PASANTÍA, EVALUACIÓN DE LA RESISTENCIA Y CAPACIDAD DE SOPORTE DE LAS UNIDADES DE MAMPOSTERÍA ESTRUCTURAL EN CONCRETO ANTE INCREMENTOS DE TEMPERATURA OCASIONADOS POR EL FUEGO - H Y H INGENIERÍA Y CONSULTORÍA.

CARLOS ALIRIO MARTÍNEZ MARTIN

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
INGENIERÍA CIVIL
BOGOTÁ D.C.
2016
PASANTÍA, EVALUACIÓN DE LA RESISTENCIA Y CAPACIDAD DE SOPORTE DE LAS UNIDADES DE MAMPOSTERÍA ESTRUCTURAL EN CONCRETO ANTE INCREMENTOS DE TEMPERATURA OCASIONADOS POR EL FUEGO - H Y H INGENIERÍA Y CONSULTORÍA.

CARLOS ALIRIO MARTÍNEZ MARTIN

Proyecto de Grado en la modalidad de Pasantía, para optar el título de Ingeniero Civil.

Ing. Rodrigo E. Esquivel Ramírez
Docente Tutor

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
INGENIERÍA CIVIL
BOGOTÁ D.C.
2016
INTRODUCCIÓN

1 OBJETIVOS

1.1 Objetivo General

1.2 Objetivos Específicos

2 MARCO REFERENCIAL

2.1 MARCO DE ANTECEDENTES

2.2 MARCO CONCEPTUAL

2.3 MARCO GEOGRÁFICO

2.4 MARCO GEOTÉCNICO

2.5 MARCO GEOLÓGICO

3 DESCRIPCIÓN DE LAS ACTIVIDADES DE LA PASANTÍA

4 CRONOGRAMA DIARIO Y DETALLADO DE ACTIVIDADES

4.1 DESCRIPCIÓN DE LA EMPRESA

5 APORTE A LA CONSTRUCCIÓN DE MUROS CORTAFUEGO EN COLOMBIA

6 DISEÑO METODOLÓGICO

6.1 POBLACIÓN

6.2 MUESTRA

6.3 VARIABLES

7 FASES DE DESARROLLO

7.1 ETAPA DE RECOLECCIÓN BIBLIOGRÁFICA

7.2 ETAPA DE ENSAYOS DE LABORATORIO

7.2.1 Ensayo de Humedad

7.2.2 Determinación de Volumen

7.2.3 Ensayo de Absorción

7.2.4 Ensayo Resistencia a la Compresión

7.3 DISEÑO Y CONSTRUCCIÓN MURO CORTAFUEGO PROTOTIPO

7.4 ENSAYO DE RESISTENCIA AL FUEGO
8. RESULTADOS ... 47
 8.1 HUMEDAD .. 47
 8.2 DENSIDAD Y VOLUMEN ... 48
 8.3 ABSORCIÓN ... 49
 8.4 RESISTENCIA A LA COMPRESIÓN .. 50
 8.5 RESISTENCIA AL FUEGO ... 52
9. ANÁLISIS DE RESULTADOS ... 54
 9.1 CONTENIDO DE HUMEDAD ... 54
 9.3 RESISTENCIA A LA COMPRESIÓN Y RESISTENCIA AL FUEGO 56
10 RECOMENDACIONES .. 59
CONCLUSIONES ... 60
BIBLIOGRAFÍA ... 61
ANEXOS .. 63
TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1.</td>
<td>Actividades desarrolladas en la pasantía</td>
<td>29</td>
</tr>
<tr>
<td>Tabla 2.</td>
<td>Humedad natural bloque estructural en concreto</td>
<td>47</td>
</tr>
<tr>
<td>Tabla 3.</td>
<td>Volumen y densidad en bloque estructural en concreto</td>
<td>48</td>
</tr>
<tr>
<td>Tabla 4.</td>
<td>Medida de tendencia central aplicada a la determinación de la densidad del bloque estructural en concreto</td>
<td>48</td>
</tr>
<tr>
<td>Tabla 5.</td>
<td>Absorción en bloque estructural en concreto</td>
<td>49</td>
</tr>
<tr>
<td>Tabla 6.</td>
<td>Resistencia a compresión de unidades de mampostería en concreto</td>
<td>50</td>
</tr>
<tr>
<td>Tabla 7.</td>
<td>Distancia de las termocplas con relación a la fuente de calor</td>
<td>52</td>
</tr>
</tbody>
</table>
TABLA DE CUADROS Y GRAFICOS

Cuadro 1. Descripción zonas geotécnicas Bogotá D.C.. 23
Cuadro 2. Descripción zonas de respuesta sísmica Bogotá D.C... 24
Cuadro 3. Parámetros sísmicos .. 25
Cuadro 4. Formato facturación corte de obra 1, capítulo preliminares................................... 26
Cuadro 5. Formato análisis de precios unitarios, ítem 2.03 concreto vigas.............................. 27
Grafico 1. Conducción de calor en las paredes del muro prototipo 53
Cuadro 6. Requisitos para el contenido de humedad de unidades de mampostería 54
Cuadro 7. Densidad de los bloques de concreto ... 55
Imagen 1.	Capacitación a los trabajadores de la obra, subestación salitre Bogotá D.C.	28
Imagen 2.	Unidades de mampostería a temperatura ambiente	39
Imagen 3.	Secado al horno de las unidades de mampostería	39
Imagen 4.	Masa del elemento saturado	40
Imagen 5.	Masa de elemento sumergido	40
Imagen 6.	Masa del elemento en estado seco	41
Imagen 7.	Inmersión del elemento en agua	41
Imagen 8.	Resistencia a compresión unidades de mampostería estructural en concreto	42
Imagen 9.	Construcción muro prototipo, mortero de pega	44
Imagen 10.	Nivelación el muro cortafuego prototipo	44
Imagen 11.	Ubicación termocuplas en el muro cortafuego prototipo	45
Imagen 12.	Fuego originado con madera	46
Imagen 13.	Fuego originado con carbón mineral, empleando inyección de aire	46
Imagen 14.	Finalización ensayo resistencia al fuego	46
Imagen 15.	Fracturas en las unidades de mampostería	51
Imagen 16.	Desintegración del mortero de pega	57
TABLA DE FIGURAS

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1</td>
<td>Función de un muro cortafuego, Resumen Norma Sismo Resistente NSR-98</td>
<td>14</td>
</tr>
<tr>
<td>Figura 2</td>
<td>Imagen satelital subestación salitre, Bogotá D.C.</td>
<td>20</td>
</tr>
<tr>
<td>Figura 3</td>
<td>Localización subestación eléctrica salitre</td>
<td>21</td>
</tr>
<tr>
<td>Figura 4</td>
<td>Localización muros cortafuego en la subestación eléctrica salitre</td>
<td>22</td>
</tr>
<tr>
<td>Figura 5</td>
<td>Localización subestación salitre en el mapa geotécnico de Bogotá D.C.</td>
<td>23</td>
</tr>
<tr>
<td>Figura 6</td>
<td>Localización subestación salitre en el mapa respuesta sísmica de Bogotá D.C.</td>
<td>24</td>
</tr>
<tr>
<td>Figura 7</td>
<td>Unidad de mampostería a fallar en máquina de compresión</td>
<td>42</td>
</tr>
<tr>
<td>Figura 8</td>
<td>Vista de planta muro cortafuego prototipo</td>
<td>43</td>
</tr>
<tr>
<td>Figura 9</td>
<td>Dimensiones de un elemento</td>
<td>43</td>
</tr>
<tr>
<td>Figura 10</td>
<td>Vista Frontal del muro</td>
<td>43</td>
</tr>
<tr>
<td>Figura 11</td>
<td>Localización de las termocuplas en la unidad de mampostería</td>
<td>52</td>
</tr>
<tr>
<td>Figura 12</td>
<td>Fractura en las unidades de mampostería estructura en concreto a causa del incremento de temperatura originado por el fuego.</td>
<td>56</td>
</tr>
</tbody>
</table>
TABLA DE ANEXOS

ANEXO A. Variación de temperatura en función del tiempo en cada una de las paredes del muro 63
INTRODUCCIÓN

El presente trabajo recopila todas las actividades desarrolladas durante la ejecución de la pasantía realizada en el mantenimiento y construcción de obras civiles en las subestaciones eléctricas CODENSA “construcción de muros cortafuego”, con el fin de obtener el título de ingeniero civil, a su vez como aporte se realizó una la evaluación del comportamiento de unidades de mampostería estructural en concreto ante la exposición al fuego, para lo cual se emplearon ensayos de laboratorio con la finalidad de identificar las propiedades físicomecánicas de las unidades de mampostería y el mortero de pega. De este modo se evaluó el comportamiento y la funcionalidad del muro frente a grandes incrementos de temperatura.

En Colombia las obras de infraestructura en el sector eléctrico cuentan con normas técnicas como lo son el Reglamento Técnico de Instalaciones Eléctricas (RETIE). El RETIE empezó a regir el día primero (1) de mayo de 2005, “Su objetivo es establecer las medidas que garanticen la seguridad de las personas, la vida animal, la preservación del medio ambiente, previniendo los riesgos de origen eléctrico; dicha norma aplica en la construcción de las instalaciones eléctricas, ampliación y remodelación de las mismas que se realicen en procesos de generación, transmisión, transformación, distribución y utilización de la energía eléctrica”¹, esta norma cuenta con pocas especificaciones técnicas ante la construcción de muros cortafuego; por otra parte la Norma Sismo Resistente 2010 (NSR 10) reglamenta la construcción de edificaciones verticales, en el Título J “Requisitos de protección contra incendios” y el Título D “Mampostería estructural”, se indican paramentos mínimos para el diseño y construcción de muros cortafuego. En síntesis, en Colombia la normativa es escasa para la protección contra incendios en plantas de generación eléctrica y subestaciones eléctricas de alta tensión, razón por la cual se deben emplear normas estadounidenses como lo son NFPA (National Fire Protection Association), en especial la norma NFPA® 850 “Recommended Practice For Fire Protection For Electric Generating Plants And High Voltage Direct Current Converter Stations”.

La infraestructura de las subestaciones eléctricas construidas en Colombia antes del año 2005 no contaba con la implementación de normas técnicas que

¹ Reglamento Técnico de Instalaciones Eléctricas RETIE
garantizara las condiciones mínimas de seguridad para el entorno que las rodeaba, esta usencia de regulación normativa en la construcción de dichas subestaciones indicaba que estas carecían de sistemas de protección contra incendios y explosión, como lo son los muros cortafuego.

En la actualidad la empresa CODENSA está implementando dentro su normativa la construcción de muros cortafuego en las estaciones y sub estaciones eléctricas ya que en dichos lugares se encuentra trasformadores que pueden originar explosiones e incendios. Los muros contrafuego buscan impedir el paso de calor por conducción, de manera que la temperatura no se incremente en la sección del muro opuesto a la exposición del fuego, con el fin de evitar la ignición de aceites lubricantes y o combustibles que son almacenados cerca a los transformadores, a su vez controlar la propagación del incendio y salvaguardar vidas humanas.

La empresa HYH INGENIERIA Y CONSULTORIA S.A.S, NIT 900.354.974-2, actualmente es la entidad encargada del diseño y construcción de los muros cortafuego en las estaciones y subestaciones de alta tensión de la empresa de energía CODENSA. La pasantía se desarrolla en la subestación de alta tensión salitre (Bogotá), localizada en la Calle 47 No. 68- 62; las actividades desarrolladas dentro del proyecto son de orden administrativo y técnico en la construcción de los muros cortafuego.
1 OBJETIVOS

1.1 Objetivo General

Evaluar la resistencia y capacidad de soporte de las unidades de mampostería estructural en concreto ante incrementos de temperatura ocasionados por el fuego, empleando el conocimiento adquirido en obra durante la ejecución de la pasantía en la empresa H&H INGENIERIA Y CONSULTORIA S.A.S.

1.2 Objetivos Específicos

- Identificar la normativa técnica para el diseño y construcción de muros cortafuego en Colombia.
- Realizar las diferentes labores de índole técnico-administrativo asignadas por el personal superior de la empresa.
- Cumplir con los lineamientos estipulados en el acuerdo 30 de 2015 y los lineamientos de la empresa H&H INGENIERIA Y CONSULTORIA S.A.S.
- Realizar ensayos de laboratorio con las unidades de mampostería estructural en concreto, con el fin de determinar sus propiedades.
- Evaluar el comportamiento, resistencia y capacidad de soporte de las unidades de mampostería estructural en concreto ante incrementos de temperatura ocasionados por el fuego.
2 MARCO REFERENCIAL

2.1 MARCO DE ANTECEDENTES

En la ejecución de un proyecto es indispensable implementar normas técnicas y cumplir las especificaciones en cuanto a diseño y proceso constructivo de las estructuras.

La Norma Sismo Resistente NSR-10 corresponde a la actualización de la Norma Sismo Resistente NSR-98 de 1998, la primera reglamentación que se instauró la cual, como legislación máxima en Colombia, definía los parámetros técnicos que debía cumplir las construcciones de edificaciones, presentaba requisitos mínimos que, tenían como objetivo central garantizar que se cumpliera el fin primordial de salvaguardar las vidas humanas ante la ocurrencia de eventos sísmicos de cualquier magnitud. Sin embargo, fue necesaria la actualización de esta normativa debido a que pasaba por alto requisitos que se están implementando hoy en día para garantizar una mayor seguridad en los procesos constructivos y en la función final de las edificaciones.

La NSR-98 provee los siguientes requerimientos para la ejecución de los muros cortafuego y la prevención de la propagación del fuego interior.

Los elementos estructurales y los elementos de la construcción, deberán tener como mínimo las resistencias al fuego normalizado exigidas por la norma. Se exceptúan de esta exigencia los contenidos en los recintos con aberturas en por lo menos dos de sus muros, que representen más del 50% del área total de dichos muros, los cuales no requieren protección especial contra el fuego.\(^2\)

Toda área mayor de 1000 m\(^2\), debe dividirse en áreas menores por medio de muros cortafuego, hechos de ladrillos macizos o de concreto, con los espesores mínimos prescritos en la siguiente tabla. Se permite la utilización de materiales y espesores diferentes en la construcción de muros cortafuego, siempre y cuando

\(^2\) Norma Sismo Resistente NSR-98, sección J.2.3.3 Resistencia requerida para elementos estructurales y otros, literales J.2.3.3.1 y J.2.3.3.3.
se demuestre que presentan un comportamiento general equivalente a de los muros especificados a continuación.³

El comportamiento de los muros cortafuego ante la presencia del fuego se presenta de esta manera.

Figura 1. Función de un muro cortafuego, Resumen Norma Sismo Resistente NSR-98

Suministrado por la entidad Luis Gonzalo Mejía C. y Cia., Ingenieros Estructurales

Al diseñar un edificio, debe dividirse en compartimentos, para que cada uno de ellos impida que el incendio se propague a los compartimentos vecinos durante un determinado lapso de tiempo. El objetivo de la compartimentación es controlar el incendio, garantizar la seguridad de todos los ocupantes del edificio y reducir daños.

³ Norma Sismo Resistente NSR-98, sección J.2.8. Prevención de la Propagación del Fuego Interior, subíndice J.2.8.1 Requisitos Generales, literal J.2.8.1.1
Si la cubierta de la edificación está hecha o soportada con materiales combustibles y si el recinto almacena materiales inflamables, el muro cortafuego para el último piso debe sobresalir por lo menos, 0.5 m por encima de la cubierta de techo más alta.4

La norma sismo resistente NSR-10 en el Título J indica los requisitos de protección contra incendios vigentes que debe cumplir una edificación, para ello se identifica el uso que se dará a la misma, de tal manera la norma proporciona una clasificación del grupo de ocupación al que se destinan las edificaciones.

Para el caso de la implementación de estaciones eléctricas, el grupo asignado por uso de edificación es el grupo de ocupación fabril e industrial, subgrupo de ocupación fabril e industrial de riesgo moderado, en este se clasifican las edificaciones o espacios donde los procesos de explotación, fabricación, ensamblaje, manufacturación o procesamiento representan riesgo moderado de incendio, debido a la naturaleza de tales operaciones y los materiales involucrados.

La Norma Sismo Resistente NSR-10 especifica los siguientes parámetros que se deben tener en cuenta y aplicar a la hora de realizar la construcción de muros cortafuego con el fin de prevenir la propagación de fuego interior. No se debe atravesar los muros cortafuego con conducciones u otro elemento que permita el paso del fuego y del humo, ni con materiales que disminuyan su resistencia al fuego. Los muros cortafuego podrán tener aberturas solamente para dar continuidad a circulaciones horizontales, siempre y cuando se tenga un sistema de cierre hermético contra el paso del humo, que asegure como mínimo una resistencia contra el fuego de una hora.5

El RETIE es un instrumento técnico legal que fija las condiciones técnicas necesarias para garantizar la seguridad en las instalaciones eléctricas nuevas que tengan que ver con el proceso de generación, transformación, distribución y uso final de energía.

4 Norma Sismo Resistente NSR-98, sección J.2.8 Prevención de la Propagación del Fuego Interior, subíndice J.2.8.1 Requisitos Generales, literal J.2.8.1.3

5 Norma Sismo Resistente NSR-10, Capítulo J.2 Requisitos generales para protección contra incendios en las edificaciones, sección J.2.5 Prevención de la Propagación del Fuego Interior, subíndice J.2.5.1 Requisitos Generales, literales J.2.5.1.4 y J.2.5.1.5
Anterior al año 2005 se empleaba en los diseños y construcción de obras verticales la norma sismo resistente NSR-98 sin embargo, como ya se ha expuesto esta norma no abarcaba en su totalidad las exigencias necesarias para la realización de un proyecto. Con la creación del RETIE se complementaron las normas de seguridad en estructuras con las normas de seguridad para la instalación de redes y elementos eléctricos.

2.2 MARCO CONCEPTUAL

Todas las edificaciones deben cumplir con los requisitos mínimos contraincendios con el fin de evitar o mitigar daños provocados por incendios que puedan producirse, por tal motivo se debe controlar el proceso constructivo en las obras para garantizar su realización.

Inicialmente para la implementación de muros cortafuego se debe analizar la Norma Sismo Resistente NSR-10 en el Título D Mampostería Estructural, en ella se definen los muros estructurales como elementos de gran rigidez para fuerzas aplicadas en su plano y de baja rigidez y resistencia cuando se aplican fuerzas perpendiculares a su plano. Teniendo en cuenta estas características, toda estructura que esté conformada por muros estructurales debe tener componentes en las dos direcciones ortogonales principales de la edificación, mediante la disposición de muros en las direcciones apropiadas o por medio del uso de elementos compuestos cuya geometría en planta genere rigidez en las direcciones principales.

Debido a la cantidad de energía calorífica que reciben los muros cortafuego se puede generar problemas en la estabilidad estructural de los mismos. La estabilidad estructural es una noción física y/o química asociada a la capacidad de un cuerpo de mantener su estado o su composición inalterados durante un tiempo relativamente prolongado. Es la capacidad de una estructura de conservar una configuración frente a acciones exteriores.

Para que se cumpla esta aseveración se debe verificar las siguientes dos condiciones para determinar si un elemento estructural es estable:

- Condición necesaria: Debe existir equilibrio de todas las fuerzas que actúen sobre la estructura, o sea, se debe cumplir la condición física del equilibrio total y relativo de todas las fuerzas activas y reactivas.
- Condición suficiente: El equilibrio de las fuerzas debe ser estable.

Esta última condición establece que la configuración que adopte la estructura y las fuerzas debe ser permanente en el tiempo.

Se puede establecer un procedimiento para determinar cuándo una estructura es estable o inestable y consiste en: estudiar cómo se modifican las fuerzas o la energía potencial total o el valor del determinante de la matriz rigidez de la estructura, cuando se modifica ligeramente la configuración de la estructura y del sistema de fuerzas que se analiza. En el caso de los muros cortafuego la acción del fuego puede generar una modificación en la configuración de las unidades de mampostería y el mortero de pega que se utilice en su diseño y construcción, por lo tanto es imprescindible realizar los respectivos ensayos de laboratorio para determinar la resistencia máxima del muro ante estos factores y mejorar su estabilidad estructural.

Los muros cortafuego tienen una estabilidad propia capaz de resistir las llamas frente a un incendio y que separa totalmente dos partes de una misma edificación o dos edificaciones contiguas, considerándose el mismo desde las cimentaciones y hasta sobrepasar en 0,50 m como mínimo el borde de la cubierta más alta y 0.20 m hacia delante de los techos saledizos o aleros. La NSR-10 indica que los muros cortafuego son muros sólidos con un determinado tiempo de protección contra el fuego, restringen la propagación del fuego y es continuo desde la cimentación hasta el techo, con suficiente estabilidad estructural tal que, bajo exposición al fuego, no colapse.

El muro cortafuego debe construirse cuando una edificación se encuentra adosada al deslínde común del vecino.

Posee alta resistencia frente a las llamas. Algunos muros cortafuego tienen en su composición, celdas cerradas llenas de aire en su interior lo cual permite que el material ofrezca gran resistencia frente a la transmisión del calor. Estos muros no son inflamables.

Para la construcción de muros cortafuego en Colombia se hace uso del bloque estructural de concreto abuzardado como elemento de mampostería estructural, es una unidad de mampostería de concreto, perforada cuya superficie exterior presenta un abuzardado, con el objeto específico de darle un acabado a las fachadas de las edificaciones, este abuzardado es de diferentes tipos. Este sistema permite una reducción en los desperdicios de los materiales empleados y
genera fachadas portantes; es apta para construcciones en alturas grandes. La mayor parte de la construcción es estructural.

Los muros cortafuegos pueden presentar diversas propiedades al estar en contacto con el fuego, la empresa Panamerican Firestop Consulting, Sistemas Pasivos Contra Incendio presenta en un artículo dichas propiedades a continuación especificadas.

- Intumescencia: Es la propiedad que algunos materiales tienen para crecer cuando se les expone a altas temperaturas. La intumescencia de los materiales corta fuego, se utiliza para que una vez que se instala un sistema se pueda obturar todo el espacio u objeto penetrante que se está protegiendo en esa aplicación, debido a que cuando se tiene un incendio la mayoría de los materiales se funden dejando espacios en los lugares donde se encontraban colocados. El sistema comienza a actuar, creciendo de tamaño y sellando todos los posibles huecos donde están instalados los sistemas.

- Endotermia: Es la propiedad de los materiales para absorber calor y evitar que salga al exterior del mismo formando un carbonizado sobre la superficie, la cual forma una barrera que impide el paso del fuego. El material corta fuego tiene un efecto de enfriamiento en el hueco y en el elemento penetrante para disminuir en forma considerable la transmisión por medio de radiación y conducción.

- Firestoping: Son sistemas de protección pasiva que detienen la propagación de un incendio y también forman un sello en condiciones normales de operación. El sellamiento de aberturas (compartimentación) proporciona la capacidad de impedir la propagación de las llamas y humos a través de las penetraciones (bandejas porta cables, tuberías, cables, ductos de aire acondicionado) o juntas existentes en una construcción.

Es necesario tener en cuenta otro concepto aplicado en los muros cortafuego llamado Carga de fuego o Potencial combustible, si se considera una estructura no combustible (Ejemplo de mampostería) la severidad de un incendio estará relacionada en forma aproximada por la cantidad de material combustible que exista sobre la misma. Muebles, pisos de madera o alfombras, revestimientos y materiales depositados pueden ser combustibles y serán los que determinen la severidad del incendio. A estas cargas de elementos combustible se los expresa transformándola de acuerdo a su poder calorífico en una cantidad de Kg. equivalente de papel o de madera (ambos tienen igual poder calorífico).
La carga de fuego es un indicador de la magnitud del riesgo de incendio que presenta un edificio o instalación industrial. Este valor es de gran importancia tanto para determinar las protecciones en materia de detección y control de incendios, como también para determinar las características constructivas de la edificación. La NSR-10 define la carga de fuego como el efecto ocasionado por un material combustible, debido a la energía calorífica que pueda liberar, en función de su calidad y volumen. La energía disponible se mide en MJ (1MJ= 0.28 kw/h = 0.239 Mcal), expresada como la suma de poder calorífico de todos los materiales contenidos en un recinto, dividida por el área del piso. Es usual expresarla en función de su equivalencia en masa de madera por unidad de área, sabiendo que 1 kg tiene una energía calorífica equivalente a 18 MJ.

Se ha convertido en una práctica habitual el empleo del concepto de Resistencia al fuego de elementos constructivos (muros, losas, aberturas, etc.), está definida como la aptitud de un elemento constructivo a conservar determinadas propiedades cuando es sometido a la acción del fuego durante un tiempo.

Las propiedades que debe conservar el muro se describe a continuación:

Capacidad portante o estabilidad: el muro no debe derrumbarse.

Ausencia de emisiones de gases: el muro no debe producir gases ni humos. Está comprobado que en un incendio la pérdida de vidas por asfixia es mayor que por quemaduras.

Estanqueidad: el muro no debe dejar pasar llamas, ni vapores ni gases. Es fundamental poder garantizar la no propagación y circunscrizión del fuego.

Aislación Térmica: el muro no debe dejar pasar el calor por encima de ciertos límites.

El concepto de resistencia al fuego está relacionado con cuestiones de seguridad tales como “tiempo de evacuación de un edificio”.

Según la Norma Sismo Resistente NSR-10, La resistencia al fuego se refiere de igual manera la tiempo en que un edificio o los componentes de este mantienen su función estructural o dan la posibilidad de confinar el fuego, medido como el tiempo que resiste un material expuesto directamente al fuego, sin producir llamas, gases tóxicos ni deformaciones excesivas.

Para determinar la resistencia al fuego de los elementos estructurales se realiza la Prueba Normalizada de Incendio el cual es un procedimiento estipulado en las
normas como las NTC 1480 e ISO 834, entre otras, en la cual la temperatura se eleva de forma controlada, siguiendo una ecuación definida en función del tiempo del fuego patrón (fuego con variación de temperatura controlada con el tiempo). Esta actividad se realiza con las unidades de mampostería utilizadas para la construcción de los muros cortafuegos.

2.3 MARCO GEOGRÁFICO

La subestación eléctrica de alta tensión salitre, es el lugar donde la empresa H&H INGENIERIA Y CONSULTORIA S.A.S. desarrollo los estudios, diseños y construcción de muros cortafuego, dicha subestación se encuentra localizada en la Calle 47 No. 68- 62, Barrio Salitre, Bogotá, Colombia.

Figura 2. Imagen satelital subestación salitre, Bogotá D.C.

Fuente Google Earth
Figura 3. Localización subestación eléctrica salitre
Figura 4. Localización muros cortafuego en la subestación eléctrica salitre
2.4 MARCO GEOTÉCNICO

Figura 5. Localización subestación salitre en el mapa geotécnico de Bogotá D.C.

Suministrado por Geoportal

El Geoportal, clasifica la zona de ubicación de la subestación eléctrica salitre como lacustre B.

Cuadro 1. Descripción zonas geotécnicas Bogotá D.C.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Geotecnia</th>
<th>Geología</th>
<th>Geomorfología</th>
<th>Composición principal</th>
<th>Comportamiento geotécnico principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacustre B</td>
<td>Suelo lacustre</td>
<td>Terraza Alta-</td>
<td>Planicie</td>
<td>Arcillas limosas</td>
<td>Suelos de muy baja a media capacidad portante y muy compresibles</td>
</tr>
<tr>
<td></td>
<td>blando</td>
<td>Lacustre</td>
<td></td>
<td>blandas</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Decreto 523 de 16 de diciembre de 2010
2.5 MARCO GEOLÓGICO

Figura 6. Localización subestación salitre en el mapa respuesta sísmica de Bogotá D.C.

En el mapa de respuesta sísmica actualizado en el año 2010, la subestación eléctrica salitre se encuentra sobre una zona de remoción sísmica Lacustre 300.

Cuadro 2. Descripción zonas de respuesta sísmica Bogotá D.C.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Espesor del depósito (m)</th>
<th>Periodo fundamental del suelo (s)</th>
<th>Descripción Geotécnica General</th>
<th>Velocidad onda promedio 50 m Vs (m/s)</th>
<th>Humedad promedio 50 m Hn (%)</th>
<th>Efectos de sitio relacionados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacustre 300</td>
<td>200-300</td>
<td>3.5-4.5</td>
<td>Suelo lacustre blando: Arcilla limosa o limos arcillosos, en algunos sectores con intercalaciones de lentes de turba</td>
<td><175</td>
<td>>80</td>
<td>Amplificación</td>
</tr>
</tbody>
</table>

Fuente Decreto 523 de 16 de diciembre de 2010
3 DESCRIPCIÓN DE LAS ACTIVIDADES DE LA PASANTÍA

En el desarrollo de la pasantía me desempeñé como auxiliar de ingeniera en el proyecto “Mantenimiento y construcción de obras civiles en las subestaciones condesa”, en la construcción de muros cortafuego, mis funciones se encaminaron al apoyo en coordinación y dirección en la obra, control de cantidades y de material.

Inicialmente el Ing. Dani Hernández residente de la construcción de muros cortafuego, me capacito en el tema de muros cortafuego, indicando los diseños definitivos que se deberán seguir en la construcción del muro.

Los diseños fueron elaborados empleando métodos y de normas americanas, lo anterior debido a la falta de normas Colombianas para la realización del diseño de muros cortafuego; se emplearon parámetros geotécnicos y sísmicos del decreto 523 de 2010 de la microzonificación sísmica de Bogotá y se realizó un estudio de suelos para determinar los parámetros fisicomecánicos del suelo.

Cuadro 3. Parámetros sísmicos

<table>
<thead>
<tr>
<th>Micro zonificación</th>
<th>LACUSTRE 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cof. Aceleración horz. pico Aa =</td>
<td>0.15</td>
</tr>
<tr>
<td>Coef. Aceleración pico (vel.) Av =</td>
<td>0.20</td>
</tr>
<tr>
<td>Coef. de Importancia I =</td>
<td>1.25</td>
</tr>
<tr>
<td>Coef Amplificación /Aceleración Fa =</td>
<td>1.05</td>
</tr>
<tr>
<td>Coef Amplificación /Zona Tinteredio Fv =</td>
<td>2.90</td>
</tr>
<tr>
<td>Fuente</td>
<td>Decreto 523 de 16 de diciembre de 2010</td>
</tr>
</tbody>
</table>

En el frente de obra me desempeñe como Inspector, era la persona encargada de coordinar y dirigir la obra desde la perspectiva técnica, entre mis funciones estaba garantizar el estricto cumplimiento de los diseños técnicos del muro cortafuego N.3 en la subestación salitre. Los planos, estudios y diseños fueron suministrados por el Ing. Dani Hernández al iniciar actividades en la empresa como pasante.
Dentro de las labores técnicas en la obra, estaba llevar un registro de los materiales utilizados en el desarrollo de la obra, registro de las actividades diarias (bitácora de obra), control de cantidades de obra, realización de informes técnicos, diligenciamiento del formato de análisis de precio unitarios, diligenciamiento formato de facturación de corte de obra.

Cuadro 4. Formato facturación corte de obra 1, capítulo preliminares

<table>
<thead>
<tr>
<th>Item</th>
<th>Actividad</th>
<th>Descripción</th>
<th>Detalle de la Descripción</th>
<th>Unidad</th>
<th>Valor Unitario</th>
<th>Cant.</th>
<th>Valor Corte 1</th>
<th>Cant. Ejecutada</th>
<th>Valor Ejecutado Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03</td>
<td>Demoliciones</td>
<td>Placa maciza D.15</td>
<td>en el valor se deben incluir mano de obra, herramientas, costos directos e indirectos traslado de materiales utilizables, y botada de escombros</td>
<td>M2</td>
<td>27,014.00</td>
<td>68.25</td>
<td>1,843,842</td>
<td>68.25</td>
<td>1,843,842</td>
</tr>
<tr>
<td>1.17</td>
<td>Excavación de tierra</td>
<td>con retiro escombros</td>
<td>Zona de excavación y retiro de escombros incluye todos los costos directos e indirectos necesarios para la ejecución del trabajo y retiro de los materiales resultantes.</td>
<td>M3</td>
<td>42,037.00</td>
<td>108.15</td>
<td>4,546,302</td>
<td>108.15</td>
<td>4,546,302</td>
</tr>
<tr>
<td>1.24</td>
<td>Retiro de escombros en volqueta con carga y traslado a botadero autorizado</td>
<td>Retiro de escombros en volqueta</td>
<td>con carga y traslado a botadero autorizado</td>
<td>M3</td>
<td>40,887.00</td>
<td>113.75</td>
<td>4,650,896</td>
<td>113.75</td>
<td>4,650,896</td>
</tr>
<tr>
<td>1.01</td>
<td>Cerramiento con poliombra</td>
<td>Acopios</td>
<td>en el valor se deben incluir mano de obra, herramientas, costos directos e indirectos traslado de materiales utilizables, y botada de escombros</td>
<td>ML</td>
<td>11,029.00</td>
<td>63.00</td>
<td>695,457</td>
<td>63.00</td>
<td>695,457</td>
</tr>
<tr>
<td>1.21</td>
<td>Restesos</td>
<td>CERRAMIENTO MALLA EXISTENTE</td>
<td>en el valor se debe incluir viaje en camión dentro del perímetro urbano carga y descarga del material hasta el sitio indicado por CODENSA.</td>
<td>viaje</td>
<td>181,443.00</td>
<td>1.75</td>
<td>317,875</td>
<td>1.75</td>
<td>317,875</td>
</tr>
<tr>
<td>1.36</td>
<td>Demolición sardinel</td>
<td>Con compresora y un martillo de carga y retiro de escombros</td>
<td>en el valor se deben incluir mano de obra, herramientas, costos directos e indirectos traslado de materiales utilizables, y botada de escombros</td>
<td>ML</td>
<td>17,071.00</td>
<td>55.00</td>
<td>938,905</td>
<td>55.00</td>
<td>938,905</td>
</tr>
<tr>
<td>1.37</td>
<td>Demolición cimiento ciclopes</td>
<td>Con compresor y un martillo de carga y retiro de escombros</td>
<td>en el valor se deben incluir mano de obra, herramientas, costos directos e indirectos traslado de materiales utilizables, y botada de escombros</td>
<td>M3</td>
<td>123,331.00</td>
<td>17.32</td>
<td>2,136,093</td>
<td>17.32</td>
<td>2,136,093</td>
</tr>
</tbody>
</table>
Cuadro 5. Formato análisis de precios unitarios, Ítem 2.03 concreto vigas

<table>
<thead>
<tr>
<th>Localización</th>
<th>Desperdicio</th>
<th>Descripción</th>
<th>Alto</th>
<th>Ancho</th>
<th>Longitud</th>
<th>CANTIDAD</th>
<th>Medida Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MURO SALITRE TRAMO 1</td>
<td>1.10</td>
<td>COLUMNAS</td>
<td>0.30</td>
<td>0.30</td>
<td>4.20</td>
<td>19.00</td>
<td>7.90</td>
</tr>
<tr>
<td>MURO SALITRE TRAMO 2</td>
<td>1.10</td>
<td>COLUMNAS</td>
<td>0.30</td>
<td>0.30</td>
<td>4.20</td>
<td>5.00</td>
<td>2.08</td>
</tr>
<tr>
<td>MURO SALITRE TRAMO 3</td>
<td>1.10</td>
<td>COLUMNAS</td>
<td>0.30</td>
<td>0.30</td>
<td>4.20</td>
<td>7.00</td>
<td>2.91</td>
</tr>
<tr>
<td>MURO SALITRE TRAMO 1</td>
<td>1.10</td>
<td>VIGA AEREA</td>
<td>0.30</td>
<td>0.30</td>
<td>55.00</td>
<td>1.00</td>
<td>5.45</td>
</tr>
</tbody>
</table>

Total Dimenciones: 18.33

Elaboro: INCER S.A.
Aprobo: Global Business Services Colombia
Reviso: SANTIAGO AGUDELO RAMIREZ
Coordinador Administrativo, Logística y Compras
INCER S.A.
Adicional a los lineamientos técnicos, se realizaron jornadas capacitación en trabajo en alturas, seguridad e higiene, evacuación e importancia del uso de los elementos de protección personal (EPP) en el desarrollo de las actividades técnicas de la obra.

Imagen 1. Capacitación a los trabajadores de la obra, subestación salitre Bogotá D.C.
4 CRONOGRAMA DIARIO Y DETALLADO DE ACTIVIDADES

La tabla 1 muestra un registro detallado donde se indican las actividades realizadas, fecha y duración de las mismas, en la pasantía desarrollada en el “mantenimiento y construcción de obras civiles en las subestaciones condesa” con la empresa HYH INGENIERIA Y CONSULTORIA S.A.S.

Tabla 1. Actividades desarrolladas en la pasantía

<table>
<thead>
<tr>
<th>ACTIVIDADES DESARROLLADAS EN LA PASANTIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOYO TÉCNICO, ADMINISTRATIVO Y LOGÍSTICO AL PROYECTO DE CONSTRUCCIÓN DE MUROS CORTAFUEGO SUBESTACIÓN SALITRE, BOGOTÁ, CON UNA EVALUACIÓN DE LA RESISTENCIA Y CAPACIDAD DE SOPORTE DE LAS UNIDADES DE MAMPOSTERÍA ESTRUCTURAL EN CONCRETO ANTE INCREMENTOS DE TEMPERATURA OCASIONADOS POR EL FUEGO</td>
</tr>
</tbody>
</table>

CARLOS ALIRIO MARTÍNEZ MARTIN
Código: 20072279020
INGENIERÍA CIVIL

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>DÍA</th>
<th>ACTIVIDADES</th>
<th>HORAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>23-nov-15</td>
<td>Inducción, capacitación higiene y seguridad industrial, recorrido por el frente de obra salitre.</td>
<td>7am - 12pm 1pm - 5pm 9 Horas</td>
</tr>
<tr>
<td>Martes</td>
<td>24-nov-15</td>
<td>Capacitación por parte del Ing. Dani Hernández acerca de especificaciones técnicas de los muros cortafuego, suministro de contacto con proveedores.</td>
<td>7am - 12pm 1pm - 5pm 9 Horas</td>
</tr>
<tr>
<td>Miércoles</td>
<td>25-nov-15</td>
<td>Acompañamiento técnico comité, instalaciones de la empresa INCER S.A.</td>
<td>7am - 12pm 1pm - 5pm 9 Horas</td>
</tr>
<tr>
<td>Jueves</td>
<td>26-nov-15</td>
<td>Delimitación del área de trabajo, instalación de rollizos, cerramiento e implementación señalización.</td>
<td>7am - 12pm 1pm - 5pm 9 Horas</td>
</tr>
<tr>
<td>Viernes</td>
<td>27-nov-15</td>
<td>Delimitación área de trabajo, instalación de rollizos, cerramiento e implementación señalización.</td>
<td>7am - 12pm 1pm - 5pm 9 Horas</td>
</tr>
<tr>
<td>Sábado</td>
<td>28-nov-15</td>
<td>Delineamiento y corte de losa en concreto.</td>
<td>7am - 10pm 3 Horas</td>
</tr>
</tbody>
</table>

Horas realizadas Semana 1: 48 Horas

Observaciones: inicio de la pasantía
<table>
<thead>
<tr>
<th>Día</th>
<th>Fecha</th>
<th>Actividad Descripción</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>30-nov-15</td>
<td>Supervisión y acompañamiento demolición losas en concreto.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Martes</td>
<td>01-dic-15</td>
<td>Demolición de cimiento en concreto ciclópeo, con compresor y martillo neumático.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Miércoles</td>
<td>02-dic-15</td>
<td>Se realizó demolición de cimiento en concreto ciclópeo, con compresor y martillo neumático posterior a esto se realiza excavación manual.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Jueves</td>
<td>03-dic-15</td>
<td>Se realizó excavación manual para la cimentación del muro cortafuego.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Viernes</td>
<td>04-dic-15</td>
<td>Retiro y carga de escombros, según plan de manejo ambiental, disposición final botadero “Cemex”.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
</tbody>
</table>

Horas realizadas Semana 2: 45 Horas

Observaciones:

<table>
<thead>
<tr>
<th>Día</th>
<th>Fecha</th>
<th>Actividad Descripción</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>07-dic-15</td>
<td>Capacitación a oficial y ayudantes acerca de trabajo seguro, importancia de los elementos de protección personal.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Martes</td>
<td>08-dic-15</td>
<td>Festivo</td>
<td></td>
</tr>
<tr>
<td>Miércoles</td>
<td>09-dic-15</td>
<td>Instalación concreto pobre con espesor de 0.05 m y una dosificación de 70kg/cm².</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Jueves</td>
<td>10-dic-15</td>
<td>Amarre del acero de refuerzo la zarpa y colocación de dicho refuerzo en la caja de cimentación.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
<tr>
<td>Viernes</td>
<td>11-dic-15</td>
<td>Amarre del acero de refuerzo de las columnas con sus respectivos estribos, garantizando el espaciamiento, diámetro y longitud de los diseños. Se indica al oficial los puntos de arranque de las columnas en la zarpa.</td>
<td>7am - 12pm, 1pm - 5pm</td>
</tr>
</tbody>
</table>

Horas realizadas Semana 3: 36 Horas

Observaciones:
<table>
<thead>
<tr>
<th>Día</th>
<th>Fecha</th>
<th>Tareas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>14-dic-15</td>
<td>Solicitud a proveedores mixto cemento y unidades de mampostería tipo bloque estructural en concreto abuzardado, se realiza jornada de aseo y limpieza, se solicita a almacén el traslado de mezcladora.</td>
</tr>
<tr>
<td>Martes</td>
<td>15-dic-15</td>
<td>Se indica dosificación para concreto de 4000 psi, se realiza el proceso de mezclado, posterior a esto se procede a fundida de la cimentación del muro cortafuego.</td>
</tr>
<tr>
<td>Miércoles</td>
<td>16-dic-15</td>
<td>Jornada de aseo y limpieza en el frente de obra, diligenciamiento de formatos de cantidades para preparar el acta de cobro</td>
</tr>
<tr>
<td>Jueves</td>
<td>17-dic-15</td>
<td>Comité en las instalaciones la empresa INCER.</td>
</tr>
<tr>
<td>Viernes</td>
<td>18-dic-15</td>
<td>Reunión en las oficinas de la empresa HYH INGENIERIA Y CONSULTORIA S.A.S.; entrega de cantidades al Ing. Dani Hernández</td>
</tr>
</tbody>
</table>

Horas realizadas Semana 4:

| Horas | 45 |

Observaciones:

<table>
<thead>
<tr>
<th>Día</th>
<th>Fecha</th>
<th>Tareas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>21-dic-15</td>
<td>FESTIVO</td>
</tr>
<tr>
<td>Martes</td>
<td>22-dic-15</td>
<td>Fundida de concreto ciclópeo sobre la cimentación, solicitud madera para formatear vigas y columnas</td>
</tr>
<tr>
<td>Miércoles</td>
<td>23-dic-15</td>
<td>Amarre acero de refuerzo para las vigas.</td>
</tr>
</tbody>
</table>

Horas realizadas Semana 5:

| Horas | 27 |

Observaciones:
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semana 6.</td>
<td>Lunes</td>
<td>Colocación encofrado para columnas y vigas.</td>
<td>7am - 12pm</td>
<td>9 Horas</td>
</tr>
<tr>
<td>28 de Diciembre al 30 de Diciembre</td>
<td>28-dic-15</td>
<td></td>
<td>1pm - 5pm</td>
<td></td>
</tr>
<tr>
<td>Martes</td>
<td>29-dic-15</td>
<td>Mezclado de concreto de acuerdo a diseño de mezcla, fundida de vigas y columnas.</td>
<td>7am - 12pm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horas realizadas Semana 6:</td>
<td>18 Horas</td>
<td>Observaciones:</td>
</tr>
<tr>
<td></td>
<td>Lunes</td>
<td>Reunión Ing. Dani Hernández con el fin de revisar las solicitudes realizadas por el Ing. director de proyectos de La empresa INCER S.A., se atienden las solicitudes y se da respuesta por escrito a la empresa.</td>
<td>7am - 12pm</td>
<td>9 Horas</td>
</tr>
<tr>
<td>05-ene-16</td>
<td></td>
<td></td>
<td>1pm - 5pm</td>
<td></td>
</tr>
<tr>
<td>Martes</td>
<td>06-ene-16</td>
<td>Retirado del encofrado de las vigas y columnas.</td>
<td>7am - 12pm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horas realizadas Semana 7:</td>
<td>45 Horas</td>
<td>Observaciones:</td>
</tr>
<tr>
<td></td>
<td>Miércoles</td>
<td>Colocación unidades de mampostería tipo bloque estructural en concreto abuzado.</td>
<td>7am - 12pm</td>
<td>9 Horas</td>
</tr>
<tr>
<td>07-ene-16</td>
<td></td>
<td></td>
<td>1pm - 5pm</td>
<td></td>
</tr>
<tr>
<td>Jueves</td>
<td>08-ene-16</td>
<td>Colocación unidades de mampostería tipo bloque estructural en concreto abuzado.</td>
<td>7am - 12pm</td>
<td>9 Horas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1pm - 5pm</td>
<td></td>
</tr>
<tr>
<td>Viernes</td>
<td>09-ene-16</td>
<td>Colocación unidades de mampostería tipo bloque estructural en concreto abuzado.</td>
<td>7am - 12pm</td>
<td>9 Horas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1pm - 5pm</td>
<td></td>
</tr>
<tr>
<td>Día</td>
<td>Fecha</td>
<td>Actividad</td>
<td>Horario</td>
<td>Horas</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Lunes</td>
<td>12-ene-16</td>
<td>FESTIVO</td>
<td>7am - 12pm; 1pm - 5pm</td>
<td></td>
</tr>
<tr>
<td>Martes</td>
<td>13-ene-16</td>
<td>Colocación unidades de mampostería tipo bloque estructural en concreto abuzardado.</td>
<td>7am - 12pm; 1pm - 5pm</td>
<td>9</td>
</tr>
<tr>
<td>Miércoles</td>
<td>14-ene-16</td>
<td>Colocación unidades de mampostería tipo bloque estructural en concreto abuzardado.</td>
<td>7am - 12pm; 1pm - 5pm</td>
<td>9</td>
</tr>
<tr>
<td>Jueves</td>
<td>15-ene-16</td>
<td>Limpieza de remanente de mortero de bloques para garantizar ladrillo limpio a la vista.</td>
<td>7am - 12pm; 1pm - 5pm</td>
<td>9</td>
</tr>
<tr>
<td>Viernes</td>
<td>16-ene-16</td>
<td>Registro de cantidades en los formatos facturación corte de obra de la empresa INGER S.A.</td>
<td>7am - 12pm; 1pm - 5pm</td>
<td>9</td>
</tr>
<tr>
<td>Sábado</td>
<td>17-ene-16</td>
<td>Amarre acero de refuerzo de viga aérea.</td>
<td>7am - 10am</td>
<td>3</td>
</tr>
</tbody>
</table>

Horas realizadas Semana 8: 39 Horas

Observaciones:
<table>
<thead>
<tr>
<th>Dia</th>
<th>Fecha</th>
<th>Tarea</th>
<th>Horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunes</td>
<td>19-ene-16</td>
<td>Amarre acero de refuerzo de las vigas aéreas, colocación del encofrado para la posterior fundida de concreto, se solicita al proveedor concreto y mixto.</td>
<td>7am - 12pm 1pm - 5pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 Horas</td>
</tr>
<tr>
<td>Martes</td>
<td>20-ene-16</td>
<td>Mezclado de concreto y fundida de vigas aéreas.</td>
<td>7am - 12pm 1pm - 5pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 Horas</td>
</tr>
<tr>
<td>Miércoles</td>
<td>21-ene-16</td>
<td>Reunión con el Ing. Dani Hernández en las instalaciones de la empresa HYH INGENIERIA Y CONSULTORIA S.A.S., para realizar entrega de las cantidades y apoyar la elaboración del acta.</td>
<td>7am - 12pm 1pm - 5pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 Horas</td>
</tr>
<tr>
<td>Jueves</td>
<td>22-ene-16</td>
<td>Alistamiento de filos y dilataciones, se solicitan cañuelas de 0.80 x 0.40 para finalizar actividades en dicho frente de trabajo.</td>
<td>7am - 12pm 1pm - 5pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 Horas</td>
</tr>
<tr>
<td>Viernes</td>
<td>23-ene-16</td>
<td>Apoyo a la residente de higiene y seguridad industrial, con el fin de evaluar las condiciones laborales de los trabajadores y el riesgo al cual se exponen en la obra, a su vez dotar nuevamente a los trabajadores con guantes de carnaza, tapa oídos, tapabocas y gafas de seguridad, posterior a esto se realiza aseo y limpieza al frente de obra.</td>
<td>7am - 12pm 1pm - 5pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9 Horas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horas realizadas Semana 9: 45 Horas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observaciones:</td>
<td></td>
</tr>
<tr>
<td>Semana 10, 26 de Enero al 30 de Enero</td>
<td>Lunes</td>
<td>26-ene-16</td>
<td>Retiro del encofrado de las vigas aéreas, se realiza la colocación de las cañuelas al costado frontal de muro.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martes</td>
<td>27-ene-16</td>
<td>Colocación de las cañuelas e inicia retiro de material de protección.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miércoles</td>
<td>28-ene-16</td>
<td>Limpieza a las unidades de mampostería, se pinta columnas y vigas de color gris basalto, e inicia la colocación del cerramiento para iniciar la construcción del muro corta fuego N. 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jueves</td>
<td>29-ene-16</td>
<td>Instalación del cerramiento e implementación de señalización de seguridad, traslado del material acopiado al nuevo punto de trabajo, a su vez se realiza el traslado de la carpa.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viernes</td>
<td>30-ene-16</td>
<td>reunión con el Ing. residente del proyecto, el Ing. Dani Hernández, se transcriben todas las cantidades pendientes que corresponden al muro N.3 a los formatos de análisis de precios unitarios exigido por la empresa INCER S.A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horas realizadas Semana 10:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL DE HORAS LABORADAS EN LA PASANTIA =</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1 DESCRIPCIÓN DE LA EMPRESA

H & H INGENIERIA Y CONSULTORIA S.A.S, es una Empresa fundada en el año 2010, especializada en prestar servicios de Ingeniería, Arquitectura, diseño y consultoría, mantenimiento técnico correctivo y preventivo. Brindando innovación, con calidad y seguridad como guía de su filosofía de trabajo.

La preeminencia de H & H INGENIERIA Y CONSULTORIA S.A.S., se basa en su profesionalismo, las referencias como constructores y proveedores, contratos cumplidos sin percances y solides financiera. Con estos factores como sus principales credenciales H & H INGENIERIA Y CONSULTORIA S.A.S., espera poder seguir ampliando su base de clientes.

La filosofía de trabajo de H & H INGENIERIA Y CONSULTORIA S.A.S., tiene como principio básico el cumplimiento integral de los compromisos adquiridos con nuestros clientes.

NUMERO DE IDENTIFICACIÓN TRIBUTARIA

NIT: 900.354.974-2

MISIÓN

Proveer servicios de calidad en todas las ramas de la Ingeniería Civil y Arquitectura, servicios integrales de consultoría, mantenimiento y construcción para inmuebles empresariales, de todo tipo.

VISIÓN

Ser una empresa altamente reconocida y competitiva a nivel nacional por su calidad, idoneidad, experiencia en el ámbito de la ingeniería civil.
En Colombia, la protección contra el fuego normativamente inicio con la implementación de las Normas Colombianas de Diseño y Construcción Sismo Resistente de 1998 (NSR-98), posteriormente fue actualizado con el reglamento colombiano de Norma Sismo Resistente (NSR-10), esta norma como legislación máxima en Colombia define los parámetros técnicos que deben cumplir las construcciones de edificaciones, presenta requisitos mínimos que, bajo su objetivo central, buscan garantizar que se cumpla el fin primordial de salvaguardar las vidas humanas.

El reglamento sismo resistente en el Titulo J (Requisitos de protección contra el fuego) contiene parámetros que se deben garantizar para la protección contra el fuego, dicha norma “no aplica al diseño y construcción de estructuras especiales tales como puentes, torres de transmisión y equipos industriales”.

Según el ingeniero Rene Bayón en su libro Los Tabiques en el Edificio, define los muros cortafuego como “muros destinados para evitar la expansión del fuego durante un tiempo”, el libro Centrales Térmicas de Ciclo Combinado Teoría y Proyecto de la empresa ENDESA, indica la función de los muros corta fuego, consiste en “Proteger los elementos adyacentes en caso de incendio del transformador”. En tal sentido, independiente del tipo de construcción, los muros cortafuego cumplen la misma función, evitar la propagación del incendio con el fin de proteger elementos adyacentes o vidas humanas.

Es de vital importancia la construcción de muros cortafuego, pese a esto en Colombia no existen parámetros de diseño de muros cortafuego, por tal motivo se debe diseñar con normas americanas, las cuales establecen condiciones diferentes y materiales con especificaciones técnicas distintas, por lo tanto deben aplicarse en acompañamiento del reglamento colombiano para garantizar la protección del fuego en las edificaciones. Dado lo anterior en este trabajo se evalúa el comportamiento, y la resistencia de un muro corta fuego construido con unidades de mampostería estructural en concreto ante la exposición al fuego.

6 Norma Sismo Resistente NSR 10, TITULO A, EXCEPCIONES, LITERAL A.1.2.4.1
6 DISEÑO METODOLÓGICO

La metodología de este trabajo se basa en un estudio de tipo cuantitativo y se aborda desde la investigación evaluativa como el enfoque investigativo. El enfoque evaluativo se da en cuanto se analizan los datos obtenidos, con el fin de determinar la variación de la temperatura en las caras del muro y la resistencia del mismo ante la exposición al fuego, empleando ensayos de laboratorio con el fin de evaluar la resistencia y estabilidad de muro cortafuego.

6.1 POBLACIÓN

La población evaluada en este trabajo son los muros de protección contra el fuego en especial los muros cortafuego.

6.2 MUESTRA

Los muros cortafuego construidos con unidades de mampostería en bloque estructural en concreto con cara abuzardada tipo Split son la muestra representativa de la población.

6.3 VARIABLES

En el desarrollo del proyecto existieron variables que fueron objeto de estudio y análisis, a continuación se relaciona cada una de ellas: propiedades de las unidades de mampostería (humedad, absorción, densidad, resistencia, peso) y la temperatura, variable que influye en el comportamiento de las unidades de mampostería.
7 FASES DE DESARROLLO

7.1 ETAPA DE RECOLECCIÓN BIBLIOGRÁFICA

En esta etapa se realizó la búsqueda de normas técnicas que reglamentaran la protección contra incendios y parámetros para el diseño y construcción de muros cortafuego.

7.2 ETAPA DE ENSAYOS DE LABORATORIO

7.2.1 Ensayo de Humedad. Se determina el peso de la unidad de mampostería en estado natural para ello se lleva al horno por 24 horas a una temperatura de 110 °C, es retirado del horno y posteriormente se determina el peso del bloque.

Imagen 2. Unidades de mampostería a temperatura ambiente
Imagen 3. Secado al horno de las unidades de mampostería
7.2.2 Determinación de Volumen. En este ensayo se llevó la unidad de mampostería al estado de saturación para lo cual fue dejado en inmersión durante 24 horas, seguido esto se retiró la unidad de mampostería del tanque y se secó sobre una rejilla, posteriormente le fue retirada el agua superficial con un trapo húmedo obteniendo el estado SSS (saturado superficialmente seco), consecutivamente se sumergió la unidad de mampostería en el tanque y se determinó el volumen de agua desplazado, el cual representa el volumen de sólidos de la unidad.
7.2.3 **Ensayo de Absorción.** Para el desarrollo de este ensayo las unidades de mampostería estuvieron en el horno durante 24 horas a una temperatura de 110°C, al ser retiradas del horno se determinó su peso y posterior a esto se llevaron a inmersión durante 24 horas; se retiraron del tanque de agua y se secaron superficialmente con un paño húmedo con el fin de obtener el peso de los bloques en estado (SSS).

Imagen 6. Masa del elemento en estado seco

Imagen 7. Inmersión del elemento en agua

7.2.4 **Ensayo Resistencia a la Compresión.** En este ensayo se tomaron (5) cinco unidades de mampostería estructural en concreto, cortadas a una longitud promedio de 0.21 m, con el fin de aplicar la carga de forma uniforme ya que la maquina es de baja capacidad; posterior a esto se determinaron la dimensiones del bloque con el objetivo de calcular el área neta (área de la superficie bruta menos el área de la superficie de las celdas), finalmente se colocaron en la máquina de compresión con el objetivo de conocer la resistencia a la compresión de dichas unidades.
Figura 7. Unidad de mampostería a fallar en máquina de compresión

Imagen 8. Resistencia a compresión unidades de mampostería estructural en concreto
7.3 DISEÑO Y CONSTRUCCIÓN MURO CORTAFUEGO PROTOTIPO

Con el fin de evaluar el comportamiento de las unidades de mampostería (bloque estructural en concreto tipo Split) se diseñó y construyó un muro con ocho bloques, con las mismas condiciones del muro cortafuego construido en la subestación salitre, Bogotá; ver vista de planta del muro en la figura 8 y dimensiones en la figura 9.

Figura 8. Vista de planta muro cortafuego prototipo

Figura 9. Dimensiones de un elemento

Figura 10. Vista Frontal del muro
El mortero de pega empleado en la construcción del muro fue un mortero con una dosificación 2:1 (por cada dos unidades de peso de cemento una unidad de arena de peña) mortero que otorga una resistencia a la compresión de 23 MPa.

Imagen 9. Construcción muro prototipo, mortero de pega

Con el fin de evaluar la disipación de la temperatura, en las unidades de mampostería estructural en concreto se ubicaron 4 termocuplas en cada una de las caras del bloque, como se observa en la Figura 18.

Imagen 10. Nivelación el muro cortafuego prototipo
7.4 ENSAYO DE RESISTENCIA AL FUEGO

En este ensayo se busca incrementar la temperatura en una cara del muro con el fin de evaluar la disipación térmica en cada una de las paredes del bloque, y el comportamiento físico mecánico del mismo.

En el desarrollo práctico de este ensayo se emplearon varios métodos que permitieran el incremento en la temperatura, el primer método consistió en tomar dos unidades de mampostería, instalar las termocuplas en las paredes del bloque y exponer una cara del muro al horno a su máxima temperatura, la temperatura máxima alcanzada fue de aproximadamente 250 °C, parámetro bajo para evaluar el comportamiento del muro ante el fuego.

Como segundo método se construyó el muro prototipo descrito anteriormente en las fases de desarrollo (Diseño y construcción muro cortafuego prototipo), se instalaron las termocuplas y los dataloger, posteriormente se procedió a iniciar la etapa de ignición del muro empleando como agente combustible madera reciclada de obras de construcción, el ensayo realizado con este combustible elevo la temperatura en la cara expuesta al fuego aproximadamente 140°C, la energía calorífica es considerada baja y no permite simular las condiciones extremas de un incendio; dado lo anterior se remplazó la madera por carbón mineral y se procedió a realizar la ignición de dicho combustible, empleando madera inicialmente para incrementar la temperatura del carbón mineral y poder generar la ignición de dicho material.
Este material combustible incrementó la temperatura en la cara expuesta del muro al fuego a 240°C. Según Lavoisier (Memoria de la Academia de las Ciencias, 1782, página 476) el fuego más activo se obtiene soplando aire puro o gas oxígeno, basados en este principio se procedió a realizar el ensayo implementando la inyección de aire mediante una máquina sopladora y se obtuvo como temperatura máxima en la cara expuesta del muro al fuego una temperatura de 745°C.

Imagen 12. Fuego originado con madera

Imagen 13. Fuego originado con carbón mineral, empleando inyección de aire

Imagen 14. Finalización ensayo resistencia al fuego
8. RESULTADOS

Posterior al desarrollo de los ensayos de laboratorio y producto de procesamiento de los datos obtenidos en las diferentes prácticas, se procede al procesamiento de los resultados.

8.1 HUMEDAD

La humedad natural de las unidades de mampostería se determinó empleando los siguientes cálculos:

\[Peso\ de\ agua = \frac{Peso\ del\ bloque\ en\ estado\ natural}{peso\ del\ bloque\ en\ estado\ seco} \]

\[Humedad\ (w\%) = \frac{peso\ del\ agua}{peso\ del\ bloque\ en\ estado\ seco} \]

Los resultados de la humedad determinada a 5 muestras de bloque en concreto tipo estructural, empleando las ecuaciones descritas anteriormente con su respectivo cálculo se encuentran en la tabla 2.

Tabla 2. Humedad natural bloque estructural en concreto

<table>
<thead>
<tr>
<th>Muestra No</th>
<th>Peso estado natural (gr)</th>
<th>Peso estado Seco (gr)</th>
<th>Peso del agua (gr)</th>
<th>Humedad w%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16735</td>
<td>16651.4</td>
<td>83.6</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>17229.8</td>
<td>17146.2</td>
<td>83.6</td>
<td>0.49</td>
</tr>
<tr>
<td>3</td>
<td>16956</td>
<td>16823.1</td>
<td>132.9</td>
<td>0.79</td>
</tr>
<tr>
<td>4</td>
<td>17377.5</td>
<td>17279.2</td>
<td>98.3</td>
<td>0.57</td>
</tr>
<tr>
<td>5</td>
<td>16717.1</td>
<td>16576.1</td>
<td>141</td>
<td>0.85</td>
</tr>
</tbody>
</table>
8.2 DENSIDAD Y VOLUMEN

La densidad es una propiedad que se encuentra expresada en función de la relación entre la masa/volumen, dada la geometría de las unidades de mampostería, no es posible determinar con exactitud el volumen de estas, razón por la cual el volumen se calculó al sumergirse la unidad de mampostería en un tanque de agua y midiendo el volumen de agua, que representa el volumen del elemento en estudio.

Tabla 3. Volumen y densidad en bloque estructural en concreto

<table>
<thead>
<tr>
<th>Muestra No</th>
<th>Peso estado Seco (gr)</th>
<th>Peso sumergido</th>
<th>Volumen (cm³)</th>
<th>Densidad (gr/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16651.4</td>
<td>9626.1</td>
<td>7025.3</td>
<td>2.37</td>
</tr>
<tr>
<td>2</td>
<td>17146.2</td>
<td>9891.8</td>
<td>7254.4</td>
<td>2.36</td>
</tr>
<tr>
<td>3</td>
<td>16823.1</td>
<td>9667.6</td>
<td>7155.5</td>
<td>2.35</td>
</tr>
<tr>
<td>4</td>
<td>17279.2</td>
<td>9974.7</td>
<td>7304.5</td>
<td>2.37</td>
</tr>
<tr>
<td>5</td>
<td>16576.1</td>
<td>9582.4</td>
<td>6993.7</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Tabla 4. Medida de tendencia central aplicada a la determinación de la densidad del bloque estructural en concreto

<table>
<thead>
<tr>
<th>Media aritmética</th>
<th>2.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediana</td>
<td>2.37</td>
</tr>
<tr>
<td>Moda</td>
<td>2.37</td>
</tr>
</tbody>
</table>
8.3 ABSORCIÓN

El cálculo de la absorción en las unidades de mampostería tipo bloque estructural en concreto se realizó empleando la norma NTC 4026, la ecuación se indica a continuación:

\[
\text{Absorción (\%)} = \left(\frac{\text{peso en estado SSS} - \text{peso en estado seco}}{\text{peso en estado seco}} \right) \times 100
\]

<table>
<thead>
<tr>
<th>Muestra No</th>
<th>Peso estado Seco (gr)</th>
<th>Peso en estado SSS</th>
<th>% Absorción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16651.4</td>
<td>17312</td>
<td>3.97</td>
</tr>
<tr>
<td>2</td>
<td>17146.2</td>
<td>17874.8</td>
<td>4.25</td>
</tr>
<tr>
<td>3</td>
<td>16823.1</td>
<td>17503.8</td>
<td>4.05</td>
</tr>
<tr>
<td>4</td>
<td>17279.2</td>
<td>17950.4</td>
<td>3.88</td>
</tr>
<tr>
<td>5</td>
<td>16576.1</td>
<td>17370.4</td>
<td>4.79</td>
</tr>
</tbody>
</table>

El porcentaje de absorción calculado empleando como medida de tendencia central la media aritmética es: 4.19\%.
8.4 RESISTENCIA A LA COMPRESIÓN

Las unidades de mampostería estructural en concreto tipo Split se sometieron a ensayo en la máquina de compresión con el fin de evaluar la resistencia a compresión, la tabla 6 indica las dimensiones internas de los segmentos de bloque sometidos a falla.

Tabla 6. Resistencia a compresión de unidades de mampostería en concreto

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Longitud Bloque (mm)</th>
<th>Ancho Bloque (mm)</th>
<th>Longitud Celda (mm)</th>
<th>Ancho Celda (mm)</th>
<th>Área Neta (M2)</th>
<th>Carga (KN)</th>
<th>Resistencia a compresión (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210.83</td>
<td>190.21</td>
<td>142.33</td>
<td>113.43</td>
<td>0.0240</td>
<td>590</td>
<td>24.63</td>
</tr>
<tr>
<td>2</td>
<td>211.26</td>
<td>190.12</td>
<td>143.83</td>
<td>113.64</td>
<td>0.0238</td>
<td>561</td>
<td>23.54</td>
</tr>
<tr>
<td>3</td>
<td>211.09</td>
<td>190.31</td>
<td>142.45</td>
<td>113.52</td>
<td>0.0240</td>
<td>582</td>
<td>24.26</td>
</tr>
<tr>
<td>4</td>
<td>210.95</td>
<td>190.15</td>
<td>142.61</td>
<td>113.38</td>
<td>0.0239</td>
<td>597</td>
<td>24.93</td>
</tr>
<tr>
<td>5</td>
<td>211.17</td>
<td>190.07</td>
<td>142.52</td>
<td>113.59</td>
<td>0.0239</td>
<td>580</td>
<td>24.23</td>
</tr>
</tbody>
</table>

Una vez finalizado el ensayo de resistencia al fuego se retiró el agente combustible (carbón mineral), y se evaluó el estado de las unidades de mampostería, estas presentaban grietas y fracturas en diferentes sentidos, cambio de color y desmoronamiento, posterior a esto se retiró una a una las unidades del muro, el mortero de pega presentaba desintegración física y múltiples fisuras, la adherencia entre las unidades de mampostería y el mortero de pega era mínima lo cual indica que dicho mortero no cumplía su funcionalidad.
Imagen 15. Fracturas en las unidades de mampostería
El incremento de temperatura ocasionó la falla en las unidades de mampostería, razón por lo cual los elementos posteriores al ensayo no cuentan con parámetros de resistencia.

8.5 RESISTENCIA AL FUEGO

Las termocúpulas instaladas en cada una de las paredes del muro prototipo, y conectadas al dataloger, registraron el comportamiento térmico almacenando datos cada dos (2) minutos, ver anexo A.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>T1 (°C)</th>
<th>T2 (°C)</th>
<th>T3 (°C)</th>
<th>T3 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesor (cm)</td>
<td>0</td>
<td>3.65</td>
<td>14.93</td>
<td>19.03</td>
</tr>
</tbody>
</table>

Figura 11. Localización de las termocúpulas en la unidad de mampostería

La termocupla T1 registra las variaciones de temperatura de la fuente generadora de calor, las fluctuaciones en la temperatura son ocasionadas por: las condiciones ambientales y por las pausas en agente inyector de aire, el cual debía retirarse
dado que las altas temperaturas se concentraban en el tubo ocasionado en el acero la llegada punto de fusión.

Grafico 1. Conducción de calor en las paredes del muro prototipo
9. ANÁLISIS DE RESULTADOS

9.1 CONTENIDO DE HUMEDAD

La Universidad Distrital Francisco José de Caldas en su página de internet describe las características de Bogotá, las cuales indican que la Humedad relativa anual promedio es: 72%, esta humedad es clasificada por la NTC 4026 como “seca” por encontrarse en el intervalo de humedad relativa anual de 50% al 75%.

Evaluando la condición más crítica de contracción lineal por secado (0.065) se obtiene del cuadro 6 un valor de 25 el cual hace referencia al contenido de humedad promedio máximo como un porcentaje de valor de la absorción, las prácticas de laboratorio se realizaron empleando (5) cinco unidades de mampostería como muestra representativa; para el análisis de la humedad y absorción se emplean el promedio de las (3) tres primeras unidades de mampostería de la tabla 7.

Cuadro 6. Requisitos para el contenido de humedad de unidades de mampostería en concreto

<table>
<thead>
<tr>
<th>Contracción lineal por secado (Cis), %</th>
<th>Contenido de humedad (H), promedio de 3 unidades, máximo, como un % del valor total de la absorción de agua (Aa)</th>
<th>Condiciones de humedad de la obra o del sitio de uso de las unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>De menos de 0.03</td>
<td>45</td>
<td>Húmeda</td>
</tr>
<tr>
<td>De 0.03 hasta menos de 0.045</td>
<td>40</td>
<td>Intermedia</td>
</tr>
<tr>
<td>De 0.045 hasta 0.065 (como máximo)</td>
<td>35</td>
<td>Seca</td>
</tr>
</tbody>
</table>

| Fuente | NTC 4026 |

% promedio de absorción = 4.09%

% promedio de humedad = 0.59%

Humedad expresada como porcentaje de la absorción = 14.51%

14.51 > 25 cumple las especificaciones de la norma técnica colombiana
El Instituto Mexicano de Cemento y del Concreto en su publicación realizada acerca de la durabilidad del concreto de la autoría de Kyösti Tuutti y Lars-Olaf Nilsson, resalta la importancia de la humedad ya que esta “juega un papel significativo en la mayoría de las reacciones químicas en el concreto y en partes de los procesos físicos y químicos en varios fenómenos de deterioro”.7

La humedad puede involucrar:

• Un material con propiedades diferentes
• Un soluto, para reactivos y iones
• Un medio de transporte
• Un medio de expansión
• Un líquido con presión de agua en los poros (negativo)

Lo anterior indica que las unidades de mampostería estructural en concreto no presentarán procesos de deterioro en principio a causa de la humedad.

9.2 DENSIDAD

La densidad de las unidades de mampostería estructural en concreto tipo Split determinada por ensayos de laboratorio y empleando medidas de tendencia central es de $2370 \, \frac{kg}{m^3}$. la tabla x lo clasifica como peso normal, lo anterior se debe a que el peso de los agregados es una variable de la densidad; la densidad obtenida es considera alta, este parámetro que influye en la resistencia a la compresión, absorción, permeabilidad y durabilidad ante condiciones normales, lo cual indica que las unidades de mampostería estructural en concreto tendrán un excelente comportamiento.

Cuadro 7. Densidad de los bloques de concreto

<table>
<thead>
<tr>
<th>CLASE</th>
<th>Peso Mediano</th>
<th>Peso Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad, Kg/m3</td>
<td>1680 hasta menores de 1900</td>
<td>1900 o más</td>
</tr>
</tbody>
</table>

9.3 RESISTENCIA A LA COMPRESIÓN Y RESISTENCIA AL FUEGO

Las unidades de mampostería estructural antes de someterse al ensayo de resistencia al fuego en promedio tenían una resistencia a la compresión de 24.3 MPa. Posterior al desarrollo del ensayo de resistencia al fuego los bloques en concreto presentan carbonización a causa del incendio y múltiples fracturas longitudinales a lo largo de su estructura.

Imagen 16. Fractura en las unidades de mampostería estructura en concreto a causa del incremento de temperatura originado por el fuego.

Trascurrida aproximadamente una hora desde el inicio del ensayo el mortero de pega a pesar que contaba con una dosificación (2:1) presento múltiples fisuras, a lo largo de la superficie de contacto con las unidades de mampostería, posterior a esto el mortero expuesto a las fuertes temperaturas presento desintegración física lo cual permitía el paso de calor y la salida de humo por los orificios generados por la desintegración de dicho mortero de pega.
La Plataforma Tecnológica Española del Hormigón en su publicación Seguridad Frente al Fuego Utilizando Hormigón indica que “el hormigón ofrece una protección muy eficaz frente al fuego. Ello se debe a que sus componentes minerales tienen una gran capacidad calorífica y su estructura porosa se traduce en una baja conductividad térmica. Es esta baja velocidad de transmisión del calor la que permite al hormigón actuar como una protección eficaz no sólo entre espacios adyacentes, sino también para protegerse a sí mismo de los daños provocados por el fuego”.

Las unidades de mampostería estructural tipo Split cuentan con buenas propiedades ante exposición al fuego ya que es un material incombustible de baja conductividad térmica de calor como se evidencia en el (gráfico 1), el cual gracias a su composición fisca detienen la propagación del incendio, y no desprende ningún tipo de humo, gases o vapores tóxicos ante la exposición al fuego.

La estabilidad de la estructural se puede ver afectada a causa de la capacidad de soporte de los bloques en concreto, las múltiples fracturas que se originan en la estructura ocasionadas por el fuerte incremento en la temperatura, produce la pérdida de la resistencia, posteriormente la falla en las unidades de mampostería
en concreto, y el posible colapso del muro o la edificación; en los elementos estructurales se requerirá que el elemento en ensayo no llegue a fallar de tal manera que no pueda seguir cumpliendo la función de soporte de carga para la cual fue diseñado.

Es de resaltar que las unidades de mampostería estructural en concreto cumplen con estándares de calidad y normas técnicas colombianas (NTC 4026- unidades bloques y ladrillos de concreto para mampostería estructural – ASTM C90), a su vez con los requisitos mínimos estipulados en la norma sismo resistente 2010 (NSR-10).
10 RECOMENDACIONES

- Realizar ensayos con muros en concreto macizo, empleando la variación de espesores de los muros para evaluar el comportamiento ante incrementos de temperatura.

- Efectuar ensayos del laboratorio a unidades de mampostería en arcilla con el fin de evaluar la resistencia al fuego y obtener parámetros que permitan comparar con los ensayos realizados a unidades de mampostería en concreto.

- Realizar ensayos y diseños de mortero con propiedades que permitan la resistencia a fuertes incrementos de temperatura originados por el fuego.

- Evaluar el comportamiento de unidades de mampostería estructural en concreto aplicado un tratamiento ignífugo.
CONCLUSIONES

- Las unidades de mampostería estructural en concreto son elementos incombustibles de baja conductividad térmica de calor lo cual permite evitar la propagación del fuego.

- En Colombia la normativa para el diseño y construcción de muros cortafuego es poca y limitada, lo cual implica que los diseñadores empleen parámetros de otros países, los cuales cuentan con materiales de composición diferente a los comercialmente vendidos en Colombia.

- Las unidades de mampostería estructural en concreto no son aptas para la construcción de muros cortafuego, esto a causa de la perdida de resistencia ante el fuego o incrementos fuertes de temperatura, lo anterior ocurre por la pérdida funcional de los elementos, en tal sentido se requiere que las unidades de mampostería no fallen, con el fin mantener la capacidad de soporte y garantizar la estabilidad del muro, evitando el posible colapso de la estructura y la pérdida de vidas humanas.

- El mortero de pega es un material indispensable, que se debe contemplar en el diseño de muros cortafuego. Dicho material no cuenta con parámetros de resistencia al fuego a pesar de ser el principal material en fallar ante la ocurrencia de un incendio lo cual origina inestabilidad en la estructura del muro.
BIBLIOGRAFÍA

- BRISON, C. Elementos o principios físico-químicos destinados para servir de continuación a los principios de la física, tomo 4. Imprenta de la administración de real arbitrio de la beneficencia, 1804.

• CONSTRUMATICA. Muros Cortafuego (Artículo). Disponible en Internet:
http://www.construmatica.com/construpedia/Muro_Cortafuegos

• OMEGA, Prefabricados. Bloque texturizado o abuzardado (Ficha Técnica). Pereira. Disponible en Internet:

• CÁMARA COLOMBIANA DE LA CONSTRUCCIÓN CAMACOL, Estudios económicos. Protección contra incendios y actividad edificadora. Bogotá D.C. 2013. Disponible en Internet:
http://camacol.co/sites/default/files/secciones_internas/Informe%20T%C3%A9cnico%20Diciembre%202013%20-%20No%20%2055_0.pdf

• MINISTERIO DE MINAS Y ENERGIA. Reglamento técnico de instalaciones eléctricas RETIE (Actualización). Bogotá D.C. 2007. Disponible en Internet:

• SUPERINTENDENCIA DE ELECTRICIDAD Y COMBUSTIBLES. Pliego técnico normativo, Protección contra incendios. Chile. Disponible en Internet:
http://www.sec.cl/sitioweb/consulta_publica/Pliego_Tecnico_Normativo-RPTD08_Proteccion_contra_incendios.pdf

• MINISTERIO DE VIVIENDA Y URBANISMO CHILE. Ordenanza general de urbanismo y construcción. Chile. 2015. Disponible en Internet:
http://www.kreando.cl/oguc_titulo_4_capitulo_3.htm

https://books.google.com.co/books?id=mwohfYq9zC8C&pg=PA44&lpg=PA44&dq=NTC+1480&source=bl&ots=TspgchzAMY&sig=AJpQfY8jKzLMc5ErUbUjCbnTwc&hl=es-419&sa=X&ved=0ahUKEwJgpyM3ObKAhUEWh4KHUOObZE4FBD0AQgZMAA#v=onepage&q=NTC%201480&f=false

• INSTITUTO NACIONAL DE NORMALIZACION. Prevención de incendios en edificios. Determinación de cargas combustibles. Chile. 1999. Disponible en Internet:
ANEXO A. Variación de temperatura en función del tiempo en cada una de las paredes del muro

<table>
<thead>
<tr>
<th>tiempo (min)</th>
<th>T1 (°C)</th>
<th>T2 (°C)</th>
<th>T3 (°C)</th>
<th>T4 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>266.2</td>
<td>187.1</td>
<td>57.1</td>
<td>37.3</td>
</tr>
<tr>
<td>4</td>
<td>272.2</td>
<td>194.3</td>
<td>58.9</td>
<td>38.3</td>
</tr>
<tr>
<td>6</td>
<td>275.2</td>
<td>203</td>
<td>60.6</td>
<td>39.3</td>
</tr>
<tr>
<td>8</td>
<td>338.8</td>
<td>210.2</td>
<td>62.6</td>
<td>40.3</td>
</tr>
<tr>
<td>10</td>
<td>355.6</td>
<td>218.4</td>
<td>65.2</td>
<td>41.4</td>
</tr>
<tr>
<td>12</td>
<td>418.3</td>
<td>227.6</td>
<td>68</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>421.2</td>
<td>237.8</td>
<td>70.2</td>
<td>43.5</td>
</tr>
<tr>
<td>16</td>
<td>430</td>
<td>245.9</td>
<td>71.8</td>
<td>44.6</td>
</tr>
<tr>
<td>18</td>
<td>460.1</td>
<td>253</td>
<td>73.7</td>
<td>45.9</td>
</tr>
<tr>
<td>20</td>
<td>456.2</td>
<td>258.1</td>
<td>75.3</td>
<td>46.8</td>
</tr>
<tr>
<td>22</td>
<td>448.5</td>
<td>264.2</td>
<td>76.7</td>
<td>48.7</td>
</tr>
<tr>
<td>24</td>
<td>441.7</td>
<td>268.2</td>
<td>77.8</td>
<td>50.5</td>
</tr>
<tr>
<td>26</td>
<td>436.8</td>
<td>271.2</td>
<td>78.8</td>
<td>49.3</td>
</tr>
<tr>
<td>28</td>
<td>432.9</td>
<td>274.2</td>
<td>79.6</td>
<td>50.5</td>
</tr>
<tr>
<td>30</td>
<td>429</td>
<td>276.2</td>
<td>80</td>
<td>51.1</td>
</tr>
<tr>
<td>32</td>
<td>436.8</td>
<td>278.2</td>
<td>80.6</td>
<td>53</td>
</tr>
<tr>
<td>34</td>
<td>436.8</td>
<td>282.3</td>
<td>81.6</td>
<td>53.6</td>
</tr>
<tr>
<td>36</td>
<td>431.9</td>
<td>285.3</td>
<td>83.4</td>
<td>55.1</td>
</tr>
<tr>
<td>38</td>
<td>426.1</td>
<td>287.3</td>
<td>85.6</td>
<td>56.5</td>
</tr>
<tr>
<td>40</td>
<td>420.2</td>
<td>288.3</td>
<td>87.6</td>
<td>58.5</td>
</tr>
<tr>
<td>42</td>
<td>418.3</td>
<td>289.3</td>
<td>89.3</td>
<td>59.5</td>
</tr>
<tr>
<td>44</td>
<td>464</td>
<td>290.3</td>
<td>90.7</td>
<td>61.2</td>
</tr>
<tr>
<td>46</td>
<td>483.4</td>
<td>293.3</td>
<td>92.3</td>
<td>61.4</td>
</tr>
<tr>
<td>48</td>
<td>479.5</td>
<td>298.2</td>
<td>94</td>
<td>63</td>
</tr>
<tr>
<td>50</td>
<td>473.7</td>
<td>302.2</td>
<td>95.8</td>
<td>64.4</td>
</tr>
<tr>
<td>52</td>
<td>466.9</td>
<td>306.2</td>
<td>97.5</td>
<td>64.9</td>
</tr>
<tr>
<td>54</td>
<td>460.1</td>
<td>307.2</td>
<td>99.3</td>
<td>65.7</td>
</tr>
<tr>
<td>56</td>
<td>454.3</td>
<td>308.2</td>
<td>100.8</td>
<td>66.3</td>
</tr>
<tr>
<td>58</td>
<td>448.5</td>
<td>307.2</td>
<td>102.3</td>
<td>68.1</td>
</tr>
<tr>
<td>60</td>
<td>461.1</td>
<td>307.2</td>
<td>103.6</td>
<td>67.9</td>
</tr>
<tr>
<td>62</td>
<td>464</td>
<td>306.2</td>
<td>104.9</td>
<td>68.9</td>
</tr>
<tr>
<td>64</td>
<td>475.6</td>
<td>306.2</td>
<td>106.6</td>
<td>70.8</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>68</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>481.5</td>
<td>308.2</td>
<td>108.4</td>
<td>71.5</td>
</tr>
<tr>
<td>68</td>
<td>658</td>
<td>310.2</td>
<td>110</td>
<td>71.3</td>
</tr>
<tr>
<td>70</td>
<td>672.7</td>
<td>311.2</td>
<td>111.7</td>
<td>72.9</td>
</tr>
<tr>
<td>72</td>
<td>697.7</td>
<td>312.1</td>
<td>112.7</td>
<td>73.3</td>
</tr>
<tr>
<td>74</td>
<td>684.9</td>
<td>313.1</td>
<td>113.9</td>
<td>74</td>
</tr>
<tr>
<td>76</td>
<td>675.6</td>
<td>316.1</td>
<td>116</td>
<td>76.3</td>
</tr>
<tr>
<td>78</td>
<td>679.5</td>
<td>320.1</td>
<td>118</td>
<td>77.5</td>
</tr>
<tr>
<td>80</td>
<td>657</td>
<td>322.1</td>
<td>119.4</td>
<td>77.8</td>
</tr>
<tr>
<td>82</td>
<td>650.2</td>
<td>322.1</td>
<td>120.7</td>
<td>79.1</td>
</tr>
<tr>
<td>84</td>
<td>631.7</td>
<td>322.1</td>
<td>121.7</td>
<td>78.4</td>
</tr>
<tr>
<td>86</td>
<td>609.3</td>
<td>320.1</td>
<td>122.4</td>
<td>77.3</td>
</tr>
<tr>
<td>88</td>
<td>590.9</td>
<td>317.1</td>
<td>122.8</td>
<td>78.3</td>
</tr>
<tr>
<td>90</td>
<td>573.4</td>
<td>314.1</td>
<td>123.3</td>
<td>78.4</td>
</tr>
<tr>
<td>92</td>
<td>558.9</td>
<td>311.2</td>
<td>123.7</td>
<td>77.7</td>
</tr>
<tr>
<td>94</td>
<td>557</td>
<td>308.2</td>
<td>124.3</td>
<td>78</td>
</tr>
<tr>
<td>96</td>
<td>551.2</td>
<td>304.2</td>
<td>124.6</td>
<td>79.2</td>
</tr>
<tr>
<td>98</td>
<td>541.5</td>
<td>300.2</td>
<td>124.8</td>
<td>78.7</td>
</tr>
<tr>
<td>100</td>
<td>530.8</td>
<td>296.2</td>
<td>124.9</td>
<td>78.3</td>
</tr>
<tr>
<td>102</td>
<td>519.2</td>
<td>293.3</td>
<td>125.3</td>
<td>79.6</td>
</tr>
<tr>
<td>104</td>
<td>507.6</td>
<td>289.3</td>
<td>125.4</td>
<td>79.4</td>
</tr>
<tr>
<td>106</td>
<td>497</td>
<td>286.3</td>
<td>125.7</td>
<td>76.7</td>
</tr>
<tr>
<td>108</td>
<td>486.3</td>
<td>282.3</td>
<td>125.9</td>
<td>78.4</td>
</tr>
<tr>
<td>110</td>
<td>486.3</td>
<td>279.2</td>
<td>125.7</td>
<td>81.5</td>
</tr>
<tr>
<td>112</td>
<td>491.2</td>
<td>276.2</td>
<td>126.1</td>
<td>81.5</td>
</tr>
<tr>
<td>114</td>
<td>492.1</td>
<td>273.2</td>
<td>126.2</td>
<td>81.4</td>
</tr>
<tr>
<td>116</td>
<td>490.2</td>
<td>270.2</td>
<td>126.5</td>
<td>81.3</td>
</tr>
<tr>
<td>118</td>
<td>484.4</td>
<td>268.2</td>
<td>126.5</td>
<td>80.7</td>
</tr>
<tr>
<td>120</td>
<td>476.6</td>
<td>265.2</td>
<td>126.8</td>
<td>80.2</td>
</tr>
<tr>
<td>122</td>
<td>469.8</td>
<td>263.1</td>
<td>127</td>
<td>80.3</td>
</tr>
<tr>
<td>124</td>
<td>478.5</td>
<td>261.1</td>
<td>127.3</td>
<td>81.4</td>
</tr>
<tr>
<td>126</td>
<td>558.9</td>
<td>259.1</td>
<td>127.9</td>
<td>81.9</td>
</tr>
<tr>
<td>128</td>
<td>526</td>
<td>258.1</td>
<td>128</td>
<td>83.3</td>
</tr>
<tr>
<td>130</td>
<td>509.5</td>
<td>256.1</td>
<td>128.2</td>
<td>83.2</td>
</tr>
<tr>
<td>132</td>
<td>501.8</td>
<td>256.1</td>
<td>128.6</td>
<td>82.9</td>
</tr>
<tr>
<td>134</td>
<td>492.1</td>
<td>255.1</td>
<td>128.8</td>
<td>84</td>
</tr>
<tr>
<td>136</td>
<td>499.9</td>
<td>254.1</td>
<td>129.1</td>
<td>83.8</td>
</tr>
<tr>
<td>138</td>
<td>560.8</td>
<td>253</td>
<td>129.3</td>
<td>84.4</td>
</tr>
<tr>
<td>140</td>
<td>569.6</td>
<td>252</td>
<td>130</td>
<td>85.4</td>
</tr>
<tr>
<td>142</td>
<td>559.9</td>
<td>251</td>
<td>130.6</td>
<td>85.6</td>
</tr>
<tr>
<td>144</td>
<td>547.3</td>
<td>250</td>
<td>131.2</td>
<td>85.8</td>
</tr>
<tr>
<td>146</td>
<td>534.7</td>
<td>249</td>
<td>131.7</td>
<td>85.6</td>
</tr>
<tr>
<td>148</td>
<td>522.1</td>
<td>249</td>
<td>132.1</td>
<td>86.5</td>
</tr>
<tr>
<td>150</td>
<td>509.5</td>
<td>247</td>
<td>132.4</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td>152</td>
<td>154</td>
<td>156</td>
<td>158</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>240</td>
<td>242</td>
<td>244</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>604.5</td>
<td>327.6</td>
<td>148.5</td>
<td>90.8</td>
</tr>
<tr>
<td></td>
<td>557</td>
<td>340.1</td>
<td>156.8</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>556</td>
<td>339.8</td>
<td>163.6</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td>513.4</td>
<td>323</td>
<td>163.9</td>
<td>96.7</td>
</tr>
</tbody>
</table>