.1.6 Control de actividades ..60
 8.1.6.1 Listado actividades ..60
8.2 CARACTERIZACIÓN DEL PROCESO PRODUCTIVO Y ESTIMACIÓN DE LA CAPACIDAD DE PRODUCCIÓN62
8.2.1 Identificación de procesos productivos...62
 8.2.1.1 Obtención de semilla ...62
 8.2.1.2 Tratamientos pregerminativos ..63
 8.2.1.3 Almacenamiento de semillas ...64
8.2.2 Preparación de eras de germinación..64
8.2.3 Siembra ...65
8.2.4 Riego ..65
8.2.5 Preparación y aplicación de fertilizantes, fungicidas e insecticidas.............................66
8.2.6 Control de la germinación ..66
8.2.7 Preparación de sustrato para embolsado ..66
8.2.8 Embolsado ..67
8.2.9 Condiciones de trasplante ..68
8.2.10 Extracción y verificación fitosanitarios ..69
8.2.11 Poda de raíz ...69
8.2.12 Siembra ..70
8.2.13 Erradicación de herbáceas y de material en mal estado ..70
8.2.14 Selección de material y control de la plántula a entregar ...71
8.2.15 Reorganización del material ...72
8.2.16 Propuesta de la forma de producción del vivero ...72
 Selección de semilla..72
 Almacenamiento del sustrato ...72
 Control de semilla ...75
 Control de la producción ..75
 Seguridad industrial ...77
8.3 ESTIMACIÓN DE LOS COSTOS UNITARIOS PARA LA FASE DEL PROCESO PRODUCTIVO DE 5 ESPECIES FORESTALES78
8.3.1 Descripción del proceso de selección de las especies...78
8.3.2 Costos fijos..80
 8.3.2.1 Costo por depreciación ...80
 8.3.2.2 Costo por el consumo de agua ...81
 8.3.2.3 Consumo de electricidad ...82
8.3.3 Costos variables..83
 8.3.3.1 Costo de la semilla ...83
 8.3.3.2 Costo del sustrato ...84
 8.3.3.3 Costo de insumos químicos ..87
 8.3.3.4 Costo por mano de obra ...88
 8.3.3.5 Costo de agua utilizada en la producción ...90
 8.3.3.6 Costo total variable unitario ..92
8.4 ANÁLISIS COMPARATIVO DEL MERCADO..97
 8.4.1 Análisis del mercado bajo costo de venta ...99
8.4.2 Potencialidades para la comercialización (venta de servicio) 100

9 CONCLUSIONES Y RECOMENDACIONES ... 101

10 REFERENCIAS ... 103

11 ANEXOS ... 106

MANUAL DE PROGRAMA VERTECALC ... 107

Tabla 1. Tipos de era de germinación y sus dimensiones en el vivero de la FAMARENA. .. ¡Error! Marcador no definido.
Tabla 2. Tipos de mesones de crecimiento y sus dimensiones en el vivero de la FAMARENA. .. 43
Tabla 3. Inventario de herramientas. ... 53
Tabla 4. Matriz de debilidades, oportunidades, fortalezas y amenazas. 55
Tabla 5. Personal que labora en el vivero de la FAMARENA 58
Tabla 6. Actividades realizadas en el vivero. .. 60
Tabla 7. Ponderación de las 15 mejores especies según adaptabilidad del clima en Bogotá. ... 79

Figura 1 Diagrama metodológico del trabajo de grado... 34
Figura 2. Ubicación espacial del vivero de la Facultad del Medio Ambiente y Recursos Naturales Universidad Distrital Francisco José de Caldas... 37
Figura 3. Vivero de la Universidad Distrital Francisco José de Caldas, de la Facultad del Medio Ambiente y Recursos Naturales ... 39
Figura 4. Eras tipo 1 ... 41
Figura 5 Eras tipo 2 y 4 ... 41
Figura 6 Eras tipo 3 ... 42
Figura 7 Eras tipo 5 ... 42
Figura 8 Mesón tipo 1(Izquierda) y mesón tipo 2 (Derecha) 44
Figura 9. Mesón tipo 3 ... 44
Figura 10. Caminos y senderos del vivero. ... 46
Figura 11. Oficina administrativa (Izquierda) y cuarto de herramientas (Derecha) 47
Figura 12. Stands del cuarto de herramientas y materiales .. 47
Figura 13. Almacenaje de sustrato .. 48
Figura 14 Tanque de agua .. 49
Figura 15. Estado de las eras (Izquierda) y mesones (Derecha) 51
Figura 16. Estado de los alrededores del vivero .. 52
Figura 17. Estado de las herramientas usadas en el vivero 53
Figura 18. Estado del sistema de riego del vivero .. 54
Figura 19. Organigrama del vivero .. 59
Figura 20. Calidad del llenado de bolsa .. 68
Figura 21. Estado fitosanitario de las plántulas en bolsa 69
Figura 22. Mapa de ubicación de almacenamiento .. 73
Figura 23. Dimensiones propuesta del almacén de sustrato 74
Figura 24. Gráfica de los costos totales unitarios por tipo bolsa 95
Figura 25. Costo unitario de semilla .. 96
Figura 26. Gráfica comparativa entre los costos unitarios del mercado 98

LISTA DE ANEXOS

Anexo 1 .. 106
Anexo 2 .. 107
Anexo 3 .. 119
Anexo 4 .. 120
Anexo 5 .. 121
Anexo 6 .. 124
Anexo 7 .. 125
Anexo 8 .. 126
Anexo 9 .. 127
La presente investigación tuvo como propósitos, realizar un diagnóstico integral del vivero de la FAMARENA de la Universidad Distrital Francisco José de Caldas, y una estimación de la producción vegetal y determinación de costos unitarios, lo cual surgió, a partir de la idea de obtener información base de rendimientos y costos de producción, para que en un futuro, el vivero pueda producir material vegetal para el mercado y no solamente con fines investigativos y académicos. Para ello, se evidenciaron las debilidades, amenazas, fortalezas y oportunidades con las cuales cuenta el vivero, posteriormente se realizó el cálculo de la capacidad productiva, y de acuerdo a ello, se determinaron los costos unitarios de producción, para después, realizar un análisis comparativo y competitivo de estos costos frente a los costos unitarios de producción de otros viveros forestales. El análisis de datos obtenidos, permitió establecer el costo unitario de producción para cinco especie forestales, estos arrojaron como resultado que el menor costo fue para la especie *Alnus acuminata*, seguido del *Dodonaea viscosa*, *Lafoensia speciosa*, *Cedrela montana* y por último, el costo más elevado fue para el *Quercus humboldtii*. Las variables más influyentes para hallar el costo total unitario por especie fueron: el costo unitario de mano de obra, el costo unitario de sustrato por bolsa y el costo unitario por agua. Así mismo, el comparativo que se realizó, con los costos unitarios de producción de otros viveros forestales, demostró que el vivero puede lograr un alto potencial de comercialización de especies forestales, pero aún necesita mejorar distintos aspectos relevantes en la producción (control a la producción, calidad de mano obra, procedencia de la semilla calidad de la misma y proceso de certificación de calidad).
The present research had as objectives, make a comprehensive diagnosis of the nursery, of the Faculty of Environmental, and Natural Resources (FAMARENA), of The Universidad Distrital Francisco Jose de Caldas, and an estimation of the vegetal production and determination of unit costs, which arises with the idea and purpose of obtain base information about yields and costs of production, for what in the future, the nursery can produce vegetal material for the market and not only with academic and research purposes. For this, they showed the debilities, threat, strengths and opportunities, having the nursery, was performed the calculus of the product capacity, according to this, was determined the unit costs of production for perform a comparative and competitive analysis against unit costs of production of other forestry nurseries. The data analysis obtained, allowed determine the unit cost of production for five forestry species, which produced the lowest cost for the *Alnus acuminata*, followed by *Dodonea viscosa*, *Lafoensia speciosa*, *Cedrela montana* and finally with the highest cost *Quercus humboldtii*, where were observed that the variables of most influence for resolve the unit cost total per specie were: the unit cost of workmanship, the unit cost of substrate per bag and the unit cost per water. Likewise, the comparison performed with the unit costs of production of other forestry nurseries, demonstrated, that in this nursery can achieve a high potential of commercialization of forestry species, but still is needed improve other relevant aspects in the production.
Keywords: Production, Commercialization, hatchery, plant material
1 INTRODUCCION

Un vivero forestal es el sitio donde se produce material vegetal requerido para diferentes usos como plantaciones forestales, restauración de áreas degradadas y arborización urbana. Su buen funcionamiento depende de la viabilidad de los proyectos forestales que tienen como insumo base el producto final de un vivero.

Por ello, es importante que el proyecto curricular de Ingeniería Forestal de la Universidad Distrital Francisco José de Caldas, cuente con un vivero con las mejores condiciones (las herramientas adecuadas) que permitan capacitar a sus estudiantes en el conocimiento de habilidades y técnicas que contribuyan a una mejor formación profesional, en donde se identifiquen y repliquen los procesos adecuados de producción.

El vivero de la Universidad Distrital está ubicado en la sede de la Facultad del Medio Ambiente y Recursos Naturales, en el sitio denominado Venado de Oro en la ciudad de Bogotá, Colombia. Este vivero tiene como objetivo brindar un espacio para la capacitación e investigación de los estudiantes de la facultad y un medio pedagógico para que los docentes lleven a cabo los syllabus de las asignaturas del plan de estudios.

En las instalaciones del vivero se producen plántulas forestales, especialmente nativas, fruto de los proyectos de clase desarrollados por los estudiantes de las materias de silvicultura de plantaciones y fisiología. Dicho material en su mayoría es destinado a comunidades y empresas de la zona de Bogotá y sus alrededores.

Este estudio pretende realizar un diagnóstico de la situación actual del vivero de la Facultad del Medio Ambiente y Recursos Naturales de la Universidad Distrital, evidenciando las dificultades que enfrenta, e identificando las falencias que presenta.
frente a un vivero forestal comercial. Para este análisis, se tendrán en cuenta variables tales como insumos utilizados, mano de obra, herramientas, equipos e instalaciones con las que cuenta. Adicionalmente, se realizará una estimación de costos unitarios que permitan a la Universidad definir el margen de precios que puede establecer en caso de que quiera comercializar la producción de dicho vivero.

Tanto el diagnóstico como la estimación de costos unitarios permitieron estimar el potencial que tiene el vivero de la FAMARENA para comercializar la producción de material vegetal que tradicionalmente se lleva a cabo con objetivos meramente académicos.

La elaboración de este análisis empleó diferentes metodologías para hacer el diagnóstico y determinar los costos unitarios. Para el caso del diagnóstico se realizó una entrevista al personal encargado de la administración del vivero esto permitió obtener los procesos del vivero. Además se hizo una caracterización de las instalaciones y de los implementos con que cuenta, un análisis DOFA y rendimientos. Para entender los procesos de producción que se pueden llevar a cabo en el vivero, se comparó la información del diagnóstico con estudios relacionados y de investigación sobre producción de material vegetal en viveros comerciales.

De esta manera, con este proyecto y la información que se ha obtenido se evidenciará si el vivero puede ser competitivo a nivel comercial, permitiendo a la Universidad tomar la decisión de prestar el servicio de venta de material vegetal, si es así, se deberá formular los planes operativos y de inversiones para su adecuado
funcionamiento, los cuales abrirán nuevos espacios de investigación y desarrollo para la misma.
2 PLANTEAMIENTO DEL PROBLEMA

Teniendo en cuenta la vocación de Colombia para la reforestación comercial y los últimos datos de crecimiento del sector, es necesario entender que para asegurar el éxito de la misma, se debe tener claro que son varios los aspectos a considerar para el establecimiento de una plantación: “una adecuada selección del sitio, la especie y la calidad genética del material vegetal, una adecuada silvicultura para el establecimiento y manejo de la plantación y el material vegetal que se produce en el vivero” (Trujillo, 2013).

Ahora bien, la mayoría de los viveros producen para satisfacer la demanda que exige en el mercado, para garantizar la inversión (Rojas, 1999) no obstante, el vivero de la Facultad del Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco José de Caldas no produce para el mercado, su función se encuentra limitada a las funciones misionales de la Universidad Distrital, como son la docencia, la investigación y la extensión; donde se investigan técnicas de producción de material vegetal de alta calidad particularmente de especies nativas.

Hay que resaltar, que las instalaciones del vivero se han venido modernizando, mejorando su infraestructura y adquiriendo nuevos equipamientos. Aun así, la Universidad no cuenta con un estudio detallado de rendimiento y costos del proceso
productivo, lo que genera incertidumbre a la hora de planificar y tomar decisiones con respecto al destino final del material vegetal, los requerimientos de mantenimiento y las potencialidades de comercialización de dicho material. En lo anterior, es donde se centra la importancia y lo oportuno de este proyecto de investigación, donde se considera aprovechar al máximo las potencialidades del vivero en un nivel de mercadeo.

2.1 Preguntas de investigación

- ¿Cuál es el estado actual del vivero forestal de la Universidad?
- ¿Cuáles son los insumos, herramientas y equipamientos usados para el proceso de obtención del material vegetal en el vivero?
- ¿Cuáles son las diferentes actividades y sus tiempos de ejecución?
- Cuál es la cantidad máxima de producción con la capacidad instalada?
- Competencia y/o posibilidades de mercadeo y comercialización
- ¿Cuáles podrían ser los costos unitarios que se generan por la producción de las distintas especies en el vivero?
- ¿Las instalaciones con las que cuenta el vivero, podrían garantizar su competitividad frente a viveros forestales comerciales de la ciudad?
3 JUSTIFICACION

Colombia en términos forestales posee gran riqueza a nivel de suelos, clima y vegetación, ofreciendo un ambiente propicio para la reforestación comercial. En este momento, la mayoría de producción y reforestación comercial se han venido enfocando en especies introducidas dejando a un lado las especies nativas, aun cuando tienen un gran valor comercial; esto debido a la falta de conocimiento y creación de paquetes tecnológicos de las mismas; los cuales generan la necesidad de realizar investigaciones sobre silvicultura de nuestras especies.

La producción, tratamiento y mantenimiento del material vegetal es una de las etapas más consideradas y rigurosas en el momento de establecer una plantación forestal exitosa, dando a entender que en esta etapa se requiere conocimiento, técnicas y tecnologías adecuadas. Estos conocimientos y técnicas no solamente se deben basar en la producción vegetal, sino que deben considerar los aspectos administrativos y económicos que garanticen la rentabilidad de la actividad.

De acuerdo con lo anterior, al obtener materiales de óptimas condiciones a precios equitativos, se garantiza la calidad y el manejo para la implementación de mejores tecnologías. La Facultad del Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco José de Caldas, con su proyecto de Ingeniería Forestal busca ser un motor de desarrollo en la innovación de la temática, por ende tiene las instalaciones pertinentes para desarrollar procesos de obtención de material vegetal forestal.
Un estudio integral de todas las variables y características ya dichas, fortalece la planificación, diseño y establecimiento de un vivero forestal. Es por eso que la Universidad debe contar con un estudio donde se pueda establecer cuál puede ser la productividad, la calidad, el costo de producción unitaria, con el que puede funcionar el vivero, si se decide además de continuar con su función académica, incorporar la venta de servicios y así buscar alternativas para garantizar un nivel de producción a bajo costo, que provea y satisfaga las demandas de las distintas instituciones públicas y privadas que lo requieran.
4 OBJETIVOS

4.1 General

Realizar el diagnóstico integral, la estimación de producción y la determinación de costos unitarios para la obtención de material vegetal en las instalaciones del vivero de la Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas.

4.2 Específicos

- Realizar el diagnóstico de la situación actual del vivero de la Universidad Distrital en el cual se identifiquen sus debilidades, amenazas, fortalezas y oportunidades.

- Determinar los costos unitarios para la producción de las especies más representativas que produce el vivero.

- Estimar la capacidad productiva y de comercialización que podría tener el vivero de la Universidad Distrital.
5 MARCO DE REFERENCIA

5.1 Estado del arte

Según estudios de PROEXPORT COLOMBIA (2012), en Colombia existen 17 millones de hectáreas para la reforestación, de las cuales actualmente solo se están utilizando el 2.06% de este potencial, que equivalen a 350.000 hectáreas de plantaciones forestales (PROEXPORT COLOMBIA, 2012). Lo cual ha permitido que el sector forestal colombiano sea llamativo para los inversionistas extranjeros, al punto de convertirse en uno de los sectores importantes para inversión extranjera directa (PUBLIMETRO, 2013). Para esto es necesario garantizar unas tasas internas de retorno atractivas como las descritas por Cubbage, F, et al., (2010), para las siguientes especies: Eucalyptus spp. (16.6%), Pinus tecunumanii (15.5%), Pinus patula (11.2%) y Pinus maximinoi (14.7%). Estas tasas de retorno dependen considerablemente de los manejos silviculturales, entre ellas la producción en vivero de material vegetal a utilizar (Trujillo, 2013).

Cabe aclarar que los viveros forestales no solo producen para la reforestación comercial, sino también, para la restauración ecológica y la compensación por la deforestación causada por pequeños y grandes proyectos.

Cuando un vivero forestal cuenta con un material de alta calidad y costos razonables, debe mantener una alta eficacia y eficiencia, lo cual se alcanza a través de desarrollar
estudios que permitan implementar mejores tecnologías, trazar alternativas de mercado e identificar gastos innecesarios (Rojas, 1999).

En el 2004 Brenes, publica el informe titulado “Determinación de los costos y rendimientos del proceso productivo en el vivero forestal de teca (Tectona grandis) de la empresa Prime Forestry S.A. Provincia de Chiriquí, Panamá.” El autor concluye que los procesos de la empresa son altamente eficientes y se refleja en los bajos costos de producción.

Para el año 2009 Arias & Díaz efectuaron la investigación nombrada “Determinación de costo y rendimiento para la obtención de material vegetal en el centro de producción forestal en la empresa Semicol” esta investigación en su análisis arroja que la producción de material vegetal de especies nativas genera ventajas y rentabilidad al comparar los costos fijos, costos variables unitarios y precios de venta.
6 Marco Teórico

6.1 Vivero forestal

Un vivero forestal o biofábrica es un sitio donde se producen plántulas con fines distintos, tales como; plantas con fines ornamentales, frutales y maderables (Montes, et. al., 2001).

6.1.1 Clasificación y tipos de viveros forestales

Según Montes, et. al. (2001), los viveros forestales se clasifican en:

- Temporales: Los cuales ocupan un terreno, por un periodo de tiempo determinado y preferiblemente corto. Estos se enfocan a la producción y suministro de material vegetal para proyectos de reforestación donde el acceso a la zona se dificulta o los viveros temporales se encuentran a largas distancias de la misma. Estos viveros se caracterizan por tener infraestructura sencilla, fácil de desarmar y transportar.

- Permanentes: Estos se dedican a la producción de material vegetal en grandes cantidades de forma constante y sostenible. Son los viveros que más requieren estudios en cuanto a su localización, tipo de distribución de sus componentes e infraestructura a emplear. Un vivero permanente generalmente se encarga de proveer material vegetal para grandes extensiones.
6.1.2 Sistemas de producción de plántulas forestales

De acuerdo con Puertas (1992), existen dos formas de producción y obtención de plántulas forestales: por reproducción sexual o generativa, o por reproducción asexual o vegetativa, las cuales las define como:

1. Reproducción sexual o generativa: Unión de dos gametos, lo cual genera una semilla (unión de las células masculinas denominadas polen, con las células reproductoras femeninas denominadas óvulos) que da paso al nacimiento de una planta. Las plantas que cuentan con semillas se denominan espermatofitas, que comprende todos los árboles.

2. Reproducción asexual o vegetativa: Esta se da por medio de una parte de la planta (raíces, tallos y hojas), la cual se desarrolla hasta producir una nueva planta. Este tipo de plantas que se desarrollan asexualmente se les denomina esporófitas.

6.1.3 Selección del área para un vivero permanente

Según la Comisión Nacional Plan Turquino-Manatí (2003), la selección del sitio para la implementación del vivero, debe llevarse con sumo cuidado y todas las precauciones del caso, ya que tanto factores ecológicos como económicos influyen en el éxito o fracaso del vivero. Como mínimo, el vivero debe contar con un área suficiente para todas las actividades y funcionamiento del mismo, además el clima y el suelo deben ser
apropiados, la disponibilidad de agua debe ser considerada por calidad y cantidad, las facilidades de transporte y mano de obra deben ser garantizados por disponibilidad y suficiencia. Además se debe tener en cuenta los siguientes factores:

Localización: Esta dependerá de los caminos, accesibilidad, distancia de transporte, medios de locomoción y distribución de posturas.

Tamaño y forma: Para determinar este aspecto se debe tener en cuenta el método de producción, volumen del plan, la especie y la infraestructura. Una manera de calcular el área total del vivero es por medio del siguiente procedimiento:

1. Calcular el área productiva útil:

 \[A = \frac{VT}{NP} \times 1.1 \]

 Dónde:

 \(A \) = Área productiva útil.

 \(VT \) = Volumen total del plan de producción.

 \(NP \) = Numero de plantas por metro cuadrado.

 1.1 = Constante que adiciona un 10% más de plantas.

2. Dividir la productividad hallada por 20 para calcular el número de canteros a construir (Canteros de 20m x 1m).
3. Multiplicar el número de canteros por 1.3 y se suma la cantidad al área productiva, para obtener el área total productiva que incluye tanto canteros como pasillos.

4. Tener en cuenta el área ocupada por las calles centrales y laterales. Teniendo en cuenta que el vivero está compuesto por: Área productiva útil + Área total productiva + Calles.

5. Valorar el espacio necesario para la infraestructura del vivero como los almacenes, oficinas, cuarto de herramientas, etc.

Suelo: Se recomienda un suelo profundo sobre un subsuelo permeable, sílico y arcilloso, donde las características físicas del suelo son más importantes que su composición química ya que las condiciones de fertilidad se pueden mejorar con fertilizantes.

Si se trata de siembra directa, el pH es muy importante y debe elegirse según la especie, donde para especies coníferas se recomienda un pH de 6 o menos y para latifolias entre 6.5 y 7.5.

Topografía: Para la pendiente de los canteros debe ser entre 2.2 a 1.0 % y hasta un 2.0% la pendiente general. Cuando el vivero es rectangular la pendiente máxima será paralela al lado más corto del vivero.
Fuentes de agua: Para la ubicación del vivero hay que tener en cuenta el abastecimiento de agua tanto en calidad (las sales disueltas en el agua deben ser mínimas) como cantidad (depende de la extensión del vivero, el método de irrigación, la cantidad de lluvia en el año y el carácter del suelo y la especie).

Drenaje: Debe poseer un buen drenaje, para evitar la muerte de la planta por acumulamiento de agua y ahogamiento de raíces. La porosidad y el nivel freático del suelo influyen en el drenaje. Si se quiere mejorar el drenaje se puede dar una inclinación al vivero que no exceda del 2%.

Disponibilidad de fuerza de trabajo: La mano de obra calificada para las labores del vivero debe encontrarse cerca del mismo, para reducir al mínimo su transportación.

6.1.4 Preparación del vivero

La Comisión Nacional Plan Turquino-Manatí (2003), menciona que se debe realizar un levantamiento planimétrico y estudio hidro-técnico y sanitario detallado del suelo, así como un inventario e inspección de la vegetación no deseada. Para lo anterior se tienen en cuenta las siguientes tareas:

Desbroce y limpia: El desbroce se hace necesario si es en un área nueva de creación, donde se procura afectar lo menos posible la capa fértil del suelo. Si es un vivero ya establecido se debe hacer limpieza, ya sea con un buldócer o una niveladora.
Nivelación y distribución de residuos: Esto se puede hacer con una motoniveladora para que el terreno quede lo más llano posible, buscando que los residuos queden dispersos para no interrumpir el drenaje o favorecer la aparición de plagas y enfermedades.

Bancales en zonas montañosas: En zonas montañosas y topografía accidentada, se requiere construir bancales, teniendo en cuenta que la longitud que éste en sentido de la pendiente no exceda el límite permisible para evitar la erosión.

Construcción de zanjas de drenaje: Se requiere la construcción de zanjas de drenaje que ayude a la expulsión del exceso de agua. El tamaño de las zanjas depende del volumen de agua a expulsar.

6.1.5 **Diseño y distribución del vivero**

Las característica del diseño y la distribución obedece al tipo de material vegetal que se produce (raíz desnuda o envases), el tipo de producción (mecanizada o no) y a la capacidad de la misma (Comisión Nacional Plan Turquino-Manatí, 2003).

Cercas: El perímetro del vivero debe estar cercado por lo menos con una o dos puertas de acceso.

Caminos: Se recomienda que las cercas tengan un camino exterior de 6m de ancho, que sirve como barrera entre el vivero y la vegetación exterior.
Oficinas y almacenes: Deben ubicarse cerca a los caminos de acceso, de tal manera que no intervengan en las áreas de trabajo.

Área de producción: Debe garantizar las condiciones ergonómicas para los trabajadores. Dependiendo del tamaño del vivero, ya sea pequeño, mediano o grande, el área de producción puede ocupar entre un 60% - 80% del área total.

Almacenes de productos químicos: Estos deben estar en locales separados, lejos de las áreas donde transitan las personas y animales; deben permanecer secos, frescos, ventilados y señalizados.

Cortinas rompevientos: A veces es necesario la implementación de una cortina rompeviento, para evitar el efecto secante del viento en los canteros.

6.2 Protección del vivero

Para evitar la entrada de animales al vivero se recomienda cercar todo el perímetro del vivero, las puertas de acceso deben cerrarse libremente y que abran hacia afuera, para que no queden abiertas por descuido.

En la entrada principal deben construirse dos puertas, una para el acceso de personal y otra para el tránsito de vehículos. Además es necesario contar con unas instalaciones que garanticen el cuidado y protección de los equipamientos y la maquinaria, como
también un buen almacenamiento de los pesticidas fertilizantes (Comisión Nacional Plan Turquino-Manatí, 2003).

6.2.1 Generalidades sobre costos

El Costo o Coste se define como “valor” sacrificado para adquirir bienes o servicios, que se mide en términos monetarios mediante la reducción de activos o al incurrir en pasivos en el momento en el que se obtiene los beneficios. El Costo constituye el principal fundamento para el costo del producto, la evaluación del desempeño y la toma de decisiones gerenciales. (Polimeni, 1994).

6.2.2 Clasificación de costos

Lo clasificación de costos principalmente usada en la contabilidad de costos es: 1) elementos de costos, 2) costos directos e indirectos, 3) costos por departamento, 4) costos unitarios y 5) costos por divisionales. (Lawrwnce, 1999).

6.2.2.1 Clasificación de costos por divisionales

Costos de producción: es el coste de producir un bien, que se suele calcular sumando materias primas y materiales consumidos, trabajo directo y parte correspondiente de los gastos de estructura de la fábrica. (Elosua, 2007).
Costos de Comercialización: costo que se incurre en la promoción y venta de un producto o servicio. (Polimeni, 1994).

Costos de administración: Se incurren en la dirección, control y operación de una compañía e incluye el pago de salarios la gerencia y al staff. (Polimeni, 1994).

Costos financieros: coste derivado de la financiación con recursos ajenos, y cuya cuantía está formada por el interés y otro tipo de remuneraciones que deben pagarse a quien presta los fondos. (Andersen, 1997).

6.2.2.2 Clasificación según su grado de variabilidad

Costo fijo: Coste que, dentro de amplios márgenes, no varía con el nivel de producción o de ventas. Es fijo en su total, y variable, en su repercusión unitaria. (Elosua, 2007).

Costo variable: aquel que varía en relación directa con el volumen de producción o ventas. Su magnitud cambia en relación directa con los grados de actividad de la empresa. (Greco, 2010).
6.2.2.3 **Clasificación costos directos e indirectos**

Costo directo: es el coste para los que existen evidencia de que corresponde específicamente a un producto, grupo de productos, una sección, etc., y que son, por tanto, proporcionales al número de unidades producidas. Incluyendo el costo de materiales, ajustados por la variación de existencias de materias primas, y coste de la mano de obras directa. (Andersen, 1997).

Costo indirecto: son aquellos que no pueden ser asignados de forma directa a un centro a un producto por ser compartidos entre las unidades de referencia. Estos son repartidos entre las unidades que los comparten en función de su porcentaje de participación. (Andersen, 1997).

6.2.2.4 **Clasificación según sus comportamientos**

Costo unitario: se define el costo total de producción dividido por el número de unidades producidas. Se puede distinguir entre costo unitario fijo, que es igual al costo fijo dividido en el número de unidades producidas, el costo unitario variable que corresponde a el costo variable dividido por las cantidades producidas (Escobar & Cuarta, 2006).
6.3 Estudio de tiempos y movimientos

Rama del conocimiento, que por medio de métodos científicos enfocados al trabajo, se logra evaluar el tiempo y determinar el valor del trabajo que implica la mano de obra, con el fin de hacer un uso práctico de la información obtenida (Mundel, 1963).

Según Mundel (1963), la fase de estudio de movimientos es definida como un procedimiento para el análisis científico de métodos de trabajo, considerando factores a tener en cuenta como: la materia prima, diseño del producto, procesos u orden del trabajo, herramientas equipo y lugar de trabajo para cada etapa del proceso y los movimientos realizados por la mano de obra en las actividades a realizar en el proceso, con el fin de elaborar un método adecuado de trabajo, donde prevalezca la economía monetaria.

La fase de estudio de tiempo o medición del trabajo es el procedimiento para determinar la cantidad de tiempo requerido, necesaria para realizar tareas que implican la actividad humana, bajo unos estándares de medición. Es importante resaltar que las fases de estudio de tiempos y movimientos incluyen todas las fases de actividades, las cuales son, la determinación del método, apreciación del tiempo y desarrollo de material para la aplicación de los datos obtenidos, convirtiéndose todo, en una interacción de fases que se complementan entre sí.
6.3.1.1 *Definición y fines del estudio de métodos*

Según la Organización Internacional del Trabajo (1998), el estudio de métodos es el registro y examen crítico y sistemático de las formas de realizar un trabajo, con el fin de proponer métodos más eficientes y sencillos y así reducir los costos al mínimo posible. Para ello propone los siguientes fines a la hora de ejecutar un estudio de métodos:

- Mejorar los procesos y los procedimientos
- Mejorar la disposición de la fábrica, taller y lugar de trabajo, y a su vez los modelos de máquinas e instalaciones.
- Reducir el esfuerzo humano y el agotamiento innecesario del individuo.
- Mejorar la manipulación y utilización de materiales, maquinaria y mano de obra.
- Crear un ambiente de trabajo favorable, con condiciones y materiales adecuados.

6.3.1.2 *Estudio del trabajo*

El estudio del trabajo es una técnica para establecer, a través de muestreos estadísticos y análisis al azar, el porcentaje de ocurrencia de una actividad puntual (Organización Internacional del Trabajo, 1998).

El estudio del trabajo tiene las siguientes fases (Castanyer, 1988):

1. Determinar la distribución en el tiempo de las distintas ocupaciones, de un operador o grupo de operadores.
2. Determinar el tanto por ciento del tiempo de reposo de la instalación cuando estos tiempos son debidos a causas aleatorias y clasificar estos tiempos por motivos, calculando el tanto porciento correspondiente a cada motivo.

3. Calcular los tiempos normales de las distintas operaciones que se realizan en un determinado proceso, a través del muestreo de tiempos y de factores de actuación.

6.3.1.3 Estudio de tiempos

El estudio de tiempos radica en establecer el tiempo que gasta un operario común con las capacidades apropiadas para desempeñar el trabajo y el conocimiento del mismo. Además con las herramientas adecuadas para ejercer dicho trabajo, con un ritmo de trabajo normal y las condiciones ambientales normales (Palacios, 2009).

Palacios (2009) menciona tres fases que comprende el estudio de tiempos:

- Diseño de actividad nueva o por mejorar.
- Instalación, ajuste, aprendizaje y verificación.
- Estudio de tiempos medios o representativos
7 METODOLOGIA

En la figura 1, se aprecia el proceso metodológico abordado para dar respuesta a los objetivos específicos propuestos inicialmente en este trabajo. Inicialmente, se realizará el diagnóstico, luego la caracterización del proceso productivo y de la capacidad productiva del vivero, seguido de la determinación de los costos unitarios y finalmente una estimación del potencial del vivero para la venta de servicios.

Figura 1 Diagrama metodológico del trabajo de grado

Fuente: El estudio, 2014

7.1 Diagnóstico

Por medio de información secundaria recolectada se realizó un análisis de la infraestructura y la capacidad instalada productiva que tiene el vivero, teniendo en cuenta la cantidad de insumos, equipamientos y herramientas que se deben usar para la producción de material vegetal.

Además se efectuó un levantamiento de información primaria de la capacidad actual que tiene el vivero, y un formato de perfil laboral de la actual mano de obra en el cual
se caracteriza las cualidades productivas, buscando así compararlo con la mano de obra calificada para desarrollar actividades de vivero comercial.

También se hizo una entrevista a la funcionaria encargada del vivero donde se preguntó por las labores repetitivas y no repetitivas en la producción de material vegetal.¹

Por último, con la información recolectada se diseñó una matriz DOFA, con el fin de identificar las debilidades, oportunidades, fortalezas y amenazas del vivero.

7.2 Caracterización del proceso productivo y de la capacidad productiva del vivero de la Facultad del Medio Ambiente y Recursos Naturales

De acuerdo con el diagnóstico que se obtuvo, se identificó un listado de especies con las cuales se calculó las capacidades teóricas productivas del vivero. Este cálculo se hizo con base en información secundaria técnica, arrojando un estimativo del espacio para la producción de cierto número de plántulas, de la cantidad de insumos que se necesitan, de la disponibilidad de mano de obra, de horas máquinas usadas para la producción y el tiempo de germinación y desarrollo de la plántula.

¹ Ver formato de preguntas en el anexo 1
7.3 Determinación de costos unitarios

Se estimaron los costos unitarios teóricos en la capacidad productiva, hallando los costos fijos y variables de la producción prospectiva y dividiéndolos en el número de plántulas que se pueden llegar a producir.

Estos estimativos se obtuvieron usando el software Vertecalc el cual fue estructurado, desarrollado y programado por los realizadores de este proyecto.\(^2\)

7.4 Estimación de la capacidad de comercialización

Con los resultados obtenidos de los costos unitarios por especie, se hizo un análisis comparativo con los precios medios del mercado actual, la ubicación de los viveros, tipo de plántulas producidas y consumidores. De esta manera, se pudo identificar la viabilidad de comercializar las plántulas que produce el vivero a través de un modelo de venta de servicios que pueden tener los laboratorios de la Universidad Distrital.

\(^2\) En el anexo 2 se incluye el manual de usuario del programa.
8 RESULTADOS

8.1 DIAGNÓSTICO

8.1.1 Descripción del área de estudio

8.1.1.1 Localización

Como se aprecia en la figura 2, el vivero de la Facultad del Medio Ambiente y Recursos Naturales de la Universidad Distrital Francisco José de Caldas, está ubicado en Colombia, departamento de Cundinamarca, ciudad Bogotá, en la localidad de La Candelaria, barrio La Concordia, con dirección Avenida Circunvalar – Venado de Oro y Coordenadas: 4° 35´ 53.38” Norte y 74°03´55.23 Oeste.

Figura 2. Ubicación espacial del vivero de la Facultad del Medio Ambiente y Recursos Naturales Universidad Distrital Francisco José de Caldas.

3 http://www.colombiassh.org/site/spip.php?article37 (Consultado 28 – 08- 2013)
4 http://www.luventicus.org/mapas/colombia/cundinamarca.html (Consultado 28 – 08- 2013)
8.1.1.2 Clima

La precipitación de la zona en el cual está ubicado el vivero de la FAMARENA es de 1112 mm anuales con una elevación 2725 msnm. Los meses más lluviosos del año son abril y noviembre siendo el último el de mayor precipitación; los meses más secos contemplan los meses de diciembre, enero y febrero lo que permite concluir un comportamiento bimodal. La temperatura media anual oscila entre 11.4°C y 14.1 °C (Arjona, et. al. 2010).

8.1.1.3 Tipo de vivero

El vivero de la UDFJC, de la FAMARENA, se cataloga como un vivero permanente, porque no está ligado a ningún proyecto específico que contemple un periodo de tiempo determinado. El objetivo de producción de éste, es académico.

En la Figura 3 se observa la entrada al vivero y las características de su construcción, por ser un vivero permanente su edificación es en mampostería.

8.1.1.4 Infraestructura

El área total comprendida por el vivero es de 287.06 m², constituido en su interior por eras de germinación, mesones de crecimiento, caminos, senderos y un área específica para una cámara de germinación.5

Eras de germinación: El vivero cuenta con un área total de eras de germinación de 40,6980 m² que están compuestos por los siguientes tipos de eras:6

Tipo 1: Cuenta con un total de 7 eras con las siguientes dimensiones: 150 cm (ancho) x 15 cm (profundidad) x 87 cm (largo).

Tipo 2: Cuenta con un total de 16 eras con las siguientes dimensiones: 36.5 cm (ancho) x 15 cm (profundidad) x 159 cm (largo).

5 Ver anexo 3. Plano vivero
6 Estas dimensiones se resumen en la tabla 2.
Tipo 3: Cuenta con un total de 6 eras con las siguientes dimensiones: 185 cm (ancho) x 15 cm (profundidad) x 67 cm (largo).

Tipo 4: Cuenta con un total de 8 eras con las siguientes dimensiones: 52 cm (ancho) x 15 cm (profundidad) x 146 cm (largo).

Tipo 5: Cuenta con un total de 2 eras con las siguientes dimensiones: 108.5 cm (ancho) x 20 cm (profundidad) x 404 cm (largo).

Tabla 1. Tipos de era de germinación y sus dimensiones en el vivero de la FAMARENA

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
<th>Profundidad (cm)</th>
<th>Área cm²</th>
<th>N° de eras por tipo</th>
<th>Área total (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era tipo 1</td>
<td>150</td>
<td>87</td>
<td>15</td>
<td>13050</td>
<td>7</td>
<td>91350</td>
</tr>
<tr>
<td>Era tipo 2</td>
<td>36.5</td>
<td>159</td>
<td>15</td>
<td>5803.5</td>
<td>16</td>
<td>92856</td>
</tr>
<tr>
<td>Era tipo 3</td>
<td>185</td>
<td>67</td>
<td>15</td>
<td>12395</td>
<td>6</td>
<td>74370</td>
</tr>
<tr>
<td>Era tipo 4</td>
<td>52</td>
<td>146</td>
<td>15</td>
<td>7592</td>
<td>8</td>
<td>60736</td>
</tr>
<tr>
<td>Era tipo 5</td>
<td>108.5</td>
<td>404</td>
<td>20</td>
<td>43834</td>
<td>2</td>
<td>87668</td>
</tr>
</tbody>
</table>

Estas eras están construidas en bloque con recubrimiento de cemento y una base de ladrillo (exceptuando las eras tipo 5 que están a nivel del piso), con una altura de 74 cm, lo cual permite que el trabajo que se realice en las eras sean ergonómicas, ya que su altura total es de 120 cm (Figuras 4, 5, 6 y 7).
Figura 4. Eras tipo 1

Figura 5 Eras tipo 2 y 4.

Figura 6 Eras tipo 3

Figura 7 Eras tipo 5.

Mesones de crecimiento: El vivero cuenta con un área total de eras de crecimiento de 46,59025 m², compuesta por los siguientes tipos de mesones, los cuales varían con respecto a sus dimensiones como se observa en la tabla 2.

Tipo 1: Cuenta con un 1 mesón de las siguientes dimensiones: 80 cm (ancho) x 8 cm (profundidad) x 903.2 cm (largo).

Tipo 2: Cuenta con un 1 mesón de las siguientes dimensiones: 65 cm (ancho) x 8 cm (profundidad) x 1714.5 cm (largo).

Tipo 3: Cuenta con un total de 6 mesones con las siguientes dimensiones: 201 cm (ancho) x 24 cm (profundidad) x 234 cm (largo).

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
<th>Profundidad (cm)</th>
<th>Área (cm²)</th>
<th>Nº de mesones por tipo</th>
<th>área total (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesón tipo 1</td>
<td>80</td>
<td>903.2</td>
<td>8</td>
<td>72256</td>
<td>1</td>
<td>72256</td>
</tr>
<tr>
<td>Mesón tipo 2</td>
<td>65</td>
<td>1714.5</td>
<td>8</td>
<td>111442.5</td>
<td>1</td>
<td>111442.5</td>
</tr>
<tr>
<td>Mesón tipo 3</td>
<td>201</td>
<td>234</td>
<td>24</td>
<td>47034</td>
<td>6</td>
<td>282204</td>
</tr>
</tbody>
</table>

Estos mesones (figuras 8 y 9), están construidos en bloque con recubrimiento de cemento y una base de ladrillo que tiene una altura de 74 cm, facilitando la acomodación del material vegetal, ya que su altura total es de 100 cm dependiendo del tipo de mesón.
Figura 8 Mesón tipo 1(Izquierda) y mesón tipo 2 (Derecha)

Figura 9 Mesón tipo 3

Al hacer una relación entre el área total de germinación (406.980 cm²) con el área total de crecimiento (365.602 cm²), los valores arrojados nos indican una proporción poco recomendable, puesto que se producen más plántulas de las que caben en el área de crecimiento. Mientras que en el vivero se pueden germinar 102.256 semillas de Cedrela montana, el número de plántulas a obtener solo sería de 1.044, debido a la falta de disponibilidad de área de zonas de crecimiento.

Caminos y senderos: Tanto las eras de crecimiento como los mesones de gaminación están separados por una serie de caminos, que permiten el libre tránsito y transporte de personal, material, herramientas y maquinaria, sin afectar la movilidad y paso por las distintas áreas del vivero. En la figura 10, se puede apreciar que el ancho de los caminos puede variar entre 64.5 cm y 109 cm.
Figura 10. Caminos y senderos del vivero.

Fuente: El estudio, 2014.

Oficina y bodega: Actualmente el vivero cuenta con una oficina administrativa, que se encuentra por fuera de la zona de producción de material vegetal, y un cuarto de herramientas y materiales como se aprecia en la figura 11.
Figura 11. Oficina administrativa (Izquierda) y cuarto de herramientas (Derecha).

En el cuarto de herramientas y materiales se evidencia una falta de organización de los elementos que allí se encuentran, pues los stands no están debidamente etiquetados ni señalizados. Los empaques de los productos agroquímicos, una vez son abiertos, no se cierran ni almacenan en forma adecuada, lo que puede ocasionar accidentes y lesiones de quien los manipula.

Figura 12. Stands del cuarto de herramientas y materiales.

Almacenado de sustrato: Como se puede ver en la figura 13, el área donde se almacena el sustrato está a la intemperie. El vivero actualmente no cuenta con un área específica y adecuada de almacenaje; generando pérdidas del mismo por efecto del viento que lo erosiona, del agua que lo compacta, lo lixivia y erosiona. También altera el pH, y promueve el desarrollo de agentes patógenos peligrosos aumentado el riesgo por encontrarse a escasos metros del área de residuos sólidos, lo que afecta directamente la germinación y crecimiento de las plantas.

Teniendo en cuenta que el sustrato se ubica en la zona de circulación del personal (de la universidad y externos), obstaculiza el paso peatonal y vehicular que transitan por la zona. También prolifera la pérdida de sustrato por transporte involuntario.

Figura 13 Almacenaje de sustrato.

[Imagen de almacenaje de sustrato]

Fuente: El estudio, 2014.
8.1.1.4.1 Disponibilidad de agua

El vivero cuenta con una red de alcantarillado y abastecimiento de agua potable, provista por la empresa de Acueducto y Alcantarillado de Bogotá. A parte de ello, cuenta con un sistema de reserva de agua, acondicionado por un tanque de agua tankplast de capacidad 250 litros. (Figura 14).

Figura 14 Tanque de agua.

8.1.1.4.2 Disponibilidad de mano de obra

Se cuenta con un Asistente administrativo y un ayudante, además de los estudiantes de Ingeniería Forestal, de las asignaturas de Silvicultura de Plantaciones, Fisiología Vegetal, Fitomejoramiento, Biología general, Metodología de investigación y Diseño
Experimental; que realizan sus proyectos de investigación de las asignaturas en las instalaciones del vivero que contribuyen con la producción de material vegetal.

También cuenta con la supervisión y coordinación de actividades por parte del coordinador de laboratorio de silvicultura que es un profesor de Ingeniería Forestal del área de silvicultura, desde finales del año 2013, dicha actividad la ejerce la profesora de Silvicultura de Plantaciones, Niria Bonza Perez, ya que anteriormente el coordinador era el Ingeniero Luis Jairo Silva.
8.1.1.5 Estado actual de las instalaciones e infraestructura del vivero

Eras de germinación y eras de crecimiento: Se encontraron algunas eras y mesones en mal estado por falta de mantenimiento, ya que el recubrimiento de cemento se ha venido desprendiendo y deteriorando debido al uso:

Figura 15 Estado de las eras (Izquierda) y mesones (Derecha).

Alrededores del vivero: Observando la figura 16 se aprecia que principalmente la parte lateral izquierda del vivero se encuentra bastante afectada, debido a la inestabilidad del terreno que progresivamente está provocando el hundimiento y desprendimiento del mismo, deteriorando los alrededores del vivero.
Figura 16 Estado de los alrededores del vivero.

Herramientas y maquinaria: Como se aprecia en la figura 17, el estado de algunas de las herramientas que se usan en el vivero se encuentran en deterioro, solo aquellas que fueron compradas recientemente (dos carretillas y una cernidora con malla) se encuentran en un estado óptimo para usar.
Figura 17. Estado de las herramientas usadas en el vivero

Fuente: El estudio, 2014.

El inventario de herramientas con las que cuenta el vivero actualmente se menciona en la tabla 3:

Tabla 3 Inventario de herramientas.

<table>
<thead>
<tr>
<th>HERRAMIENTAS</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijeras</td>
<td>6</td>
</tr>
<tr>
<td>Rastrillos de mano</td>
<td>10</td>
</tr>
<tr>
<td>Pala de embolsado</td>
<td>6</td>
</tr>
<tr>
<td>Ahoyadores</td>
<td>6</td>
</tr>
<tr>
<td>Carretillas</td>
<td>2</td>
</tr>
<tr>
<td>Palas</td>
<td>2</td>
</tr>
<tr>
<td>Regaderas</td>
<td>4</td>
</tr>
<tr>
<td>Bandejas de germinación</td>
<td>15</td>
</tr>
<tr>
<td>Manguera de riego</td>
<td>2</td>
</tr>
<tr>
<td>Tamiz</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Estudio 2015
Cabe destacar que si se requiere hacer recolección de semillas en campo, existen las herramientas necesarias para dicha labor; se cuenta con una desjarretadera, machete, tijeras, cuerdas, bolsas y nevera para la conservación de las semillas. Además se cuenta con los siguientes equipos para los procesos de germinación: cámara de crecimiento, nevera para el almacenamiento de semillas, estufas y un laboratorio para determinar la calidad de las semillas. Estos equipos en mención son de uso netamente investigativo.

Sistema de riego: El vivero cuenta con un sistema de riego distribuido en las eras de crecimiento, pero actualmente no se encuentran en funcionamiento. Debido al paso del tiempo las tuberías del sistema se han ido deteriorando y rompiendo por falta de uso, como se distingue en la figura 18.

Figura 18. Estado del sistema de riego del vivero

Fuente: El estudio, 2014.

Hay que aclarar que dentro de las instalaciones de la FAMARENA, existe un sistema de riego en uso, el cual está ubicado en el invernadero, el cual está compuesto por: una bomba de riego, micro aspersores y un sistema para programar el riego.
8.1.2 Matriz DOFA

Con esta matriz se pretende describir las principales situaciones identificadas en el diagnóstico, para reconocer los ítems a mejorar, las fortalezas con las que cuenta el vivero en este momento y las oportunidades presentes, buscando así que las directivas correspondientes tomen la decisión de llevar al vivero a otro nivel de producción.

Tabla 4. Matriz de debilidades, oportunidades, fortalezas y amenazas.

<table>
<thead>
<tr>
<th>DEBILIDADES</th>
<th>OPORTUNIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deterioro de las instalaciones por un inadecuado mantenimiento.</td>
<td></td>
</tr>
<tr>
<td>• No cuenta con un manual de funciones para los empleados del vivero.</td>
<td></td>
</tr>
<tr>
<td>• Falta de misión, visión, objetivos de producción, protocolos de producción y de control.</td>
<td></td>
</tr>
<tr>
<td>• No hay una adecuada demarcación de seguridad industrial.</td>
<td></td>
</tr>
<tr>
<td>• No hay posibilidad de ampliación de la infraestructura, debido a la complejidad de los procesos administrativos para realizar dicha ampliación.</td>
<td></td>
</tr>
<tr>
<td>• Creciente necesidad de especies forestales nativas para restauración en la sabana de Bogotá.</td>
<td></td>
</tr>
<tr>
<td>• Existencia de personal adecuado para la identificación y certificación de rodales semilleros.</td>
<td></td>
</tr>
<tr>
<td>• Requerimiento del mercado de productos que provengan de un esquema de certificación en procesos de alta calidad y cadena de custodia.</td>
<td></td>
</tr>
<tr>
<td>FORTALEZAS</td>
<td>AMENAZAS</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>• Investigación permanente por parte de estudiantes y docentes.</td>
<td>• Existencia de Viveros forestales con mayor experiencia, reconocimiento y certificados con procesos de calidad.</td>
</tr>
<tr>
<td>• Ubicación del vivero.</td>
<td>• La inestabilidad organizacional en la institución universitaria</td>
</tr>
<tr>
<td>• Experiencia en la producción de especies nativas.</td>
<td>• Deficiencia en el suministro constante de insumos.</td>
</tr>
<tr>
<td>• Respaldo de la academia - Laboratorios, docentes, material de consulta, entre otros - en los procesos productivos.</td>
<td>• Terreno propenso a deslizamientos.</td>
</tr>
<tr>
<td>• La infraestructura del vivero cuenta con un diseño técnico en cada etapa de la producción, lo que puede garantizar su manejo eficiente.</td>
<td>• Falta de autonomía para la toma de decisiones por parte de los docentes y de quien coordina las actividades desarrolladas en el vivero.</td>
</tr>
</tbody>
</table>

8.1.3 Generalidades, misión y visión del vivero

Los siguientes aspectos fueron propuestos por este estudio, ya que en este momento la instalación del vivero no cuenta con misión, visión y unos objetivos de producción claros.

8.1.3.1 Misión

Promover y realizar investigación silvicultural a través de la producción de material vegetal de alta calidad, principalmente de especies nativas, acorde con las necesidades de manejo forestal sostenible y así mismo la formación de personal universitario para realizar labores de producción y administración de viveros forestales.
8.1.3.2 **Visión**

Para el año 2025, ser un vivero forestal universitario colombiano con reconocimiento a nivel local, regional y nacional; por sus aportes al desarrollo del sector forestal en la producción de plántulas de alta calidad e investigaciones que mejoren los procesos de producción en vivero para la zona alto andina.

8.1.3.3 **Objetivos de producción**

En este momento el vivero solo cuenta con un objetivo:

- Brindar un espacio para la capacitación e investigación de los estudiantes de la Facultad y un medio pedagógico para que los docentes desarrollen sus planes de estudios.

- En las instalaciones del vivero se producen plántulas forestales, especialmente nativas, fruto de las investigaciones realizadas por los estudiantes, las cuales en su mayoría son destinadas a comunidades y empresas de la zona de Bogotá y sus alrededores, como donaciones no generando un beneficio económico real para la universidad.
8.1.3.4 Objetivos propuestos:

Alcanzar una alta participación en el mercado de la producción y venta de material vegetal forestal de especies nativas, mediante la capacitación de profesionales forestales en la producción de material forestal para la restauración y reforestación comercial.

Tener reconocimiento en el ámbito de la producción de material vegetal, por los estándares de calidad genética, fitosanitaria y de innovación.

8.1.4 Aspectos administrativos

En el siguiente cuadro se sintetiza el personal involucrado con las actividades del vivero de la U.D.F.J.D y el rol que cumple en dicho proceso.

Tabla 5 Personal que labora en el vivero de la FAMAREN.

<table>
<thead>
<tr>
<th>Cargo</th>
<th>Función dentro de la producción</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docente encargada del vivero</td>
<td>Administrativo y docente</td>
<td>1</td>
</tr>
<tr>
<td>Docente de las materias relacionas con el vivero</td>
<td>Académico</td>
<td>6</td>
</tr>
<tr>
<td>Laboratorista</td>
<td>Operario</td>
<td>2</td>
</tr>
<tr>
<td>Estudiantes</td>
<td>Operarios</td>
<td>400</td>
</tr>
</tbody>
</table>
8.1.5 **Estructura organizacional**

Este vivero hace parte de la estructura organizacional de la Universidad Distrital. En este momento no todo el personal cuenta con un manual y ni un instructivo de operación.

En la actualidad las decisiones de producción se toman de manera individual con una temporalidad semestral; de acuerdo con la instrucción del docente, los estudiantes deciden qué van a producir, cuánto espacio requieren e informando a los laboratoristas y al profesor.

8.1.5.1 Organigrama

Figura 19. Organigrama del vivero

![Organigrama del vivero](image)

Fuente: Estudio 2015
8.1.6 **Control de actividades**

8.1.6.1 **Listado actividades**
Esta lista de actividades fue identificada por medio de una entrevista al personal:

Tabla 6. Actividades realizadas en el vivero

<table>
<thead>
<tr>
<th>Procedimientos</th>
<th>Actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación de germinadores</td>
<td>Preparación del sustrato</td>
</tr>
<tr>
<td></td>
<td>Llenado del germinador y nivel del sustrato</td>
</tr>
<tr>
<td></td>
<td>Trazado de surco</td>
</tr>
<tr>
<td></td>
<td>Desinfección del sustrato</td>
</tr>
<tr>
<td>Obtención de semillas</td>
<td>Compra o recolección de semilla</td>
</tr>
<tr>
<td>Análisis de las semillas.</td>
<td>Pruebas viabilidad y germinación</td>
</tr>
<tr>
<td>Siembra en germinadores</td>
<td>Distribución y cubrimiento de las semilla</td>
</tr>
<tr>
<td>Mantenimiento de germinadores</td>
<td>Riego</td>
</tr>
<tr>
<td></td>
<td>Preparación y cubrimiento de las semillas</td>
</tr>
<tr>
<td>Embosado</td>
<td>Preparación del sustrato</td>
</tr>
<tr>
<td></td>
<td>embolsado y conformación de eras</td>
</tr>
</tbody>
</table>

7 Ver entrevista en el Anexo 1
<table>
<thead>
<tr>
<th>Trasplante</th>
<th>Desinfección del sustrato</th>
</tr>
</thead>
<tbody>
<tr>
<td>trasplanté, extracción y verificación de estado físico / fitosanitario</td>
<td></td>
</tr>
<tr>
<td>Humedecimiento del sustrato, ahoyado y siembra en bolsa</td>
<td></td>
</tr>
<tr>
<td>Mantenimiento de bolsas</td>
<td>Erradicación manual de maleza y material en mal estado</td>
</tr>
<tr>
<td>Preparación y aplicación de fertilizante, fungicida o insecticida</td>
<td></td>
</tr>
<tr>
<td>Eliminación de material vegetal</td>
<td>Apertura de bolsa, separación de pan de tierra y traslado material y residuos para su disposición final</td>
</tr>
<tr>
<td>Entrega de material</td>
<td>selección y control de calidad de las plantas</td>
</tr>
<tr>
<td>reorganización</td>
<td></td>
</tr>
</tbody>
</table>

Estas actividades se realizan principalmente en las materias de silvicultura y fitomejoramiento.
8.2 Caracterización del proceso productivo y estimación de la capacidad de producción

El proceso productivo que se evaluó en el vivero es la producción de manera sexual y siembra en eras.

8.2.1 Identificación de procesos productivos

La identificación de estos procesos productivos se hace por medio de literatura especializada en viveros, de los cuales se apropián algunos procedimientos, para tomarlos como ítems de evaluación de los procesos productivos que actualmente se realizan en el vivero:

8.2.1.1 Obtención de semilla

8.2.1.1.1 Calidad de la semilla a utilizar:

- Calidad física: Se determina por las condiciones físicas del lote de semillas a usar, teniendo en cuenta el contenido de impurezas, el contenido de humedad y el peso de las semillas.

- Calidad fisiológica: Dadas por las condiciones intrínsecas de la misma semilla que posee el lote: porcentaje de viabilidad y vigor de germinación.
- Calidad genética: Se tiene en cuenta el origen y procedencia genética de la semilla a utilizar.

- Calidad sanitaria: Control fitosanitario de las semillas.

En la actualidad, solamente los estudiantes de la materia de silvicultura de plantaciones realizan los procedimientos de calidad física, fisiológica y sanitaria en el laboratorio de silvicultura, pero no existe un control y garantía de que a esos procesos se le hagan al lote de semillas que se va a sembrar en el vivero. Lo que hace que en este momento no se pueda garantizar una verdadera calidad de la semilla. Además al no existir una calidad genética, no se puede garantizar que el material vegetal producido, sea apropiado para fines de reforestación comercial.

Por lo anterior es necesario exigir la selección de árboles padre, empleando la metodología de calificación fenotípica

8.2.1.2 Tratamientos pregerminativos

De acuerdo con las características de la semilla de una especie determinada, se utiliza tratamiento pregerminativo a fin de lograr uniformidad en el tiempo de germinación y plantación.

En este momento, dentro de los procesos que se realizan en el vivero, no existe una estandarización de estos procesos pregerminativos por especie, ya que esto depende del estudiante que realice la siembra, causando un aumento en tipo y en costos. Lo anterior
quiere decir, que los procedimientos usados para los tratamientos pregerminativos no son viables y no logran el objetivo para el cual se aplican.

8.2.1.3 Almacenamiento de semillas

Las semillas inmediatamente después de recolectadas deben ser almacenadas apropiadamente si es necesario. Si este es el caso en el almacenamiento, las semillas deben encontrarse limpias y secas para luego almacenarlas en bolsas de tela o malla, bien ventiladas, protegiéndolas de la luz directa del sol.

8.2.2 Preparación de eras de germinación

Preparación del sustrato: La mayoría de sustrato para la producción de material vegetal se realiza con la siguiente especificación: una mezcla con 70% de tierra negra previamente zarandeada para retirar rocas o materiales de gran tamaño que puedan afectar el proceso de germinación y la raíz de la planta y un 30% de cascarilla de arroz para permitir mayor aireación y menos compactación del sustrato.

Dentro del vivero forestal de la Universidad, no solo se maneja este tipo de sustrato, sino además se utiliza arena, gravilla, turba y aserrín, lo que no permite una estandarización de procesos en el manejo de sustrato.

Actualmente en el vivero los estudiantes realizan el almacenamiento de semillas sin un protocolo adecuado y un lugar especializado para el almacenamiento.
Llenado de eras de germinación: Para esta actividad, el sustrato se coloca sobre las camas o eras de gernación, buscando el llenado completo de las eras, pero evitando la compactación del sustrato. Esta actividad se repite cada vez que se va a hacer siembra.

Desinfección del sustrato: Para la desinfección del sustrato se utiliza un producto químico ‘’Basamid’’, el cual busca el control y evitar la aparición de patógenos que puedan afectar la germinación y crecimiento de las plántulas. La dosis recomendada es de 50g/m²

8.2.3 Siembra

Tamaño: El tamaño de la semilla nos permite definir la profundidad y densidad de siembra. Para lo anterior, el vivero no aplica ninguna estandarización, permitiendo la aparición de damping off, en caso de densidades de siembra muy altas.

Características del epidermo y ubicación del embrión: La dirección y forma en la que se va a colocar la semilla depende de la ubicación del embrión y el epidermo.

8.2.4 Riego

El día anterior al proceso de siembra se riegan las camas, teniendo en cuenta que por cada m² de sustrato se agregan cuatro litros de agua. Media hora antes de la siembra se repetirá el riego con la misma cantidad de agua. Inmediatamente, después de la siembra
se riega otra vez, pero con menor cantidad de agua aproximadamente un litro por m². Este proceso se realiza para asegurar una relación entre la semilla y el sustrato.

8.2.5 Preparación y aplicación de fertilizantes, fungicidas e insecticidas.

El uso y manejo de fungicidas es primordial para erradicar al grupo de hongos que causan el damping-off.

8.2.6 Control de la germinación

Un factor muy importante a tener en cuenta en el control de la germinación es la humedad constante que rodea a la semilla, la cual debe ser óptima para que no se generen brotes infecciosos y propagación de plagas que pueden generar la muerte o daño del material en germinación.

Actualmente en la Universidad no se tiene en cuenta un plan de control de la germinación. Tampoco cuenta con un protocolo unificado (viabilidad, % germinación, época de germinación, procedencia de la semilla, etc.) para los distintos proyectos ejecutados por los estudiantes, ni estadísticas propias manejadas por el vivero.

8.2.7 Preparación de sustrato para embolsado

Un factor importante para la preparación del sustrato es la calidad del mismo, por ende es necesario tener en cuenta sus características físicas y químicas, la cual promueve un crecimiento rápido y saludable de la plántula. Así bien, se debe tener en cuenta que el
sustrato debe ser equilibrado, es decir, que abarque una disponibilidad de nutrientes para la planta y un buen drenaje.

Para obtener el sustrato neto que se usa en el embozado, es tamizar el sustrato (tierra negra) que busca eliminar piedras, raíces, y otros materiales que afecten el crecimiento de la plántula.

8.2.8 Embolsado

El embolsado se realiza con una mezcla de sustrato neto (70%) y cascarilla de arroz (30%), obteniendo así un sustrato con alto contenido de nutrientes y de difícil compactación.

El llenado se debe realizar ocupando el volumen completo de la bolsa pero sin compactar el sustrato de la misma.

En este momento el proceso de llenado de bolsas no se está efectuando adecuadamente, ya que no se ocupa el volumen total de las bolsas como se observa en la figura 20:
8.2.9 Condiciones de trasplante

Para el momento del trasplante, se verifica que la plántula cumpla con las siguientes condiciones: haya emergido la raíz primaria, que las plántulas todavía sean pequeñas, la aparición del primer par de hojas verdaderas y antes de que se forme las raíces secundarias.

Se riega las bolsas y el semillero un día antes de efectuar el trasplante, de tal modo que el agua permanezca en el fondo.

Existe la posibilidad de producir plántulas en otro tipo de sistemas (raíz desnuda, pellets, bandejas), pero en este momento no se están usando en el vivero.
8.2.10 Extracción y verificación fitosanitarios

En el momento de extraer la plántula para su posterior trasplante, se hace una revisión del estado en el que se encuentra, principalmente para verificar su estado fitosanitario, si se encuentra algún síntoma de ataque por hongos, nemátodo o insectos, es importante descartar, manejar y prevenir nuevos ataques.

Figura 21. Estado fitosanitario de las plántulas en bolsa

![Imagen de plántulas en bolsa]

Fuente: El estudio, 2014.

Como se observa en la figura 19, el proceso de verificación fitosanitario del vivero no se está llevando a cabo correctamente, se logra evidenciar plántulas en mal estado, principalmente por ataque de insectos.

8.2.11 Poda de raíz

La poda de raíz es una práctica muy importante que se realiza en el vivero, para mantener una adecuada proporción entre la raíz y los brotes, indicando un buen manejo de las plántulas, manteniéndolas vigorosas y sanas, lo que después les permitirá adaptarse más rápidamente a nuevos ambientes.
En el vivero, esta práctica se realiza siempre y cuando sea necesaria, cuando exista un abundante desarrollo del sistema radicular lo que dificulta el momento del trasplante a las bolsas o cuando las raíces empiezan a sobresalir por las perforaciones de drenaje de las bolsas. No obstante no se tiene un control ni seguimiento de esta práctica, lo cual implica que no siempre se haga por parte de los encargados.

8.2.12 **Siembra**

Para el momento de la siembra en bolsa, las plántulas luego de ser extraídas de las eras de germinación se colocan en una vasija con agua y a la sombra; para inmediatamente ser plantadas en bolsa. Para ello y ya teniendo listo el sustrato en la bolsa, con un palo se hace un hoyo suficientemente profundo en todo el centro del contenedor, el cual evita que las raíces de la plántula se enrosquen y entren de manera directa, para luego comprimir el suelo cuidadosamente evitando que queden bolsas de aire en el sustrato.

8.2.13 **Erradicación de herbáceas y de material en mal estado**

Esta práctica se realiza tanto en las eras de germinación como en las bolsas, buscando eliminar cualquier tipo de material vegetal que pueda perjudicar a las plántulas en su crecimiento y suministro de nutrientes, eliminando todo aquel tipo de material vegetal ajeno al cultivo.
Así mismo se extraen las plántulas que se encuentran en mal estado por ataques biológicos, ya que pueden llegar a propagar la enfermedad y dañar el resto de material. Actualmente, esta actividad la cumplen los laboratoristas, quienes no tienen un tiempo determinado en sus actividades diarias para esta actividad, por eso es común encontrar individuos muertos en bolsas y gran cantidad de herbáceas.

8.2.14 Selección de material y control de la plántula a entregar

En el momento de seleccionar una plántula de excelente calidad hay que tener varios aspectos entre ellos: que esté libre de enfermedades y vigorosa desde el tallo hasta sus hojas, sin deformidades, que estén acostumbradas a pasar breves periodos de sequía y sobretodo adaptadas a estar a plena luz del sol.

Para verificar los aspectos anteriores, se debe evaluar la calidad de la plántula, lo cual no requiere un equipo especial sino simplemente la capacidad visual y de análisis de quien esté encargado de ello. Se hace una pequeña selección al azar de plántulas por especie, las cuales se evaluarán según los criterios mencionados anteriormente.

Según Villar (2003), las características empleadas para medir los caracteres morfológicos de las plantas, son el tamaño de la planta y su proporción con el resto de partes de las mismas (altura de la parte aérea, diámetro en el cuello de la raíz), en forma cuantitativa; y en forma cualitativa se puede hablar de la presencia de daños o heridas en las plantas.
Este proceso en la actualidad no se lleva a cabo con el rigor necesario, cuando se entrega el material los laboratoristas hacen una verificación rápida del mismo pero no se lleva un registro y control adecuado del material que se entrega.

8.2.15 Reorganización del material

Luego de seleccionar el material vegetal, se procede a reorganizarlo por tipo de especies en las zonas de embolsado, para su posterior entrega a los agentes o instituciones que requieran este tipo de material.

8.2.16 Propuesta de la forma de producción del vivero

Selección de semilla

Este se haría por rodales semilleros previamente identificados o por comercializadores de semillas certificados, que garantice la calidad del material genético de los individuos a producir.

Almacenamiento del sustrato

Se plantea que el lugar para el almacenamiento de sustrato puede estar ubicado como se muestra a continuación:
Figura 22. Mapa de ubicación de almacenamiento

Fuente: Estudio 2015

El diseño del almacén de sustrato se sugiere en la figura 23:
Figura 23 Dimensiones propuesta del almacén de sustrato

Fuente: Estudio 2015
Control de semilla

Se sugiere realizar pruebas de laboratorio para hallar y verificar los porcentajes de pureza y vialidad de los lotes de semilla seleccionados. Con los resultados obtenidos se dará o no la aprobación de siembra.

Estas pruebas se realizarán con los procedimientos ya estandarizados e identificados por el laboratorio de silvicultura de la FAMARENA.

Control de la producción

De acuerdo a lo identificado, no se encontraron registros de producción y control de material vegetal, por lo tanto, se diseñaron unos formatos para dicho registro y control, los cuales se relacionan a continuación:

Control de entrada de material vegetal: El control de ingreso de material vegetal se realizará llenando un formato con el código lote de las semillas (el cual está compuesto por las siglas de la especie, seguido de las siglas del lugar de procedencia, la fecha de recolección y el número consecutivo del lote que se recogió -en el caso de ser recolectadas- o el número de referencia –si son compradas-); el tipo de material, teniendo en cuenta si son semillas o son estacas; la categoría de certificación de la procedencia donde se especifica si es inicial, base, estandarizada, certificada o de alta calidad; el origen del material vegetal, donde se estipula si provienen de árboles madre, huertos semilleros o compradas; el número de ejemplares que se refiere al número de
estacas o semillas que ingresaron; el porcentaje de gminación y enraizamiento hallado en laboratorio; y finalmente la fecha de siembra\(^9\).

Control de la producción: se llenará un formato con el código del lote (antes ya descrito); el porcentaje de germinación real, es el porcentaje de individuos germinado en los viveros después de la siembra y germinación; número plántulas en era; número de plántulas que se trasplantaron en bolsa; tamaño bolsa que se usó; tipo de sustrato que se usó; la aplicación de micorriza; qué tipo micorriza se usó y si presentó alguna afectación fitosanitaria\(^{10}\).

Entrega de material vegetal: El formato está compuesto por la fecha; donde se registra el día, mes y año en que se diligencia la información; el número total de plántulas en vivero en bolsa de la especie que se va entregar; el número de lotes presentes de donde se sacará el material; la cantidad de plántulas a entregar, empresa o institución a quien se le suministra el material; fecha de entrega del material; estado fitosanitario de las plántulas a entregar (regular, bueno y excelente); y cantidad de plántulas desechadas por mal estado\(^{11}\).

\(^9\) El formato de control de ingreso de material vegetal se adjunta en el anexo 5.
\(^{10}\) Observar formato en el anexo 6.
\(^{11}\) El formato se consigna en el anexo 7
El control de la mano de obra se realizará en el formato nombrado registro de mano de obra donde se pone lo día de trabajo y la actividad realizada12.

Seguridad industrial

El vivero de la FAMARENA no cuenta con señalización industrial adecuada dentro de sus instalaciones. La falta de un botiquín apropiado y una camilla de emergencia para cualquier eventualidad o accidente, pueden ocasionar un retardo e inadecuada reacción al momento de atender alguna emergencia, por lo que es aconsejable dotar al vivero de los elementos básicos de primeros auxilios, así como señalizar cada una de las zonas del vivero.

El personal estudiantil no toma las medidas necesarias al momento de realizar los procesos de producción en el vivero, la falta de guantes de protección para las tareas más básicas, como cortar, deshierbar, cernir la tierra, no se tienen en cuenta.

El uso de los elementos de protección recomendados dentro de las actividades del vivero se enumeran a continuación: overol para las labores de siembra y trasplante, las botas de seguridad antideslizantes para el continuo proceso de producción, el uso de tapabocas, guantes y monogafas industriales para la manipulación de agroquímicos.

12 Anexo 8
8.3 Estimación de los costos unitarios para la fase del proceso productivo de 5 especies forestales

8.3.1 Descripción del proceso de selección de las especies

Se realizó la selección de 5 especies forestales para el análisis de los costos unitarios de producción de las mismas. Esta selección tuvo en cuenta las especies del manual de silvicultura de Bogotá ya que el clima de la ciudad es representativo para la sabana y el área de interés principal para la comercialización de vivero. En este mismo manual encontramos 4 diferentes climas, por eso se hace necesario tener especies que tengan la versatilidad de estar en estos climas y una importancia en la comercialización.

En el siguiente cuadro se presenta 15 especies de una ponderación que se hizo en la adaptabilidad de estas para los climas. Esta ponderación se hizo de 100 % a 0%. En el anexo 4 se presentan todas las especies y su ponderación.

Cabe resaltar que la selección de las 5 especies para este proyecto, se hizo con base a la ponderación en cuanto a los mayores valores de las especies que se adaptan mejor a los distintos climas de Bogotá y a su nivel de comercialización, como se aprecia en la tabla 7, las especies señaladas con color salmón, se escogieron teniendo en cuenta su adaptabilidad que es el promedio presentado; también se valoró su presencia en otros estudios para realizar una comparación con estos.
<table>
<thead>
<tr>
<th>Nombre Común</th>
<th>Nombre científico</th>
<th>Zona Húmeda</th>
<th>Zona Subhúmeda</th>
<th>Zona Semiseca</th>
<th>Zona Seca</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucho sabanero</td>
<td>Ficus soatensis</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9.5</td>
</tr>
<tr>
<td>Laurel de cera (h. menuda)</td>
<td>Myrica parvifolia</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9.25</td>
</tr>
<tr>
<td>ciro</td>
<td>Baccharis nitida</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>cedro</td>
<td>Cedrela montana</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Hayuelo</td>
<td>Dodonaea viscosa</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Ciruelo</td>
<td>Prunus capuli</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Holly liso</td>
<td>Pyracantha coccinea Roem</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Higuerillo</td>
<td>Ricinus communis</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Chilco</td>
<td>Bacharis floribunda</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Holly espinoso</td>
<td>Cotoneaser multiflora</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Cajeto</td>
<td>Cytharexylum subflavescens</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Tibar</td>
<td>Escallonia paniculata</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>Cayeno</td>
<td>Hibiscus rosinensis</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>guayacan de Manizales</td>
<td>Lafoensia speciosa</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>liquidambar</td>
<td>Liquidambar dtyraciflua</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>Durazno común</td>
<td>Prunus persica</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8,75</td>
</tr>
<tr>
<td>Sauco</td>
<td>Sambucus nigra</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>Gurrubo</td>
<td>Solanum lycoides</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Chaicala</td>
<td>Tecoma sans</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>Especie</td>
<td>Nombre Científico</td>
<td>Altura Media (m)</td>
<td>Ancho Media (m)</td>
<td>Ancho Media (m)</td>
<td>Ancho Media (m)</td>
<td>Volumen Media (m³)</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Palma de Yuca</td>
<td>Yucca arborescans</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Roble</td>
<td>Quercus humboldtii</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>Dividivi de tierra Fria</td>
<td>Caesalpinia spinos</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8,5</td>
</tr>
<tr>
<td>Eugenia</td>
<td>Eugenia myifolia</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>Brevo</td>
<td>Ficus carica</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>8,5</td>
</tr>
<tr>
<td>Caucho de india</td>
<td>Ficus elastica R.</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Grevillia o robele australiano</td>
<td>Grevillea robusta</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>Chocho</td>
<td>Lupinus Spp.</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Laurel de cera</td>
<td>Myrica pubescens</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Pino chaquiro</td>
<td>podocarpus olegifolius</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>8,5</td>
</tr>
<tr>
<td>Siete de cueros</td>
<td>Tibuchina lepidota</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8,5</td>
</tr>
<tr>
<td>Raque</td>
<td>Vallea stipularis</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8,5</td>
</tr>
<tr>
<td>Corona</td>
<td>Xylosma spiculiferum</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8,5</td>
</tr>
<tr>
<td>Aliso</td>
<td>Alnus acuminata</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>8,25</td>
</tr>
</tbody>
</table>

Fuente: Modificado por el Estudio, 2014, de: tabla de especies recomendadas por zonas de humedad, del Manual de Silvicultura Urbana para Bogotá (2010), págs. 18,19 y 20.

8.3.2 Costos fijos

8.3.2.1 Costo por depreciación

Este costo se evaluó teóricamente teniendo en cuenta lo existente en el vivero. En la tabla 8, se menciona el precio actual de las herramientas usadas y se calcula su depreciación. Este cálculo se realizó de la siguiente manera: se multiplicó el precio por unidad de cada herramienta por la cantidad para obtener la inversión en el año 0 (precio total). Este valor dividió por el tiempo útil de la herramienta da el valor de depreciación.
anual, por ejemplo: el valor unitario de una carretilla es de $100.000 COP, al tener 2 carretillas la inversión fue de $200.000 COP, y la vida útil de estas es de 5 años, por ende la depreciación anual de esta herramienta es de $40.000 COP

Tabla 8. Costo por depreciación

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Cantidad</th>
<th>Vida útil (años)</th>
<th>Precio por unidad ($)</th>
<th>Precio total ($)</th>
<th>Año 1 ($)</th>
<th>Año 2 ($)</th>
<th>Año 3 ($)</th>
<th>Año 4 ($)</th>
<th>Año 5 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carretilla 6 ft</td>
<td>2</td>
<td>5</td>
<td>100000</td>
<td>200000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Machete</td>
<td>4</td>
<td>5</td>
<td>38000</td>
<td>152000</td>
<td>30400</td>
<td>30400</td>
<td>30400</td>
<td>30400</td>
<td>30400</td>
</tr>
<tr>
<td>Pala cuadrada</td>
<td>1</td>
<td>5</td>
<td>23000</td>
<td>23000</td>
<td>4600</td>
<td>4600</td>
<td>4600</td>
<td>4600</td>
<td>4600</td>
</tr>
<tr>
<td>Palín recto</td>
<td>1</td>
<td>5</td>
<td>20000</td>
<td>20000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Tijeras de jardín</td>
<td>4</td>
<td>5</td>
<td>35000</td>
<td>140000</td>
<td>28000</td>
<td>28000</td>
<td>28000</td>
<td>28000</td>
<td>28000</td>
</tr>
<tr>
<td>Manguera de 50 mt</td>
<td>1</td>
<td>5</td>
<td>200000</td>
<td>200000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
<td>40000</td>
</tr>
</tbody>
</table>

La depreciación anual es de $147.000 COP por el total de las herramientas. Al no tener un histórico de plántulas producidas anualmente no se calcula el costo unitario correspondiente a este ítem.

8.3.2.2 **Costo por el consumo de agua**

Se estimó el costo fijo por el consumo de agua teniendo en cuenta que el personal administrativo permanece en las instalaciones, exista o no producción y representa el

81
mayor consumo de la misma. Esto se hizo tomando los valores de consumo promedio por persona en la ciudad de Bogotá y las tarifas industriales por consumo de agua, que maneja el Acueducto de la ciudad, como se puede apreciar en la tabla 9.

Tabla 9. Costo consumo agua

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>83 litros por persona día(^{15})</td>
<td>= 0,083m(^3)</td>
<td></td>
</tr>
<tr>
<td>Costo agua industrial por metro cubico(^{16})(COP)</td>
<td>= $3.465,51</td>
<td></td>
</tr>
<tr>
<td>Costo agua persona día (COP)</td>
<td>= $287</td>
<td></td>
</tr>
</tbody>
</table>

8.3.2.3 Consumo de electricidad

En la tabla 10 se observa el aproximado de consumo de electricidad diario y el costo correspondiente. Este cálculo se realizó teniendo en cuenta que para la producción, ningún equipo es usado, ningún equipo o maquinaria necesita el uso de energía eléctrica para su funcionamiento, es decir que el costo por energía es un costo fijo, ya que no depende de la producción.

\(^{16}\) Estructura Tarifaria Para Los Suscriptores Atendidos En Bogotá D. C 2014. Por La Empresa De Acueducto Colombia. Revisado el 15 de Julio de 2014. http://www.acueducto.com.co/wps/v61/wps/portal/lut/p/c5/hY47DoIqEEXXwgpmeF8oi5KgwNMgCJkxRDE8LEwJuxel0NML0ee88MFDBtr99Nv_N00sWMhEa2JlEf0jIk4Hjupagj42Xguyv03n-EyGIlpcEEnMxkOcWArrsVb72fhMId3Ngak26GKPBoRf_k__8xxYHyE2B-6CtivS4hEr5BiRe-3bPDnxuq1rcRni2GzfH-GGvD-AD2vr90/dl3/dj/0lIDU0kxSWqbrbUhls9JF88QUpQ2d8ek15cXchlzlzRRCVow4bz8GbdEdpCIWHBBREhLzdFOdFtTM35DwTczYRDBJQVFOyDzNnGgRjvMehFYOUnI7KyODY2Mg11/?WCM_PORTLET=PC_7_B1SM7H0007200AEE86343F72_WCM&WCM_GLOBAL_CONTEXT=/wps/wcm/connect/eaabv6/sacueducto/aservicios/aservsecprincipal/serviciostarifas
Tabla 10. Costo del consumo diario eléctrico

<table>
<thead>
<tr>
<th>Costo de hora consumo ($)</th>
<th>Hora de uso</th>
<th>Costo por uso ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kwats/hora</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>0,020 kwats/hora</td>
<td>6.6</td>
<td>8 horas</td>
</tr>
<tr>
<td>por 21 lamparas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,6 kwats/hora</td>
<td>198</td>
<td>4 horas</td>
</tr>
<tr>
<td>por computadora</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo total por día ($)</td>
<td></td>
<td>844.8</td>
</tr>
</tbody>
</table>

8.3.3 Costos variables

8.3.3.1 Costo de la semilla

Los costos de semilla se calcularon usando como base la información de El Semillero S.A.S., donde se encontraba el valor monetario actual por kilogramo de las semillas, el porcentaje de pérdida y el número de semillas por kilogramo. Estos valores se ingresaron al programa Vertecal, el cual realizó el cálculo de costo de semilla por unidad, los cuales se aprecian en la tabla 11. A continuación se muestra la fórmula usada por el programa y un ejemplo con la especie *Cedrela montana*, del uso de la misma.

Formula:

Número de semillas reales = número de semillas x kg – (número de semillas X kg * % de pérdida)

Costo unitario por semilla = costo x kg de semilla / Número de semillas reales

Ejemplo:

Número de semillas x kg: 30485

% de pérdida de semilla durante la producción: 67 %

Costo por kg de semilla: $ 190.000 COP

Número de semillas reales = 30485 - (30485 * 0.67) = 10060

Costo unitario por semilla = 190000 / 10060 = $18.9 COP

<table>
<thead>
<tr>
<th>Especies</th>
<th>Costo de semilla ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus acuminata</td>
<td>1</td>
</tr>
<tr>
<td>Cedrela montana</td>
<td>19</td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
<td>2</td>
</tr>
<tr>
<td>Lafaensia speciosa</td>
<td>6</td>
</tr>
<tr>
<td>Quercus humboldtii</td>
<td>385</td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2015

8.3.3.2 Costo del sustrato

Estos valores se tomaron de acuerdo a la información obtenida de la página web Homecenter20, en el caso de arena, escoria y tierra. Para la cascarilla se tomó el valor suministrado por los proveedores de insumos agrícolas ubicados en la plaza España, en el centro de la ciudad de Bogotá, sacando un promedio de los diferentes valores suministrados por los negocios. En el caso de la turba se usó el valor monetario dado por la empresa El Semillero S.A.S.

Estos valores se tomaron como referencia para calcular el valor por metro cúbico de cada uno de estos sustratos, teniendo en cuenta el valor monetario con respecto al volumen del mismo.

Luego de calcular el valor monetario por metro cúbico se ingresó al programa Vertecalc, el cual calculó el valor unitario de sustrato en el caso de era y en el caso de bolsa, teniendo en cuenta las características de producción en cada caso. Estos valores se aprecian en la tabla 12 y a continuación se muestra un ejemplo para la especie Cedrela montana.

En era:

Diámetro de la semilla (m) = diámetro (cm) / 100
Área de la semilla (m²) = (diámetro de la semilla / 2)² * 3 * π
Costo por sustrato era por individuo = costo del sustrato en m³ *(área de la semilla* 0.15)*(% de uso del sustrato)

Diámetro de la semilla = 1.3cm/100 = 0.013m
Área de la semilla = ((0.013/2)²*3 * π)= 3.98 *10⁻⁴
Costo del sustrato por m³ tierra negra= 60000
Costo del sustrato por m³ arena= 60000
Costo por sustrato era por individuo de tierra = 60000* (área de la semilla * 0.15) *(66*0.01) Costo por sustrato era por individuo = $3 COP
Costo por sustrato era por individuo De arena = 60000* (área de la semilla * 0.15) *(34*0.01) por sustrato era por individuo = $1 COP

En bolsa:
Costo por sustrato bolsa individuo. = costo del sustrato m3 * π * (radio bolsa)2 * altura bolsa *(% de uso del sustrato)
Altura bolsa (m) = 0.14
Radio de bolsa (m) = 0.035
% uso de tierra negra = 80 %
% uso de cascarilla = 20%
Costo del sustrato por m3 tierra negra = 60000
Costo del sustrato por m3 cascarilla de arroz = 50000
Costo por sustrato tierra bolsa individuo. = 60000 * π * (0.035)2 * 0.14 * (0.8)
Costo por sustrato tierra bolsa individuo = $26 COP
Costo por sustrato cascarilla bolsa individuo. = 50000 * π * (0.035)2 * 0.14 * (0.2)
Costo por sustrato tierra bolsa individuo = $5 COP

Entonces para el caso del Cedro, el costo del sustrato en era es de $4 COP, al trasplantarlo a bolsa con una dimensión de 7x14, el costo pasa a ser de $31 COP; en total el costo del sustrato tanto en era como en bolsa es de $35 COP.
Se puede inferir que el porcentaje del costo total del sustrato en bolsa corresponde al 20%, mientras que lo que corresponde al costo del sustrato en era es tan solo el 2.7% del costo total con mano de obra industrial.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Tipo de bolsa</th>
<th>Costo por sustrato en era ($)</th>
<th>Costo por una bolsa ($)</th>
<th>Costo total por sustrato ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus acuminata</td>
<td>7x14</td>
<td>2</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>2</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>2</td>
<td>115</td>
<td>117</td>
</tr>
<tr>
<td>Cedrela montana</td>
<td>7x14</td>
<td>4</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>4</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>4</td>
<td>66</td>
<td>70</td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
<td>7x14</td>
<td>1</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>1</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>1</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>Lafoensia speciosa</td>
<td>7x14</td>
<td>2</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>2</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>2</td>
<td>66</td>
<td>68</td>
</tr>
<tr>
<td>Quercus humboldtii</td>
<td>7x14</td>
<td>129</td>
<td>37</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>129</td>
<td>66</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>129</td>
<td>115</td>
<td>244</td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2105

8.3.3.3 Costo de insumos químicos

El valor de los insumos químicos (basamid y formol) fue obtenido de los proveedores de insumos agrícolas ubicados en la plaza España, en el centro de la ciudad de Bogotá, sacando un promedio de los diferentes valores suministrados por los negocios.

Luego de obtener el valor monetario promedio de los insumos químicos se ingresó al programa Vertecalc, el cual calculó el el costo unitario relacionado con el uso de insumos químicos. Estos valores se observan en la tabla 13.
Costo unitario de agroquímico= valor de producto * gr usados por m³*(áreas desinfectada en era + área desinfectada en bolsa)/ dimensión del producto

Costo unitario de agroquímico= 25000 * 50 * ((3.98*10⁻⁴*0.15) + (π * 0.035*0.14)) /1000 = $0.074 COP

Es de aclarar que el cálculo del costo unitario del agroquímico para todos los casos dio menor a $1 COP.

8.3.3.4 Costo por mano de obra

Este costo se evaluó teniendo en cuenta los rendimientos en tiempo, del posible personal que podría laborar en el vivero. Se tomaron datos teóricos suministrados por CONIF (2002, p.70), tomando en cuenta las siete (7) variables valoradas para este estudio, como podemos apreciar en la tabla 13:

<table>
<thead>
<tr>
<th>Tabla 13</th>
<th>Variables y valores teóricos de los tiempos de mano de obra</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVIDAD</td>
<td>RENDIMIENTO</td>
</tr>
<tr>
<td>Extracción de tierra y preparación (cargar, transportar, descargar, colar la tierra, mezclar, aplicar agroquímicos)</td>
<td>2-5 metros cúbicos por jornal (8 horas)</td>
</tr>
<tr>
<td>Mantenimiento de era de crecimiento (limpiar, marcar y nivelar)</td>
<td>28-30 metros cúbicos por jornal (8 horas)</td>
</tr>
<tr>
<td>Siembra y resiembra (siembra en germinación o resiembra)</td>
<td>(siembra en 400 semillas por hora</td>
</tr>
<tr>
<td>Embolse</td>
<td>800-1300 bolsas por jornal (8 horas)</td>
</tr>
<tr>
<td>Trasplante a bolsa (riego, hoyado, arranque y traslado, trasplante o replante)</td>
<td>200 plántulas por hora</td>
</tr>
<tr>
<td>Deshierba en bolsas</td>
<td>5000 bolsas por jornal (8 horas)</td>
</tr>
<tr>
<td>Traslado y acomodación de bolsas</td>
<td>2300-5000 bolsas por jornal (8 horas)</td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2015

Para el caso del personal que labora con la industria se tomaron los datos del trabajo de grado de Arias & Diaz (2009), expuestos en la tabla 14:
Tabla 14. Variables y valores de la mano de obra industrial.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>RENDIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracción de tierra y preparación (cargar, transportar, descargar, colar la tierra, mezclar, aplicar agroquímicos)</td>
<td>1 metro cúbico en 1 hora y 57 minutos</td>
</tr>
<tr>
<td>Mantenimiento de era de crecimiento (limpiar, marcar y nivelar)</td>
<td>1 metro cúbico en 1 hora y 06 minutos</td>
</tr>
<tr>
<td>Siembra y resiembra (siembra en germinación o resiembra)</td>
<td>1 metro cubico en 1 hora y 11 minutos</td>
</tr>
<tr>
<td>Embolse</td>
<td>1000 bolsas en 2 hora y 50 minutos (se tomó el tiempo mayor)</td>
</tr>
<tr>
<td>Trasplante a bolsa (riego, hoyado, arranque y traslado, trasplante o replante)</td>
<td>1000 plántulas en 4 horas y 35 minutos (se tomó el tiempo mayor)</td>
</tr>
<tr>
<td>Deshierba en bolsas</td>
<td>1000 bolsas en 1 hora y 25 minutos (se tomó el tiempo mayor)</td>
</tr>
<tr>
<td>Traslado y acomodación de bolsas</td>
<td>1000 bolsas en 2 horas y 50 minutos</td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2015

Los tiempos obtenidos en cada caso (industrial y teórico), se ingresaron en el programa Vertecalc, teniendo como supuesto que a los empleados se les paga por tiempo laborado. Además que el sueldo base para este pago es el mínimo legal vigente.

Esto se hizo para calcular el costo unitario de la mano de obra en todo el proceso de producción.

Por ejemplo, para el caso del Alnus acuminata, el costo de acuerdo con el rendimiento industrial es de $208 COP, y el teórico es de $442 COP, lo que arroja en promedio un costo de mano de obra de $325 COP para la producción de un individuo de la especie Alnus acuminata, en una bolsa de 9x18, como se muestra en la tabla 15.

Tabla 15. Costos unitarios por mano de obra.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Tipo de bolsa</th>
<th>Industrial ($)</th>
<th>Teórico ($)</th>
<th>Promedio ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus acuminata</td>
<td>7x14</td>
<td>120</td>
<td>252</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>158</td>
<td>334</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>208</td>
<td>442</td>
<td>325</td>
</tr>
<tr>
<td>Cedrela montana</td>
<td>7x14</td>
<td>94</td>
<td>47</td>
<td>70,5</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>105</td>
<td>52</td>
<td>78,5</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>116</td>
<td>57</td>
<td>86,5</td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
<td>7x14</td>
<td>94</td>
<td>48</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>104</td>
<td>51</td>
<td>77,5</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>116</td>
<td>57</td>
<td>86,5</td>
</tr>
<tr>
<td>Lafoensia speciosa</td>
<td>7x14</td>
<td>94</td>
<td>47</td>
<td>70,5</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>104</td>
<td>52</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>116</td>
<td>57</td>
<td>86,5</td>
</tr>
<tr>
<td>Quercus humboldtii</td>
<td>7x14</td>
<td>253</td>
<td>121</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>335</td>
<td>159</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>444</td>
<td>209</td>
<td>326,5</td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2015

8.3.3.5 Costo de agua utilizada en la producción

Para este ítem se tomaron en cuenta tres variables: cantidad de agua usada en preparación de era, cantidad de agua usada a la semana para riego de era y cantidad de agua usada para bolsas.

Para el primer caso se tomó la información suministrada por CONIF (2002, p.26), donde se muestra un valor de 5 litros por m².

En el segundo y tercer caso, se tomaron en cuenta los datos suministrados por la encargada del vivero de la FAMARENA.

La formulación que usa el programa se describe a continuación:
Cantidad de agua usada para preparación de era por un individuo = Cantidad de agua usada para preparación de era*(área de la semilla* 0.15)

Cantidad de agua usada en era por individuo = Cantidad de agua usada en era *(área de la semilla *0.15)* ((días de germenación + días en era) / 7)

Cantidad de agua usada para riego de una bolsa = Cantidad de agua usada para riego de bolsa semanalmente *(días en bolsa / 7)

Cantidad total de agua usada en la producción de un individuo = Cantidad de agua usada para preparación de era por un individuo + Cantidad de agua usada en era por individuo + Cantidad de agua usada para riego de una bolsa

Costo de agua unitario = Cantidad total de agua usada en la producción de un individuo *3465(costo m3 de agua\(^{22}\))*0.001

En la tabla 16 se evidencian los resultados obtenidos por el programa:

<table>
<thead>
<tr>
<th>Especies</th>
<th>Costo de Agua ($)</th>
<th>Costo por lit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus acuminata</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Cedrela montana</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Lafoensia speciosa</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Quercus humboldtii</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2015

http://www.acueducto.com.co/wps/v61/wps/portal/lut/p/c/s/hY47DoIQEEKXwqpmefBolSkwNmgctkJtxRDE8lEwJuxefiONMioe88 MFDBtr9Nv_N0OsWMhEaZUJfEfoJkRkJhupqj42nzEgoyo3n-EyGilpcEnMkxOmCcWArrv872hJmd3NagatK2G8KpBOkF_k_8xxYRyE2B-6CtiVS4hE5BDIRe-3bPDxN9uq1rcRnl2GzfH-GVd-AD2v9R/dl3/dj/LoIlu0K8WdrbUhei5JFJrj8BQipbQ28bek125oXcLzRbRvo46b9Gbei6c1JWBBRUEh1zdjOFoTVM35DwTczyRD BJKUFOQDYznDNNGRJrMJehFYOJ3NTkYiDY2Mg!!/?WCM_PORTLET=PC_7_B1SMS7H2O072000AAE86343FF2_WCM&WCM_GLOBAL_CONTEXT=wps/wcm/connect/eaabv6/acueducto/aservicios/aservsecprincipal/serviciostarifas
8.3.3.6 Costo total variable unitario

El costo total variable unitario se obtuvo sumando los costos variables unitarios de producción para cada especie. Por ejemplo, para el caso del *Alnus acuminata*, se sumó el costo de la semilla ($1 COP), más el costo por agua ($26 COP), más el costo por una bolsa, que depende del tamaño de la misma ($9 COP, bolsa 7x14), mas el costo de sustrato por era ($2 COP), mas el costo por sustrato en bolsa ($37 COP), mas el costo por desinfectante ($1 COP), mas el costo por mano de obra industrial o teórico ($120 COP ó $252 COP); lo que arrojó un costo total unitario de $196 COP en el caso de mano de obra industrial y $328 COP en el caso de mano de obra teórica. Lo anterior se puede apreciar en la tabla 17.
Tabla 17. Costo variable total unitario.

<table>
<thead>
<tr>
<th>Especie</th>
<th>tipo de bolsa</th>
<th>Costo de semilla ($)</th>
<th>Costo por agua ($)</th>
<th>Costo por una bolsa ($)</th>
<th>Costo por sustrato en era ($)</th>
<th>Costo por sustrato en bolsa ($)</th>
<th>Costo por desinfectante ($)</th>
<th>Costo por mano de obra teórico ($)</th>
<th>Costo por mano de obra industrial ($)</th>
<th>costo total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus acuminata</td>
<td>7x14</td>
<td>1</td>
<td>26</td>
<td>9</td>
<td>2</td>
<td>37</td>
<td>1</td>
<td>120</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7x14</td>
<td>1</td>
<td>26</td>
<td>9</td>
<td>2</td>
<td>37</td>
<td>1</td>
<td>252</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>1</td>
<td>26</td>
<td>10</td>
<td>2</td>
<td>66</td>
<td>1</td>
<td>158</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>1</td>
<td>26</td>
<td>10</td>
<td>2</td>
<td>66</td>
<td>1</td>
<td>334</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>1</td>
<td>26</td>
<td>12</td>
<td>2</td>
<td>115</td>
<td>1</td>
<td>208</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>1</td>
<td>26</td>
<td>12</td>
<td>2</td>
<td>115</td>
<td>1</td>
<td>442</td>
<td>599</td>
<td></td>
</tr>
<tr>
<td>Cedrela montana</td>
<td>7x14</td>
<td>19</td>
<td>39</td>
<td>9</td>
<td>4</td>
<td>31</td>
<td>1</td>
<td>47</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7x14</td>
<td>19</td>
<td>39</td>
<td>9</td>
<td>4</td>
<td>31</td>
<td>1</td>
<td>94</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>19</td>
<td>39</td>
<td>10</td>
<td>4</td>
<td>47</td>
<td>1</td>
<td>52</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>19</td>
<td>39</td>
<td>10</td>
<td>4</td>
<td>47</td>
<td>1</td>
<td>105</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>19</td>
<td>39</td>
<td>12</td>
<td>4</td>
<td>66</td>
<td>1</td>
<td>57</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>19</td>
<td>39</td>
<td>12</td>
<td>4</td>
<td>66</td>
<td>1</td>
<td>116</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
<td>7x14</td>
<td>2</td>
<td>26</td>
<td>9</td>
<td>1</td>
<td>31</td>
<td>1</td>
<td>48</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7x14</td>
<td>2</td>
<td>26</td>
<td>9</td>
<td>1</td>
<td>31</td>
<td>1</td>
<td>94</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>2</td>
<td>26</td>
<td>10</td>
<td>1</td>
<td>47</td>
<td>1</td>
<td>51</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>2</td>
<td>26</td>
<td>10</td>
<td>1</td>
<td>47</td>
<td>1</td>
<td>104</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>2</td>
<td>26</td>
<td>12</td>
<td>1</td>
<td>66</td>
<td>1</td>
<td>57</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9x18</td>
<td>2</td>
<td>26</td>
<td>12</td>
<td>1</td>
<td>66</td>
<td>1</td>
<td>116</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Lafoensia speciosa</td>
<td>7x14</td>
<td>6</td>
<td>26</td>
<td>9</td>
<td>2</td>
<td>31</td>
<td>1</td>
<td>47</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7x14</td>
<td>6</td>
<td>26</td>
<td>9</td>
<td>2</td>
<td>31</td>
<td>1</td>
<td>94</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8x16</td>
<td>6</td>
<td>26</td>
<td>10</td>
<td>2</td>
<td>47</td>
<td>1</td>
<td>52</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rows</td>
<td>Cols</td>
<td>Holes</td>
<td>Z</td>
<td>W</td>
<td>Q</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x16</td>
<td>6</td>
<td>26</td>
<td>10</td>
<td>2</td>
<td>47</td>
<td>1</td>
<td>104</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9x18</td>
<td>6</td>
<td>26</td>
<td>12</td>
<td>2</td>
<td>66</td>
<td>1</td>
<td>57</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9x18</td>
<td>6</td>
<td>26</td>
<td>12</td>
<td>2</td>
<td>66</td>
<td>1</td>
<td>116</td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus humboldtii</td>
<td>7x14</td>
<td>385</td>
<td>26</td>
<td>9</td>
<td>129</td>
<td>37</td>
<td>1</td>
<td>121</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>7x14</td>
<td>385</td>
<td>26</td>
<td>9</td>
<td>129</td>
<td>37</td>
<td>1</td>
<td>253</td>
<td>840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x16</td>
<td>385</td>
<td>26</td>
<td>10</td>
<td>129</td>
<td>66</td>
<td>1</td>
<td>159</td>
<td>776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x16</td>
<td>385</td>
<td>26</td>
<td>10</td>
<td>129</td>
<td>66</td>
<td>1</td>
<td>335</td>
<td>952</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9x18</td>
<td>385</td>
<td>26</td>
<td>12</td>
<td>129</td>
<td>115</td>
<td>1</td>
<td>209</td>
<td>877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9x18</td>
<td>385</td>
<td>26</td>
<td>12</td>
<td>129</td>
<td>115</td>
<td>1</td>
<td>444</td>
<td>1112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Las variables con mayor incidencia dentro del costo total unitario de la producción por cada especie es el tipo de bolsa que a su vez condiciona el sustrato usado en bolsa y la mano de obra usada durante el proceso de producción. Estos costos aumentan proporcionalmente al tamaño de bolsa que se va a usar. Esto se evidencia en la figura 24.

Figura 24. Gráfica de los costos totales unitarios por tipo bolsa.

![Gráfica de los costos totales unitarios por tipo bolsa](image)

Fuente: Estudio, 2015

Con la anterior figura, se infiere que los costos totales unitarios aumentan con los tiempos teóricos de mano de obra, comparados con los tiempos de mano de obra industrial, esto se debe al mayor tiempo que usa la mano de obra teórica para una actividad.

Se evidenció que el diámetro de la semilla afecta el costo de la misma. El cual se representa en la figura 25:
Figura 25. Costo unitario de semilla

Esta ocurre puesto que a mayor diámetro de la semilla, la masa de la misma es mayor y el número de semillas por kilogramo es menor, lo que hace que el costo de la semilla losopese unos pocos individuos. Un claro ejemplo de esta situación es el *Quercus hunboldtii* que por kg de semilla solo tiene 150 individuos es decir que el valor de cada semilla por individuo es de $385 COP.

Fuente: Estudio, 2015
8.4 Análisis comparativo del mercado

Para realizar el análisis comparativo se tomaron en cuenta los datos de los costos totales unitarios de los estudios hechos por Rojas (1999) y Arias & Díaz (2009), los cuales fueron traídos a valor presente. Estos valores se confrontaron con los valores de costos totales unitarios industriales y teóricos hallados en este estudio. Esta confrontación se realizó por cada especie evaluada y se puede evidenciar en la tabla 18.

Tabla 18. Comparativa de costos totales unitarios entre el mercado por especie.

<table>
<thead>
<tr>
<th>Tipo de bolsa</th>
<th>Costos calculados por Arias, 09 ($)</th>
<th>Costos calculados por Rojas, 99 ($)</th>
<th>Industrial ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x16</td>
<td>357,0377856</td>
<td>349,447285</td>
<td>172</td>
</tr>
<tr>
<td>9x18</td>
<td>391,7830735</td>
<td>332,5418706</td>
<td>198</td>
</tr>
<tr>
<td>8x16</td>
<td>295,9340035</td>
<td>301,5486109</td>
<td>264</td>
</tr>
<tr>
<td>9x18</td>
<td>330,6792914</td>
<td>332,5418706</td>
<td>365</td>
</tr>
<tr>
<td>8x16</td>
<td>303,1226838</td>
<td>294,2641641</td>
<td>191</td>
</tr>
<tr>
<td>9x18</td>
<td>337,8679716</td>
<td>446,619057</td>
<td>165</td>
</tr>
</tbody>
</table>

Fuente: Estudio, 2015
Figura 26. Gráfica comparativa entre los costos unitarios del mercado

![COSTOS COMPARATIVOS](image)

Fuente: Estudio, 2015

Lo anterior, muestra que los costos unitarios totales industriales y teóricos exceptuando el caso del *Alnus acuminata* para los teóricos comparados con los del mercado están en el intermedio de los mismos y para algunas especies en menor costo que las del mercado.

Es importante aclarar que los valores comparados de costo total unitario de los otros viveros son para producciones de más de 2000 plántulas y en el vivero de la FAMARENA es para menos de 1200 plántulas dependiendo de la especie. Esto permite que el vivero de la FAMARENA pueda atender y abastecer medianos y pequeños consumidores. La cual es una ventaja frente a los competidores, ya que en las pequeñas producciones aumentan sus costos de producción.
Hay que tener en cuenta, que la ubicación del vivero de la FAMARENA (en el centro de la ciudad de Bogotá), tiene ventajas a nivel comparativo por la reducción de costos de transporte de las plántulas para el comprador.

8.4.1 Análisis del mercado bajo costo de venta

<table>
<thead>
<tr>
<th>Tabla 19. Comparativo de precio de venta</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° Plantulas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Alnus acuminata</td>
</tr>
<tr>
<td>N° Plantulas</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Dodonaea viscosa</td>
</tr>
<tr>
<td>N° Plantulas</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Lafoensia speciosa</td>
</tr>
<tr>
<td>N° Plantulas</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Quercus humboldtii</td>
</tr>
<tr>
<td>N° Plantulas</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Estado, 2015
*estas empresas tienen el mismo costo para las plántulas sin importar especie

Comparando los precios de venta de otros semilleros presentes en la sabana de Bogotá, el de la FAMARENA tiene un gran potencial para competir por precios. Para la única especie en la cual los costos de producción son mayores o casi iguales al de venta
es del Quercus humboldi, como se puede ver en la tabla #. Es necesario tener cuenta que el precio dado por Geoambiente es estandarizado para todas las especies, al igual que el de Semicol, donde se aprecia que los precios por plántula son muy elevados.

8.4.2 Potencialidades para la comercialización (venta de servicio)

El vivero de la FAMARENA cuenta con un potencial de comercialización de plántulas nativas no solo por el tipo de especies que puede producir y el valor por ser nativas sino también, por la escala de producción que puede manejar, ya que en algunos viveros ponen condiciones de cantidad de producción para los pedidos y costos, por la versatilidad del vivero de la Universidad esto no sería una restricción para la comercialización de dichas especies.

La producción de especies nativas no es la única alternativa que puede ofrecer el vivero de la FAMARENA, al contar con laboratorios de silvicultura y fitomejoramiento en sus instalaciones se puede llegar a prestar servicios de pruebas de laboratorio para semillas (calidad, viabilidad, germinación). Además se pueden realizar investigaciones para la mejora de los paquetes tecnológicos de especies nativas e introducidas, y dar asistencia técnica para plantaciones y viveros en formación y ya implementados.
CONCLUSIONES Y RECOMENDACIONES

El vivero en su parte operativa de control presenta falencias que no permiten que se garantice la calidad y control del material vegetal producido, por falta de registro, lo que dificultad las posibilidades de comercialización del material.

La infraestructura del vivero cuenta con un diseño apropiado para una producción de alta calidad. Sin embargo estas instalaciones se están subutilizado, además evidencian deterioro por falta de mantenimiento preventivo, lo cual puede llegar a afectar la capacidad de la infraestructura.

Se hace necesario articular la producción con la parte investigativa ya que aun cuando sea parte de los objetivos del vivero, esta debe articularse a las necesidades del mercado así garantizado la salida de la producción de material vegetal y que la investigación enriquezca los procesos productivos del vivero.

Se concluye que el tipo de mano de obra que se usa para la producción influye directamente en el costo total unitario de la producción, puesto que durante este trabajo cuando se usaron los tiempos teóricos de mano de obra, los costos subieron en promedio $235 COP, puesto que los tiempos de una persona que trabaja en la industria son menores que una persona no experimentada, por eso el tiempo requerido va ser menor y los costos disminuirán.
El vivero de la FAMARENA tiene un alto potencial de comercialización de especies forestales pero es necesario tener un mejor sistema de producción que garantice la calidad de las plántulas, el control y la mejora en los tiempos de producción.

Dentro del documento ya se han presentado las diferentes recomendaciones que pueden ayudar a la mejora del vivero, dentro de ellas se encuentran: el almacenaje del sustrato, control de semillas para producción, el control de la producción, la realización de mantenimiento de las instalaciones del vivero, protocolos y señalización de seguridad industrial específicamente en bodega y señales de seguridad, control fitosanitario de las semillas y plántulas del vivero, un manual de funciones y finalmente tener claro los objetivos de producción, la misión y visión del mismo.

Fuera de lo anterior se recomienda una articulación con las áreas de sanidad forestal para la prevención y control de agentes patógenos para las plántulas producidas en el vivero. También con el herbario de la universidad para la identificación de posibles fuentes semilleras.
Bibliografía

Brenes, J. (2004). *Determinacion de los costos y rendimientos del proceso productivo en el vivero forestal de teca (Tectona grandis) de la empresa Prime Forestry S.A. Provincia de Chiriqui - Panama*.

PUBLIMETRO. (01 de 04 de 2013). *Nuevas Industrias Dominan el Mercado del Pais*, pág. 6.

Cibergrafía

Tesis y Trabajos de Grados

11 Anexos

Anexo 1

Perfil laboral “tipo estudiantes: que semestre pertenecen y cuántos son"
Tipo de marco actividades se hace en el vivero
Nombre
Época
Insumos y cantidades usadas por macro actividad
Fuentes de estos insumos “lugar de procedencia
Frecuencia de llegado de insumos al vivero
Como se escogen la procedencia de los insumos
¿Con qué herramienta se cuenta?
¿Se realiza mantenimiento y quién lo hace?
¿Cómo se puede adquirir el material vegetal y quiénes lo adquieren?
¿Para qué tipo de actividad los adquieren?
¿Cuál es el plano actual del vivero?
¿Cuál es la temporalidad o frecuencia con la que se hace el mantenimiento a las instalaciones y cómo se toma esta decisión?
¿Cuáles son las especies con mayor frecuencia de producción?
¿Qué tipo de producción se puede hacer (raíz desnuda, pelles, bandejas……)?
¿Qué protocolos de seguridad industrial maneja vivero?
¿Cuáles son los mínimos exigidos para trabajar en el vivero?
¿Qué accidente han sufrido en los últimos años?
¿Cómo es el orden administrativo del vivero?
¿Cuál es la misión, visión y objetivos?
¿Cómo se hace el control de calidad de producción?
La aplicación informática “programa Vertecalc” tiene como objetivo principal posibilitar al profesional forestal en el área de la producción de material vegetal en etapa de vivero hallar costos variables unitarios de las especies manejadas en el vivero. Esta aplicación se caracteriza porque es accesible a través de la web, interactiva y sencilla de utilizar, ya que su funcionamiento es intuitivo y requiere poco tiempo para dominarlo.

Los autores nos hemos basado en los cálculos que se usa en los textos y diversos trabajos de investigación para hallar los costos variables unitarios, pero en este momento no se cuenta con programas que faciliten esta tarea.

Hemos elegido los costos por semilla, agua, sustrato, desinfectante y mano de obra como ítems que engloban variables que son el macro para el cálculo de los costos variables unitarios.

En todos los casos se describen las bases científicas en las que se fundamentan los programas, incluyendo la bibliografía más relevante, y se realiza la descripción detallada de cada uno de los cálculos.
DESCRIPCIÓN DEL FUNCIONAMIENTO

La aplicación cuenta con unos cálculos preestablecidos para diferentes especies, sustratos, mano de obra entre otras variables que se ajusten más a la realidad de producción de los viveros, permitiendo observar cómo se va configurando el costo variable unitario.

Desde la PANTALLA PRINCIPAL se puede elegir el número de plántulas o el área que va a usar en el vivero. En este caso está restringido a la capacidad del vivero de la FAMARENA.
Además encontramos el acceso a la página que contiene la información del sustrato en la parte final.
Esta pantalla en la parte inferior, permite acceder a la pantalla que contiene la información de mano de obra y de volver a la pantalla inicial. A su vez, permite escoger el tipo de sustrato y el porcentaje de uso del mismo que se emplean en la etapa de germinación y de bolsa. También el tipo de desinfectante de sustrato y la cantidad usada en un m³.
PANTALLA TRES:

En esta página en la parte superior permite escoger el tipo de mano de obra que se va a usar y en la parte inferior tenemos la opción de obtener los costos o de volver a la pantalla anterior.
11.1 ESTRUCTURA DEL PROGRAMA

Esta aplicación consta de varias pantallas por las que el usuario se podrá mover y pasar de una a otra para obtener los costos variables unitarios.
1. PANTALLA PRINCIPAL

- **Nombre de especie**
- **Capacidad de producción**
- **Tiempos de producción**
- **Información de semilla y bolsa**

- **Cantidad de agua a usar**

Name of species

Capacity of production

Production times

Seed information and bag
11.1.1 DESCRIPCIÓN

Esta pantalla tiene varias variables que permite el ingreso de información.

Nombre de especie: en este ítem se llena el nombre de la especie a usar.

Capacidad de producción: en esta parte del programa se presenta un radio button que permite escoger entre el número de plántulas a producir o el área a usar.

Tiempos de producción: en este ítem se estima el tiempo que se necesita para la producción de una especie determinada, como el tiempo en era, en bolsa y germinación.

Información de semilla y bolsa: allí se considera la información acerca de los costos de bolsa y semillas y su cantidad.

Cantidad de agua a usar: es contemplado el tema de consumo de agua por semana en la producción.
2. PANTALLA DE SUSTRATO

<table>
<thead>
<tr>
<th>Tipo de sustrato en era</th>
<th>Tipo de sustrato usado en bolsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tierra</td>
<td>Tierra</td>
</tr>
<tr>
<td>Arena</td>
<td>Arena</td>
</tr>
<tr>
<td>Cascarra</td>
<td>Cascarra</td>
</tr>
<tr>
<td>Textil</td>
<td>Textil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cantidad de desinfectante usado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disuelto por x2</td>
</tr>
<tr>
<td>Permanente por x2</td>
</tr>
</tbody>
</table>

Tipo de bolsa

Tipo de sustrato usado en bolsa
11.1.2 DESCRIPCIÓN

Esta pantalla de sustrato contiene diversas variables que permite el ingreso de información.

Tipo de sustrato en era: un check list que permite seleccionar el tipo de sustrato que se va usar en era y el porcentaje de uso de cada uno de los sustratos seleccionados.

Tipo de sustrato en bolsa: un check list que permite seleccionar el tipo de sustrato que se va usar en bolsa y el porcentaje de uso de cada uno de los sustratos seleccionados.

Tipo de bolsa: permite seleccionar el tamaño de bolsa a usar.

Tipo de desinfectante: selección de tipo de desinfectante del sustrato que se usa y la cantidad del mismo.
Si se elige la opción “otro tiempo” este mismo formulario desplegará unas variables que permite calcular el tiempo usado por la mano de obra para producción de una plántula. Hay que tener en cuenta que esta opción permite el cálculo especializado para una mano de obra en específico. En caso de las otras opciones no será necesario el ingreso de valores.
11.1.3 **DESCRIPCIÓN**

Esta pantalla de mano de obra tiene una opción que permite el ingreso de información a variables ya determinadas.

Opciones de tipo de mano de obra: es un radio button que permite escoger el tipo de mano de obra que se desea evaluar.

DESCRIPCION DE LA OPCION DE “OTRO TIEMPO”

En esta opción encontramos unas variables de tiempo las cuales se hacen de obligatoria respuesta, para el cálculo del tiempo de mano de obra.

11.1.4 Funcionamiento:
Anexo 3
<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Zona Húmeda</th>
<th>Zona Subhúmeda</th>
<th>Zona Semiseca</th>
<th>Zona Seca</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucho sabanero</td>
<td>Ficus soatensis</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9,5</td>
</tr>
<tr>
<td>Laurel de cera (h. menuda)</td>
<td>Myrica parvifolia</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9,25</td>
</tr>
<tr>
<td>cielo</td>
<td>Bacchiris nitida</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>cedro</td>
<td>Cedrela montana</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Hayuelo</td>
<td>Dodonaea viscosa</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>ciruelo</td>
<td>Prunus capuli</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Holly liso</td>
<td>Pyracantha coccinea Roem</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Higuerillo</td>
<td>Ricinus communis</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>chilco</td>
<td>Bacharis floribunda</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Holly espinoso</td>
<td>Crotoneaster multiflora</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Cajeto</td>
<td>Cytharexylum subflavescens</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Tibar</td>
<td>Escallonia paniculata</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>cayeno</td>
<td>Hibiscus rosasinensis</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>guayacan de manizales</td>
<td>Lafoensia speciosa</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>liquidambar</td>
<td>Liquidambar dtyraciflua</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>Durazno comun</td>
<td>Prunus persica</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8,75</td>
</tr>
<tr>
<td>Sauco</td>
<td>Sambucus nigra</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>gurrubo</td>
<td>Solanum lycioides</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Chaicala</td>
<td>Tecoma sans</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>8,75</td>
</tr>
<tr>
<td>Palma de Yuca</td>
<td>Yucca arborescans</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8,75</td>
</tr>
<tr>
<td>Roble</td>
<td>Quercus humbioldtii</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>Dividivi de tierra Fria</td>
<td>Caesalpinia spinos</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Eugenia</td>
<td>Eugenia myifolia</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>Brevo</td>
<td>Ficus carica</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>8,5</td>
</tr>
<tr>
<td>Cauchode india</td>
<td>Ficus elastica R.</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Grevilla o robelle australiano</td>
<td>Grevillea robusta</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>8,5</td>
</tr>
<tr>
<td>chocho</td>
<td>Lupinus Spp.</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Laurel de cera</td>
<td>Myrica pubescens</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8,5</td>
</tr>
<tr>
<td>Pino chaquiro</td>
<td>Podocarpus olegifolius</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>8,5</td>
</tr>
<tr>
<td>Siete de cueros</td>
<td>Tibuchina lepidota</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8,5</td>
</tr>
<tr>
<td>Raque</td>
<td>Vallea stipularis</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8,5</td>
</tr>
<tr>
<td>Corono</td>
<td>Xylosma spiculiferum</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8,5</td>
</tr>
<tr>
<td>Aliso</td>
<td>Alnus acuminata</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>8,25</td>
</tr>
<tr>
<td>Carbonero rojo</td>
<td>Calliandra carbonaria</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,25</td>
</tr>
<tr>
<td>Espino</td>
<td>Durana mutisii</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8,25</td>
</tr>
<tr>
<td>Morño</td>
<td>Hesperomeles goudotiana</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>8,25</td>
</tr>
<tr>
<td>alcaparro enano</td>
<td>Myrcianthes leucoxyla</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,25</td>
</tr>
<tr>
<td>Plama de coquio</td>
<td>Parajubaea cocoides</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>8,25</td>
</tr>
<tr>
<td>Cedrillo</td>
<td>Phyllantus salviaefolius</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8,25</td>
</tr>
<tr>
<td>Cerezo</td>
<td>Prunus seroina ssp</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8,25</td>
</tr>
<tr>
<td>Falso pimiento</td>
<td>Schinus molle</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8,25</td>
</tr>
<tr>
<td>Alcaparro Doble</td>
<td>Senna Viarum</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8,25</td>
</tr>
<tr>
<td>Abutilon</td>
<td>Abuilon insigne</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Trompeto</td>
<td>Bocconia Fruescens</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Carbonero</td>
<td>Calliandra pittieri</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Mangle de ierra fria</td>
<td>Escallonia pendula</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Noga</td>
<td>juglans neotropica</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Jazmin de la china</td>
<td>Ligustrum Lucidum</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Palma fenix</td>
<td>Phoenix canariensis</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Jazmin del cabo</td>
<td>Pittosporum undulatum Ventenat</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Palma de cera</td>
<td>Ceroxylon quindiuense</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>7,75</td>
</tr>
<tr>
<td>Sangregao</td>
<td>Croton bogoanus</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>7,75</td>
</tr>
<tr>
<td>Platano de tierra Fria</td>
<td>Ensee Ventricusum</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>7,75</td>
</tr>
<tr>
<td>Magnolio</td>
<td>Magnolia Grandiflora</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7,75</td>
</tr>
<tr>
<td>Cucharro</td>
<td>Myrsine guianesis</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>7,75</td>
</tr>
<tr>
<td>Pino romeron</td>
<td>Retrophylum rospigliosii</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>7,75</td>
</tr>
<tr>
<td>Duraznillo</td>
<td>Abatia paviflora</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>7,5</td>
</tr>
<tr>
<td>Sauce</td>
<td>Salix humboldtiana</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>7,5</td>
</tr>
<tr>
<td>Yarumo</td>
<td>Cecropia telenitida</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7,25</td>
</tr>
<tr>
<td>Tuno roso</td>
<td>Centronia spp</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>7,25</td>
</tr>
<tr>
<td>Mano oso</td>
<td>Oreopanax floribundum</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>7,25</td>
</tr>
<tr>
<td>Hojasco</td>
<td>Talauma cariciflora</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6,75</td>
</tr>
</tbody>
</table>
Anexo 6

<table>
<thead>
<tr>
<th>Código del lote</th>
<th>Tipo de material (1)</th>
<th>Categoría (2)</th>
<th>Origen del material (3)</th>
<th>fecha de ingreso</th>
<th>Número de ejemplares</th>
<th>% de Germinación o Enraizamiento</th>
<th>Fecha de Establecimiento o Siembra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Semillero, Estaquillado
(2) Categoría: Inicial (I), Base (B), Certificada (C), Estándar (E) o CAC.
(3) PM = Plantas madres; PC = Plantaciones comerciales; C = Compradas.

EL RESPONSABLE DE LA ENTIDAD:
Poner el número de registro del vivero suministrador.
CONTROL DE LA PRODUCCIÓN

<table>
<thead>
<tr>
<th>Código del lote</th>
<th>% DE GERMINACION</th>
<th>Nº Plántulas en era</th>
<th>Nº trasplantaron en bolsa</th>
<th>Tamaño de bolsa</th>
<th>Tipo de sustrato</th>
<th>Aplicación micorriza</th>
<th>Tipo micorriza</th>
<th>Afectación fitosanitaria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecha</td>
<td>Nº total de plántulas en bolsa de x especie</td>
<td>lotes presentes</td>
<td>Cantidad de plántulas a entregar</td>
<td>empresa a la que suministra</td>
<td>fechas de entrega</td>
<td>estado fitosanitario</td>
<td>Plantas desechadas</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 9

CONTROL DE MANO OBRA

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Día</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
<th>XVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código de trabajo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Ausencia por razón de salud</td>
<td></td>
</tr>
<tr>
<td>II. Preparación de sustrato</td>
<td></td>
</tr>
<tr>
<td>III. Embolsado</td>
<td></td>
</tr>
<tr>
<td>IV. Acomodación de camas</td>
<td></td>
</tr>
<tr>
<td>V. Siembra</td>
<td></td>
</tr>
<tr>
<td>VI. Deshierbe</td>
<td></td>
</tr>
<tr>
<td>VII. Riego</td>
<td></td>
</tr>
<tr>
<td>VIII. Aplicación de agroquímicos</td>
<td></td>
</tr>
<tr>
<td>IX. Embolsado y conformación de eras</td>
<td></td>
</tr>
<tr>
<td>X. Llenado del germinador y nivel del sustrato</td>
<td></td>
</tr>
<tr>
<td>XI. Tranplante, extracción y verificación de estado físico/fitosanitario</td>
<td></td>
</tr>
<tr>
<td>XII. Humedecimiento del sustrato, ahoyado y</td>
<td></td>
</tr>
<tr>
<td>XIII. Eliminación de material vegetal</td>
<td></td>
</tr>
<tr>
<td>XIV. Material en mal estado</td>
<td></td>
</tr>
<tr>
<td>XV. Selección y control de calidad de las plantas</td>
<td></td>
</tr>
<tr>
<td>XVI. Reorganización</td>
<td></td>
</tr>
</tbody>
</table>

Total a fin mes anterior

Total a la fecha

Modificado de GALLOWAR, G Y BORGO, G. 1983
Manual de vivero forestal en la Sierra Peruana