DISEÑO DE UN SISTEMA DE ENERGÍA ALTERNATIVA SOLAR PARA CONECTAR
LOS SERVICIOS AUXILIARES DE CORRIENTE CONTINUA EN CINCO (5)
SUBESTACIONES ELÉCTRICAS DE CODENSA S.A. ESP. EN BOGOTÁ

JENCY VIVIANA RAMÍREZ FIERRO
NELSON ARDILA MANTILLA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN GESTIÓN DE PROYECTOS DE INGENIERÍA
BOGOTÁ, D.C.
2017
DISEÑO DE UN SISTEMA DE ENERGÍA ALTERNATIVA SOLAR PARA CONECTAR LOS SERVICIOS AUXILIARES DE CORRIENTE CONTINUA EN CINCO (5) SUBESTACIONES ELÉCTRICAS DE CODENSA S.A. ESP. EN BOGOTÁ

JENCY VIVIANA RAMÍREZ FIERRO
NELSON ARDILA MANTILLA

PROYECTO DE GRADO PARA OPTAR EL TÍTULO DE:
ESPECIALISTA EN GESTIÓN DE PROYECTOS DE INGENIERÍA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN GESTIÓN DE PROYECTOS DE INGENIERÍA
BOGOTÁ, D.C.
2017
Tabla de Contenido

INTRODUCCIÓN

<table>
<thead>
<tr>
<th>1. ANTECEDENTES</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 ESTADO DEL ARTE</td>
<td>9</td>
</tr>
<tr>
<td>1.2 MARCO HISTÓRICO</td>
<td>14</td>
</tr>
<tr>
<td>1.2.1 OBJETIVOS DEL ESTUDIO</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2 SISTEMAS FOTOVOLTAICOS</td>
<td>15</td>
</tr>
<tr>
<td>1.3 MARCO DE DESARROLLO</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. IDENTIFICACIÓN DEL PROYECTO</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 GENERALIDADES</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1 TERMINOLOGÍA</td>
<td>22</td>
</tr>
<tr>
<td>2.1.2 VARIABLES DE ANÁLISIS Y CÁLCULO</td>
<td>25</td>
</tr>
<tr>
<td>2.2 CLASIFICACIÓN DEL PROYECTO</td>
<td>29</td>
</tr>
<tr>
<td>2.3 ORIGEN DEL PROYECTO</td>
<td>30</td>
</tr>
<tr>
<td>2.4 ESTUDIOS PRELIMINARES</td>
<td>30</td>
</tr>
<tr>
<td>2.5 APLICACIÓN DEL SISTEMA DE MARCO LÓGICO</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1 SITUACIÓN PROBLEMÁTICA</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2 ANÁLISIS DE GRUPOS INTERESADOS</td>
<td>31</td>
</tr>
<tr>
<td>2.5.3 ANÁLISIS DE PROBLEMAS (ÁRBOL DE PROBLEMAS)</td>
<td>32</td>
</tr>
<tr>
<td>2.5.4 ANÁLISIS DE OBJETIVOS (ÁRBOL DE OBJETIVOS)</td>
<td>33</td>
</tr>
<tr>
<td>2.6 ANÁLISIS DE ALTERNATIVAS DE ACCIÓN</td>
<td>34</td>
</tr>
<tr>
<td>2.7 LISTA DE PROBLEMAS IDENTIFICADOS</td>
<td>34</td>
</tr>
<tr>
<td>2.8 NOMBRE DEL PROBLEMA SELECCIONADO COMO PROBLEMA CENTRAL</td>
<td>35</td>
</tr>
<tr>
<td>2.9 ANÁLISIS DE ALTERNATIVAS PARA LA SELECCIÓN DE LA SOLUCIÓN ÓPTIMA</td>
<td>35</td>
</tr>
<tr>
<td>2.9.1 VENTAJAS</td>
<td>35</td>
</tr>
<tr>
<td>2.9.2 DESVENTAJAS</td>
<td>36</td>
</tr>
<tr>
<td>2.10 ESTRUCTURA ANALÍTICA DEL PROYECTO</td>
<td>36</td>
</tr>
<tr>
<td>2.10.1 OBJETIVO GENERAL</td>
<td>36</td>
</tr>
<tr>
<td>2.10.2 OBJETIVOS ESPECÍFICOS</td>
<td>36</td>
</tr>
<tr>
<td>2.10.3 MATRIZ DE MARCO LÓGICO</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. ESTUDIO DE MERCADO</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 DEFINICIÓN DEL PRODUCTO/SERVICIO</td>
<td>40</td>
</tr>
<tr>
<td>3.1.1 PRODUCTO PRINCIPAL</td>
<td>40</td>
</tr>
<tr>
<td>3.1.2 SUBPRODUCTOS</td>
<td>40</td>
</tr>
<tr>
<td>3.2 DISTRIBUCIÓN GEOGRÁFICA DEL MERCADO DE CONSUMO</td>
<td>41</td>
</tr>
<tr>
<td>3.3 ANÁLISIS DE OFERTA</td>
<td>41</td>
</tr>
<tr>
<td>3.4 IMPORTACIONES DEL PRODUCTO</td>
<td>41</td>
</tr>
<tr>
<td>3.5 ANÁLISIS DE PRECIOS</td>
<td>42</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Página</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>4. ESTUDIO TÉCNICO</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Diseño de la Cubierta Solar Fotovoltaica</td>
<td>45</td>
</tr>
<tr>
<td>4.1.1 Antecedentes, situación actual de la Casa de Control</td>
<td>45</td>
</tr>
<tr>
<td>4.1.2 Componentes del sistema solar fotovoltaico</td>
<td>48</td>
</tr>
<tr>
<td>4.1.3 Dimensiones del campo fotovoltaico</td>
<td>53</td>
</tr>
<tr>
<td>4.1.4 Conexión a la red eléctrica</td>
<td>59</td>
</tr>
<tr>
<td>4.1.5 Cálculo de la energía generada por la instalación</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Mantenimiento de la instalación</td>
<td>64</td>
</tr>
<tr>
<td>4.2.1 Mantenimiento a cargo de Codensa S.A. ESP.</td>
<td>64</td>
</tr>
<tr>
<td>4.3 Presupuesto para una (1) Subestación Eléctrica</td>
<td>66</td>
</tr>
<tr>
<td>5. ESTUDIO ADMINISTRATIVO</td>
<td>68</td>
</tr>
<tr>
<td>5.1 Organigrama del proyecto</td>
<td>68</td>
</tr>
<tr>
<td>5.2 Análisis de precios</td>
<td>69</td>
</tr>
<tr>
<td>6. ESTUDIO AMBIENTAL</td>
<td>69</td>
</tr>
<tr>
<td>6.1 Normograma Ambiental</td>
<td>71</td>
</tr>
<tr>
<td>7. ESTUDIO FINANCIERO</td>
<td>72</td>
</tr>
<tr>
<td>7.1 Análisis de Sensibilidad</td>
<td>73</td>
</tr>
<tr>
<td>7.1.1 Escenario más probable</td>
<td>73</td>
</tr>
<tr>
<td>7.1.2 Escenario optimista</td>
<td>75</td>
</tr>
<tr>
<td>7.1.3 Escenario pesimista</td>
<td>77</td>
</tr>
<tr>
<td>7.2 Diagnóstico del Análisis de Sensibilidad</td>
<td>79</td>
</tr>
<tr>
<td>7.3 Período de retorno de la inversión</td>
<td>79</td>
</tr>
<tr>
<td>CONCLUSIONES</td>
<td>81</td>
</tr>
<tr>
<td>RECOMENDACIONES</td>
<td>83</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA</td>
<td>85</td>
</tr>
<tr>
<td>LISTA DE ANEXOS</td>
<td>87</td>
</tr>
</tbody>
</table>
Índice de Tablas

Tabla 1 Radiación solar por región en Colombia...16
Tabla 2 Consumo medio de energía diario ..26
Tabla 3 Potencia fotovoltaica...26
Tabla 4 Calculo de corriente ..28
Tabla 5 Grupo de interesados...31
Tabla 6 Alternativas de acción..34
Tabla 7 Matriz de Marco Lógico..38
Tabla 8 Análisis de precios...42
Tabla 9 Componentes del sistema solar fotovoltaico...49
Tabla 10 Características del panel solar propuesto..51
Tabla 11 Características de la estructura propuesta...52
Tabla 12 Radiación solar incidente sobre superficies inclinadas en Bogotá56
Tabla 13 Cálculo eléctrico ..62
Tabla 14 Resumen de instalación ...63
Tabla 15 Presupuesto ..66
Tabla 16 Análisis de precios Diseño ..69
Tabla 17 Normograma ambiental ...71
Tabla 18 Flujo de caja escenario más probable...73
Tabla 19 VPN - TIR escenario más probable...74
Tabla 20 Costos de mantenimiento..74
Tabla 21 Flujo de caja escenario optimista ...75
Tabla 22 VPN - TIR escenario optimista...76
Tabla 23 Costos de mantenimiento..76
Tabla 24 Flujo de caja escenario pesimista ...77
Tabla 25 VPN - TIR escenario pesimista ..78
Tabla 26 Costos de mantenimiento..78
Tabla 27 Periodo de retorno de la inversión..79
Índice de Figuras

Figura 1. Diagrama unifilar servicios auxiliares de corriente continua 21
Figura 2. Esquema básico de paneles solares .. 25
Figura 3. Curvas de un panel .. 27
Figura 4. Árbol de problemas .. 32
Figura 5. Árbol de objetivos .. 33
Figura 6. Subestación Concordia .. 46
Figura 7. Subestación Castellana ... 46
Figura 8. Subestación Autopista ... 47
Figura 9. Subestación Usme .. 47
Figura 10. Subestación Salitre ... 48
Figura 11. Panel solar Kyocera ... 50
Figura 12. Estructura SUNTOP III .. 52
Figura 13. Cubierta a dos aguas. En color azul el área fotovoltaica .. 53
Figura 14. Esquema planta de la cubierta ... 54
Figura 15. Alzado de la cubierta ... 54
Figura 16. Promedio mensual de radiación solar en Bogotá .. 55
Figura 17. Planta de la cubierta a dos aguas .. 56
Figura 18. Esquema del alzado de la cubierta ... 57
Figura 19. Esquema del alzado de la cubierta ... 57
Figura 20. Esquema disposición de los paneles solares sobre la cubierta 58
Figura 21. Esquema unifilar .. 60
Figura 22. Radiación solar en Bogotá .. 61
Figura 23. Organigrama del proyecto .. 68
Introducción

La Energía Solar es una energía limpia, que utiliza una fuente inagotable y que no cuesta, pero cuyo mayor inconveniente radica en cómo poder convertirla de una forma eficiente en energía aprovechable. La tecnología actual en este sentido va dirigida en dos direcciones: conversión eléctrica y conversión térmica.

La conversión directa en energía eléctrica se produce en las células solares y se basa en el efecto fotovoltaico. Explicar este efecto y dar una visión general de esta tecnología, de su estado actual y de sus aplicaciones, son los objetivos de este proyecto.

Los sistemas fotovoltaicos transforman la energía radiante del sol en energía eléctrica. Este proceso de transformación se produce en un elemento semiconductor que se denomina célula fotovoltaica. Cuando la luz del sol incide sobre una célula fotovoltaica, los fotones de la luz solar transmiten su energía a los electrones del semiconductor para que así puedan circular dentro del sólido. La tecnología fotovoltaica consigue que parte de estos electrones salgan al exterior del material semiconductor generándose así una corriente eléctrica capaz de circular por un circuito externo.

Para hacer posible el manejo práctico de las células fotovoltaicas, estas se presentan asociadas eléctricamente entre sí y encapsuladas en un bloque llamado panel o módulo fotovoltaico, que constituye el elemento básico para la producción de electricidad. Normalmente, un módulo fotovoltaico está formado por unas 36 células, teniendo diferentes medidas que oscilan desde el 0,5 m2 hasta 1 m2, el grosor también oscila entre 3,5 cm y 5 cm.

El módulo fotovoltaico está formado por unos conjuntos de células solares conectadas entre sí en serie y paralelo hasta conseguir el voltaje adecuado para su utilización, este voltaje suele ser de 12V aunque a plena radiación solar y 25ºC de temperatura suele ser de 15V a 17V.
El conjunto de células está envuelto por unos elementos que le confieren protección frente a los agentes externos y rigidez para acoplarse a las estructuras que lo soportan.

Las condiciones de funcionamiento de un módulo fotovoltaico dependen de variables externas tales como la radiación solar y la temperatura de funcionamiento. Para poder efectuar el diseño de una instalación solar fotovoltaica se necesita saber la radiación del lugar. Para ello se ha de disponer de las tablas de radiación solar actualizadas de Bogotá.

La cantidad de energía recibida del Sol (radiación solar) y la demanda diaria de energía serán los factores que nos marcarán el diseño de los sistemas fotovoltaicos.

La elección de los datos de radiación solar dependerá directamente de la situación de la instalación, así como de las condiciones meteorológicas predominantes y particulares de cada lugar. Para la ciudad de Bogotá se utilizara una tabla de radiación solar mensual interceptada por una superficie inclinada.
1. Antecedentes

1.1 Estado del Arte

Las energías alternativas también son conocidas como energías renovables, energías limpias o energía verde, ya que se captura mediante un proceso la energía disponible de un medio ambiente siendo almacenada para ser utilizada directamente o transformada en corriente alterna para los usos en iluminación, maquinarias o electrodomésticos. Se presenta una reseña histórica breve de las energías renovables, como son solar térmica, solar fotovoltaico, eólica, geotérmica, mareomotriz, biomasa e hidráulica, señalando las ventajas, desventajas y la eficiencia del uso de las energías renovables.

Las energías renovables crean en un flujo continuo y se disipan a través de ciclos naturales que se estima son inagotables, ya que su regeneración es incesante. Este tipo de energía es el que se explicará en detalle más adelante, en donde se definían todos sus tipos y por consiguiente sus usos. Para este estudio se citan las siguientes:

- Solar térmica

Un hecho fundamental en la historia de la energía solar térmica la originó en Suiza, Horace de Saussure en el año de (1767) cuando inventó lo que se denominó como Caja Caliente. Saussure era conocedor del efecto invernadero que se produce en todo espacio cerrado que cuenta con una apertura acristalada por donde entra la radiación solar y decidió potenciar al máximo el efecto para comprobar hasta que temperaturas se lograba alcanzar. Para ello dispuso una caja acristalada con el interior pintado de negro.

- Solar fotovoltaica
Alexandre Edmond Becquerel descubrió el efecto fotovoltaico en el año de (1938), mismo que consistente en la transformación directa de la luz en electricidad utilizando un semiconductor, algunos años más tarde, en (1877), el inglés William Grylls Adams profesor de Filosofía Natural en la King College de Londres, junto con su alumno Richard Evans Day, crearon la primera célula fotovoltaica de selenio.

Un siglo más hasta que Gerald Pearson de Laboratorios Bell, patentó la primera célula fotovoltaica en el año de (1953), fabricó casi accidentalmente una célula fotovoltaica basada en este material que resultaba mucho más eficiente que cualquiera hecha de selenio. A partir de este descubrimiento, otros dos científicos también de Laboratorios Bell, de nombre Daryl Chaplin y Calvin Fuller perfeccionaron este invento y produjeron células solares de silicio capaces de proporcionar suficiente energía eléctrica como para que pudiesen obtener aplicaciones prácticas de ellas.

- Eólica

Este tipo de energía, es una de las más antiguas usadas por la humanidad. Desde el siglo (II a.C.), en China los hombres utilizaban los molinos de viento para moler granos o bombear agua. Con la llegada de la electricidad, a finales del siglo XIX los primeros aerogeneradores se basaron en la
forma y el funcionamiento de los molinos de viento., sin embargo, hasta hace poco tiempo no la generación de electricidad a través de aerogeneradores no ha jugado un papel importante.

La primera persona que utilizó el viento para generar electricidad fue Charles F. Brush, en el año de (1888), quien construyó el molino de poste Brush, en Cleveland, Ohio. Parecía un ventilador gigante con una cola que podía hacer girar el rotor con el viento. El molino de poste producía alrededor de (12 KV), cantidad que cargaba las baterías en el sótano de la casa de Brush. Éstas suministraban energía a las lámparas y a pequeños motores eléctricos.

- **Biomasa**

Las tecnologías de conversión de la biomasa en energía útil son muy variadas y dependientes del tipo de materia prima utilizada. Podemos citar, sin ánimo de ser exhaustivos, la combustión, gasificación, pirolisis, digestión anaeróbica, hidrólisis, fermentación y trans-esterificación. La combustión de biomasa, que es la tecnología más utilizada, puede producir emisiones de gases contaminantes que es preciso tener en cuenta a la hora de diseñar las plantas de producción.

Uso principal de biomasa:

a) En el sector doméstico, la leña tanto como el biogás se utilizan para cocinar en lugares rurales alrededor del mundo. El uso de leña es menos eficiente y más contaminante que otros combustibles existentes, además de ser una de las causas de la deforestación. El biodigestor es un dispositivo que es utilizado para procesar los residuos orgánicos para obtener biogás y otros productos útiles. Es un receptáculo cerrado con una entrada lateral para los residuos, un escape en la parte de arriba por donde sale el biogás, y una salida para los desechos ya procesados. Este aparato convierte residuos como estiércol y aguas negras por medio de la acción de las bacterias que realizan la descomposición anaeróbica, produciendo gases como metano que se pueden utilizar para cocinar.
b) En el sector industrial, las aplicaciones más importantes de la biomasa en el sector industrial son la generación de calor para el secado de productos agrícolas como el café y la producción de cal y ladrillos. La co-generación es una combinación de electricidad y calor, por ejemplo generación eléctrica, hornos industriales para secado de madera y granos, y calderas también para el secado de madera y granos.

c) Sector comercial, se utiliza en restaurantes y pequeños negocios en comunión con el sector doméstico.

- **Geotérmica**

El calor que se encuentra en el interior del planeta es una energía duradera, diferencia de las energías eólica y solar, es constante e independiente de las estaciones del año y las condiciones climatológicas. Es una energía limpia y sustentable, ya que las instalaciones para extraerla no queman combustibles y por lo tanto no contribuyen a la emisión de gases de efecto invernadero.

En el siglo XIX este tipo de energía se empezó a aprovechar industrialmente con los avances tecnológicos de esta época. El fundador de la industria geotérmica fue el francés Francois Larderel; él fue quien utilizó los líquidos en un proceso de evaporación en lugar de quemar la madera y de esta forma dio inicio a lo que hoy conocemos como la energía geotérmica.

Las aplicaciones que actualmente tiene son las siguientes como energía eléctrica, baños y albercas, calefacción directa, calefacción por medio de circuitos, acuicultura y crianza de animales, secado de alimentos y maderas.

- **Hidráulica**

La fuerza del agua fue aprovechada para diversos usos, como moler grano o triturar materiales con alto contenido en celulosa para la producción de papel, hecho que atestiguan los numerosos
molinos de agua conservados en diferentes partes del mundo. Se considera que la primera central hidroeléctrica fue la construida en Northumberland, Reino Unido, en el año de (1880) y un año después comenzó a utilizarse la energía procedente de las cataratas del Niágara para alimentar el alumbrado público. A finales de la década ya existían más de (200) centrales tan solo en Estados Unidos de América y Canadá.

La producción de energía hidroeléctrica ha crecido en un (65%) en todo el mundo, siendo este aumento especialmente agudo en los países de América Latina, Asia y África. Mientras que en estas regiones tan solo se aprovecha el (7%) de su potencial hidroeléctrica, en áreas más desarrolladas, como Europa, este porcentaje asciende al (75%), por lo que el crecimiento esperado en los países en vías de desarrollo es elevado. En la actualidad, Canadá, Estados Unidos y China son los mayores productores del mundo.

- Del mar

Se denomina energía marina o energía oceánica a toda aquella que es transportada por las olas, mareas, corrientes, salinidad o diferencias de temperatura y que puede aprovecharse a partir de tales recursos. Cualquier movimiento que procede del mar es energía cinética y potencial que se aplica en la vida actual. Desde el año (1581) hasta (1822) en Londres, Reino Unido funcionó sobre el Río Támesis una gran rueda movida por la marea, que permitía bombear el agua hasta el centro de la ciudad, después algo similar fue utilizado por Francia y Rusia.

A continuación se citan algunos proyectos desarrollados en la Universidad Distrital:

Estudio de una alternativa para disminuir el consumo de energía eléctrica del compresor SULLAIR en la empresa Groupe Seb Colombia, 2011. http://hdl.handle.net/11349/1039.

Viabilidad técnica y económica del diseño de un sistema de extracción de agua subterránea empleando energía eólica, usado en riego por goteo para cultivos de hortalizas, 15 junio de 2016. http://hdl.handle.net/11349/2817.

Metodología para el cálculo de energía extraída a partir de Biomasa en el departamento de Cundinamarca, 3 de mayo de 2016. http://hdl.handle.net/11349/.

1.2 Marco Histórico

1.2.1 Objetivos del estudio

Las aplicaciones térmicas en Colombia datan de mediados del siglo pasado, cuando en Santa Marta fueron instalados calentadores solares en las casas de los empleados de las bananeras, calentadores que aún existen aunque no operan. Más tarde, hacia los años sesenta, en la Universidad Industrial de Santander se instalaron calentadores solares domésticos de origen Israeli para estudiar su comportamiento. Posteriormente, hacia finales de los setenta y estimulados por la crisis del petróleo de 1973, instituciones universitarias (la Universidad de los Andes, la Universidad Nacional en Bogotá, la Universidad del Valle, entre otras) y fundaciones (como el Centro Las Gaviotas) sentaron las bases para instalar calentadores solares domésticos y
grandes sistemas de calentamiento de agua para uso en centros de servicios comunitarios (como hospitales y cafeterías).

A mediados de los años ochenta, se utilizó la energía del sol para calentar el agua de los tanques de almacenamiento construidos con diferentes materiales térmicos, en Bogotá y Medellín en urbanizaciones, cadenas hoteleras, instituciones gubernamentales y religiosas.

1.2.2 Sistemas fotovoltaicos

La generación de electricidad con energía solar empleando sistemas fotovoltaicos ha estado siempre dirigida al sector rural, por el alto costo del combustible, mantenimiento y operación de los generadores diésel en las zonas remotas. A pesar del alto costo del kilovatio de generación con paneles solares, a largo plazo en las zonas rurales es más económico. El uso de esta opción de energía ha sido utilizado en los sistemas de comunicaciones con buenos resultados en su funcionamiento, entre 1985 y 1994 se importaron 48 499 módulos solares de los paneles, sobre esta cantidad se le realizó seguimiento a una muestra de 248 sistemas (con 419 módulos), que 56% de los sistemas funcionaban sin problemas, 37% funcionaban con algunos problemas y 8% estaban fuera de servicio. Como principal fuente de problemas se encontraron la falta de mínimo mantenimiento, suministro de partes de reemplazo (reguladores y lámparas) y sistemas subdimensionados.

En los programas de electrificación rural, el sistema convencional para hogares aislados ha constado de un panel solar de 50 a 70 Wp, una batería entre 60 y 120 Ah y un regulador de carga. Estos pequeños sistemas suministran energía para iluminación, radio y TV, cubriendo las necesidades realmente básicas de los campesinos. El costo actual de este sistema es del orden de
US$ 1 200 a 1 500, afectado principalmente por los elevados costos de instalación en las zonas remotas.

La generación de electricidad con energía solar tiene, enormes perspectivas, teniendo en cuenta que en Colombia cerca de 1 millón de familias carecen del servicio de energía eléctrica en el sector rural. La utilización de esta posibilidad es muy baja en comparación con otros países por los altos costos al inicio de la inversión. La evaluación del potencial solar de Colombia se ha realizado empleando principalmente información de estaciones meteorológicas del IDEAM (Instituto de Estudios Ambientales), procesada para ser transformada de información meteorológica en información energética, como se puede observar en la tabla 1. Radiación Solar por región en Colombia.

<table>
<thead>
<tr>
<th>REGIÓN DEL PAÍS</th>
<th>RADIACIÓN SOLAR (KW H / M 2 / AÑO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guajira</td>
<td>2 000 - 2 100</td>
</tr>
<tr>
<td>Costa Atlántica</td>
<td>1 730 - 2 000</td>
</tr>
<tr>
<td>Orinoquía-Amazonía</td>
<td>1 550 - 1 900</td>
</tr>
<tr>
<td>Región Andina</td>
<td>1 550 - 1 750</td>
</tr>
<tr>
<td>Costa Pacífico</td>
<td>1 450 - 1 550</td>
</tr>
</tbody>
</table>

La densidad de estaciones es en la Zona Andina más elevada que en el resto del país, razón por la cual los resultados de interpolaciones de valores de la radiación entre estaciones resulta menos confiable para el resto del país que para la Zona Andina. Y por otro lado, los modelos de radiación empleados no han sido suficientemente validados para el país.
1.3 Marco de Desarrollo

En la Universidad Distrital se han realizado estudios de aplicaciones y factibilidad para la utilización de la energía solar con los paneles fotovoltaico, algunos de estos proyectos se mencionan a continuación.

- Implementación de una aplicación para dispositivos Android para el dimensionamiento de un sistema fotovoltaico aislado para la empresa INERSOL SAS, 16 Mayo 2016. http://hdl.handle.net/11349/3656
- Estudio de viabilidad técnica y económica para el diseño e implementación de un sistema de energía solar fotovoltaica en proyectos residenciales de estratos 3 y 4 en la ciudad de Santa Marta, 16 de junio de 2016. http://hdl.handle.net/11349/2824.
- Estudio de perfectibilidad de una estación de recarga para bicicletas eléctricas por medio de una estructura híbrida de paneles solares en la ciudad de Bogotá, 14 de junio de 2016. http://hdl.handle.net/11349/2828.

En el país existen empresas dedicadas a la implementación de uso de energías alternativas como es la solar, algunos de los proyectos representativos son:

- Primer Colegio en Colombia que funciona con energía solar
• Universidad Autónoma de occidente
• Mujeres Wayuus analfabetas, ahora ingenieras de paneles solares
• Institución Pública Ramón B. Jimeno en Bogotá abastecido 100% con energía solar
• Fundación Centro Experimental Las Gaviotas.

2. Identificación del Proyecto

Los sistemas de energía eléctrica de acuerdo de su aplicabilidad y complejidad son redundantes en cada uno de sus campos de utilización, por estar sustentados en los requerimientos de seguridad y confiabilidad. Los servicios auxiliares de corriente alterna son primordiales para él un adecuado funcionamiento de los servicios auxiliares de corriente continua, ya que estos están conectados por intermedio del cargador de baterías (Rectificador) y el banco de baterías, siendo parte de los servicios auxiliares de vital importancia en una subestación de potencia.

Cuando hay daños o cortes de energía ya sea en media o baja tensión, la energía almacenada en los banco de batería es entregada a los servicios auxiliares de corriente continua, si estos cortes de energía son de tiempo prologados (mayor a cuatro horas), el voltaje del sistema de corriente continua empieza a disminuir con la probabilidad que equipos de señalización y maniobras queden fuera de servicio sin posibilidad para despejar falla que se originen en el sistema de potencia de media o alta tensión, ocasionando daños de gran magnitud en las subestaciones, por consiguiente afectación a equipos, personas y energía dejada de suministrar como ha sucedido en los eventos más relevantes a mencionar son:

• El 13 de noviembre de 2013 en la subestación Concordia, 25 mil personas afectadas por explosión en subestación en centro de Bogotá (tiempo, 2013)
• El 06 de mayo de 2014 en la subestación Usme, Volvió la energía a Usme, después de 24 horas de apagón (El tiempo, 2014), (RCN, 2014)

• El 21 de Abril de 2011 en la subestación suba, 70 mil hogares se quedaron sin luz por incendio en subestación de Suba (Fe, 2011)

En las subestaciones eléctricas de Codensa S.A. ESP, existe avances y apoyos para aplicar y desarrollar la utilización de energías renovables como el aplicado al sistema de comunicaciones a un voltaje de 48 VDC, (Robinson Dias, 2012) las desventajas de los paneles implementados, son la mala ubicación, hay uno instados debajo de los árboles, zonas cerca de la casa de control y unos pocos en zonas libre de obstáculos; con el agravante de la cantidad de hojas de estos árboles quedando cubiertos, zonas de sombra generadas por el entorno. Por las anteriores razones se minimiza el funcionamiento de estos equipos siendo subutilizado, ya que no aportan el cien por ciento del total posible.

2.1 Generalidades

En condiciones normales, el cargador (rectificador) opera en un régimen de flotación, manteniendo completamente cargadas las baterías y suministrando al mismo tiempo la carga nominal del sistema de corriente continua. Tanto en condiciones de flotación como de carga de las baterías, el cargador deberá mantener el voltaje de las cargas de corriente continua dentro de los límites tolerables para la señalización y maniobras, en el sistema de Codensa S.A. ESP. El voltaje de este sistema está entre 128 VDC a 134 VDC. El suministro de energía disponible para los cargadores es una fuente bifásica o trifásica, 60 Hz, 208 Vca. (EMSA, 2014)

Los sistemas de servicios auxiliares se dividen en dos, alterna y continua, para nuestro estudio nos centraremos en los de corriente continua. Los servicios auxiliares de una subestación
de alta tensión están constituidos fundamentalmente por las fuentes de alimentación y los sistemas de distribución de energía eléctrica que son necesarios para asegurar el funcionamiento de la instalación. Los servicios de servicios auxiliares de corriente continua nos determinan la confiabilidad y flexibilidad de operación del sistema,

Los servicios auxiliares de corriente continua, distribuyen la energía necesaria para los dispositivos y equipos instalados en la subestación, con la calidad de servicio y la seguridad que son necesarias para su funcionamiento fiable. En general, desde los servicios auxiliares se alimenta a los siguientes equipos:

- Motores asociados a los órganos de maniobra.
- Equipo de Mando y Control.
- Sistemas de Control e Información.
- Equipos de Protección.
- Sistemas de Señalización y Alarma.
- Equipos de Telecontrol.
- Sistema de comunicaciones.

Los sistemas de corriente continua tienen la misión de alimentar a los servicios más críticos de la subestación, como la protección y el mando, que debido a su importancia, se debe asegurar su alimentación por todos los medios. Es por ello que el sistema de 134 VDC. Se basa en el uso de equipos rectificador - batería, de dimensionamiento adecuado a la instalación y que alimentaran al Cuadro de Distribución de 134 VDC. Estos equipos rectificadores - batería aseguran que aun en el caso de la pérdida total de la corriente alterna, los sistemas críticos continuarán en servicio durante unas horas, para dar tiempo a la reposición del servicio de alterna o realizar un “cero” controlado de la subestación.
De forma general estos sistemas se alimentarán a 134 VDC. Salvo los que tienen que ver con las comunicaciones y el telecontrol que lo harán a 48 VDC o incluso tensiones inferiores. En condiciones normales los cargadores alimentarán los consumos permanentes y proporcionarán una corriente de flotación a la batería, con una tensión regulada. Funcionan dentro de los límites fijados con variaciones en la alimentación de corriente alterna de +10% -15% de la tensión nominal y ± 4% de la frecuencia nominal, con tres regímenes de carga y control manual y automático. Las entradas de alimentación desde baterías al tablero de distribución con interruptores termo-magnéticos; en la figura, Diagrama unifilar Servicios auxiliares de corriente continua.

Figura 1. Diagrama unifilar servicios auxiliares de corriente continua
2.1.1 Terminología

- **Acometida**: Tramo o parte de la instalación comprendida entre la red de distribución y cajas de acometida o generales de protección; pueden ser aéreas o subterráneas.
- **Alimentación**: Suministro de corriente a un circuito, instalación o equipo.
- **Banco de batería**: Reunión de varias baterías, que comunicándose entre sí producen gran acumulación de electricidad. Los bancos de batería de las subestaciones de Codensa S.A. ESP están conformados por 60 celdas de 2.15 voltios cada una, con un voltaje nominal del banco de 132 VDC.
- **Batería**: Acumulador eléctrico, está compuesto de una o más celdas electroquímicas que pueden convertir la energía química almacenada, en electricidad.
- **Cable de control**: Son especialmente apropiados para los dispositivos de control, por ejemplo en máquinas-herramientas, cintas transportadoras y líneas de montaje y producción. Estos se utilizan donde existen las más altas exigencias contra abrasión y resistencia a cortes, así como resistencia a aceites y productos químicos.
- **Cargador de baterías**: Equipo que sirve para recargar una batería descargada haciendo circular una corriente continua, de tensión ligeramente superior a la de la misma batería, en sentido opuesto al de la corriente de descarga. Se consigue así la re-transformación del sulfato de plomo presente en las placas, restituyendo el ácido sulfúrico a la solución electrolítica, que aumente su peso específico.
- **Circuito**: Conjunto de materiales eléctricos, conductores de diferentes fases o polaridades alimentados por la misma fuente de energía y protegidos contra las sobre intensidades, por los mismos dispositivos de protección.
• Corriente alterna: Es aquella cuya intensidad es variable y cambia de sentido al pasar la intensidad por cero; cambia de sentidos en intervalos de tiempos iguales y su valor no es constante. Abreviadamente se conoce como C.A. o A.C.

• Corriente Continua: Es el flujo siempre en la misma dirección de cargas eléctricas a través de un conductor entre dos punto de distinto voltaje. Las cargas eléctricas circulan siempre en la misma dirección del punto de mayor potencial al de menor potencial. Comúnmente se identifica la corriente continua con la corriente constante. Abreviadamente se conoce como C.C

• Energía alternativa: Energía procedente de fuentes no convencionales, por ejemplo, la energía solar, la energía eólica, del mar, biomasa, geotérmica, hidráulica.

• Panel Solar: Es un elemento que permite usar los rayos del sol como energía. Estos dispositivos recogen la energía térmica o foto-voltaica de sol y la convierte en un recurso que puede emplearse para producir electricidad o calentar un sistema. Los paneles solares pueden ser de silicio cristalino (mono cristalino o multi cristalino) con rendimiento del 15 al 18% o silicio amorfo el rendimiento es menor al 10%

• Protección Termo magnética: Es un dispositivo capaz de interrumpir la corriente eléctrica de un circuito cuando ésta sobrepasa ciertos valores máximos. Su funcionamiento se basa en dos de los efectos producidos por la circulación de corriente en un circuito: el magnético y el térmico (efecto Joule). El dispositivo consta, por tanto, de dos partes, un electroimán y una lámina bimetálica, conectadas en serie y por las que circula la corriente que va hacia la carga.
• Puesta a tierra de Servicio: Es la conexión a tierra de un punto del circuito eléctrico en particular en particular del punto Neutro de los transformadores conectados en estrella. Directa Indirecta El conductor Neutro siempre deberá conectarse a una puesta a T. de S.

• Regulador de carga: Dispositivo encargado de proteger a la batería frente a sobrecargas y sobre descargas profundas. Controla constantemente el estado de carga de las baterías y regula la intensidad de carga de las mismas para alargar su vida útil. También genera alarmas en función del estado de dicha carga.

• Relé: son dispositivos digitales compactos que son conectados a través de los sistemas de potencia para detectar condiciones intolerables o no deseadas dentro de un área asignada. Con características de rápida remoción del servicio cuando algún elemento del sistema sufre un corto circuito, dar la orden para desconectar un circuito cuando se presenta un operación anormal, las protección del sistema trabajan en asociación con interruptores los cuales desconectan el equipo luego de recibir la orden del relé.

• Señal analógica: Es un tipo de señal general por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo en función del tiempo. Son señales que tienen un variación continua.

• Señal Digital: Es un tipo de señal en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que presenta valores discretos, en lugar de valores dentro de un cierto rango. Esto no significa que la señal físicamente sea discreta ya que los campos electromagnéticos suelen ser continuos.

• Servicios auxiliares de subestación de alta tensión: Están constituidos fundamentalmente por las fuentes de alimentación y el sistema de distribución de energía eléctrica que son
necesarios para asegurar el funcionamiento de la instalación. Pueden ser de corriente continua y/o alterna.

2.1.2 Variables de análisis y cálculo

Los sistemas de para aprovechamiento de la energía solar son de fácil implementación, con flexibilidad en el montaje, en la ilustacion 1. Esquema basico de paneles solares, se puede observar los diferentes equipos a instalar para su correcto funcionamiento.

Figura 2. Esquema básico de paneles solares

2.1.2.1 Cálculo de la carga

Con los datos de Consumos se obtine el consumo medio diario de la instalación al que se le ha aplicado un 20% como margen de seguridad recomendado. También tener en cuenta que en la
instalación habrá pérdidas por rendimiento de la batería y del inversor y esto influye en la energía necesaria final. Generalmente, para el buen dimensionamiento, se toma un rendimiento de la batería de un 95%, del inversor un 90% y de los conductores un 100%.

Tabla 2

Consumo medio de energía diario

<table>
<thead>
<tr>
<th>Lmd: el consumo medio de energía diario.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{md} = \frac{L_{md,DC} + \frac{L_{m,AC}}{n_{inv}}}{n_{BAT} * n_{con}}$</td>
</tr>
</tbody>
</table>

Lmd,DC: el consumo medio de energía diario de las cargas en continua

Lmd,AC: el de las cargas en alterna.

ninv: Rendimiento del inversor

nBAT: Rendimiento de las batería

ncon: Rendimiento conductores

Una vez calculado el consumo se deben verificar los datos de radiación solar global.

2.1.2.2 Potencia de la célula solar

La potencia que proporciona una célula de tamaño estándar comercial, por lo general será necesario asociar varias para proporcionar la potencia necesaria al sistema fotovoltaico de la instalación. Estos paneles pueden ser conectados en serie o en paralelo.

Tabla 3

Potencia fotovoltaica

<table>
<thead>
<tr>
<th>$V_s = V_p * N \ (V)$</th>
<th>Vs: Voltaje del Sistema solar a conectar (Voltios)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_s = P_p * N \ (W)$</td>
<td>Vp: Voltaje de cada panel (Voltios)</td>
</tr>
</tbody>
</table>

N: numero de paneles a conectar

Ps: Potencia del sistema (Vatios)

Pp: Potencia del panel (Vatios)
2.1.2.3 **Curva característica del panel**

Están dadas por el fabricante, importante para el diseño de la instalación, en esta obtenemos los valores de tensión, intensidad y potencia del panel, hay que tener cuidado con los valores ideales de laboratorio con los de funcionamiento. En la ilustración 2. Curvas de un panel. Se puede observar las características entregadas por el fabricante.

![Diagrama de curvas del panel](image)

Figura 3. Curvas de un panel
2.1.2.4 Agrupamiento y conexiones de paneles

Dependiendo de la instalación se puede utilizar uno o un conjunto de paneles que se montaran agrupados sobre un soporte y conectados entre si eléctricamente.

2.1.2.5 Regulador de carga

Para el buen funcionamiento del sistema de paneles solares se debe instalar un regulador de carga entre los paneles solares y el banco de baterías y/o carga del sistema a conectar. Este regulador de carga evita la carga y sobre descarga de la batería para alargar la vida útil de estas. Garantizando la carga suficiente al acumulador evitando la sobrecarga y descarga de las baterías.

Para tener en cuenta los posibles picos de irradiación o los cambios de temperatura, es recomendable que, a la hora de escoger el regulador, sea aquel con un 15-25% superior a la corriente de cortocircuito que le puede llegar del sistema de generación fotovoltaico (Ientrada) o bien, de la que puede consumir la carga del sistema (Isalida). La elección del regulador será aquel que soporte la mayor de las dos corrientes calculadas.

Tabla 4
Calculo de corriente

<table>
<thead>
<tr>
<th>CORRIENTE DE ENTRADA IE</th>
<th>CORRIENTE DE SALIDA IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_e = 1,25 \times I_{mod} \times N_i)</td>
<td>(I_s = \frac{1.25 \times (P_{DC} + \frac{P_{AC}}{n - inv})}{V_{BAT}} \times r^2)</td>
</tr>
</tbody>
</table>

| (Imod,SC) la corriente unitaria del módulo fotovoltaico en condiciones de cortocircuito. (Ni) el número de ramas 1,25 es un factor de seguridad para evitar daños ocasionales al regulador. | (PDC), potencia de las cargas en continua. (PAC), potencia de las cargas en alterna. (ninv), rendimiento del inversor, en torno a 90-95%. |
2.1.2.6 Acumuladores, tipos de baterías

Se utilizan para almacenar la energía convertida por los panel solares para entregar esta energía en los periodos de no sol o por disminución de los rayos solares debidos a lluvias o tiempos de alta nubosidad.

Las baterías son recargadas por la energía captada por los paneles solares a través del regulador de carga, para ser entregada. Las baterías almacenan energía durante un determinado número de horas, proporciona potencia instantánea, fijar la potencia de trabajo de la instalación. Pueden ser de plomo-ácido, níquel cadmio, níquel metal hydride o ion litio. Los banco de batería a los cuales se le suministrara carga son de 300 a 400 amperios hora con voltaje nominal de 132 VDC, estos bancos de batería pueden ser cargado con corrientes de 30 a 40 A/h.

2.1.2.7 Acometida general y parciales

Las acometidas se calculan con un veinte por ciento (20%) de sobre carga de la carga máxima a conectar a ella.

2.2 Clasificación del Proyecto

- Según la clasificación, éste proyecto tiene carácter económico; implementándose y puesto en servicio en las subestaciones eléctricas de Codensa S.A. ESP donde se requiera.

- Este proyecto se clasifica de infraestructura económica. Se caracteriza por la actividad económica la utilización de insumos, bienes o servicios, de utilidad general, tales como: Energía eléctrica. Proyectos de Investigación se divide en dos: Investigación en Ciencias. Pueden ser ciencias exactas, naturales o sociales. Investigación Aplicada. Puede estar relacionada con
recursos naturales, con procesos de transformación (tecnología) o con procesos de decisión (organización).

Según el objetivo, un proyecto puede ser Primario (Agrícola) o Secundario de transformación.

- Este proyecto se clasifica en el sector secundario de transformación y ciencias exactas.

Según el Ejecutor: Público, privado o mixto.

- Este proyecto se clasifica como mixto, por la característica que tiene Codensa S.A. ESP, el capital que conforma esta empresa el 51% pertenece a EEB de carácter público y el 49% restante corresponde al sector privado ENEL, CHILECTRA y otros. (Enel, 2015)

Según su Área de Influencia: Locales, Regionales, Nacionales, Multinacionales

- Este proyecto se clasifica como Local ya que se ejecutará en Bogotá.

Según su Tamaño, se clasifican en: Pequeños, Medianos, Grandes o Macro-proyectos

- Este proyecto se catalogó pequeño por su tamaño y mediano por la inversión de innovación.

2.3 Origen del Proyecto

En la actualidad el banco de baterías de las subestaciones eléctricas de Codensa en Bogotá son cargados con rectificadores, los cuales están conectados al sistema de corriente alterna, éstos dejan de funcionar cuando se presentan fallas quedando en descarga el banco de baterías, si la falla es por un tiempo prolongado el sistema de corriente continua puede quedar fuera de servicio los sistemas auxiliares de corriente continua.

2.4 Estudios Preliminares

Para la instalación de los equipos (paneles solares, regulador de carga, protecciones) en las subestaciones de Codensa se debe realizar un análisis de:
- Posibles sitios de instalación
 - Áreas en superficies libres
 - Estados de Cubiertas de casa de control
 - Obstáculos en sitios de instalación
- Rutas de cableado con canalizaciones
- Recolección de datos y características de cargas a conectar
- Cotizaciones de materiales a utilizar.

2.5 Aplicación del Sistema de Marco Lógico

2.5.1 Situación problemática

En la actualidad los banco de baterías de las subestaciones eléctricas de Codensa en Bogotá son cargados con rectificadores, los cuales están conectados al sistema de corriente alterna, éstos dejan de funcionar cuando se presentan fallas quedando en descarga el banco de baterías, si la falla es por un tiempo prolongado el sistema de corriente continua puede quedar fuera de servicio los sistemas auxiliares de corriente continua.

2.5.2 Análisis de grupos interesados

<table>
<thead>
<tr>
<th>Tabla 5</th>
<th>Grupo de interesados</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUPO</td>
<td>INTERESES</td>
</tr>
</tbody>
</table>
| Codensa ESP SA | Económicos | • Daños Materiales
| | | • Interrupción del sistema de corriente alterna | • CREG
| | | | • RETIE |
2.5.3 Análisis de problemas (Árbol de Problemas)

Figura 4. Árbol de problemas
2.5.4 Análisis de objetivos (Árbol de Objetivos)

FINES
- Equipos de la subestación en norma funcionamiento
- Equipos de maniobras con señalización local y remota
- Relés de protección en servicio continuo
- Los equipos de corte (interruptores) operan

MEDIO
- Normal voltaje en el sistema de corriente
- Funcionamiento Normal del cargador de baterías
- Sin Anomalías del banco de baterías
- Daño del cargador de baterías

OBJETIVO GENERAL
- OPTIMO FUNCIONAMIENTO DEL SISTEMA DE CORRIENTE
- Voltaje en el sistema de corriente continua
- Interrupciones corta o larga en el sistema de corriente
- Disparo de las protecciones de corriente alterna en los TD o cargador de baterías

Figura 5 Árbol de objetivos
2.6 Análisis de Alternativas de Acción

<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sistemas de generación de energías alternativas como la eólica, biomasa</td>
</tr>
<tr>
<td>2</td>
<td>Tendido y conexión de una red de media tensión desde una subestación cercana hasta el transformador de auxiliares</td>
</tr>
<tr>
<td>3</td>
<td>Instalación de un banco de baterías</td>
</tr>
<tr>
<td>4</td>
<td>Aumentar la capacidad del banco de baterías</td>
</tr>
<tr>
<td>5</td>
<td>Sistema de energía alternativa solar para conectar los servicios auxiliares de corriente continua en la subestación eléctrica</td>
</tr>
</tbody>
</table>

2.7 Lista de Problemas Identificados

- Sin señalización local y remota de los equipos de la subestación
- Quedan fuera de servicio los relés de protección de los equipos de maniobras
- Daño en los equipos de la subestación
- No operan de los equipos de maniobras en local
- No se pueden operar los equipos desde centro de control
- Falta de respaldo del sistema de corriente continua
- Descarga del banco de baterías
- Daño del banco de baterías
- Bajo voltaje en el sistema de corriente continua
- Ausencia de voltaje en el sistema de corriente continua
- Interrupciones corta o larga en el sistema de corriente alterna
- Funcionamiento inadecuado del cargador de baterías
• Daño del cargador de baterías
• Disparo de las protecciones de corriente alterna en los TD o cargador de baterías.

2.8 Nombre del Problema Seleccionado Como Problema Central

Falta de respaldo del sistema de corriente continua.

2.9 Análisis de Alternativas Para la Selección de la Solución Óptima

Para evitar la descarga del banco de baterías por fallas en el sistema de corriente alterna ya sea por apertura del transformador de auxiliares de la subestación en media tensión, daño o mal funcionamiento del rectificador de corriente alterna a continua, apertura de la protección del rectificador o transformador de auxiliares en baja tensión durante el día, se diseñara un sistema alternativo de generación de corriente continua con paneles solares a instalar en la cubierta de la casa de control, el cual se conectara directamente con los equipos necesarios (regulador de carga, protecciones, cableados), para cargar el banco de baterías y suplir la corriente consumida por los equipos de protección y maniobras de la subestación. Siendo un respaldo alternativo para los servicios auxiliares de corriente continua de la subestación.

La carga del banco de baterías seguirá conectado al rectificador para funcionamiento en horario nocturno, ya que los paneles solares suplirán la carga del banco de baterías y equipos durante el día.

2.9.1 Ventajas

• Es un proyecto de innovación para Codensa en las subestaciones.
• Los servicios auxiliares de corriente continua, dispone de un respaldo independiente al sistema de corriente alterna de la subestación
• Al conectar la carga de los servicios auxiliares de corriente continua a los paneles durante el día, el sistema de corriente alterna disminuye la carga consumida.

• Los equipos de la subestación están disponibles para señalización, operación y maniobras cuando se necesitan.

• En horas del día el panel funciona días nublados.

• Se tiene un voltaje constante y estable para los servicios auxiliares de corriente continua.

2.9.2 Desventajas

Se depende de la radiación solar, es óptima en tiempo de verano. El funcionamiento de los paneles solares solo es en el día, en las horas nocturna los paneles estarían fuera de servicio.

2.10 Estructura Analítica del Proyecto

2.10.1 Objetivo general

Diseñar un sistema de energía alternativa solar para conectar los servicios auxiliares de corriente continua en cinco (5) subestaciones eléctricas de Codensa S.A. ESP en Bogotá.

2.10.2 Objetivos específicos

• Identificar el avance y uso de la Energía Alternativa solar renovable en Bogotá. Para utilizar la incidencia de los rayos solares para transformarla con paneles solares en energía eléctrica continua.

• Determinar costos de construcción CIVIL – ELECTRICA de un sistema de energía alternativa solar para conectar a los servicios auxiliares de corriente continua en una subestación eléctrica.
• Analizar la compatibilidad y adaptabilidad de la energía solar con sistemas de corriente continua.

• Diseñar un sistema alternativo de energía eléctrica para conectar los servicios auxiliares de corriente continua y cargar el banco de baterías, garantizando la seguridad en las instalaciones según el RETIE.

• Indicar la disposición final de los paneles solares por daño o deterioro para mitigar el impacto ambiental.
2.10.3 Matriz de marco lógico

Tabla 7
Matriz de Marco Lógico

<table>
<thead>
<tr>
<th>FIN</th>
<th>RESUMEN DE OBJETIVOS</th>
<th>INDICADORES</th>
<th>MEDIOS DE VERIFICACIÓN</th>
<th>SUPUESTOS</th>
</tr>
</thead>
</table>
| | Generar estabilidad del sistema de corriente continua en horario diurno, respaldando la carga constante del banco de baterías. | La variación del voltaje del sistema de corriente continua será del 5% menor al voltaje nominal en horario diurno. Los equipos de la subestación operan constantemente sin interrupción por ausencia de voltaje de corriente continua. | Los registro tomados en planillas de operadores fijos y móviles
No se presentan alarmas de falla estación del sistema de corriente continua debido a fallas en el sistema de corriente alterna | La energía del sol es constante en horario diurno, ya sean por radiación directa, reflexión o difusa, los paneles están captando la energía solar y convirtiendo en corriente continua. |
| PROPÓSITO | Al conectar los paneles solares al sistema de corriente continua se tendrá respaldo de una fuente de energía que no se estaba aprovechando | El cálculo de los paneles corresponde a la energía demanda por el sistema de corriente continua.
El soporte metálico de los paneles será funcional para el mantenimiento de éstos del tejado. | Entrega del diseño con los cálculos eléctricos y detalles de montaje mecánicos Revisión de tablas de las componentes eléctricas como son capacidad de conductores, dispositivos de protección, capacidad de paneles, reguladores. | Con cálculos eléctricos sub dimensionados fallaran los componentes mal seleccionado, Con cálculos eléctricos sobre dimensionamiento se aumenta el costo del proyecto |
<table>
<thead>
<tr>
<th>COMPONENTES</th>
<th>RESUMEN DE OBJETIVOS</th>
<th>INDICADORES</th>
<th>MEDIOS DE VERIFICACIÓN</th>
<th>SUPUESTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seleccionar los paneles, reguladores de carga, protecciones, conductores, canalizaciones y accesorios a utilizar según resultados de los cálculos</td>
<td>Los paneles, conductores, canalizaciones, protecciones, reguladores de carga, materiales de los soportes a utilizar son de consecución comercial</td>
<td>Verificación de cálculos con programas pertinentes. Verificación del funcionamiento y comparación de los dispositivos de protección seleccionados</td>
<td>La cantidad de paneles excede las expectativas disponibles en el mercado local (Bogotá). Los reguladores de carga son de menor capacidad a los necesitados para el proyecto</td>
</tr>
<tr>
<td>ACTIVIDADES</td>
<td>Selección de documentos bases para los cálculos. Esquemas para conectar los dispositivos del panel solar</td>
<td>Cuantificación de costos adquisitivos y operativos del sistema alternativo del panel solar</td>
<td>Análisis de precios unitarios de los componentes según proveedores nacionales e internacionales según cotizaciones solicitadas</td>
<td>Reguladores de carga de baja capacidad Paneles. Subestaciones sin operación local falta de datos de carga característica. Proyectos de similares características. Costos elevados del panel solar en el mercado nacional.</td>
</tr>
</tbody>
</table>
3. Estudio de Mercado

3.1 Definición del Producto/Servicio

El proyecto formulado según la necesidad debe tener un respaldo a los servicios auxiliares, se plantea el diseño de un sistema de energía alternativa asequible en el mercado nacional e internacional en donde se diseñe un sistema de energía solar con paneles solares y sus equipos de conexión, protección y regulación de los parámetros eléctricos como son el voltaje y la corriente.

3.1.1 Producto principal

El producto a entregar en este proyecto es el “DISEÑO DE UN SISTEMA DE ENERGÍA ALTERNATIVA SOLAR PARA CONECTAR LOS SERVICIOS AUXILIARES DE CORRIENTE CONTINUA EN CINCO (5) SUBESTACIONES ELÉCTRICAS DE CODENSA S.A. ESP EN BOGOTÁ”.

3.1.2 Subproductos

El diseño entregado debe contener:

- Análisis histórico de carga de los servicios auxiliares de cinco (05) subestaciones. ver ANEXO A

- Determinación de los parámetros de carga para el diseño del sistema foto-voltaico a instalar.

- Cálculos eléctricos de los equipos y elementos a utilizar.
3.2 Distribución Geográfica del Mercado de Consumo

El diseño tendrá un alcance de aplicación a cinco (05) subestaciones eléctricas ubicadas en la zona urbana de Bogotá.

- Subestación Concordia: CARRERA 1 # 13 - 45
- Subestación Usme: CARRERA 27 C ESTE # 91 L – 35 SUR
- Subestación Castellana: AVENIDA 37 # 88 B - 03
- Subestación Salitre: DIAGONAL 53 # 57 - 62
- Subestación Autopista: AUTOPISTA NORTE CALLE 128 B

3.3 Análisis de Oferta

El sistema de distribución de Codensa S.A. ESP está conformado por 45 subestaciones de las cuales 34 están ubicadas en Bogotá y su perímetro, el diseño se aplicara inicialmente a cinco (05) subestaciones eléctricas de Bogotá, S/E Concordia, S/E Usme, S/E Castellana, S/E Salitre, S/E Autopista Norte las cuales tienen niveles de tensión 115/11,4 kV, con sistemas de auxiliares de corriente alterna 11400/208/120 V, y corriente continua 48/125 VDC.

Estas cinco (5) subestaciones poseen casa de control con estructura sismo resistente.

3.4 Importaciones del Producto

Los equipos a utilizar deberán ser importados para disminuir los costos de los equipos a utilizar, los materiales menores como son conectores, cables termo magnéticos se adquirirán en el mercado local.
3.5 Análisis de Precios

Tabla 8

Análisis de precios

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LABORES</th>
<th>ACTIVIDADES</th>
<th>SUB-ACTIVIDADES</th>
<th>DESCRIPCION ACTIVIDAD A EJECUTAR</th>
<th>ENTREGABLES</th>
<th>VALOR (antes de IVA)</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
</table>
| 23 | Ingeniería para el reemplazo de un tablero de auxiliares AC ó DC | Diseño mecánico y civil | Levantamiento y actualización de información | - Levantamiento de la ubicación actual y propuesta del tablero dentro de la sala de control.
- Verificación de disponibilidad de cárcamos y tuberías para conexión de los circuitos de auxiliares.
En caso de requerirse, realizar el diseño de nuevos cárcamos o bancos de ductos para interconexión.
- Diseño de anclaje del tablero a piso. | - Planos de levantamiento
- Planos de construcción con detalles de tuberías y cárcamos.
- Informe de diseño mecánico | $ 731.313 | $ 731.313 |
| | Diseño eléctrico | Levantamiento y actualización de información | - Levantamiento de los circuitos actuales de alimentación de AC y DC a todos los módulos de la S/E incluyendo los servicios generales de la S/E (iluminación y circuitos de fuerza).
- Dimensionamiento de los nuevos tableros requeridos haciendo las independizaciones de circuitos a que haya lugar teniendo en cuenta los criterios de normalización de CODENSA, incluyendo cantidad y capacidad de Breakers. | - Planos y listas de levantamientos eléctricos
- Planos esquemáticos
- Listas de conexionado y desconexión | $ 731.313 | $ 731.313 |
<table>
<thead>
<tr>
<th>ITEM</th>
<th>LABORES</th>
<th>ACTIVIDADES</th>
<th>SUB-ACTIVIDADES</th>
<th>DESCRIPCION ACTIVIDAD A EJECUTAR</th>
<th>ENTREGABLES</th>
<th>VALOR (antes de IVA)</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
</table>
| 23 | Ingeniería para el reemplazo de un tablero de auxiliares AC ó DC | Diseño eléctrico | Diseño detallado, planos y Protocolo de energización según ingeniería realizada | - Definir cantidad de contactos auxiliares requeridos y realizar el diseño de conexión de los mismos para señalización a anunciaciación local o hacia centro de control.
- diseño de conexiones de alimentación de auxiliares desde el nuevo tablero hacia los diferentes módulos de la S/E tanto en patio como en sala de control. | - Listado de señales a centro de control asociadas a los tableros.
- Lista de materiales
- Cantidades de obra
- Protocolo de energización
- Plano de disposición de borneras y MCBs en tableros
- Informe de diseño eléctrico | $ 731.313 | $ 731.313 |
| | | Elaboración de Planos "AS BUILT" | Elaboración de planos ASBUILT de acuerdo a planos rojo-verde suministrados por CODENSA. | - 2 copias en medio físico formato A3 con pasta dura
- 2 copias en medio digital | | $ 731.313 |
| | | | | | | **SUMA DE LOS COSTOS ASOCIADOS A LA LABOR 23** | **$ 3,656,567** |
| 24 | Ingeniería para el reemplazo de cargador de baterías. | Diseño mecánico y civil | Levantamiento y actualización de información | - Levantamiento de la ubicación actual y propuesta del cargador dentro de la sala de control.
- Verificación de disponibilidad de cárcamos y tuberías para conexión de la acometida entre el cargador y el banco de baterías y los tableros de AC y DC. En caso de requerirse, realizar el diseño de nuevos cárcamos o bancos de ductos para interconexión.
- Diseño de anclaje del gabinete al piso. | - Planos de levantamiento
- Planos de construcción con detalles de tuberías y cárcamos.
- Informe de diseño mecánico | | $ 731.313 |
<table>
<thead>
<tr>
<th>ITEM</th>
<th>LABORES</th>
<th>ACTIVIDADES</th>
<th>SUB-ACTIVIDADES</th>
<th>DESCRIPCION ACTIVIDAD A EJECUTAR</th>
<th>ENTREGABLES</th>
<th>VALOR (antes de IVA)</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
</table>
| 24 | Ingeniería para el reemplazo de cargador de baterías. | Diseño eléctrico | Levantamiento y actualización de información | - Levantamiento de las conexiones actuales del cargador.
- Diseño de interconexiones entre el cargador y los tableros de AC y DC y el banco de baterías.
- Levantamiento y diseño de las señales requeridas para centro de control. | - Planos y listas de levantamientos eléctricos
- Planos esquemáticos
- Listas de conexionado y desconexionado
- Lista de materiales
- Lista de señales a centro de control
- Cantidades de obra
- Protocolo de energización del equipo
- Plano de disposición de borneras y MCBs en tableros
- Informe de diseño eléctrico | $ 731.313 | $ 731.313 |
| | Elaboración de Planos "AS BUILT" | Elaboración de planos ASBUILT de acuerdo a planos rojo-verde suministrados por CODENSA | | | | $ 731.313 | $ 731.313 |

SUMA DE LOS COSTOS ASOCIADOS A LA LABOR 24 $ 3.656.567

SUMA DE LOS COSTOS DISEÑO DE UN SISTEMA DE ENERGÍA ALTERNATIVA SOLAR PARA CONECTAR LOS SERVICIOS AUXILIARES DE CORRIENTE CONTINUA EN CINCO SUBESTACIONES ELÉCTRICAS DE CODENSA EN BOGOTÁ $ 7.313.135
Este proyecto se realizará en beneficio para tener un respaldo de energía independiente a la tradicional para mitigar los riesgos.

En la actualidad el uso de energías alternativas se están fomentando, pero su uso es restringido por los costos elevados, la amortización de la inversión es a mediano plazo. Con la masificación de estos sistemas los costos reducirán significativamente. Este proyecto se realizará en beneficio para obtener respaldo de los servicios auxiliares de corriente continua.

4. Estudio Técnico

4.1 Diseño de la Cubierta Solar Fotovoltaica

4.1.1 Antecedentes, situación actual de la Casa de Control

4.1.1.1 Características del lugar

Una subestación de potencia está conformada por tres grandes partes: Casa de control, patio de transformadores y patio de conexiones. El objeto de este presente estudio hace referencia a la casa de control.

4.1.1.2 Casa de control e instalaciones

Las subestaciones eléctricas poseen casa de control con estructura sismo resistente, la casa de control posee una superficie útil en planta de aproximadamente 300 m2, que corresponde al lugar en el que se encuentran alojados los tableros de control y medida, el tablero de protección, el de servicios auxiliares, el tablero de comunicaciones, el tablero de los medidores de energía, los cargadores y las baterías.
Figura 6. Subestación Concordia

Figura 7. Subestación Castellana
Figura 8. Subestación Autopista

Figura 9. Subestación Usme
4.1.1.3 Climatología de la zona

El clima de Bogotá, debido a su altitud (2640 metros sobre el nivel del mar), es un tipo de clima tropical pero con influencias de la montaña. Así pues, es un tipo de clima moderadamente frío, aunque bastante suave y llevadero. Durante el año nos encontramos con una temperatura media que ronda los 15°C. Y es normal también encontrarse frecuentemente con nubosidades. El clima de Bogotá es bastante impredecible y los cambios de temperatura pueden ser repentinos. Por lo que el frío y la lluvia suelen aparecer sin aviso. Con todo esto sí que se pueden diferenciar dos estaciones a lo largo del año: la temporada seca y la estación de lluvias.

4.1.2 Componentes del sistema solar fotovoltaico

A continuación se incluye tabla resumen de los principales componentes del sistema solar fotovoltaico propuesto.
Tabla 9
Componentes del sistema solar fotovoltaico

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>MARCA</th>
<th>MODELO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Solar Fotovoltaico</td>
<td>Kyocera</td>
<td>KK255P-3CB2CG</td>
</tr>
<tr>
<td>Estructura Soporte</td>
<td>AET</td>
<td>SunTop III</td>
</tr>
</tbody>
</table>

En el ANEXO B del presente proyecto se adjuntan catálogos comerciales de los equipos propuestos.

4.1.2.1 Paneles solares

Los paneles solares son el elemento de generación eléctrica y se pueden disponer en serie y/o paralelo para obtener la tensión nominal requerida en cada caso. Estos paneles están formados por un nº determinado de células que están protegidas por un vidrio, encapsuladas sobre un material plástico y todo el conjunto enmarcado con un perfil metálico.

El módulo solar propuesto es el modelo KK255P-3CB2CG del fabricante Kyocera. Estos módulos están constituídos por células cuadradas fotovoltaicas de silicio policristalino de 6”. El uso de estas células evita los circuitos serie-paralelo con sus problemas inherentes, que utilizan otros fabricantes para la construcción de módulos de alta potencia. Este tipo de célula asegura una producción eléctrica que se extiende desde el amanecer hasta el atardecer, aprovechando toda la potencia útil posible que nos es suministrada por el sol.

La capa especial antireflexiva incluida en el tratamiento de las células, asegura una uniformidad de color en todas las células, evitando coloreados diferentes dentro del módulo, mejorando de este modo sensiblemente la estética. La gran potencia de estos módulos hace que sean los más idóneos en grandes instalaciones, en las que el costo de interconexión y montaje es
menor que si se utilizan más módulos de menor potencia.

Gracias a la robusta construcción mecánica con sólidos marcos laterales de aluminio anodizado, capaces de soportar el peso y dimensiones de estos módulos y siendo la parte frontal de vidrio templado antirreflector de bajo contenido en hierro, estos equipos cumplen con las estrictas normas de calidad a que son sometidos, soportando las inclemencias climáticas más duras y funcionando eficazmente sin interrupción durante su larga vida útil.

Si se quiere mejorar la temperatura de las células de los paneles, conviene situarlas en lugares que estén bien aireados, esta es una de las razones por las cuales la instalación se realiza en la cubierta de la casa control.

Son de construcción sumamente robusta que garantiza una vida de más de 20 años aún en ambientes climatológicos adversos.

Figura 11. Panel solar Kyocera
A continuación se adjuntan las características técnicas del módulo solar propuesto:

Tabla 10
Características del panel solar propuesto

<table>
<thead>
<tr>
<th>CARACTERÍSTICA ELÉCTRICA / FÍSICA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº de Células</td>
<td>60 de 6”</td>
</tr>
<tr>
<td>Potencia</td>
<td>255 W</td>
</tr>
<tr>
<td>Corriente en punto de máxima potencia</td>
<td>8,39 A</td>
</tr>
<tr>
<td>Tensión en punto de máxima potencia</td>
<td>30,4 V</td>
</tr>
<tr>
<td>Corriente de Cortocircuito</td>
<td>9,09 A</td>
</tr>
<tr>
<td>Tensión de circuito abierto</td>
<td>37,6 V</td>
</tr>
<tr>
<td>Longitud</td>
<td>1662 mm (± 2,5)</td>
</tr>
<tr>
<td>Anchura</td>
<td>990 mm (± 2,5)</td>
</tr>
<tr>
<td>Espesor</td>
<td>46 mm</td>
</tr>
<tr>
<td>Peso</td>
<td>20 Kg</td>
</tr>
</tbody>
</table>

4.1.2.2 Estructura soporte

Se considera superposición arquitectónica cuando la colocación de los módulos se realiza paralela a la envolvente del edificio, en este caso a la cubierta del edificio.

4.1.2.2.1 Superposición arquitectónica

Para este tipo de instalación se ha seleccionado la estructura universal para tejados inclinados SUNTOP III del fabricante AET.

El sistema está compuesto por unos perfiles modulares de alta flexibilidad de ajuste, un elemento de sujeción de los módulos fotovoltaicos, una escuadra de sujeción para el tejado y diferentes elementos de unión. Este sistema posee una gran capacidad de adaptación a cualquier tipo de módulo y garantiza un montaje rápido y sencillo.
A continuación se adjuntan las características técnicas de la estructura propuesta:

Tabla 11
Características de la estructura propuesta

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubicación</td>
<td>Sobre tejado inclinado</td>
</tr>
<tr>
<td>Tipo de cubierta</td>
<td>Prácticamente en todos los tipos</td>
</tr>
<tr>
<td>Inclinación del tejado</td>
<td>Hasta 60º</td>
</tr>
<tr>
<td>Altura máxima de la casa control</td>
<td>20 m</td>
</tr>
<tr>
<td>Paneles fotovoltaicos</td>
<td>Con marco</td>
</tr>
<tr>
<td>Compensación de desnivel de cubierta</td>
<td>< 40 mm</td>
</tr>
<tr>
<td>Distancia entre ganchos</td>
<td>Un máximo de 2000 mm</td>
</tr>
<tr>
<td>Perfiles de apoyo</td>
<td>Acero inoxidable</td>
</tr>
</tbody>
</table>
4.1.3 Dimensiones del campo fotovoltaico

4.1.3.1 Alternativa de diseño

Para el diseño del tejado solar fotovoltaico se ha tenido en consideración una alternativa entre las muchas posibles, primando en cualquier caso los criterios arquitectónicos de integración de los módulos fotovoltaicos en la estructura de la casa de control, evitando de este modo el impacto visual.

Esta alternativa hace referencia a la cubierta a dos aguas con módulos solares fotovoltaicos. Cubierta formada por dos faldones inclinados en dirección descendente que parten desde una cumbre central.

Figura 13. Cubierta a dos aguas. En color azul el área fotovoltaica
Figura 14. Esquema planta de la cubierta

Figura 15. Alzado de la cubierta

$x = \text{longitud planta} = 30,0 \text{ m}$

$y = \text{ancho planta} = 10,6 \text{ m}$

$a = \text{ancho campo fotovoltaico} \Rightarrow a' = a / \cos(\beta)$

$b = \text{longitud campo fotovoltaico}$

$\beta = \text{ángulo inclinación óptimo}$
h = altura de la cubierta

4.1.3.2 Inclinación

El ángulo de incidencia del rayo solar sobre la superficie captadora determina a su vez la densidad de rayos solares que entrarán dentro de una superficie determinada. Una superficie situada perpendicularmente a la trayectoria de la radiación solar, recogerá más rayos solares que otra superficie de la misma dimensión con una inclinación distinta.

Como el Sol tiene dos tipos de movimiento aparente sobre el horizonte, el recorrido azimutal y el de altura, el ángulo de incidencia de los rayos solares sobre una superficie fija varía constantemente a lo largo del día, y de un día a otro.

Para el caso de sistemas fotovoltaicos conectados a la red en los que los módulos solares están dispuestos a una inclinación fija a lo largo de todo el año, como es el caso de este proyecto, el criterio a seguir para obtener una optimización global del sistema consiste en dar un grado de inclinación tal que permita recibir la mayor cantidad de energía en el cómputo global del año. Para ello se utiliza la tabla de promedio mensual de radiación global en Bogotá.

![Figura 16. Promedio mensual de radiación solar en Bogotá](image)
Para la latitud de Bogotá, la inclinación que permite recibir mayor cantidad de energía es la de 20º sobre la horizontal, ya que es la óptima para la época de mayor disponibilidad solar del año.

Por lo tanto el grado de inclinación de los paneles solares sobre la horizontal será de 20º.

Tabla 12
Radiación solar incidente sobre superficies inclinadas en Bogotá

<table>
<thead>
<tr>
<th>ÁNG α</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>20º</td>
<td>4,7</td>
<td>4,3</td>
<td>4,3</td>
<td>3,7</td>
<td>3,5</td>
<td>3,65</td>
<td>3,9</td>
<td>4,1</td>
<td>3,9</td>
<td>4,05</td>
<td>3,9</td>
<td>4,2</td>
</tr>
</tbody>
</table>

4.1.3.3 Número total de paneles

4.1.3.3.1 Distribución en planta

En primer lugar se calcula la superficie máxima de la que se dispone para la instalación de los paneles solares. En las figuras siguientes se representa la planta de la cubierta de la casa de control y el alzado de la misma.

Figura 17. Planta de la cubierta a dos aguas
Donde:

$x = \text{longitud de la planta de la casa de control} = 30,0 \text{ m}$

$y = \text{anchura de la planta de la casa de control} = 10,60 \text{ m}$

![Figura 18. Esquema del alzado de la cubierta](image)

Donde:

$L = \frac{5,30}{\cos (20^\circ)} = 5,64 \text{ m}$

$h = L \times \sin (20^\circ) = 5,64 \times \sin (20^\circ) = 1,90 \text{ m}$

![Figura 19. Esquema del alzado de la cubierta](image)
En la figura siguiente se observa el esquema de disposición de los paneles sobre la cubierta, a partir del cual se calculará el número máximo de paneles a instalar considerando la alternativa de Superposición arquitectónica: mediante estructura soporte SUNTOP III de AET.

Figura 20. Esquema disposición de los paneles solares sobre la cubierta

Donde:

a = nº de módulos verticales x altura del módulo = 5,64 m

b = nº de módulos horizontales x (anchura del módulo + e) = 30,0 m

e = distancia entre los módulos = 17 mm (para estructura soporte SUNTOP III)
Por lo que:

Nº módulos verticales = \(\frac{a}{\text{altura del módulo}} = \frac{5,64}{1,662} = 3,39 \) \(\Rightarrow \) 3 paneles verticales

Nº módulos horizontales = \(\frac{b}{(\text{anchura del módulo} + e)} \)

= \(\frac{30,0}{(0,99 + 0,017)} = 29,79 \) \(\Rightarrow \) 29 paneles horizontales

Para la Superposición arquitectónica: mediante estructura soporte SUNTOP III de AET. El nº máximo de paneles a instalar será:

\(N_T = \text{nº paneles verticales} \times \text{nº paneles horizontales} = 3 \times 29 = 87 \text{ paneles} \)

4.1.4 Conexión a la red eléctrica

A partir de este sección, se tendrá en consideración únicamente la alternativa de diseño que nos permite la instalación del nº máximo de paneles fotovoltaicos, es decir, la alternativa de superposición arquitectónica, con objeto de valorar la máxima producción energética posible para esta instalación. Tal y como se ha calculado en la sección anterior, el nº máximo de paneles admisible para esta configuración es de 87 paneles.

4.1.4.1 Características de la interconexión

La interconexión entre la generación y la red se efectuará mediante un interruptor automático sobre el que actuarán los equipos de protección y maniobra. La interconexión se compone de las siguientes partes:

- **Circuito de Potencia**: En el esquema unifilar adjuntado a continuación se definen los elementos que configuran el circuito de potencia de la interconexión.

- **Protecciones**: Las protecciones eléctricas tienen como objetivo asegurar la protección de las personas y equipos, así como mantener el nivel de calidad del servicio de la red. Para
ello se dispondrán un conjunto de elementos destinados a tal fin que actuarán sobre el interruptor de interconexión.

Tanto la instalación como la utilización de las protecciones de conexión, se realizan de acuerdo a la normativa vigente y a las normas particulares establecidas por Codensa S.A. ESP. Con las protecciones se podrán proteger las instalaciones propias y las de Codensa S.A. ESP. También se podrá aislar la instalación en caso de avería interna. Las protecciones a instalar son las que se recogen en el esquema unifilar de la figura.

Figura 21. Esquema unifilar
4.1.5 **Calculo de la energía generada por la instalación**

Como en la sección anterior, a efectos de calcular la energía eléctrica generada por la instalación tendremos en cuenta únicamente la alternativa de diseño que nos permite la instalación del nº máximo de paneles fotovoltaicos, es decir, la alternativa de superposición arquitectónica, con objeto de valorar la máxima producción energética posible.

Para estimar la producción mensual teórica de energía eléctrica generada por la instalación, se partirá de los datos de radiación solar donde esta ubicada la subestación eléctrica extraídos del Atlas de Radiación Solar.

La energía generada por la instalación siempre será muy inferior al valor teórico calculado, dado que las condiciones de explotación no serán las de laboratorio y los diferentes elementos que intervienen en el sistema: paneles, conductores eléctricos, etc., producen unas pérdidas que reducen notablemente la eficiencia del conjunto. Así mismo, la distribución y orientación de los paneles sobre la cubierta, y las proyecciones de sombras sobre éstos, originan una serie de pérdidas adicionales que deben ser contempladas.

![Figura 22. Radiación solar en Bogotá](image-url)
Tabla 13
Cálculo eléctrico

<table>
<thead>
<tr>
<th>Elementos de consumo</th>
<th>Potencia (W) P</th>
<th>Nº de equipos N</th>
<th>Tiempo h/día</th>
<th>Energía (W.h)/día P·N·h/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga a suministrar</td>
<td>4500</td>
<td>1</td>
<td>10</td>
<td>54000</td>
</tr>
</tbody>
</table>

Factor de seguridad de la instalación Fs 20 %

Consumo medio diario continua Ecc E1(1+Fs/100) 54000 Wh/día

Potencia real Pcc P1(1+Fs/100) 5400 W

Consumo total Et Ecc + Eca 54000 Wh/día

<table>
<thead>
<tr>
<th>CONSUMO MENSUAL ET (WH/DÍA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcar la Et elegida</td>
</tr>
<tr>
<td>54000</td>
</tr>
</tbody>
</table>

Ha marcado el mes cuyo consumo es 7080 Wh/día

<table>
<thead>
<tr>
<th>RADIACIÓN MENSUAL RM (KWH/M² DÍA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclinación</td>
</tr>
<tr>
<td>20º</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Marcar la Rm elegida 4,7 4,3 4,3 3,7 3,5 3,65 3,9 4,1 3,9 3,9 4,05 4,2

Ha marcado el mes cuya radiación es 2,058942169 kWh/m²/día

<table>
<thead>
<tr>
<th>RELACIÓN MES CONSUMO/RADIACIÓN RE (ET / RM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcar la Re elegida</td>
</tr>
<tr>
<td>11489</td>
</tr>
</tbody>
</table>

X
CÁLCULO DEL NÚMERO DE MÓDULOS FOTOVOLTAICO

<table>
<thead>
<tr>
<th>Módulo elegido:</th>
<th>KYOCERA REF. KK-255-3CB2CG</th>
<th>Pmax</th>
<th>255</th>
<th>Wp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intensidad de cortocircuito</td>
<td>9,09</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de módulos Np</th>
<th>Np = Re / Pmax x 0,9</th>
<th>16</th>
<th>Módulos</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Conexiónado grupo módulos</th>
<th>4</th>
<th>en paralelo</th>
<th>4</th>
<th>en serie</th>
</tr>
</thead>
</table>

Potencia a instalar Pt = Pmax x Np | 4080 | Wp |

CÁLCULO DEL NÚMERO DE REGULADORES

<table>
<thead>
<tr>
<th>Módulo escogido</th>
<th>BP270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad a soportar el regulador: Imp·Npp·1,1</td>
<td>39,996</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de reguladores Nr</th>
<th>Nr = Imp·Npp·1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir</td>
<td>Nr 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de regulador</th>
<th>ProStart-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir</td>
<td>30</td>
</tr>
</tbody>
</table>

CÁLCULO DEL CABLEADO

<table>
<thead>
<tr>
<th>S = 0,036 x L x I x 100 / V x Ct</th>
<th>Caída Tensión %</th>
<th>Potencia W</th>
<th>Tensión V</th>
<th>Corriente A</th>
<th>Longitud m</th>
<th>Sección Mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga</td>
<td>2</td>
<td>Pcc</td>
<td>5400</td>
<td>132 Pcc/V</td>
<td>40,91</td>
<td>15</td>
</tr>
</tbody>
</table>

4.1.5.1 Resumen de la instalación

A continuación, y a modo de resumen, se adjunta tabla con los parámetros característicos para la alternativa de diseño.

Tabla 14

Resumen de instalación

<table>
<thead>
<tr>
<th>TIPO DE CUBIERTA</th>
<th>N. MÓDULOS</th>
<th>ENERGÍA ANUAL GENERADA (KWH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubierta a dos aguas</td>
<td>16</td>
<td>19440</td>
</tr>
</tbody>
</table>
4.2 Mantenimiento de la Instalación

Para garantizar una alta productividad de la instalación, es esencial reducir los periodos de suspensión por avería o mal funcionamiento. Para ello son necesarias tanto la supervisión del usuario del sistema, como la asistencia de un servicio técnico.

En cualquier caso, las instalaciones fotovoltaicas conectadas a la red ofrecen muy pocos requerimientos de mantenimiento preventivo y, en general, son poco susceptibles a sucesos que provoquen la intervención de un mantenimiento correctivo. Sin embargo, es recomendable seguir el programa de mantenimiento detallado a continuación.

4.2.1 Mantenimiento a cargo de Codensa S.A. ESP.

Codensa S.A. ESP. debería llevar a cabo las siguientes tareas de mantenimiento:

- Supervisión general

Corresponde a la simple observación de los equipos; esto consiste en comprobar periódicamente que todo esté funcionando. Para ello basta observar los registros almacenados en la unidad de medida y las protecciones magneto-térmicas, ya que estos indican el funcionamiento continuo de los paneles solares.

La verificación periódica de las cifras de energía generada y los oscilogramas del equipo registrador, nos permitirá detectar bajadas imprevistas de tensión y corriente, que serían síntoma de un mal funcionamiento. El balance mensual, aunque varía a lo largo del año, se mantiene en torno a un máximo y un mínimo que se debe conocer, por lo que se podrá detectar rápidamente una bajada no habitual de generación de energía, lo cual indicaría, probablemente, una avería (o una perturbación periódica de la red).

- Limpieza
La limpieza incluye la eliminación de hierbas, ramas u otros objetos que proyecen sombras sobre las placas.

- Verificación visual del campo fotovoltaico

Con el objetivo de comprobar eventuales problemas de las fijaciones de la estructura sobre la cubierta de la casa de control, aflojamiento de tornillos en la misma, o entre ésta y las placas, aparición de zonas de oxidación, etc. En estos casos se realizará un mantenimiento correctivo, que detecte el origen de la avería y la repare.

Es igualmente importante efectuar un mantenimiento preventivo, mediante revisiones periódicas, en las que, como mínimo, se debería incluir:

- Comprobación de tensión e intensidad para cada serie de placas fotovoltaicas (todas las series deberían dar valores idénticos o muy similares). Se pueden detectar fallos en las placas, como diodos fundidos o problemas de cableado y conexiones.

- Verificación de la solidez de la estructura del campo solar, reajuste de tornillos, estado de la protección de los soportes metálicos y anclajes, etc.

- Verificación de los registros oscilográficos de tensión y corriente descargados de la unidad de medida los cuales deben ser continuos en el tiempo sin variaciones significativas en sus magnitudes.

- Comprobación de las protecciones y fusibles.

- Verificación de las conexiones del cableado en la caja de conexiones.
4.3 Presupuesto Para Una (1) Subestación Eléctrica

Tabla 15
Presupuesto del proyecto

<table>
<thead>
<tr>
<th>MATERIALES</th>
<th>CANTIDAD</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Solar</td>
<td>16</td>
<td>U</td>
<td>$780.000=</td>
<td>$12.480.000=</td>
<td></td>
</tr>
<tr>
<td>Regulador de Carga 50 Amp</td>
<td>1</td>
<td>U</td>
<td>$1.200.000=</td>
<td>$1.200.000=</td>
<td></td>
</tr>
<tr>
<td>Interruptor termomagnético 2X100 amp 250 VDC</td>
<td>1</td>
<td>U</td>
<td>$350.000=</td>
<td>$350.000=</td>
<td></td>
</tr>
<tr>
<td>interruptor termomagnético 2X60 amp 250 VDC</td>
<td>1</td>
<td>U</td>
<td>$350.000=</td>
<td>$350.000=</td>
<td></td>
</tr>
<tr>
<td>Borna de compresión 1/0 AWG</td>
<td>32</td>
<td>U</td>
<td>$5.50=</td>
<td>$176.000=</td>
<td></td>
</tr>
<tr>
<td>Estructura soporte en perfil 1"x3/16"</td>
<td>16</td>
<td>U</td>
<td>$150.00=</td>
<td>$2.400.000=</td>
<td></td>
</tr>
<tr>
<td>Cable de cobre tipo soldador #2 AWG</td>
<td>100</td>
<td>ML</td>
<td>$28.000=</td>
<td>$2.800.000=</td>
<td></td>
</tr>
<tr>
<td>Conduleta 1-1/2"</td>
<td>4</td>
<td>U</td>
<td>$21.000=</td>
<td>$84.000=</td>
<td></td>
</tr>
<tr>
<td>Tubo _Galvanizado _conduit 1-1/2"</td>
<td>25</td>
<td>ML</td>
<td>$15.000=</td>
<td>$375.000=</td>
<td></td>
</tr>
<tr>
<td>Terminal recto 1-1/2"</td>
<td>4</td>
<td>U</td>
<td>$8.700=</td>
<td>$34.800=</td>
<td></td>
</tr>
<tr>
<td>Flexi-conduit 1-1/2"</td>
<td>2</td>
<td>ML</td>
<td>$19.000=</td>
<td>$38.000=</td>
<td></td>
</tr>
<tr>
<td>Caja galvanizada 400x400x200 mm</td>
<td>2</td>
<td>U</td>
<td>$120.000=</td>
<td>$240.000=</td>
<td></td>
</tr>
<tr>
<td>Cable de cobre desnudo #2 AWG</td>
<td>30</td>
<td>ML</td>
<td>$8.900=</td>
<td>$267.000=</td>
<td></td>
</tr>
<tr>
<td>Borna de compresión 2 AWG</td>
<td>4</td>
<td>U</td>
<td>$6.200=</td>
<td>$24.800=</td>
<td></td>
</tr>
<tr>
<td>Cinta aislante de vinilo</td>
<td>4</td>
<td>U</td>
<td>$18.000=</td>
<td>$72.000=</td>
<td></td>
</tr>
<tr>
<td>Cinta aislante de termo encogible</td>
<td>1</td>
<td>U</td>
<td>$27.000=</td>
<td>$27.000=</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td>$20.918.600,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESPERDICIO</td>
<td></td>
<td></td>
<td>5.00%</td>
<td>1.045.930,00</td>
<td></td>
</tr>
<tr>
<td>SUB-TOTAL MATERIALES</td>
<td></td>
<td></td>
<td>$21.964.530,00</td>
<td>$21.964.530,00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HERRAMIENTA Y EQUIPO</th>
<th>RENDIMIENTO</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit de Doblado y roscado</td>
<td>15</td>
<td>U</td>
<td>$8.000=</td>
<td>$120.000=</td>
<td></td>
</tr>
<tr>
<td>Herramienta menor – manual</td>
<td>15</td>
<td>GL</td>
<td>$12.000=</td>
<td>$180.000=</td>
<td></td>
</tr>
<tr>
<td>Ponchadora hidráulica</td>
<td>36</td>
<td>U</td>
<td>$3.500=</td>
<td>$126.000=</td>
<td></td>
</tr>
<tr>
<td>Equipo medición aislamiento</td>
<td>1</td>
<td>Día</td>
<td>$180.000=</td>
<td>$180.000=</td>
<td></td>
</tr>
<tr>
<td>HERRAMIENTA Y EQUIPO</td>
<td>RENDIMIENTO</td>
<td>UNIDAD</td>
<td>VALOR UNITARIO</td>
<td>VALOR PARCIAL</td>
<td>TOTAL</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>Equipo medición multímetro</td>
<td>10</td>
<td>Día</td>
<td>$10.000=</td>
<td>$100.000=</td>
<td></td>
</tr>
<tr>
<td>Kit de Alturas</td>
<td>10</td>
<td>Día</td>
<td>$32.000=</td>
<td>$320.000=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL HERRAMIENTA Y EQUIPO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSPORTE</th>
<th>RENDIMIENTO</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte personal</td>
<td>15</td>
<td>Día</td>
<td>$150.000=</td>
<td>$2.250.000=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL TRANSPORTE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANO DE OBRA (incluye prestaciones sociales)</th>
<th>RENDIMIENTO</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero</td>
<td>15</td>
<td>U</td>
<td>$160.000=</td>
<td>$2.400.000=</td>
<td></td>
</tr>
<tr>
<td>Supervisor</td>
<td>30</td>
<td>U</td>
<td>$73.333=</td>
<td>$2.200.000=</td>
<td></td>
</tr>
<tr>
<td>Técnico</td>
<td>30</td>
<td>U</td>
<td>$53.333=</td>
<td>$1.600.000=</td>
<td></td>
</tr>
<tr>
<td>Auxiliar</td>
<td>30</td>
<td>U</td>
<td>$28.333=</td>
<td>$850.000=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL MANO DE OBRA</td>
</tr>
</tbody>
</table>

| OBSERVACIONES : | | | | | |

| COSTO TOTAL DIRECTO | | | | | **$32.290.530,00** |
5. Estudio Administrativo

5.1 Organigrama del Proyecto

Figura 23. Organigrama del proyecto
5.2 Análisis de Precios

Tabla 16

Análisis de precios Diseño

<table>
<thead>
<tr>
<th>MATERIALES DESCRIPCION</th>
<th>CANTIDAD</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>SUBTOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resma de papel</td>
<td>1</td>
<td>UN</td>
<td>$10.000=</td>
<td>$10.000=</td>
<td></td>
</tr>
<tr>
<td>CD DVD</td>
<td>4</td>
<td>UN</td>
<td>$5.000=</td>
<td>$20.000=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DESPERDICIO 5.00%</td>
<td>1.500.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL MATERIALES</td>
<td>31.500.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUBTOTAL</td>
<td>30.000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HERRAMIENTA Y EQUIPO</th>
<th>RENDIMIENTO</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>SUBTOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computador</td>
<td>2</td>
<td>100%</td>
<td>$150.000=</td>
<td>$300.000=</td>
<td></td>
</tr>
<tr>
<td>Impresora</td>
<td>1</td>
<td>100%</td>
<td>$80.000=</td>
<td>$80.000=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL HERRAMIENTA Y EQUIPO</td>
<td>380.000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>380.000.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUBTOTAL</td>
<td>225.000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSPORTE</th>
<th>RENDIMIENTO</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>SUBTOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehículo</td>
<td>15</td>
<td>10%</td>
<td>$150.000=</td>
<td>$225.000=</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL TRANSPORTE</td>
<td>225.000.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANO DE OBRA (incluye prestaciones sociales)</th>
<th>RENDIMIENTO</th>
<th>UNIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR PARCIAL</th>
<th>SUBTOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniero Jefe División</td>
<td>15</td>
<td>8%</td>
<td>$500.000=</td>
<td>$600.000=</td>
<td></td>
</tr>
<tr>
<td>Ingeniero Jefe Project</td>
<td>15</td>
<td>18%</td>
<td>$400.000=</td>
<td>$1.080.000</td>
<td></td>
</tr>
<tr>
<td>Ingeniero Diseño</td>
<td>15</td>
<td>100%</td>
<td>$333.333=</td>
<td>$5.000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SUB-TOTAL MANO DE OBRA</td>
<td>6.680.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.680.000.00</td>
<td></td>
</tr>
</tbody>
</table>

OBSERVACIONES:

COSTO DIRECTO TOTAL (ajustado al peso) | 7.316.500

6. Estudio Ambiental

Además del punto de vista económico, las instalaciones solares fotovoltaicas se están implantando sobre todo por consideraciones ecológicas. El balance desde este punto de vista es
totalmente favorable, tanto en reducción de emisiones contaminantes, como en el balance energético.

Los kWh generados con un sistema fotovoltaico equivalen a un ahorro de energía generada con otras fuentes de energía, con toda probabilidad con mayor o menor grado de poder contaminante, lo que conlleva, por lo tanto, a una reducción de emisiones.

Una de las fuentes de contaminación más importantes son los gases de efecto invernadero, ya que inciden gravemente en el cambio climático de la Tierra. El gas más significativo entre éstos es el CO2, generado en toda combustión de materiales carbonados.

En cuanto a los impactos ambientales ocasionados por la implantación de un sistema solar fotovoltaico, se considera que el impacto principal se produce en las operaciones extractivas de las materias primas, ya que aunque la mayoría de las células fotovoltaicas se fabrican con silicio, material obtenido a partir de la arena y por tanto muy abundante en la naturaleza, es necesario transformarlo con consumo de energía hasta conseguir silicio de grado solar.

En la fase de uso las cargas ambientales son despreciables, y en la fase de eliminación, después de la vida útil, pueden establecerse vías claras de reutilización o retirada. El efecto visual sobre el paisaje es el principal impacto en la fase de uso, siendo susceptible de ser reducido gracias a la integración arquitectónica, como es el caso del presente proyecto.

En el medio físico y biótico no existen afecciones importantes ni sobre la calidad del aire ni sobre los suelos, flora y fauna, no provocándose ruidos ni afectándose tampoco a la hidrología existente.
6.1 Normograma Ambiental

Tabla 17
Normograma ambiental

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>NORMA</th>
<th>DESCRIPCIÓN</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte Mercancías Peligrosas por vía terrestre</td>
<td>Decreto 1609 de 2002</td>
<td>Normas Generales</td>
<td>Completo</td>
</tr>
<tr>
<td>Residuos</td>
<td>Decreto – Ley 2811 de 1974</td>
<td>Productos químicos, sustancias tóxicas y radioactivas. Residuos, basuras, desechos y desperdicios</td>
<td>Parte IV Normas de preservación ambiental relativas a elementos ajenos a los recursos naturales</td>
</tr>
<tr>
<td>Residuos</td>
<td>Ley 9 de 1979</td>
<td>Conductas generales</td>
<td>Completa</td>
</tr>
<tr>
<td>Residuos</td>
<td>Decreto 1140 de 2003</td>
<td>Almacenamiento</td>
<td>Completo</td>
</tr>
<tr>
<td>Residuos</td>
<td>Ley 430 de 1998</td>
<td>Residuos Peligrosos</td>
<td>Completa</td>
</tr>
<tr>
<td>Residuos</td>
<td>Decreto 4741 de 2005</td>
<td>Residuos Peligrosos</td>
<td>Completo</td>
</tr>
<tr>
<td>Residuos</td>
<td>Ley 1252 de 2008</td>
<td>Residuos Peligrosos</td>
<td>Completa</td>
</tr>
<tr>
<td>Residuos</td>
<td>Acuerdo 322 de 2008 – Concejo de Bogotá, D. C.</td>
<td>Estrategia gestión integral de residuos eléctricos y electrónicos</td>
<td>Completo</td>
</tr>
<tr>
<td>Residuos</td>
<td>Resolución 372 de 2009</td>
<td>Plan Post – consumo batería usadas plomo ácido</td>
<td>Completa</td>
</tr>
<tr>
<td>Energía</td>
<td>Decreto 2501 de 2007</td>
<td>Uso racional de energía eléctrica</td>
<td>Completo</td>
</tr>
<tr>
<td>Energía</td>
<td>Resolución 90708 de 2015</td>
<td>RETIE</td>
<td>Completa</td>
</tr>
</tbody>
</table>
7. Estudio Financiero

Los elementos que intervienen en el cálculo de la rentabilidad del proyecto se presentan a continuación:

- Inversión: Totalidad del costo de la instalación, incluido el proyecto y los trámites administrativos.
- Generación eléctrica: El total de la electricidad generada por la instalación solar, en función de la potencia de la instalación.
- Costos de explotación: conjunto de gastos que supone la gestión y explotación de la cubierta fotovoltaica. En este concepto se contemplan los siguientes gastos:
 - Mantenimiento preventivo
 - Mantenimiento correctivo
7.1 Análisis de Sensibilidad

7.1.1 Escenario más probable

Tabla 18
Flujo de caja escenario más probable

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Años</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Ingresos x Ventas</td>
<td>$7,224,370,56</td>
</tr>
<tr>
<td>Préstamo</td>
<td></td>
</tr>
<tr>
<td>Egresos (mantenimiento)</td>
<td>$3,170,666,91</td>
</tr>
<tr>
<td>- Depreciación</td>
<td>$6,750,631,40</td>
</tr>
<tr>
<td>Intereses</td>
<td></td>
</tr>
<tr>
<td>Flujo de Caja Antes de Impuestos</td>
<td>($2,696,927,75)</td>
</tr>
<tr>
<td>- Impuestos</td>
<td>($903,470,80)</td>
</tr>
<tr>
<td>Flujo de Caja Después de Impuestos</td>
<td>($1,793,456,95)</td>
</tr>
<tr>
<td>Depreciación</td>
<td>$6,750,631,40</td>
</tr>
<tr>
<td>- Amortización</td>
<td></td>
</tr>
<tr>
<td>- Inversión Inicial</td>
<td>$33,753,157,00</td>
</tr>
<tr>
<td>+ Recuperación de capital de trabajo</td>
<td></td>
</tr>
<tr>
<td>+ Valor de Salvamento</td>
<td></td>
</tr>
<tr>
<td>Flujo de Caja Neto</td>
<td>($33,753,157,00)</td>
</tr>
</tbody>
</table>
Tabla 19
VPN - TIR escenario más probable

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIO</td>
<td>20%</td>
</tr>
<tr>
<td>VNA</td>
<td>$12.989.098,90=</td>
</tr>
<tr>
<td>TIR</td>
<td>29,74%</td>
</tr>
<tr>
<td>VPN con TIR</td>
<td>$0,00=</td>
</tr>
</tbody>
</table>

Tabla 20
Costos de mantenimiento

<table>
<thead>
<tr>
<th>COSTOS DE MANTENIMIENTO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1HOM121</td>
<td>Mantenimiento preventivo a rectificador-cargador de baterías</td>
<td>$302.325,44=</td>
</tr>
<tr>
<td>Z1HOM115</td>
<td>Mantenimiento preventivo a banco de baterías 125 Vcc</td>
<td>$511.932,07=</td>
</tr>
<tr>
<td>Z1MTO52</td>
<td>Mantenimiento básico del transformador de auxiliares (transformadores desde 30 hasta 500 kVA).</td>
<td>$244.603,22=</td>
</tr>
<tr>
<td>Z1MTO54</td>
<td>Mantenimiento tableros de conexiones primarias y secundarias del transformador de auxiliares.</td>
<td>$262.250,48=</td>
</tr>
<tr>
<td>Costo directo</td>
<td></td>
<td>$1.321.111,21=</td>
</tr>
<tr>
<td>Costo administración e imprevistos</td>
<td></td>
<td>$1.585.333,46=</td>
</tr>
</tbody>
</table>
7.1.2 Escenario optimista

Tabla 21
Flujo de caja escenario optimista

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>AÑOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Ingresos x Ventas</td>
<td>$7.224.370,56</td>
</tr>
<tr>
<td>Préstamo</td>
<td></td>
</tr>
<tr>
<td>- Depreciación</td>
<td>$5.750.631,40</td>
</tr>
<tr>
<td>Intereses</td>
<td></td>
</tr>
<tr>
<td>Flujo de Caja Antes de Impuestos</td>
<td>($1.696.927,75)</td>
</tr>
<tr>
<td>- Impuestos</td>
<td>($568.470,80)</td>
</tr>
<tr>
<td>Flujo de Caja Después de Impuestos</td>
<td>($1.128.456,95)</td>
</tr>
<tr>
<td>Depreciación</td>
<td>$5.750.631,40</td>
</tr>
<tr>
<td>- Amortización</td>
<td></td>
</tr>
<tr>
<td>- Inversión Inicial</td>
<td>$28.753.157,00</td>
</tr>
<tr>
<td>+ Recuperación de capital de trabajo</td>
<td>$28.753.157,00</td>
</tr>
<tr>
<td>+ Valor de Salvamento</td>
<td>$38.385.464,60</td>
</tr>
<tr>
<td>Flujo de Caja Neto</td>
<td>($28.753.157,00)</td>
</tr>
</tbody>
</table>
Tabla 22

VPN - TIR escenario optimista

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIO</td>
<td>20%</td>
</tr>
<tr>
<td>VNA</td>
<td>$ 12.295.323,18=</td>
</tr>
<tr>
<td>TIR</td>
<td>30.85%</td>
</tr>
<tr>
<td>VPN con TIR</td>
<td>$ 0,00=</td>
</tr>
</tbody>
</table>

Tabla 23

Costos de mantenimiento

<table>
<thead>
<tr>
<th>COSTOS DE MANTENIMIENTO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1HOM121</td>
<td>Mantenimiento preventivo a rectificador-cargador de baterías</td>
</tr>
<tr>
<td>Z1HOM115</td>
<td>Mantenimiento preventivo a banco de baterías 125 Vcc</td>
</tr>
<tr>
<td>Z1MTO52</td>
<td>Mantenimiento básico del transformador de auxiliares (transformadores desde 30 hasta 500 kVA)</td>
</tr>
<tr>
<td>Z1MTO54</td>
<td>Mantenimiento tableros de conexiones primarias y secundarias del transformador de auxiliares.</td>
</tr>
<tr>
<td>Costo directo</td>
<td>$ 1.321.111,21=</td>
</tr>
<tr>
<td>Costo administración e imprevistos</td>
<td>$ 1.585.333,46=</td>
</tr>
</tbody>
</table>
7.1.3 Escenario pesimista

Tabla 24
Flujo de caja escenario pesimista

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUJO DE CAJA DEL PROYECTO (SIN PRESTAMO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AÑOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingresos x Ventas</td>
<td>$7.224.370,56</td>
<td>$7.298.420,36</td>
<td>$7.373.229,17</td>
<td>$7.448.804,77</td>
<td>$7.525.155,01</td>
<td></td>
</tr>
<tr>
<td>Préstamo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intereses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Impuestos</td>
<td>($1.573.470,80)</td>
<td>($1.548.664,11)</td>
<td>($1.523.603,16)</td>
<td>($1.498.285,34)</td>
<td>($1.472.708,00)</td>
<td></td>
</tr>
<tr>
<td>Flujo de Caja Después de Impuestos</td>
<td>($3.123.456,95)</td>
<td>($3.074.213,84)</td>
<td>($3.024.465,98)</td>
<td>($2.974.208,21)</td>
<td>($2.923.435,29)</td>
<td></td>
</tr>
<tr>
<td>- Amortización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Inversión Initial</td>
<td>$43.753.157,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Recuperación de capital de trabajo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$43.753.157,00</td>
</tr>
<tr>
<td>+ Valor de Salvamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$58.410.464,60</td>
</tr>
<tr>
<td>Flujo de Caja Neto</td>
<td>($43.753.157,00)</td>
<td>$5.627.174</td>
<td>$5.676.418</td>
<td>$5.726.165</td>
<td>$5.776.423</td>
<td>$107.990.818</td>
</tr>
</tbody>
</table>
Tabla 25

VPN - TIR escenario pesimista

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIO</td>
<td>20%</td>
</tr>
<tr>
<td>VNA</td>
<td>$ 14.376.650,34=</td>
</tr>
<tr>
<td>TIR</td>
<td>28,29%</td>
</tr>
<tr>
<td>VPN con TIR</td>
<td>$ 0,00=</td>
</tr>
</tbody>
</table>

Tabla 26

Costos de mantenimiento

<table>
<thead>
<tr>
<th>COSTOS DE MANTENIMIENTO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1HOM121 Mantenimiento preventivo a rectificador-cargador de baterías</td>
<td>$ 302.325,44=</td>
</tr>
<tr>
<td>Z1HOM115 Mantenimiento preventivo a banco de baterías 125 Vcc</td>
<td>$ 511.932,07=</td>
</tr>
<tr>
<td>Z1MTO52 Mantenimiento básico del transformador de auxiliares (transformadores desde 30 hasta 500 kVA).</td>
<td>$ 244.603,22=</td>
</tr>
<tr>
<td>Z1MTO54 Mantenimiento tableros de conexiones primarias y secundarias del transformador de auxiliares.</td>
<td>$ 262.250,48=</td>
</tr>
<tr>
<td>Costo directo</td>
<td>$ 1.321.111,21=</td>
</tr>
<tr>
<td>Costo administración e imprevistos</td>
<td>$ 1.585.333,46=</td>
</tr>
</tbody>
</table>
7.2 Diagnóstico del Análisis de Sensibilidad

Este proyecto es rentable en los tres escenarios económicos (pesimista, más probable y optimista), se observa una tasa interna de retorno (TIR) mayor a la tasa de interés de oportunidad (TIO).

7.3 Período de Retorno de la Inversión

Para el diseño, se calcula el periodo de retorno de la inversión de la instalación solar fotovoltaica propuesta.

Periodo de retorno de la inversión (años):

$$T = \frac{I}{E-M}$$

Siendo:

$T = \text{Tiempo de recuperación de la inversión (años)}$

$I = \text{Inversión total del proyecto}$

$E = \text{Beneficio anual conseguido (energía ahorrada)}$

$M = \text{Costos anuales de mantenimiento y explotación de la instalación}$

De este modo obtenemos:

Tabla 27

Periodo de retorno de la inversión

<table>
<thead>
<tr>
<th>PERIODO DE RETORNO DE LA INVERSIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión total del proyecto.</td>
</tr>
<tr>
<td>Beneficio anual conseguido (energía ahorrada)</td>
</tr>
<tr>
<td>Costos anuales de mantenimiento y explotación de la instalación</td>
</tr>
<tr>
<td>Tiempo de recuperación de la inversión (años)</td>
</tr>
</tbody>
</table>
• Para la cubierta a dos aguas: \(T = 8 \) años.
Conclusiones

1. Del análisis realizado al sistema de auxiliares de corriente continua se toma como base el registro de corrientes y voltajes en las diferentes subestación de Codensa, se calcula la corriente y voltaje promedio; con los cuales se obtiene la potencia para determinar la cantidad de paneles solares a utilizar y determinar las dimensiones de la estructura. Este balance entre potencia y dimensión del sistema fotovoltaico cumple con los requerimientos eléctricos de generación y ocupa el 9% del total disponible en la cubierta de la casa de control.

2. En Colombia se está impulsando el uso de energías alternativas con incentivos económicos como son la disminución de impuestos y aranceles en la adquisición de equipos para la generación de energía limpia, entre ellos están los sistemas fotovoltaicos, en el país se han construido varios proyecto en la zona urbana y rural.

3. De los sistemas de generación de energía limpia renovable, desarrollados actualmente, el más sencillo de construir es el sistemas fotovoltaico, a pesar de los altos valores en los equipos, los cuales no son de fácil adquisición para personas naturales - jurídicas de bajos recursos; para el diseño realizado en este proyecto el periodo de retorno de la inversión es de ocho (8) años, con una tasa de retorno de la inversión del 29,74% efectivo anual, lo cual es rentable. En el análisis de costos para el diseño y la construcción del sistema fotovoltaico se contempla los materiales, equipos, herramientas y mano de obra para la ejecución.
4. Los cálculos realizados de los parámetros eléctricos del sistema de generación fotovoltaico cumple con los valores requeridos por la instalación a la cual se conectaría, con cuatro (4) paneles en serie y cuatro (4) de éstos en paralelo, se obtiene una potencia total en la instalación de 4500 W, esta potencia es suficiente para alimentar la carga normal de la subestación y cargar el banco de baterías a una rata de 20 amperios-hora.

Recomendaciones

Se recomienda el proyecto por:

a) La energía solar fotovoltaica a implementar ofrece la oportunidad, a un costo razonable, de emplear una energía renovable en el ámbito urbano generando una electricidad respetuosa con el medio ambiente.

b) Poner en funcionamiento el sistema fotovoltaico en las subestaciones eléctricas de Codensa S.A. ESP ayudara a sensibilizar hacia el ahorro energético, además de constituir un elemento diferenciador en los proyectos arquitectónicos y urbanísticos.

c) Con la implementación de este proyecto, Codensa S.A. ESP obtendrá un respaldo adicional para los equipos que funcionan con corriente continua. (relés de protección, relés repetidores, interruptores, equipos de maniobra, equipos de comunicaciones, elementos de señalización).

d) El mantenimiento a los cargadores de baterías (rectificadores) será inferior por horas de funcionamiento ya que éstos funcionarían menos horas al mes.

e) Se aumentara la vida de útil del cargador de baterías, ya que con la instalación del sistema fotovoltaico su uso será menor.

f) EL sistema de corriente continua tendría un respaldo adicional ya que no se dependería
de los sistemas auxiliares de corriente alterna, evitando que los equipos control, protección y maniobra de la subestación queden fuera de servicio.

g) Al existir continuidad en los servicios de corriente continua se evitan daños indeseados en los equipos y cortes de energía a usuarios (Industrial, comercial y residencial), representando gastos en la recuperación de equipos y sanciones regulatorias del sistema.
Bibliografía

Repositorio Institucional Universidad distrital - RIUD. (s.f.). (U. F. Caldas, Productor) Obtenido de http://repository.udistrital.edu.co.

tiempo, E. (13 de Noviembre de 2013). Obtenido de
Lista de Anexos

ANEXO A. Análisis histórico de carga de los servicios auxiliares de cinco (05) subestaciones.

ANEXO B. Catálogos comerciales de los equipos propuestos.