IMAGÍNATE
«APRENDIENDO A PARTIR DE LA RUEDA»
ACTIVIDAD TECNOLÓGICA ESCOLAR PARA SEXTO GRADO

COY COY SANDRA MILENA
ROJAS MORENO BETTY

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE CIENCIAS Y EDUCACIÓN
ESPECIALIZACIÓN EN EDUCACIÓN EN TECNOLOGÍA
BOGOTÁ, D.C. 2017
COY COY SANDRA MILENA
ROJAS MORENO BETTY

Trabajo de grado para obtener el título de:
Especialista en Educación en Tecnología
Dirigido por:

NELSON OTÁLORA PORRAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE CIENCIAS Y EDUCACIÓN
ESPECIALIZACIÓN EN EDUCACIÓN EN TECNOLOGÍA
BOGOTÁ, D.C. 2017
NOTA DE ACEPTACIÓN

Director:

Jurado 1:

Jurado 2:

Bogotá D.C. Junio 24 de 2017
Contenido

<table>
<thead>
<tr>
<th>Sección</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN ANALÍTICO</td>
<td>6</td>
</tr>
<tr>
<td>IMAGÍNATE</td>
<td>10</td>
</tr>
<tr>
<td>«APRENDIENDO A PARTIR DE LA RUEDA»</td>
<td>10</td>
</tr>
<tr>
<td>ACTIVIDAD TECNOLÓGICA ESCOLAR PARA SEXTO GRADO</td>
<td>10</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>10</td>
</tr>
<tr>
<td>2. CONTEXTO</td>
<td>11</td>
</tr>
<tr>
<td>3. ANTECEDENTES</td>
<td>11</td>
</tr>
<tr>
<td>4. DESCRIPCIÓN DEL TRABAJO</td>
<td>11</td>
</tr>
<tr>
<td>4.1. Planteamiento del problema</td>
<td>11</td>
</tr>
<tr>
<td>4.2. Justificación</td>
<td>12</td>
</tr>
<tr>
<td>4.3. Preguntas orientadoras:</td>
<td>12</td>
</tr>
<tr>
<td>4.4. Objetivos</td>
<td>12</td>
</tr>
<tr>
<td>4.4.1. General</td>
<td>12</td>
</tr>
<tr>
<td>4.4.2. Específicos</td>
<td>13</td>
</tr>
<tr>
<td>5. METODOLOGÍA DE TRABAJO</td>
<td>13</td>
</tr>
<tr>
<td>6. MARCO TEÓRICO</td>
<td>13</td>
</tr>
<tr>
<td>6.1. Didáctica</td>
<td>13</td>
</tr>
<tr>
<td>6.2. Actividad tecnológica escolar</td>
<td>14</td>
</tr>
<tr>
<td>6.3. Modelo pedagógico</td>
<td>15</td>
</tr>
<tr>
<td>6.3.1 Modelo constructivista</td>
<td>15</td>
</tr>
<tr>
<td>6.3.2. Metodología de trabajo del ABP (Aprendizaje basado en problemas)</td>
<td>15</td>
</tr>
<tr>
<td>6.4. Articulación de los conceptos pedagógicos, didácticos y de tic en el trabajo</td>
<td>15</td>
</tr>
<tr>
<td>7. PROPUESTA «IMAGÍNATE APRENDIENDO A PARTIR DE LA RUEDA»</td>
<td>16</td>
</tr>
<tr>
<td>7.1. Descripción</td>
<td>16</td>
</tr>
<tr>
<td>7.2. Fases</td>
<td>16</td>
</tr>
<tr>
<td>7.3. Propósitos de la ATE</td>
<td>17</td>
</tr>
<tr>
<td>7.3.1. Objetivo general</td>
<td>17</td>
</tr>
<tr>
<td>7.3.2. Objetivos específicos</td>
<td>17</td>
</tr>
<tr>
<td>7.4. Contenidos</td>
<td>17</td>
</tr>
<tr>
<td>7.5. Aspectos pedagógicos y didácticos</td>
<td>18</td>
</tr>
<tr>
<td>7.6. Aplicación</td>
<td>19</td>
</tr>
<tr>
<td>8. CONCLUSIONES</td>
<td>20</td>
</tr>
<tr>
<td>9. REFERENCIAS</td>
<td>20</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA</td>
<td>21</td>
</tr>
<tr>
<td>INFOGRAFÍA</td>
<td>21</td>
</tr>
</tbody>
</table>
Coy Coy Sandra Milena, Rojas Moreno Betty. Director: Nelson Otálora Porras “APRENDIENDO A PARTIR DE LA RUEDA”
RESUMEN ANALÍTICO

<table>
<thead>
<tr>
<th>TIPO DE DOCUMENTO:</th>
<th>TIPO DE IMPRESIÓN:</th>
<th>NIVEL DE CIRCULACIÓN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informe final de trabajo de grado</td>
<td>Digitado en computador</td>
<td>General</td>
</tr>
</tbody>
</table>

ACCESO AL DOCUMENTO

<table>
<thead>
<tr>
<th>LUGAR:</th>
<th>NÚMERO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universidad Distrital Francisco José de Caldas</td>
<td></td>
</tr>
<tr>
<td>Facultad de Ciencias de la Educación</td>
<td></td>
</tr>
<tr>
<td>Programa de Especialización en Educación en Tecnología</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TÍTULO:</th>
<th>IMAGÍNATE «APRENDIENDO A PARTIR DE LA RUEDA» ACTIVIDAD TECNOLÓGICA ESCOLAR PARA SEXTO GRADO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AUTOR(ES):</th>
<th>PUBLICACIÓN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coy Coy Sandra Milena Rojas Moreno Betty</td>
<td>Bogotá, Colombia, Programa de Especialización en Educación en Tecnología de la Universidad Distrital Francisco José de Caldas (2017)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIDAD PATROCINANTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programa de Especialización en Educación en Tecnología de la facultad de ciencias de la educación de la Universidad Distrital Francisco José de Caldas.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PALABRAS CLAVE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad de Aula, Tecnología Escolar, Operadores Mecánicos, Máquinas Simples y Rueda.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCIÓN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>El presente trabajo de grado presenta como propuesta didáctica el diseño e implementación de una actividad tecnológica escolar (ATE), para esto es necesario tener muy en claro los componentes que estructuran la propuesta (Título, Intención, Reto, Información de contenidos, Recuerda que…y Manos a la obra). Está dirigida a grado estudiantes de grado sexto, teniendo en cuenta que se evidenció un bajo desempeño académico en el área de tecnología e informática en los años 2015-2016. Por lo anterior se propone trabajar sobre el modelo pedagógico constructivista, a la vez se enfatiza el enfoque de un aprendizaje significativo, es decir se parte de los saberes previos que todo estudiante posee para que al enfrentarse a saberes nuevos tenga las herramientas necesarias para mejorar y alcanzar los objetivos planteados.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUENTES:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Se citan 8 fuentes bibliográficas respecto a las siguientes temáticas, didáctica de la educación, actividad tecnológica escolar, aprendizaje significativo, modelo pedagógico el constructivismo, enfoque basado en aprendizaje significativo, metodología en el aprendizaje basado en problemas y en las fases de la propuesta basada en la solución de problemas. Los autores que se destacan: Toledo Pallares Luis Carlos, Millán García Fernando, Ezepeleta Morente Andrés, Cámara Fernández Idefonsa, Balaguer Pintado Luis, Blanco Roberto, Casado María Luisa, Cervera David, Martín Francisco</td>
<td></td>
</tr>
</tbody>
</table>
CONTENIDOS:
El informe del presente trabajo se divide en los siguientes capítulos:
- Introducción. En este capítulo se hace un breve pero puntual descripción del trabajo.
- Contexto. Se hace una breve descripción de la institución educativa, su ubicación y la población que asiste (niños, adolescentes) en su mayoría población en situación de conflicto.
- Antecedentes. En estos se tuvieron en cuenta algunas características específicas como la metodología, la estrategia de aula, la estructura y diseño de la actividad tecnológica escolar.
- Objetivo general y objetivos específicos. Establecen el horizonte y propósito del trabajo.
- Referentes teóricos. Se profundiza en los contenidos conceptuales más importantes que fundamentan la propuesta como: La actividad tecnológica escolar, el aprendizaje significativo y el aprendizaje basado en la solución de problemas. Operadores mecánicos.

METODOLOGÍA:
La metodología que apoya el diseño para la propuesta es la estrategia solución de problemas (ABP) la cual dentro de la ATE está dividida en ocho fases, Está organizada en una serie de actividades y retos que explican y profundizan qué son los operadores mecánicos.

Fase 1 (Formulación del problema). Tiempo aproximado para la ejecución (3) Tres horas.
Esta fase permite que los estudiantes conozcan la situación problema que se plantea y a la que deberán buscar solución desde los grupos colaborativos los cuales se organizaran teniendo en cuenta los siguientes elementos:

Fase 2 (Análisis de la situación). Tiempo aproximado para la ejecución (3) Tres horas.
Los estudiantes reconocen en la situación planteada los operadores tecnológicos que hay, haciendo énfasis especial en los operadores mecánicos que pueden llegar a emplear en el proceso de construcción de los prototipos, dada la importancia para la solución del problema planteado. (Ejes, arandelas, tuerca, rueda, tornillo, plano inclinado).
Al final de la fase los estudiantes plantean una serie de preguntas con el objetivo de ampliar el análisis realizado en esta etapa y conseguir una mayor comprensión de la situación.

Fase 3 (Recopilación y análisis de información). Tiempo aproximado para la ejecución (6) Seis horas.
Los estudiantes realizan búsquedas orientadas por el docente a través de diferentes páginas de internet o bloggers para ampliar su conocimiento en relación a los operadores mecánicos involucrados en la situación problema presentada, para lo cual se utilizarán estrategias didácticas como sopa de letras, concéntrase, construcción de historietas y rompecabezas y elaboración de prototipos con material reciclable orientadas a la comprensión de los operadores mecánicos, al final de la fase se aspira que el estudiante asimile la información, busquen los recursos adecuados y construya su propio carro de balineras.

Fase 4 (Plantear las posibles soluciones y elegir la más adecuada). Tiempo aproximado para la ejecución (3) Tres horas.
Los estudiantes proceden a realizar planos del vehículo.
- Realizan una lista de recursos (materiales de construcción y herramientas manuales necesarias para el desarrollo del proyecto).
- Los estudiantes elaboran una bitácora donde se indique el procedimiento necesario para realizar el ensamble del vehículo. (paso a paso).

Fase 5 (Planificar el diseño y la construcción de la solución elegida). Tiempo aproximado para la ejecución (6) horas.
Los estudiantes exploran las diversas conformaciones estructurales (chasis) existentes en los “carros de balineras” y procederán a seleccionar el más adecuado de acuerdo a las condiciones planteadas en las situación problemática.

Finalmente presentan un boceto del vehículo seleccionado.

Fase 6 (Evaluación de la solución adoptada). Tiempo aproximado para la ejecución (3) Tres horas.

Los estudiantes procederán a realizar pruebas con los vehículos de la siguiente manera:

Pruebas eliminatorias por curso para determinar los ganadores de cada categoría (masculino y femenino).

Fase 7 (Elaboración de informes). El tiempo empleado para la elaboración de los avances de la propuesta será continuo desde el momento de iniciar el desarrollo hasta la culminación de toda la propuesta.

Los estudiantes diseñan una ficha técnica del vehículo, donde se destacan las características del mismo en lo que respecta a los operadores mecánicos.

Fase 8 (Dar a conocer el proceso seguido y los resultados obtenidos). Tiempo aproximado para la ejecución (3) Tres horas.

El cierre de la actividad es la presentación de los vehículos junto a la ficha técnica, bitácora y la organización de la final del Gran Premio Del Altico como evaluación final de la propuesta.

CONCLUSIONES:

Las autoras concluyen que:

Se logró diseñar e implementar una actividad tecnológica escolar que aborda la temática planteada, Operadores mecánicos, permitiendo que los estudiantes se apropien de conceptos y términos a partir del desarrollo de las actividades y los retos.

Se identificaron cada uno de los elementos que se consideran como momentos pertinentes en los cuales el estudiante se puede sentir orientado fácilmente para dar respuesta a lo planeado por el o la docente.

Los elementos aplicados en la ATE son Título el cual: logra ser atractivo para el estudiante, la Intención donde se estipularon los propósitos u objetivos los que servirán para indicar cómo van los avances o el progreso del trabajo, los retos que se convierten en desafíos para que los estudiantes midan sus capacidades y potencien mejor sus habilidades y destrezas, contexto para que el trabajo sea más significativo, la evolución histórica permite evidenciar como el avance tecnológico ha permitido que los operadores empleados tengan relevancia en el desarrollo de los trabajos y despierta el interés y estimula la curiosidad por saber más, tener a la mano la información de cada uno de los contenidos, siendo claros de acuerdo a los temas a trabajar y por último un manos a la obra el que será el momento en el cual la interacción y el trabajo en equipo dará respuesta a sus propias inquietudes aportando al diseño y construcción de sus propios prototipos.

En el diseño de la actividad tecnológica escolar se logró implementar apropiadamente cada uno de los elementos que caracterizan y diferencian la actividad tecnológica escolar de otras actividades como son tener un título que atrae la atención del lector, una intención que parte de los objetivos o propósitos que se quieren lograr o alcanzar, los retos planteados, desarrollan habilidades y capacidades que promueven la iniciativa en los estudiantes de grado sexto.

En el diseño de la ATE unas de las características en las actividades a realizar y que se consideró muy necesaria e importantes fue:

Los tiempos establecidos para la implementación de cada una de las fases permitiendo alcanzar el desarrollo de todas las actividades propuestas.

El aspecto operativo en el cual se considera importante los “parámetros de procedimientos, de herramientas”, y de materiales requeridos y exigidos para llevar a cabo las acciones propias de la ATE.
Las definiciones formales o orientaciones hacen claridad acerca de las maneras que los productos y/o resultados de la ATE, han de ser elaborados y presentados, Otálora, (2012, p.9).

Durante el diseño de la ATE se hizo un intento de aplicación de con el fin de evaluar si las actividades planteadas eran pertinentes, claras y le permitían al estudiante desarrollar habilidades y destrezas.

Se logró mantener el interés y la motivación en el desarrollo de las actividades a realizar.

En la aplicación las autoras encontraron que algunas de las actividades podían ser mejoradas empleando un lenguaje más acorde y entendible a la edad de los estudiantes.

Otra de las conclusiones es la estructura de la ATE ya que esta cuenta con los elementos necesarios para lograr la apropiación de la problemática propuesta, despertando la iniciativa y liderazgo por participar de una manera más autónoma en los grupos colaborativos siendo ellos quienes designaran los roles y responsabilidades de cada uno.

Se logró el diseño de un Software de apoyo para la implementación de la ATE con el fin de recordar y fortalecer los diferentes operadores mecánicos implementados en la ATE y que a la vez permite que el estudiante se evalúe reconociendo sus aciertos y desaciertos, dándole la oportunidad que realice las veces que considere necesario hasta lograr alcanzar el objetivo propuesto. Realizado por las docentes Sandra Milena Coy y Betty Rojas Moreno y revisado por las profesoras Patricia Téllez y Laura Cortez.
Coy Coy Sandra Milena, Rojas Moreno Betty. Director: Nelson Otálora Porras “APRENDIENDO A PARTIR DE LA RUEDA”

IMAGÍNATE

«APRENDIENDO A PARTIR DE LA RUEDA»

ACTIVIDAD TECNOLÓGICA ESCOLAR PARA SEXTO GRADO

Nombre: Coy Coy Sandra Milena
Especialización en Educación en Tecnología
Universidad Distrital Francisco José de Caldas
Bogotá, Colombia
bettyromo19@gmail.com

Nombre: Rojas Moreno Betty
Especialización en Educación en Tecnología
Universidad Distrital Francisco José de Caldas
Bogotá, Colombia
samicoycoy@gmail.com

RESUMEN: El presente documento está ubicado en la línea de la investigación didáctica de la tecnología de la Especialización en Educación en Tecnología desarrollada para fortalecer los conceptos, apropiación y utilidad de los operadores mecánicos implementados en la estrategia de aula basada en solución de problemas a partir del análisis, diseño, construcción de una ATE (modelo de prototipo, desarrollo de la guía de trabajo), Aplicación y sistematización del proceso de desarrollo de la ATE: Análisis de resultados y conclusiones, todos están relacionados con el propósito de estructurar el trabajo de la propuesta didáctica realizado de acuerdo a una metodología de trabajo.

PALABRAS CLAVE: Actividad de Aula, Tecnología Escolar, Operadores Mecánicos, Máquinas Simples, rueda.

ABSTRACT: This document is located in the line of educational research of technology in the education technologies’ specialization, developed to strengthen the concepts, ownership and use of mechanical operators implemented in the classroom strategies based on the troubleshooting from analysis, design and construction of an ATE (prototype model, development of the work guide), Application and systematization of the development process of the ATE: analysis of results and conclusions, all are related to the purpose of structuring work the educational proposal made in accordance with a methodology.

KEYWORDS: Activity, School Technology Operators, Mechanics, simple machines and Rueda.

1. INTRODUCCIÓN

El presente informe de trabajo de grado se fundamenta en el diseño y aplicación de una actividad tecnológica escolar por medio del desarrollo de una serie de fases teórico-prácticas implementadas como estrategia a partir de la solución de problemas para que el estudiante sea un actor activo en la apropiación de temas relacionados con operadores mecánicos.

La Actividad Tecnológica Escolar ATE está enfocada a estudiantes de grado sexto de educación básica secundaria.
tecnológicas pero si se trabaja el salón de dirección de cada grado.

Se trabaja con mucho material reciclable ya que los niños son de muy bajos recursos se encuentran en edades entre los 10 a 14 años. En su mayoría son desplazados que experimentan cambios en su identidad y con dificultad se adaptan al nuevo entorno. Los grupos están conformados por Cuarenta (40) jóvenes entre niñas y niños. La mayoría provienen de familias de estrato bajos.

3. ANTECEDENTES

Para determinar la temática a trabajar se han tenido en cuenta algunos trabajos de investigación con actividades anteriormente diseñadas y aplicadas mediante estrategias de solución de problemas a partir del diseño, construcción y análisis de actividades tecnológicas escolares como se evidencia en los documentos que mencionaremos a continuación y que por sus objetivo permitirán aportar significativamente a la propuesta a realizar en este trabajo de grado.

Ramírez y Prieto (2013), en su trabajo de diseño e implementación de una Actividad Tecnológica Escolar, hacen uso de la robótica con un análisis y reflexión de antecedentes previos, esta propuesta da respuesta a la problemática y a unos propósitos establecidos para el área, donde los estudiantes de grado sexto asumieron retos mejorando la adquisición de conocimientos y un aprendizaje significativo teniendo en cuenta la construcción de un robot bajo el trabajo de operadores mecánicos.

Caicedo y García (2006) en su tesis de grado con el diseño y creación de operadores mecánicos buscaron que la enseñanza se convirtiera en aprendizaje para la vida, que los estudiantes fueran capaces de reconocer un problema, plantear una solución utilizando diferentes alternativas, información, creación y evaluación de prototipos, donde hace la materialización de todos los conocimientos disciplinares y de diseño generando habilidades motrices y de pensamiento gracias a que les tocó manejar e interactuar con los materiales.

Otro de los trabajos que aportaron a la elaboración de esta propuesta, es el realizado por Silva, (1993) donde por medio de estructuras y rampas con base en los distintos operadores con movimiento se buscó dar respuesta a una problemática que se tenía para la construcción de máquinas simples y que logró alcanzar los objetivos planteados.

Por otra parte Gutiérrez, (2015) propuso en su actividad tecnológica escolar para la apropiación de los sistemas tecnológicos como diseñar estrategias, actividades que ayuden al aprendizaje a través de la construcción y así generar un análisis a partir de la construcción de prototipos por parte de los educandos.

Por otro lado Gutiérrez (2015) propuso en su actividad tecnológica escolar para la apropiación de los sistemas tecnológicos como diseñar estrategias, actividades que ayuden al aprendizaje a través de la construcción y así generar un análisis a partir de la construcción de prototipos por parte de los educando.

Tomamos como referente para este proyecto a Mora, D (2012) quien elaboró una ATE para suplir la necesidad de enseñar la tecnología en estudiantes de grado quinto donde el tema principal fue la electricidad y los circuitos en la construcción de una brújula y un móvil, este trabajo logró que por medio de la construcción de artefactos tecnológicos los estudiantes aprendieran realizando diferentes prototipos los conceptos de electricidad y qué son los circuitos, e identificar los principales circuitos que hay por medio de la cartilla para la enseñanza de la tecnología.

El trabajo de investigación de Moreno, O (2011) se trató del diseño de una ATE con un enfoque ingenieril fomentando un aprendizaje significativo bajo la propuesta de mejorar el diseño y desarrollo de una ATE, siendo que la necesidad es saber cuál es la mejor forma de que los estudiantes mejoren en los resultados.

Para concluir la mejor manera de enseñar y aprender es mediante la práctica incentivando la creatividad de los estudiantes enfrentándose a diferentes problemáticas donde se puede o no especificar las limitantes para el desarrollo de la actividad.

Los conceptos impartidos en cualquier área del conocimiento ayudados por los elementos tecnológicos desde el punto de vista práctico se afianzan y son más fácilmente recordados por los aprendices que impartidos desde una perspectiva teórica basados en que al ser una experiencia novedosa y fuera de lo ortodoxo los estudiantes se divierten y por ende la adquisición del conocimiento es más notable.

4. DESCRIPCIÓN DEL TRABAJO

4.1 Planteamiento del problema

La educación en tecnología se hace cada día más indispensable en la vida del ser humano ya que el proceso de enseñanza - aprendizaje es inminente debido a que en todas las actividades diarias que se realizan se busca mejorar y facilitar la calidad de vida del hombre, ya sea para aprender o para enseñar, la tecnología y los diferentes sistemas se van haciendo más necesarios.

En la Institución Educativa Soacha Para Vivir Mejor FE Y ALEGRIA se evidencia la necesidad de mejorar los desempeños académicos en el área de Tecnología e Informática, puesto que los estudiantes presentan dificultades para realizar las actividades que se les plantean, obteniendo un bajo desempeño como se evidencia en los datos obtenidos de COLWEB FE Y ALEGRIA, durante el primer semestre, en el área de tecnología e informática, partiendo que los resultados académicos han desmejorado al comparar el año 2015 y 2016. En contraste el 2015 estaba en un 17% aproximadamente y en 2016 se evidencia un 27 % en Bajo, lo que quiere decir que hay un aumento del 10 %.

Nivel básico los resultados se mantienen con un 27% en 2015 y 2016. Se evidencia que en el 2016 aumentaron los resultados con un 35 % a comparación con el 2015 con un 23%, por lo tanto, tenemos un aumento de un 12 % en el 2016. Se disminuyeron los resultados un 22% en 2016 como se puede observar en la gráfica del documento de
En esta gráfica se observa y compara las falencias de los estudiantes del año 2016 con respecto al año 2015.

Los estudiantes presentan dificultades para realizar las actividades que se les plantean, obteniendo un bajo desempeño académico en las pruebas bimestrales.

Por lo anterior es necesario diseñar estrategias de aprendizaje que motiven el interés, estimulen la creatividad y favorezcan la concentración para así mejorar los resultados académicos en el área de tecnología e informática.

4.2. Justificación

Este proyecto nace ante la necesidad de enseñar que son y para qué sirven los operadores mecánicos y lograr que se tengan algunos conceptos claros del mismo a estudiantes de grado sexto del Colegio Soacha Para Vivir Mejor Fe y Alegria empleando métodos más eficientes y sencillos que estén acorde con los últimos avances con tecnología y teorías de la educación, donde los estudiantes puedan tener un aprendizaje continuo diseñando o elaborando artefactos tecnológicos siendo capaces de hacer análisis y construir su propio conocimiento trabajando solución de problemas permitiéndoles desarrollar habilidades y destrezas, la apropriación de estos conceptos permitirá que los estudiantes además encuentren en sus contextos situaciones auténticas, experiencias significativas que faciliten el mejoramiento académico y a la vez le ayuden a disminuir el bajo desempeño de los resultados de las pruebas bimestrales en el área de tecnología e informática.

Teniendo en cuenta la evolución y utilidad de artefactos tecnológicos como la invención de la rueda, la invención del carro entre otros. Estos inventos que emplean operadores mecánicos y que han revolucionado y transformado la manera como el ser humano se desplaza, serán trabajados de manera significativa desarrollando paso a paso diferentes habilidades les ayuden y motiven a trabajar en grupos colaborativos. Las ATE, son un medio muy práctico y completo que permite a los docentes generar estrategias y recursos para el desarrollo de las actividades académicas siendo una alternativa muy eficiente y eficaz de impartir conocimiento no solo en el ámbito tecnológico sino en múltiples áreas del conocimiento, basados en experiencias de autores ya citados empleamos esta ATE como la herramienta más acertada para la implementación de este proyecto haciéndolo más dinámico atractivo para toda la comunidad educativa.

4.3. Preguntas orientadoras:

¿Cuáles son los elementos de una ATE pertinentes para abordar la temática de operadores mecánicos en ciclo tres (3) en la Institución Soacha Para Vivir Mejor? ¿Cuáles condiciones son necesarias para el diseño de una ATE donde se profundice en el tema de los operadores mecánicos y que implementen la rueda como eje central? ¿Cuáles son los resultados y los análisis derivados del diseño y aplicación de la ATE en el proceso de enseñanza-aprendizaje de operadores mecánicos?

4.4. Objetivos

4.4.1. General

Diseñar e Implementar una Actividad de Aula Escolar para abordar la temática de operadores mecánicos en ciclo tres (3) en la Institución Soacha Para Vivir Mejor.
4.4.2. Específicos

1. Identificar los elementos estructurales necesarios para diseñar una ATE donde se profundice en el tema de los operadores mecánicos y que implementen la rueda como eje central.

2. Identificar y analizar los resultados en el proceso enseñanza-aprendizaje al aplicar la ATE.

5. METODOLOGÍA DE TRABAJO

Este trabajo se realizó a partir del desarrollo de las siguientes fases.

- Fase 1: Estudio de antecedentes, metodología del trabajo y marco teórico.

 Esta fase hace referencia al estudio y análisis de diferentes trabajos que aportan significativamente al desarrollo de la propuesta tecnológica que se diseña a partir del trabajo de grado, se tiene en cuenta el desarrollo del marco teórico y los autores que orientaron todo el trabajo de grado.

- Fase 2: Diseño, construcción, contextualización y apropiación de la ATE (modelo de prototipo y desarrollo de la guía de trabajo):

 Esta fase hace referencia al diseño y construcción de ATE teniendo en cuenta los elementos pertinentes para abordar la temática de operadores mecánicos y a la vez la implementación de las ocho fases de la estrategia de aula solución de problemas.

- Fase 3: Aplicación y ajustes del proceso de desarrollo de la ATE:

 En esta fase se aplica la ATE, teniendo en cuenta que los estudiantes se organicen de acuerdo a los requisitos de la estrategia para la organización de los grupos de trabajo colaborativo, a la vez se implementará la aplicación del software para realizar los ajustes necesarios.

- Fase final: Evaluación de la propuesta y conclusiones:

 en esta fase se lleva a cabo una evaluación continua durante el desarrollo de la ATE y el software para que oportunamente se realicen los ajustes necesarios. a partir de esta evaluación se logre concluir si la propuesta alcanzó los objetivos propuestos.

6. MARCO TEÓRICO

En el marco teórico se encuentran algunos referentes conceptuales de importancia para esta propuesta didáctica, partiendo del aprendizaje significativo donde el estudiante encuentra que los nuevos saberes o conceptos que va adquiriendo y desarrollando a partir de actividades tecnológicas escolares que le permiten avanzar en su proceso de aprendizaje puesto que estas incluyen algunos operadores mecánicos que a diario se emplean y que no son tan ajenos como se pensaba pero que por falta de profundización no se tenían claros, estos operadores a trabajar contribuyen a la estructura que se construye como objeto de este trabajo de grado. En una primera parte esta propuesta se trabajó lo relacionado con la didáctica, en una segunda parte se encuentra la metodología aplicada, en la tercera parte el enfoque pedagógico que se trabajó en el proyecto y por último el plan de estudio con las orientaciones curriculares las cuales se están trabajando en la institución.

6.1. Didáctica

En el proyecto que se realizó se tuvo en cuenta los siguientes libros como apoyo en la didáctica del trabajo, en el proceso de comparación y reconocimiento de estrategias didácticas de la siguiente propuesta, se tomaron como referentes de apoyo los siguientes autores, quienes a partir de su trabajo y experiencia nos explican cómo se puede desarrollar una clase de tecnología a partir de problemáticas de su contexto con experiencias significativas que requieran de solución.

Unos de los autores con los cuales nos identificamos son Balaguer, Cámara, Toledo, Millán, Ezpeleta (1993) en su libro guía de aprovechamiento de recursos didácticos. Área de tecnología. Primer ciclo. Educación secundaria obligatoria. Por medio de este libro encontramos como la enseñanza de la tecnología en la educación es fundamental e importante y el reto que tiene como tarea los docentes que la enseñan, en la mayoría de los colegios no se le da la importancia y valor que ésta tiene y muchos de los docentes que la enseñan no están preparados o no tienen los conocimientos necesarios para enseñarla, esto por las diversas circunstancias que la derivan según sea el contexto en el que se va a desarrollar. Para gran parte del profesorado es una gran novedad su contenido y la metodología, por otro lado, para desarrollar una buena actividad en clase es necesario tener cierto grado de conocimiento y manejar una gran variedad de aspectos. Este libro plantea que no hay un texto o publicación que contenga contenidos completos para ayudar a los docentes a realizar un buen trabajo, este documento tiene como finalidad dar respuesta a estas dificultades, está basado en el proceso de resolución técnica del problema. Contiene la descripción de varios artefactos tecnológicos como elementos de...
consultas para despertar en el estudiante la curiosidad y el interés por el medio técnico, ver cómo la humanidad es capaz de dar soluciones a posibles problemas y necesidades que van surgiendo y del cual pueden tomar ideas para la elaboración de proyectos.

Este trabajo también se apoyó en el libro Didáctica de la Tecnología del Gobierno de España, Ministerio de educación, Formación del profesor, educación en secundaria,

Cualquier modelo didáctico tiene como objetivo intervenir en los procesos pedagógicos para conseguir optimizar la adquisición de competencias en los alumnos y facilitar la tarea del profesor, al establecer una estructura organizada, razonada y con elementos de control para adaptarse, en caso necesario. Su elección y su puesta en práctica no están exentas de dificultades. Además, en una materia como tecnologías, el modelo se tiene que diseñar pensando siempre en la dualidad del grupo y sus características y el ambiente, aula-clase, aula-taller, aula-informática, en la que se va a efectuar, sin olvidar otros factores no menos influyentes como los contenidos que desarrollar, los recursos materiales con los que se cuenta, las características del centro en el libro de Cervera, Blanco, Casado Martín, Mediano, Ramos y Utiel, (2010, p.16).

Por lo anterior las autoras de este trabajo plantean una estrategia didáctica que permite ajustarse al ritmo de trabajo de todos los estudiantes teniendo en cuenta los factores (tiempo-espacio- recursos) que pueden influir en su proceso de aprendizaje logrando autonomía y compromiso en los diferentes momentos.

6.2. Actividad tecnológica escolar

La ATE objeto de esta propuesta se utiliza como una estrategia de aprendizaje a partir de la construcción de artefactos y se fundamenta como lo indica Quintana, (2008) citado por Ángel Fabiola en su trabajo de grado actividad tecnológica escolar en robótica básica: hacia la construcción de aprendizajes significativos en tecnología, “identificar los intereses de los estudiantes, determinar propósitos de formación (conceptos tecnológicos y habilidades), determinar procedimientos claros que incluyan materiales, equipos, herramientas, formas de uso apropiados y riesgos, establecer procedimientos de construcción, los criterios de evaluación, presentación y argumentación sobre el artefacto construido “. así mismo nuestra propuesta presenta una serie de momentos que determinan la metodología de trabajo.

La guía de trabajo de Quintana, (2014, p.90-98:) plantea una serie de componentes que permiten estructurar el diseño de nuestra actividad tecnológica escolar. Los componentes a utilizar emplearán unos lenguajes textuales y gráficos dirigidos a los estudiantes y parten de:

- **Título:** Imagine aprendiendo a partir de la rueda.
- **Intención:** lo que se expresa a partir de los objetivos.
- **Saberes previos:** qué tanto sabes?
- **Retos y desafíos:** actividades a realizar despertando el interés de los estudiantes, debe ser atractiva y permitirles desarrollar habilidades y capacidades.
- **Contexto escenario:** define el espacio físico donde se va a trabajar y permite la interacción social en particular.
- **Información de contenidos:** parte de los fundamentos teóricos de los contenidos de cada uno de los temas que se trabajan en la propuesta proporcionando información concreta para que los estudiantes se apropien de los mismos.
- **Recuerda que…:** tenemos en cuenta datos curiosos, la evolución histórica y ayudas para lograr dar solución al reto plantead.
- **Manos a la obra:** desarrollo de las actividades a partir de la acción propia de los estudiantes.

Otros elementos tomados en cuenta son los mencionados por: Otálora, (2008, p.16) donde menciona un ítem como “elementos que permiten definir y configurar la forma final de las actividades tecnológicas escolares” estos ítem son:

- **Objetos de conocimiento:** Define los propósitos de los contenidos a trabajar dándole forma a cada una de las actividades desde la definición y la limitación empleando conceptos claros con un lenguaje coherente a partir de una problemática planteada.

- **Metodología:** Define la manera como la propuesta tecnológica se apropia de unas temáticas con el fin de desarrollar habilidades y capacidades desde el planteamiento de problemas a partir de su propio contexto y su realidad.

- **Acciones de enseñanza y aprendizaje:** Se relaciona con los componentes anteriormente mencionados guiando un proceso de pasos o fases que permitan dar solución a la problemática planteada a partir del diseño, análisis y la construcción respondiendo a unas condiciones establecidas a partir de los roles, tiempos establecidos y acciones realizadas.

- **Retos y los propósitos:** La actividad propuesta debe contener una serie de objetivos que desafíen al estudiante para alcanzar una apropiación de conocimientos que les permita trabajar en grupos colaborativos implicando competencias provocando una serie de desafíos personales. Medios y recursos hacen referencia a los materiales y elementos que hacen posible el desarrollo de las actividades para que se puedan alcanzar los propósitos de las actividades, retos y desafíos fuentes de estudio, hace referencia a las ayudas físicas o virtuales que sirven de apoyo para aportar conocimientos e información, es decir son fuentes informativas para estudio autónomo.
6.3. Modelo pedagógico

Para el desarrollo de esta propuesta se tomó en cuenta el modelo pedagógico Constructivista, ya que se centra en el estudiante, en sus experiencias previas de las que realiza nuevas construcciones mentales, convirtiendo así el aprendizaje en situaciones significativas que facilitan la adquisición de nuevos conocimientos, reteniendo de manera más duradera la información es decir un aprendizaje más activo donde fortalece sus habilidades de pensamiento y la capacidad para resolver situaciones de su contexto inmediato.

6.3.1 Modelo constructivista

Este modelo plantea que los estudiantes son los que generan sus propios conocimientos, ellos son los encargados de indagar, investigar, practicar y generar aprendizajes significativos que los lleven a la construcción de nuevos conceptos y habilidades sobre saberes previos.

De acuerdo con Coll, (1990, p.441-442) citado en Estrategias docentes para un aprendizaje significativo, segunda edición.

La concepción constructivista se organiza en torno (dos) ideas fundamentales:

1. El alumno es el responsable último de su propio proceso de aprendizaje. Él es quien construye (o más bien reconstruye) los saberes de su grupo cultural, y este puede ser un sujeto activo cuando manipula, explora, descubre o inventa, incluso cuando lee o escucha la exposición de otros.

2. La actividad mental constructiva del alumno se aplica a contenidos que poseen ya un grado considerable de elaboración. Esto quiere decir que el alumno no tiene en todo momento que descubrir o inventar en un sentido literal todo el conocimiento escolar.

6.3.2. Metodología de trabajo del ABP (Aprendizaje basado en problemas)

El aprendizaje basado en problemas es según la Universidad Politécnica Madrid "una metodología centrada en el aprendizaje, en la investigación y reflexión que siguen los alumnos para llegar a una solución ante un problema planteado por el profesor."

En una clase habitual el profesor explica los conceptos más importantes y da pautas al estudiante para que este desarrolle la actividad o de solución a un problema planteado con base en los conocimientos previos dados por el profesor y éste ya se convierte en una guía o facilitador del trabajo.

Prieto (2006) citado por Servicio de Innovación Educativa (UPM) 2008, "defendiendo el enfoque de aprendizaje activo señala que el aprendizaje basado en problemas representa una estrategia eficaz y flexible que, a partir de lo que hacen los estudiantes, puede mejorar la calidad de su aprendizaje universitario en aspectos muy diversos". Así, el ABP ayuda al alumno a desarrollar y a trabajar diversas competencias¹, por tanto esta metodología permite que el estudiante aprenda de una forma más activa ya sea en grupo o individualmente y dando pautas para que el trabajo se logre en el tiempo establecido.

Los conocimientos que se tengan deben ser claros y suficientes, se debe trabajar en un ambiente propicio para que favorezca el aprendizaje autónomo y cooperativo, comunicación entre docente, estudiante y fuentes de información.

En este se determinan fases de abajo orientadas por el profesor, se explicara el problema y se plantaran los objetivos para ser desarrollado teniendo en cuenta los conocimientos previos, todos los participantes del trabajo ordenan todas las ideas para poder desarrollar el problema planteado. Los roles de docente y estudiante cambian siendo el docente una guía o facilitador y el estudiante es el encargado de construir su propio conocimiento, el docente promueve en el estudiante la crítica constructiva y a reflexionar sobre el tema, el estudiante presenta buena actitud y ganas de aprender y compartir sus conocimientos.

En este paso el alumno sobresaliente no es el que aprueba los exámenes sino el que demuestra sus habilidades y competencias para el desarrollo de un problema. Esto se puede hacer por medio de la práctica, un examen, autoevaluación, coevaluación, etc.

6.4. Articulación de los conceptos pedagógicos, didácticos y de tic en el trabajo

El desarrollo de la propuesta se complementa con la implementación de un software que permite la apropiación de los conceptos y la articulación con la actividad tecnológica escolar.

Imagen del Software.

¹Aprendizaje Basado en Problemas, Guía Rápida sobre nuevas Metodologías.
En la propuesta se presenta un software físico que debe ser incluido a la entrega de este documento.

7. PROPUESTA «IMAGÍNATE APRENDIENDO A PARTIR DE LA RUEDA»

Esta propuesta se desarrolla sobre una ATE que pretende enseñar que son los operadores mecánicos en grado sexto.

7.1. Descripción

Esta ATE está elaborada para niños de sexto grado abordando la temática de operadores mecánicos dando solución a la problemática planteada en el área de tecnología en la institución Educativa Soacha para Vivir mejor.

7.2. Fases

A continuación se encontrarán los momentos en los que se realiza la propuesta teniendo en cuenta las fases sugeridas por Quintana (2015, p.63-68).

Fase 1 (Formulación del problema). Tiempo aproximado para la ejecución (3) Tres horas.

Esta fase permite que los estudiantes conozcan la situación problema que se plantea y a la que deberán buscar solución desde los grupos colaborativos los cuales se organizarán teniendo en cuenta los siguientes elementos:

- Deben conformarse grupos mínimo de 2 personas máximo 4. (copiloto y piloto).
- Debe construirse un carro de balineras respetando las medidas establecidas por el docente.
- Se realizarán pruebas (masculino y femenino), el grupo con menor tiempo será quien en uno de los descansos competirá por el campeonato intercursos (6a, 6b, 6c).
- En este momento se diseñarán los planos de sus prototipos.
- Cada estudiante cumplirá un rol de responsabilidad y realizará una carpeta del proyecto, respetando los criterios establecidos por el docente. (Fases y decoración).
- Los prototipos deben tener una ficha técnica donde se indiquen los operadores tecnológicos empleados en la solución adoptada.

Cada grupo determinará un nombre para el vehículo, este nombre debe estar incluido en la decoración del carro.

Fase 2 (Análisis de la situación). Tiempo aproximado para la ejecución (3) Tres horas.

Los estudiantes reconocen en la situación planteadla los operadores tecnológicos que hay, haciendo énfasis especial en los operadores mecánicos que pueden llegar a emplear en el proceso de construcción de los prototipos, dada la importancia para la solución del problema planteado. (Ejes, arandelas, tuercas, ruedas, tornillo, plano inclinado). Al final de la fase los estudiantes plantean una serie de preguntas con el objetivo de ampliar el análisis realizado en esta etapa y conseguir una mayor comprensión de la situación.

Fase 3 (Recopilación y análisis de información). Tiempo aproximado para la ejecución (6) Seis horas.

Los estudiantes realizan búsquedas orientadas por el docente a través de diferentes páginas de internet o bloggers para ampliar su conocimiento en relación a los operadores mecánicos involucrados en la situación problema presentada, para lo cual se utilizarán estrategias didácticas como sopa de letras, concéntrese, construcción de historietas y rompecabezas y elaboración de prototipos con material reciclable orientadas a la comprensión de los operadores mecánicos, al final de la fase se aspira que el estudiante asimile la información, busquen los recursos adecuados y construya su propio carro de balineras.

Software de apoyo: Para la consulta de los diferentes contenidos se empleara el software de apoyo a partir de los videos que en este se encuentran.

Fase 4 (Plantear las posibles soluciones y elegir la más adecuada). Tiempo aproximado para la ejecución (3) Tres horas.

- Los estudiantes proceden a realizar planos del vehículo.
 - Realizan una lista de recursos (materiales de construcción y herramientas manuales necesarias para el desarrollo del proyecto).
 - Los estudiantes elaboran una bitácora donde se indique el procedimiento necesario para realizar el ensamblaje del vehículo. (paso a paso).

Fase 5 (Planificar el diseño y la construcción de la solución elegida). Tiempo aproximado para la ejecución (6) horas.

Los estudiantes exploran las diversas conformaciones estructurales (chasis) existentes en los "carros de balineras" y procederán a seleccionar el más adecuado de acuerdo a las condiciones planteadas en la situación problemática.
Finalmente presentan un boceto del vehículo seleccionado.

Fase 6 (Evaluación de la solución adoptada). Tiempo aproximado para la ejecución (3) Tres horas.

Los estudiantes procederán a realizar pruebas con los vehículos de la siguiente manera:

Pruebas eliminatorias por curso para determinar los ganadores de cada categoría (masculino y femenino). A la vez también podrán participar en las actividades del software de apoyo para reforzar las temáticas vistas y evaluar sus aciertos y desaciertos teniendo varias oportunidades de practicar.

Fase 7 (Elaboración de informes). El tiempo empleado para la elaboración de los avances de la propuesta será continuo desde el momento de iniciar el desarrollo hasta la culminación de toda la propuesta.

Los estudiantes diseñan una ficha técnica del vehículo, donde se destacan las características del mismo en lo que respecta a los operadores mecánicos.

Fase 8 (Dar a conocer el proceso seguido y los resultados obtenidos). Tiempo aproximado para la ejecución (3) Tres horas.

El cierre de la actividad es la presentación de los vehículos junto a la ficha técnica, bitácora y la organización de la final del Gran Premio Del Altico como evaluación final de la propuesta.

7.3. Propósitos de la ATE

7.3.1. Objetivo general.

Solucionar el problema planteado en la ATE a partir del uso de la rueda y algunos operadores mecánicos, mejorando la participación de los estudiantes y sus resultados académicos.

7.3.2. Objetivos específicos.

Reconocer el concepto de los operadores mecánicos, algunas clases y funcionalidad en un contexto determinado.

Elaborar prototipos a partir actividades, retos y desafíos en los que se emplean los operadores mecánicos.

Fomentar la participación activa de los estudiantes en los grupos colaborativos mejorando la apropiación de los temas y así mismo el rendimiento académico.

7.4. Contenidos

Operadores mecánicos: Los operadores mecánicos son operadores que van conectados entre sí para permitir el funcionamiento de una máquina, teniendo en cuenta la fuerza que se ejerce sobre ellos. Los operadores mecánicos convierten la fuerza en movimiento, el conjunto de varios operadores se denomina mecanismo.

Maquinas simple: Una máquina simple es un artefacto mecánico que transforma un movimiento en otro diferente, valiéndose de la fuerza recibida para entregar otra de magnitud, dirección o longitud de desplazamiento distintos a la de la acción aplicada. En una máquina simple se cumple la ley de la conservación de la energía: «la energía ni se crea ni se destruye; solamente se transforma». La fuerza aplicada, multiplicada por la distancia aplicada (trabajo aplicado), será igual a la fuerza resultante multiplicada por la distancia resultante (trabajo resultante). Una máquina simple, ni crea ni destruye trabajo mecánico, sólo transforma algunas de sus características.

Máquinas simples son la palanca, las poleas, el plano inclinado, etc. No se debe confundir una máquina simple con elementos de máquinas, mecanismos o sistema de control o regulación de otra fuente de energía

La rueda: Posiblemente, la invención mecánica más importante de todos los tiempos, la rueda, ha sido usada por el hombre desde casi el comienzo de la civilización. La mayoría de las tecnologías primitivas desde la invención de la rueda se han basado en sus principios, y desde la revolución industrial la rueda ha sido un elemento básico de casi todas las máquinas construidas por el hombre. El momento exacto y el lugar en donde se inventó la rueda puede ser discutible, pero sus comienzos se ven a través de las civilizaciones antiguas.

Los ejes: El término eje, que viene del latín (axis o axe) posee múltiples usos, definiciones y aplicaciones. En sus orígenes representaba la barra que unía las ruedas de las carretas. En el campo de la mecánica, por ejemplo, un eje está considerado como una pieza constructiva que resulta útil a la hora de dirigir el desplazamiento de rotación de un elemento o de un grupo de piezas, como puede ocurrir al trabajar sobre una rueda o un engranaje.

El tornillo: es un operador que deriva directamente del plano inclinado y siempre trabaja asociado a un orificio roscado. Básicamente puede definirse como un plano inclinado enrollado sobre un cilindro, o lo que es más realista, un surco helicoidal tallado en la superficie de un cilindro (si está tallado sobre un cilindro afilado o un cono tendremos un tirafondo).

La polea: Mecanismo transmisor de movimiento para realizar determinado trabajo. La polea es un tipo de máquina simple, la polea es una rueda acanalada con un eje...
La tuerca: Una a tuerca es un elemento que dispone de un agujero con rosca. Esta característica permite que un tornillo se acople a su estructura, enroscándose. Por ejemplo: “La mesa se está moviendo mucho: voy a tener que ajustar las tuercas”, “Estoy tratando de armar el escritorio que compramos pero no encuentro las tuercas”, “Creo que a esta máquina le falta alguna tuerca”. La finalidad de una tuerca es favorecer la unión entre distintos objetos

Plano inclinado: El plano inclinado es una máquina simple que permite subir objetos realizando menos fuerza. Para calcular la tensión de la cuerda que equilibra el plano, descomponemos las fuerzas y hacemos la sumatoria sobre cada eje. Es recomendable girar el sistema de ejes de tal forma que uno de ellos quede paralelo al plano. Con esto se simplifican las cuentas ya que la sumatoria de fuerzas en X tiene el mismo ángulo que la tensión que lo equilibra.

La cuña: Una cuña es una máquina simple que se usa a menudo para transformar una fuerza aplicada en fuerzas mucho más grandes, dirigidas aproximadamente en ángulo recto con respecto a la fuerza aplicada. Las cuñas también pueden ser usadas para propiciar desplazamientos pequeños o ajustes en cargas pesadas.

7.5. Aspectos pedagógicos y didácticos.

La propuesta «IMAGÍNATE APRENDIENDO A PARTIR DE LA RUEDA» pretende que a partir del análisis y construcción de artefactos que emplean operadores mecánicos se profundice en los temas planteados y se logre que los estudiantes se apropien de los mismos para mejorar y avanzar en su proceso de aprendizaje.

La propuesta se desarrolla en 8 fases con actividades específicas en cada una de ellas que están relacionadas entre sí con el propósito final de desarrollar o profundizar en estos conceptos que se emplearon para el análisis, construcción, presentación y evaluación de un carro esferado.
La mejor forma de aprender es a través de la interacción directa en la construcción de artefactos o prototipos y el aprendizaje colaborativo que se genera cuando se participa activamente con el aporte de posibles soluciones hasta el punto de elegir la que ellos consideran según su interés la más adecuada.

La evaluación fue un proceso constante donde se emplearon la autoevaluación, coevaluación y heteroevaluación y tiene como propósito aumentar la posibilidad de que todos los aprendices aprendan; busca asociar conocimientos previos a los nuevos aprendizajes recogiendo y analizando evidencias del proceso, utilizando la retroalimentación para ver el progreso y orientar los errores que, también, son aprovechados como una oportunidad en el proceso de aprendizaje esta también le permitirá al docente procesar la evidencia necesaria para reconocer las capacidades de los aprendices de una manera más exacta apoyándose en las diferentes actividades, bitácora, elaboración de los prototipos y carro de balineras, permitiéndole conocer el proceso individual para reformular logros y estrategias.

7.6. Aplicación

Teniendo en cuenta la problemática planteada se evidencia la necesidad de elaborar una estrategia didáctica que motive al estudiante a apropiarse de su proceso de enseñanza aprendizaje y de esta manera mejorar los resultados académicos en cuanto al tema, profundizando en operadores tecnológicos haciendo énfasis en algunos operadores mecánicos.

Para iniciar se hacen una serie de preguntas con las que se pretende conocer los saberes previos y enfrentarlos a nuevas temáticas sobre operadores mecánicos.

Esta herramienta tiene un diseño llamativo con elementos propios que caracterizan una ATE y la hacen diferente de otras, causando gran impacto en los estudiantes atrayendo su curiosidad e interés por conocer las temáticas planteadas, desarrollar las actividades, planear el diseño y construcción de los prototipos.

Durante la prueba de aplicación es importante resaltar que los estudiantes identificaron con claridad el propósito de las actividades respondiendo favorablemente a las mismas.

Los estudiantes pudieron conocer las condiciones mínimas requeridas aceptando sus compromisos al realizar los retos convirtiéndose en actividades muy significativas que facilitan el análisis de las situaciones para llegar a la solución de la problemática planteada.

En el proceso de aplicación y desarrollo de la ATE se logró que los estudiantes interactuaran y a la vez evaluaran una a una las actividades allí propuestas, partiendo desde el diseño y animaciones como se evidencia en las fotos uno y dos que se encuentran en los anexos.

Para los estudiantes fue llamativa la manera como se organizaron los contenidos y la forma como estos van interactuando con el software convirtiéndose en algo llamativo al no presentarlo plano o aburrido para ellos como se evidencian en las fotos tres y cuatro de los anexos.

Las actividades resultaron atractivas e incentivaron el compromiso por consultar y profundizar en las temáticas propuestas para estar a la par de todos y no quedarse atrasados como se evidencian en las fotos cinco y seis de los anexos.

El trabajo colaborativo fue atractivo para ellos y resulto algo natural y no forzado debido a la facilidad de cómo se encuentra el lenguaje en la ATE y que el acceso a los materiales no fue para nada difícil como se evidencian en las fotos siete y ocho de los anexos.

Los retos resultaron de verdad desafiantes y logran atraer el gusto innato por cumplirlos y no quedar mal ante el compromiso personal tanto individual como grupal como se
evidencia en las fotos de la nueve a la once.

En la aplicación de la Ate también permitió evidenciar si la forma como estaba diseñada era pertinente para así realizar las modificaciones necesarias con el fin de elaborar una actividad apropiada y completa cumpliendo con los requerimientos propios establecidos según Quintana y Otálora.

Se anexan 11 fotos como evidencia del desarrollo de la propuesta.

8. CONCLUSIONES

Las autoras concluyen que:

Se logró diseñar e implementar una actividad tecnológica escolar que aborda la temática plantead, Operadores mecánicos, permitiendo que los estudiantes se apropien de conceptos y términos a partir del desarrollo de las actividades y los retos.

Se identificaron cada uno de los elementos que se consideran como momentos pertinente en los cuales el estudiante se puede sentir orientado fácilmente para dar respuesta a lo planeado por el o la docente.

Los elementos aplicados en la ATE son Título el cual: logra ser atractivo para el estudiante, la Intención donde se estipularon los propósitos u objetivos los que servirán para indicar cómo van los avances o el progreso del trabajo, los retos que se convierten en desafíos para que los estudiantes midan sus capacidades y potencien mejorar sus habilidades y destrezas, contexto para que el trabajo sea más significativo, la evolución histórica permite evidenciar como el avance tecnológico ha permitido que los operadores empleados tengan relevancia en el desarrollo de los trabajos y despertar el interés y estimular la curiosidad por saber más, tener a la mano la información de cada uno de los contenidos, siendo claros de acuerdo a los temas a trabajar y por último un manos a la obra el que será el momento en el cual la interacción y el trabajo en equipo dará respuesta a sus propias inquietudes aportando al diseño y construcción de sus propios prototipos.

En el diseño de la actividad tecnológica escolar se logró implementar apropiadamente cada uno de los elementos que caracterizan y diferencian la actividad tecnológica escolar de otras actividades como son tener un título que atrae la atención del lector, una intención que parte de los objetivos o propósitos que se quieren lograr o alcanzar, los retos planteados, desarrollan habilidades y capacidades que promueven la iniciativa en los estudiantes de grado sexto, fomentando el trabajo colaborativo Otálora (2012, p.9).

En el diseño de la ATE unas de las características en las actividades a realizar y que se consideró muy necesaria he importantes fue: Los tiempos establecidos para la implementación de cada una de las fases permitiendo alcanzar el desarrollo de todas las actividades propuestas.

El aspecto operativo en el cual se considera importante los “parámetros de procedimientos, de herramientas”, y de materiales requeridos y exigidos para llevar a cabo las acciones propias de la ATE. Las definiciones formales u orientaciones hacen claridad acerca de las maneras que los productos y/o resultados de la ATE, han de ser elaborados y presentados, Otálora, (2012, p.9).

Durante el diseño de la ATE se hizo un intento de aplicación de con el fin de evaluar si las actividades planteadas eran pertinentes, claras y le permitían al estudiante desarrollar habilidades y destrezas.

Se logró mantener el interés y la motivación en el desarrollo de las actividades a realizar.

En la aplicación las autoras encontraron que algunas de las actividades podían ser mejoradas empleando un lenguaje más acorde y entendible a la edad de los estudiantes.

Otra de las conclusiones es la estructura de la ATE ya que esta cuenta con los elementos necesarios para lograr la apropiación de la problemática propuesta, despertando la iniciativa y liderazgo por participar de una manera más autónoma en los grupos colaborativos siendo ellos quienes designaron los roles y responsabilidades de cada uno.

Se logró el diseño de un Software de apoyo para la implementación de la ATE con el fin de recordar y fortalecer los diferentes operadores mecánicos implementados en la ATE y que a la vez permite que el estudiante se evalúe reconociendo sus aciertos y desaciertos, dándole la oportunidad que realice las veces que considere necesario hasta lograr alcanzar el objetivo propuesto.

9. REFERENCIAS

Coy Coy Sandra Milena, Rojas Moreno Betty. Director: Nelson Otálora Porras “APRENDIENDO A PARTIR DE LA RUEDA”

Moreno, O (2011) actividad tecnológica escolar con un enfoque ingenieril fomentando un aprendizaje significativo, Bogotá, Colombia, Editorial Universidad Distrital Francisco José de Caldas.

BIBLIOGRAFÍA

Ángel, F, (2011) actividad tecnológica escolar en robótica básica, Bogotá, Colombia, Universidad Distrital Francisco José de Caldas.

INFOGRAFÍA

https://books.google.com.co/books?id=AGURBAAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

https://books.google.com.co/books?id=aRadEU1ArpAC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

https://sede.educacion.gob.es/publiventa/guia-de-aprovechamiento-de-recursos-didacticos-area-de-tecnologia-primer-ciclo-educacion-secundaria-obligatoria/educacion-secundaria-tecnologia/14675

https://www.casadellibro.com/ebook-didactica-de-la-tecnologia-ebook/9788499800264/1952139

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>ESTÁNDAR</th>
<th>COMPETENCIA</th>
<th>CONTENIDOS</th>
<th>CAPACIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexto</td>
<td>Solución de problemas con tecnología</td>
<td>Propone estrategias para soluciones de tecnología a problemas, en diferentes contextos.</td>
<td>Operadores tecnológicos.</td>
<td>Detecta fallas en artefactos, procesos y sistemas tecnológicos, siguiendo procedimientos de prueba y descarte, y propone estrategias de solución.</td>
</tr>
<tr>
<td></td>
<td>Apropiación y uso de la tecnología</td>
<td>Relaciona el funcionamiento de algunos artefactos, productos, procesos y sistemas tecnológicos con su utilización segura.</td>
<td>Aplicación de la forma, función y estructura de los artefactos.</td>
<td>Analiza el impacto de artefactos, procesos y sistemas tecnológicos en la solución de problemas y satisfacción de necesidades: Ejemplos de cómo en el uso de artefactos, procesos o sistemas tecnológicos, existen principios de funcionamiento que los sustentan, y analiza y aplica las normas de seguridad que se deben tener en cuenta para el uso de algunos artefactos, productos y sistemas tecnológicos.</td>
</tr>
<tr>
<td></td>
<td>Tecnología y sociedad</td>
<td>Relaciona la transformación de los recursos naturales con el desarrollo tecnológico y su impacto en el bienestar de la sociedad.</td>
<td>Actividad tecnológica humana.</td>
<td>Me interesa por las tradiciones y valores de mi comunidad y participo en la gestión de iniciativas en favor del medio ambiente, la salud y la cultura (como jornadas de recolección de materiales reciclables, ferias escolares, etc.).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gestión de los productos tecnológicos en el medio ambiente.</td>
<td>Analiza las ventajas y desventajas de diversos procesos de transformación de los recursos naturales en productos y sistemas tecnológicos (por ejemplo, un basurero o una remera).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tecnología en el cuidado del medio ambiente.</td>
<td>Identifica diversos recursos energéticos y evalúa su impacto sobre el medio ambiente, así como las posibilidades de desarrollo para las comunidades.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evalúa los costos y beneficios antes de adquirir y utilizar artefactos y productos tecnológicos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asumo y promuevo comportamientos legales relacionados con el uso de los recursos tecnológicos.</td>
</tr>
</tbody>
</table>
ANEXO 2

<table>
<thead>
<tr>
<th>FOTOS</th>
</tr>
</thead>
</table>
| **FOTO N°1**
Reconocimiento de la Ate, como una actividad didáctica. |
| **FOTO N°2**
Apropiación de contenidos desde los saberes previos. |
| **FOTO N°3**
Reconocimientos de contenidos de la ATE. |
| **FOTO N°4**
Reconocimientos de contenidos de la ATE. |
| **FOTO N°5**
Profundización de conceptos planteados. |
| **FOTO N°6**
Profundización de conceptos planteados. |
<table>
<thead>
<tr>
<th>N° 7</th>
<th>Preparación de materiales para desarrollo de retos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° 8</td>
<td>Organización de grupos colaborativos.</td>
</tr>
<tr>
<td>N° 9</td>
<td>Concertación de acuerdos</td>
</tr>
<tr>
<td>N° 10</td>
<td>Reto de la patineta.</td>
</tr>
<tr>
<td>N° 11</td>
<td>Reto del carro.</td>
</tr>
</tbody>
</table>