EVALUACIÓN DE CALIDAD EN MODELOS DIGITALES DE ELEVACION
GENERADOS A PARTIR DE METODOS DE CAPTURA DIRECTA E INDIRECTA; CASO
DE ESTUDIO, LOTE B PERTENECIENTE A LA SEDE EL VIVERO DE LA
UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

GERMÁN ALBERTO CEPEDA BARRERA
VICTOR ALFONSO CASTAÑEDA OSORIO

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS
FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES
INGENIERIA TOPOGRAFICA
BOGOTA D.C
2016
EVALUACIÓN DE CALIDAD EN MODELOS DIGITALES DE ELEVACIÓN GENERADOS A PARTIR DE MÉTODOS DE CAPTURA DIRECTA E INDIRECTA; CASO DE ESTUDIO, LOTE B PERTENECIENTE A LA SEDE EL VIVERO DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

GERMÁN ALBERTO CEPEDA BARRERA
Cód.: 20122032252
VICTOR ALFONSO CASTAÑEDA OSORIO
Cód.: 20082031012
germandpda_b@hotmail.com; victor0731@gmail.com

Director de proyecto:
Msc. William Barragán Zaque

Como requisito para obtener el título de:
Ingeniero topográfico

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS
FACULTAD DEL MEDIO AMBIENTE Y RECURSOS NATURALES
INGENIERÍA TOPOGRÁFICA
BOGOTA D.C
2016
AGRADECIMIENTOS

“Tu encenderás mi lámpara; Jehová mi Dios alumbrará mis tinieblas”
Salmo 18:28

A todos quienes nos apoyaron en este ciclo completado…
Tabla de Contenido

Página.

Tabla de Ilustraciones ........................................................................................................ III
Tabla de Tablas ................................................................................................................ IV
Tabla de Ecuaciones .......................................................................................................... V
Introducción ........................................................................................................................ 1
Resumen .............................................................................................................................. 2
Abstract ............................................................................................................................... 3
Planteamiento del problema .............................................................................................. 4
Justificación ........................................................................................................................ 5
Objetivos ............................................................................................................................. 6
1. Marco Teórico .................................................................................................................. 7
   1.1. Concepto de Modelo ................................................................................................ 7
   1.2. Definición de MDE ............................................................................................... 7
   1.3. Principios metodológicos .................................................................................... 8
       1.3.1. Estructuras del MDE ..................................................................................... 8
       1.3.2. Tipos de estructuras del MDE ....................................................................... 9
   1.4. Construcción y captura de datos del MDE ............................................................ 10
   1.5. Precisión de los Modelos digitales de elevación .................................................. 11
2. Marco Técnico ................................................................................................................... 13
   2.1. Asprs 2015 manual para la evaluación de precisión de modelos digitales de elevación ........................................................... 13
       2.1.1. Arenas de baja confianza .......................................................................... 13
       2.1.2. Puntos no defendibles de fuente externa “verdad de campo” .................... 13
       2.1.3. Estándar de precisión para datos de elevación digital ............................ 14
       2.1.4. Estimación del error medio cuadrático ..................................................... 15
   2.2. Estadística descriptiva ............................................................................................ 16
       2.2.1. Media aritmética ........................................................................................ 16
       2.2.2. Varianza .................................................................................................... 16
       2.2.3. Nivel de confianza “Desviación estándar” ............................................... 17
   2.3. Nivelación geométrica ............................................................................................ 17
       2.3.1. Compensación geométrica por distancias .............................................. 17
3. Datos ................................................................................................................................. 19
   3.1. Fases del proyecto ................................................................................................. 19
   3.2. Localización del proyecto ..................................................................................... 22
   3.3. Recolección de información existente .................................................................. 22
3.4. Clasificación Morfométrica................................................................. 24

4. Análisis y Métodos.................................................................................. 25
   4.1. Topografía directa............................................................................. 25
       4.1.1. Metadatos.................................................................................. 25
       4.1.2. Cálculo de velocidades............................................................... 26
       4.1.3. Cálculo de poligonal ................................................................. 27
       4.1.4. Error medio cuadrático horizontal............................................. 28
       4.1.5. Estructuración de datos vector topografía directa....................... 29
       4.1.6. Resumen modelo digital de elevación topografía directa.............. 29
   4.2. Puntos “verdad de campo”............................................................... 32
       4.2.1. Materialización puntos de control.............................................. 32
       4.2.2. Áreas de baja confianza o ABC.................................................. 33
       4.2.3. Georreferenciación puntos verdad de campo y GCP’s................ 34
       4.2.4. Cálculo y ajuste puntos de control horizontal............................. 35
       4.2.5. Nivelación puntos de verdad campo y GCP................................ 38
       4.2.6. Coordenadas puntos verdad de campo y GCP............................ 40
   4.3. Aerotriangulación.............................................................................. 42
       4.3.1. Metadatos.................................................................................. 43
       4.3.2. Orientación................................................................................ 44
       4.3.3. Orientación interior................................................................. 45
       4.3.4. Orientación exterior................................................................. 46
       4.3.5. Modelo Digital de Elevación “Raster”........................................ 49
       4.3.6. Resumen MDE topografía indirecta.......................................... 51

5. Resultados............................................................................................. 53
   5.1. Análisis de resultados...................................................................... 54
       5.1.1. Evaluación de calidad método ASPRS......................................... 54
       5.1.2. Estadística descriptiva y pruebas de normalidad....................... 58

Conclusiones ............................................................................................... 63

Bibliografía.................................................................................................. 64
Tabla de Ilustraciones

Ilustración 1-1. Pasos para la adquisición de modelos digitales ......................................................... 8
Ilustración 3-1. Fases del proyecto ...................................................................................................... 19
Ilustración 3-2. Diagrama de flujo análisis de datos y resultados .................................................... 21
Ilustración 3-3. Localización zona de estudio lote B ........................................................................ 22
Ilustración 4-1. Poligonal trazada en campo ..................................................................................... 26
Ilustración 4-2. a) Clasificación morfométrica b) curvas de nivel con pseudoimagen transpuesta c) Topografía directa en 3D ............................................................................. 31
Ilustración 4-3. a) Puntos materializados b) distribución de grilla en el Lote B ............................... 33
Ilustración 4-4. Áreas de baja confianza ......................................................................................... 34
Ilustración 4-5. a) Georreferenciación punto verdad de campo 23  b) Georreferenciación punto suplementario 35 ........................................................................................................ 35
Ilustración 4-6. Vectores de ajuste posproceso de gps .................................................................... 36
Ilustración 4-7 a) Rutas de nivelación en campo b) Nivelación de anillos en campo ....................... 39
Ilustración 4-8 Diagrama de flujo procesamiento y generación de ortofotos ................................. 42
Ilustración 4-9. Distribución de puntos suplementarios en el lote B ................................................... 45
Ilustración 4-10. Resultados de ajuste de EMC total ....................................................................... 47
Ilustración 4-11. Bloque ajustado de las imágenes aéreas ................................................................. 48
Ilustración 4-12. Configuración del tipo de archivo y tamaño de la celda para el raster de salida ......................................................................................................................... 49
Ilustración 4-13 Configuración del sistema de referencia y las unidades de salida del MDE ................................................. 49
Ilustración 4-14 Configuración empleada para en la generación del MDE ................................. 50
Ilustración 4-15 Mediciones directas para alimentación del raster de salida ................................ 50
Ilustración 4-16 Configuración generación del MDE .................................................................. 51
Ilustración 4-17 a) Clasificación morfométrica b) MDE Raster con los puntos verdad de campo superpuestos c) Modelo 3D malla rectangular ................................................................. 52
Ilustración 5-1. Histograma de Frecuencias de diferencias DA ................................................... 59
Ilustración 5-2. Comparación de cuantiles de diferencias en DB ...................................................... 60
Ilustración 5-3. Histograma de frecuencias de diferencias de DB ................................................... 61
Ilustración 5-4. Diferencia de raster versus geométrica comparación de cuantiles DB ........... 61
Ilustración 5-5. Comparación de Cuantiles general DA y DB ......................................................... 62
Ilustración 5-6. Tallos y bigotes diferencias de cotas a) DA verdad de campo vs topografía directa b) DB verdad de campo versus topografía indirecta .............................................................. 62
# Tabla de Tablas

<p>| Tabla 1-1. | Tipos de estructura de MDE | 9 |
| Tabla 1-2. | Tipos de captura de datos de MDE | 11 |
| Tabla 2-1. | Estándar de precisión horizontal para datos geoespaciales | 14 |
| Tabla 2-2. | Estándar de precisión vertical para datos geoespaciales | 15 |
| Tabla 3-1. | Parámetros de coordenadas planas Vivero | 23 |
| Tabla 3-2. | Red de nivelación geodésica sede el Vivero | 23 |
| Tabla 3-3. | Coordenadas geocéntricas línea base red geodésica vivero | 24 |
| Tabla 3-4. | Clasificación morfométrica del terreno | 24 |
| Tabla 4-2. | Velocidades promedio del lote B | 26 |
| Tabla 4-3. | Coordenadas geocéntricas época 2015.8 | 27 |
| Tabla 4-4. | Coordenadas planas línea base proyectadas en Vivero | 27 |
| Tabla 4-5. | Reporte de ajuste poligonal de Autocad Civil | 28 |
| Tabla 4-6. | Evaluación de calidad horizontal derivado de puntos externos | 28 |
| Tabla 4-7. | Descripción de detalles para definición del modelo | 29 |
| Tabla 4-8. | Puntos de control ajuste horizontal | 36 |
| Tabla 4-9. | Coordenadas ajustadas puntos “verdad de campo” | 37 |
| Tabla 4-10. | Resumen de anillos de nivelación | 39 |
| Tabla 4-11. | Coordenadas verdad de campo | 41 |
| Tabla 4-12. | Características de las imágenes aéreas | 44 |
| Tabla 4-13. | Resultados de la orientación exterior | 45 |
| Tabla 4-14. | Parámetros orientación interna de las fotografías | 46 |
| Tabla 4-15. | Coordenadas puntos de control GCP | 46 |
| Tabla 4-16. | Resultado de Aerotriangulación imagen 11377 | 46 |
| Tabla 4-17. | Resultado de Aerotriangulación imagen 11378 | 47 |
| Tabla 4-18. | Error medio cuadrático orientación exterior por imagen | 48 |
| Tabla 5-1. | Resumen de Alturas y diferencias | 54 |
| Tabla 5-2. | Relación de diferencias y evaluación de calidad ASPRS | 55 |
| Tabla 5-3. | Precisión horizontal de la ortofoto ASPRS | 56 |
| Tabla 5-4. | Precisión vertical del raster ASPRS | 57 |
| Tabla 5-5. | Estadística descriptiva diferencias de cotas | 58 |</p>
<table>
<thead>
<tr>
<th>Tabla de Ecuaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuación 1. Función de evaluación de modelos digitales de elevación</td>
</tr>
<tr>
<td>Ecuación 2. Error medio cuadrático en altura</td>
</tr>
<tr>
<td>Ecuación 3. Media aritmética</td>
</tr>
<tr>
<td>Ecuación 4. Varianza</td>
</tr>
<tr>
<td>Ecuación 5. Nivel de confianza dispersión</td>
</tr>
<tr>
<td>Ecuación 6. Compensación geométrica de nivelación por longitud</td>
</tr>
<tr>
<td>Ecuación 7. GSD</td>
</tr>
<tr>
<td>Ecuación 8. Altura de vuelo</td>
</tr>
</tbody>
</table>
Introducción

En topografía los modelos digitales de elevación se emplean para planeación, proyección, diseños y control de obras de construcción civil. Hace unas cuantas décadas no se contaban con software de topografía que procesaran la información de tipo raster y vectorial, pero actualmente es rápido procesar las coordenadas Norte, Este y altura para obtener estos tipos de modelos digitales de elevación o MDE. Además de procesar, los software de topografía permiten el control de precisión e interoperabilidad de los MDE.

Para la generación de los MDE es necesario contar con las coordenadas Norte, Este y altura actualmente es rápido obtenerlas, pero los métodos varían con respecto a: precisión, escala, zona de recubrimiento y costos. Por el método de topografía directa se obtiene información a altos costos y requiere de mucho tiempo, pero la información es precisa. El método indirecto (fotogramétrICO) los costos de adquisición son bajos y se obtienen grandes extensiones de área, pero en este método la precisión varía en función de: altura de vuelo, escala de fotografía y tamaño de pixel estos variables determinan el valor de la muestra pixel de distancia en el terreno o GSD.

El manual de evaluación de calidad de modelos 2015 de la Sociedad Americana de Fotogrametría y sensores remotos de Estados Unidos o por sus siglas en inglés ASPRS, define esta variable como el determinante del error medio cuadrático horizontal y vertical (EMC), pero añade también que depende de las características del terreno como la pendiente y rugosidad (grado de dificultad del modelo). Por otro lado los puntos verdad de campo se dividen en categorías según las condiciones de localización en el terreno.

Para este proyecto se realiza la comparación entre puntos de control materializados y georreferenciados versus MDE de topografía directa e indirecta; teniendo en cuenta las condiciones de localización de “puntos de control” se determina el EMCz vertical de las diferencias para cada uno de los métodos de adquisición, aplicando el manual ASPRS 2015.
Resumen

La norma técnica Colombiana 5205 presenta un estándar para la evaluación de precisión horizontal y vertical, pero sin tener en cuenta las características, condiciones físicas del terreno para la localización de los puntos verdad de campo. En este proyecto de grado se tienen en cuenta las condiciones de localización de los puntos verdad de campo.

Para esto se obtuvieron las imágenes aéreas y archivos nativos de la estación total del Lote B y determinar la proyección, precisión, año de abstracción. Una vez obtenidos estos datos se procesan y proyectan en el sistema de coordenadas planas y red vertical Vivero. Luego se obtienen los MDE de cada levantamiento topográfico, en este caso raster y curvas de nivel. Los MDE, son evaluados a partir de los puntos verdad de campo siendo estos de mayor calidad y de igual forma estos puntos se calculan y proyectan en el sistema de coordenadas planas y red vertical vivero.

Con las coordenadas Norte, Este de los puntos verdad de campo se interpolan y extraen las cotas de cada MDE. A partir de estas cotas, se calculan las diferencias de los puntos verdad de campo versus los MDE. Con las diferencias se determinan: grado de dispersión, error medio cuadrático vertical o EMCz y el nivel de confianza al 95% manual ASPRS 2015. Finalmente, se definirá el intervalo de curvas intermedias para topografía directa e indirecta.
Abstract

The Colombian technique norm 5205 come through with a standard for accuracy vertical and horizontal evaluate out of consider characteristics, terrain terms for the true points stake out. This graduation project to be considering terms true points stake out.

For it was getting aerial imagery total station files of B allotment and projection, accuracy establish, depicting year. Once was getting calculate and map out the data plane coordinates system Vivero network vertical. Then DEM getting survey TIN and Raster are evaluating set out true points considered of best quality similarly this points are calculating and projected plane coordinates system in vivero network.

With Northing and Easting coordinates with true points interpolates and extracting high altitude of each DEM. From altitude discrepancy calculating true points against DEM. With it discrepancy establish: dispersion grade, vertical root square mean or RMSz, level confidence 95% ASPRS manual 2015. Finally it determines interval intermediate contours for direct indirect survey.
Planteamiento del problema

Las necesidades actuales en la formación del Ingeniero Topográfico, en cuanto a la adquisición y generación de modelos digitales de elevación requieren del conocimiento de costos, precisión y tiempos de abstracción de coordenadas Norte, Este y Altitud. Esto depende del método de captura de información geográfica empleado. De tal forma que es indispensable el manejo de herramientas computacionales para el control de precisión vertical y horizontal.

Se plantea en este proyecto métodos de evaluación de calidad en los modelos generados a partir de topografía clásica y fotogramétrico, según las características y condiciones del terreno como pendiente, vegetación y distribución de los puntos “verdad de campo”.

Para la generación de los Modelos Digitales de elevación se tendrá como insumos el levantamiento de topografía directa del lote B y el par estereoscópico de fotografías aéreas de la zona; por lo tanto se controlará la posición en Norte, Este y Altitud a partir los puntos de fuente externa o “verdad de campo”.

En la generación del MDE topografía indirecta o raster, se complementará la información de las obras recientemente construidas, por topografía convencional para obtener información actualizada y complementaria para las imágenes aéreas.
Justificación

Actualmente, el proyecto curricular de Ingeniería topográfica busca soluciones más eficaces, en el campo del modelamiento digital de elevación, de acuerdo a los diferentes métodos de captura de información geográfica y precisión. Por lo tanto se analizará y evaluará la precisión a partir de los modelos digitales de elevación obtenidos mediante captura directa (topografía clásica) e indirecta (fotogrametría), apoyados en programas informáticos que respondan a las necesidades de la profesión.

La Universidad Distrital, en el proyecto curricular de Ingeniería Topográfica, en su programa académico hace énfasis en el conocimiento y aplicación en los métodos de captura de información geográfica pero algunas veces sin enfatizar un estándar de precisión actual, basado en las condiciones y características del terreno.

Utilizando algunos programas informáticos especializados que en la actualidad posee el proyecto curricular de Ingeniería Topográfica, se realizó un análisis estadístico de los Modelos Digitales de elevación obtenidos por topografía clásica y fotogrametría. Este análisis respecto a la comparación de mediciones directas en campo; realizadas con mayor rigurosidad o más precisas.
Objetivos

General

- Evaluar la calidad en modelos digitales de elevación generados a partir de métodos de captura directa e indirecta.

Específicos

- Adquirir y procesar los archivos e imágenes aéreas correspondientes al levantamiento topográfico y fotogramétrico del lote B
- Homogenizar el sistema de coordenadas planas cartesianas y datum de referencia vertical, de los puntos “verdad de campo”, topografía clásica y fotogramétrico.
- Determinar el nivel de confianza al 95% de las diferencias de cotas a partir de los puntos de fuente externa o “verdad de campo” contra la topografía directa e indirecta según el grado de dispersión y desviación de los datos.
- Obtener la precisión de los MDE a partir de los parámetros, del manual, de precisión de MDE ASPRS 2015.
1. Marco Teórico

1.1. Concepto de Modelo

El modelo es una representación simplificada de la realidad, donde aparecen algunas de sus propiedades y se ve representado en un objeto de menor escala. (Felícisimo, 1994)

Los modelos se definen de acuerdo a su correspondencia, como los modelos icónicos, por su relación con las propiedades morfológicas como una maqueta y modelos análogos que poseen propiedades similares pero su representación es física, o convenciones, distinto del objeto representado, la siguiente representación es simbólica, donde el objeto es representado de manera geométrica y estadística. (Felícisimo, 1994)

1.2. Definición de MDE

Se define como una estructura, numérica de datos que representa la distribución espacial de la altitud de la superficie del terreno. Un modelo digital de elevación puede describirse de forma genérica del siguiente modo:

Donde Z es la altitud del punto situado en las coordenadas Norte y Este o $Z=F(X, Y)$ la función que relaciona la variable, con su localización geográfica. La expresión anterior presenta, una pequeña superficie de campo escalar, donde Z o la altura es una variable continua. Dado que representa la superficie del terreno en un número infinito de puntos. (Felícisimo, 1994, pág. 12)
En la Ilustración 1-1 se resumen los procesos implicados en la producción, definición de precisión del modelo según aplicación, evaluación de calidad y entrega de MDE al consumidor, para topografía directa e indirecta.

1.3. Principios metodológicos

1.3.1. Estructuras del MDE

La unidad básica de los MDE, son las variables Z o altitud, acompañadas de las coordenadas Norte Este, que están proyectadas en un sistema geográfico de coordenadas, para la precisa referencia espacial. Las variantes aparecen cuando se definen las interrelaciones entre estas unidades elementales de información.
Estas interrelaciones definen las opciones de la estructura de datos, esta elección es trascendental identificando la información adquirida, en la extracción de la realidad. En los modelos convencionales se usa una única convención o extracción de la realidad con curvas de nivel, en los MDE se encuentran funciones variadas, para la extracción de la realidad; pero en todas se busca la representación de la realidad en datos numéricos. (Felicisimo, 1994, pág. 12)

En la Tabla 1-1 se resumen los tipos de estructuras manejados para un MDE.

| VECTORIALES | CONTORNOS | Secuencial: las líneas se almacenan como cadenas de cotas. Analíticas: las líneas se almacenan como segmentos de Bezier. |
| PERFILES | Cadenas paralelas de cotas en línea con altitud variable |
| TRIANGULOS | Red de triángulos irregulares (TIN). |
| RASTER | MATRICES | Regulares: cotas sobre una malla cuadrada, de filas y columnas equidistantes Escalables: cotas sobre submatrices jerárquicas y de resolución variable |
| POLIGONOS | Cotas asignadas a teselas poligonales regulares. |

Tabla 1-1. Tipos de estructura de MDE
Fuente: (Felicisimo, 1994, pág. 13) adaptación

Los modelos digitales de elevación, se divide en dos grupos como son: concepción básica de representación de los datos vectorial y raster. Los modelos vectoriales están basados en entidades (puntos, líneas) los cuales son definidos por sus coordenadas. En los modelos raster, los datos se interpretan como el valor medio de unidades elementales de superficie no nula, que representan el terreno a través de una malla cuadrícular sin solapamiento, teniendo en cuenta que cada una de sus cuadriculas en forma genérica representa el valor de la altura.

La malla, es configurada de acuerdo a la precisión con la cual se adquirió en campo, esto indica el tamaño de cada celda, a su vez esta representa el valor de altura. (Felicisimo, 1994, pág. 13)

1.3.2. Tipos de estructuras del MDE

- Modelos vectorial de contornos: se compone por pares de coordenadas (x, y) describen la trayectoria de líneas isométricas. El número de elementos de cada vector es variable y la reducción de este a un único elemento, permite incorporar, cotas puntuales. En el caso más sencillo está constituido, por curvas de nivel, o intervalos de altitud. En casos más específico se agregan valores que definen específicamente cambios de pendiente brusco o breaklines.
1. Marco Teórico

- **Modelo vectorial de redes triángulos TIN**: Se compone de triángulos irrregulares, los puntos triangulan de acuerdo a su posición geográfica, formando triángulos irrregulares, densificados, y entrelazados, parte de su base son las isohipsas o modelos de contornos. Para definir esta metodología se asocia, con una de las propiedades de la topología, que es la vecindad. (Peucker Et. al, 1978)

- **Modelo raster matrices regulares**: esta estructura superpone una retícula, sobre el terreno y extrae la altitud media de cada celda, (o valor puntual). La retícula puede adoptar variadas formas, pero la más utilizada es una red regular, de malla cuadrada con filas y columnas, equiespaciadas.

- **Modelo raster matrices de resolución variable**: el interés de las matrices de resolución, variable reside en la posibilidad de solucionar, el principal problema (resolución espacial fijada), manteniendo, en principio sus principales ventajas: la sencillez conceptual, y operacional, pueden ser datos elementales como también submatrices, con un nivel de resolución diferente.

- **Otras estructuras**: los polígonos irrregulares adosados, y redes regulares hexágonos. (Felicisimo, 1994, pág. 14).

1.4. **Construcción y captura de datos del MDE**

La adquisición de la información, altimétrica, es el paso inicial en el proceso de construcción del MDE, e incluye la fase de transformación, de la realidad geográfica, a la estructura digital de datos manipulable. La fase de mayor trascendencia, y costos, donde puede limitar el tratamiento de datos. Estos a su vez deben ser estructurados adecuadamente. Para la adquisición de la información se puede realizar de múltiples formas. (Felicisimo, 1994, pág. 18)

En la Tabla 1-2 se muestran los métodos de adquisición de información para generar MDE.

---

1 Red irregular de triángulos (triangulated irregular network). Es considerada como una estructura derivada de una subestructura.
EVALUACIÓN DE CALIDAD EN MODELOS DIGITALES DE ELEVACIÓN GENERADOS A PARTIR DE METODOS DE CAPTURA DIRECTA E INDIRECTA; CASO DE ESTUDIO, LOTE B PERTENECIENTE A LA SEDE EL VIVERO DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

1. Marco Teórico

| DIRECTOS | ALTIMETRIA | Altímetros transportados por plataformas aéreas |
| GPS | Sistema de posicionamiento global |
| TOPOGRAFÍA | Mediantes estaciones topográficas de salida digital |

| INDIRECTOS | RESTITUCIÓN | Imágenes digitales captadas por satélites y aéreas. |
| | Origen analógico pares fotográficos convencionales |
| DIGITALIZACIÓN | Mediante tableros digitalizadores |
| | Mediante escáner. |

Tabla 1-2. Tipos de captura de datos de MDE
Fuente: (Felicisimo, 1994, pág. 18) adaptación

1.5. Precisión de los Modelos digitales de elevación

La expresión que afecta la precisión de los modelos digitales de elevación puede ser denominada como $A_{DTM}$ donde intervienen las variables tal como son: características del terreno, rugosidad, método de interpolación y los tres atributos (precisión, densidad y distribución) de los recursos de datos. (Li, Zhu, & Gold, 2005)

$$A_{DTM} = f(C_{DTM}, M_{Modelamiento}, R_{terreno}, A_{datos}, D_{datos}, D_{N_{datos}}, O)$$

Ecuación 1. Función de evaluación de modelos digitales de elevación
Fuente: (ASPRS, 2015) adaptación

Dónde:

C= características del terreno
M= método de interpolación
R=rugosidad del terreno
A, DN, D= tres atributos
O= otros

La rugosidad determina el grado de dificultad del modelamiento por ejemplo, el modelo es simple ya que con solo unos cuantos puntos es posible modelar de manera correcta el terreno, pero si tiene cambios bruscos es necesario abstraer una mayor cantidad de puntos. Por otro lado las características del terreno y tipos de superficies en función de un rango cuantitativo y/o cualitativo ejemplo: pendiente en porcentaje y/o descriptores cualitativos como planicies y ondulado. (Li, Zhu, & Gold, 2005)
Los tres atributos por lo tanto son las variables de gran influencia para la evaluación de precisión, por los efectos en los resultados que pueden generar en el modelo (Li, Zhu, & Gold, 2005). Para imágenes aéreas de igual forma se centra la función f y de manera intrínseca los datos son afectados por los siguientes factores:

- La calidad y escalas de las fotografías.
- La precisión y condiciones físicas de los instrumentos fotogramétricos usados.
- La precisión de medición (puntos de control de tierra o GCP).
- La estéreo geométrica aérea de las fotografías.
2. Marco Técnico

2.1. **Asprs 2015 manual para la evaluación de precisión de modelos digitales de elevación**

Este estándar define la precisión basada en clases según la definición del EMC para orto imágenes, datos digitales planimétricos y datos elevación digital por clases, de acuerdo al GSD de las imágenes en NVA\(^2\) y VVA\(^3\).

Cuando la prueba es requerida para datos horizontales estos serán testeados por un conjunto de datos definidos de manera adecuada por un sistema de coordenadas. La precisión vertical de igual forma será testada a partir del MDE representado por el conjunto de datos de elevaciones, en comparación con los puntos de chequeo o verdad de campo interpolados a partir de las mismas coordenadas Norte y Este.

Todas las precisiones son asumidas como relativas en definición del datum de referencia, por el cual se realizó la evaluación; aun así el FGDC\(^4\) define el control local de puntos y especifica las precisiones necesitadas para el proyecto, por lo tanto debe ser claro en los metadatos las especificaciones de precisión de los puntos de chequeo y el modelo evaluado. (ASPRS, 2015)

2.1.1. **Áreas de baja confianza**

Para imágenes aéreas se incluyen las áreas con vegetación y donde el terreno no es visible. Para complementar la información es necesario delinear estas zonas a partir de polígonos de tal forma que si se localizan puntos de control se deben categorizar con respecto a estas zonas.

2.1.2. **Puntos no defendibles de fuente externa “verdad de campo”**

En el manual de la ASPRS especifica que para la evaluación de MDE a partir de los puntos “verdad de campo” es necesario considerar que cumplan las siguientes condiciones:

- Líneas de queambre: Los puntos verdad de campo no estén localizados a una corta distancia de las líneas de queambre o breaklines.

---

\(^2\) Precisión de zonas no vegetadas
\(^3\) Precisión de zonas con vegetación
\(^4\) Comité Federal Geográfico de Estados Unidos
2. Marco Técnico

- Desviación estándar: Las diferencias entre los MDE y los puntos evaluados no sean mayores de 3 veces la desviación estándar en las diferencias.

- Cambios Significativos de terreno: Si está demostrado que ha cambiado significativamente la topografía en un tiempo cero y la adquisición de los puntos verdad de campo, se puede considerar no defendible el modelo.

- Localización: Sí está demostrado que los puntos verdad de campo están localizados cerca de vegetación alta y denso follaje o cambios de pendiente bruscos se considera caracterizar los puntos por áreas. (ASPRS, 2015)

2.1.3. Estándar de precisión para datos de elevación digital

Este estándar de precisión para datos de elevación digital se calcula con la ecuación del EMC, como referencia usa la estadística descriptiva y el nivel de confianza al 95%. La Tabla 2-1 y Tabla 2-2 relacionan la precisión horizontal y vertical para datos digitales, teniendo en cuenta la clase de precisión de acuerdo a las condiciones del terreno.

<table>
<thead>
<tr>
<th>Clase de precisión horizontal</th>
<th>EMCx&lt;sup&gt;5&lt;/sup&gt; (cm)</th>
<th>EMCy&lt;sup&gt;6&lt;/sup&gt;</th>
<th>EMCex y EMCey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>&lt;X</td>
<td>&lt;1.414*X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel de confianza 95% horizontal</th>
<th>Orto imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;2.448*X</td>
<td>&lt;2*X</td>
</tr>
</tbody>
</table>

Tabla 2-1. Estándar de precisión horizontal para datos geoespaciales
Fuente: (ASPRS, 2015) adaptación

Donde, la clase de precisión horizontal es el valor obtenido a partir del GSD de las imágenes aéreas y los demás valores están sujetos a no exceder esta variable. Esta clase es única para cada terreno, significa que cada clase es única según características y condiciones del terreno. Los resultados deben ser justificados y se debe tener en cuenta las áreas de baja confianza; por lo tanto es necesario asegurar el no uso de puntos sobre estas áreas. (ASPRS, 2015)

<sup>5</sup> Error medio cuadrático total en Este

<sup>6</sup> Error medio cuadrático total en Norte
### Precisión Absoluta

<table>
<thead>
<tr>
<th>Clase de precisión vertical</th>
<th>EMC(_z^7) Sin Vegetación NVA</th>
<th>NVA 95% nivel de confianza</th>
<th>VVA at 95% Percentil</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>&lt;X</td>
<td>&lt;1.96*X</td>
<td>&lt;3.00*X</td>
</tr>
</tbody>
</table>

| Tabla 2-2. Estándar de precisión vertical para datos geoespaciales  
Fuente: (ASPRS, 2015) adaptación |

#### 2.1.4. Estimación del error medio cuadrático

El estándar nacional espacial para precisión de datos espaciales de Estados Unidos y la norma técnica colombiana 5205, define la metodología y procesos para calcular el error medio cuadrático horizontal, vertical y el nivel de confianza del 95\%. Donde se asumen los errores aproximados para una distribución normal, y como restricción el error de la media sea menor en comparación con el objetivo. (ASPRS, 2015)

La Ecuación 2 resume los términos para hallar el error medio cuadrático, en el vector Z.

\[
EMC_z = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (zi - z)^2}
\]

Ecuación 2. Error medio cuadrático en altura  
Fuente: (ASPRS, 2015)

Dónde:

\(EMC_z\) = Error medio cuadrático.  
\(zi\) = vector z inicial evaluado a partir de la topografía indirecta.  
\(z\) = vector z de los puntos.

La Ecuación 2 de igual forma evalúa la calidad de las coordenadas Norte y Este de la muestra o población de puntos.

---

\(7\) Error Medio Cuadrático Total en altitud
2.2. Estadística descriptiva

2.2.1. Media aritmética

La media aritmética es una medida de tendencia central donde se define la ecuación a partir de población y el número de datos obtenidos. Si se denota n como el tamaño muestras: (ASPRS, 2015)

\[ \bar{x} = \frac{\sum x_{1i}}{n_1} \]

Ecuación 3 Media aritmética
Fuente: (ASPRS, 2015)

Donde:
- \( \bar{x} \) = Media aritmética
- \( x_{1i} \) = Valor de la muestra
- \( n_1 \) = Número de datos

2.2.2. Varianza

La varianza es una medida de dispersión o también se resume como la suma de las desviaciones al cuadrado dividida por el número total de datos. Si se denota n como el número total de datos entonces:

\[ S = \sqrt{\frac{1}{n-1} \sum (x_{1i} - \bar{x})^2} \]

Ecuación 4 Varianza
Fuente: (UPTC, 2011)

Donde:
- S = Varianza
- \( x_{1i} \) = Valor de la muestra
- \( \bar{x} \) = Media aritmética
- n = Número total de datos

La Ecuación 2, Ecuación 3, Ecuación 4 denota el análisis estadístico descriptivo donde se determinan las varianzas y medias de las diferencias de altitudes.
2.2.3. Nivel de confianza “Desviación estándar”

El nivel de confianza es la máxima diferencia posible para un porcentaje del 95% de población finita y está relacionada con la desviación estándar y el número de datos. (Li, Zhu, & Gold, 2005)

De igual forma se puede establecer el número puntos de chequeo a partir de esta ecuación, definiendo el porcentaje posible de error o media de la población, la Ecuación 5 resume lo mencionado.

\[ NC_{95\%} = \pm 1.96 \times \left( \frac{Desv.\,Est.}{\sqrt{n}} \right) \]

Ecuación 5. Nivel de confianza dispersión
Fuente: (Li, Zhu, & Gold, 2005)

Donde:

\( Desv.\,Est. \) = Desviación estándar
\( n \) = número de datos población

2.3. Nivelación geométrica

El método de obtención de desniveles entre dos puntos que utiliza visuales horizontales. Los métodos de nivelación se clasifican en simples y compuestas. (IGAC, 2003)

De acuerdo con los estándares del Servicio Geodésico Inter Americano y establecido por el Instituto Geográfico Agustín Codazzi definen tres órdenes de nivelación. Estos órdenes están dados en relación a la precisión necesaria para la red. De tal modo que para una red de primer orden se derivan las de segundo y tercer orden. Por lo cual para este caso se requiere de tercer orden o para aplicaciones de precisiones menores. La nivelación geométrica de tercer orden de acuerdo al Instituto Geográfico Agustín Codazzi o IGAC define la siguiente relación de \( 12 \, \text{mm} < s \, [\text{km}] \) donde el valor \( s \) es la longitud total en kilómetros, o que el error de nivelación no sea mayor a 12 mm por kilómetro. (IGAC, 2003)

2.3.1. Compensación geométrica por distancias

Se define como la metodología que compensa la geometría de tal forma que cumpla con la tolerancia, en este caso se resume la metodología, como proporcional a las longitudes del tramo. Donde el error de cierre se divide entre la suma de longitudes de los tramos y
se multiplica por la longitud total del tramo. Como se observa en la Ecuación 6. (Farjas Abadía, 2011)

\[ C_{n+1}^{n+1} = \frac{-e}{\sum D} \cdot D_{n+1}^{n+1} \]

Ecuación 6. Compensación geométrica de nivelación por longitud
Fuente: (Farjas Abadía, 2011)

Donde:

- \( C_{n+1}^{n+1} \) = Compensación
- \( \sum D \) = Longitud total de los tramos
- \( D_{n+1}^{n+1} \) = Longitud parcial acumulada por tramos
- \( e \) = error del tramo general, se fija en valor negativo para compensar el error acumulado.
3. Datos

3.1. Fases del proyecto

El desarrollo del proyecto se divide en tres fases la primera fase son los datos está compuesta de información secundaria y es obtener los datos necesarios para procesar, evaluar y determinar el nivel de confianza.

La segunda fase de análisis y métodos contiene la planeación, materialización y georreferenciación. Está compuesta por el cálculo y ajuste los puntos verdad de campo, topografía directa e indirecta y, generación los modelos digitales de elevación de topografía directa e indirecta, proyectado en el sistema coordenadas planas vivero y con referencia de la red vertical vivero.

La tercera fase del proyecto consta de los resultados y los análisis estadísticos. Según la distribución dispersión y precisión calculada a un nivel de confianza al 95%. La Ilustración 3-1 se resume las fases del proyecto.

Ilustración 3-1. Fases del proyecto
Fuente: (Autores, 2015)
Para la evaluación de calidad de MDE se parte de la expresión $A_{DTM}$ que afecta la precisión de modelos que para este caso se evalúa la precisión según el método de adquisición, pero sin tener en cuenta los demás factores que afectan la expresión. (Li, Zhu, & Gold, 2005)

Por esta razón el análisis y métodos definen las tareas necesarias para obtener la calidad de la información adquirida por fuentes secundarias y, realizar la evaluación de calidad de los MDE desde la etapa de adquisición hasta la etapa de presentación, por ello todos los procesos durante el desarrollo del proyecto requieren de control de calidad para obtener la precisión vertical horizontal. Así mismo también se homogenizan las coordenadas Norte, Este y Altura implementando el sistema de coordenadas planas y red vertical Vivero.

Una vez obtenidas la información vectorial TIN, ortofoto y raster se generan los modelos digitales de elevación, donde se aplica el manual ASPRS 2015 donde se evalúan los MDE por puntos de control externos siendo estos de mayor precisión. (Olaya, 2010)

A partir de las diferencias se determina EMC y el nivel de confianza al 95% según su: distribución y desviación estándar. De acuerdo al nivel de confianza se define la escala de presentación e intervalos de curvas intermedias. En la Ilustración 3-2 se resumen los procesos mencionados para obtener la calidad de los MDE.

3. Datos
3. Datos

Ilustración 3-2. Diagrama de flujo análisis de datos y resultados
Fuente: (Autores, 2015)
3.2. Localización del proyecto

El lote B de la Universidad Distrital Francisco José de Caldas se encuentra localizado en Bogotá, Localidad de Santa fe vía Choachi, paralelo a la avenida circunvalar. Cuenta con un área total de 3.42 Has; con una clasificación morfométrica de pendientes: planicies, ondulado, colimado y lomerío citadas en la sección 3.4.

Ilustración 3-3. Localización zona de estudio lote B
Fuente: (Autores, 2015)

3.3. Recolección de información existente

En esta etapa del proyecto se obtuvo el plano topográfico digital abstraído por estación total, archivos nativos de la estación total del levantamiento y los pares estereoscópicos del lote B de la facultad del medio ambiente. Para homogenizar la información se usó el sistema de coordenadas planas Vivero y la red de nivelación geodésica de la facultad. Los parámetros del sistema de coordenadas planas Vivero se resumen en la Tabla 3-1.
Latitud | Longitud
--- | ---
4° 35' 53" N | 74° 3' 53" W
Falso Norte | Falso Este
1000205.157 | 1000418.747
Plano De Proyección | Factor De Escala
2740 | 1.000429581
Tipo de Proyección | Restricción
Traversa Mercator | No mayor de 2890 y no menor de 2590 m.s.n.m.m.

<table>
<thead>
<tr>
<th>Punto</th>
<th>Altura</th>
<th>Tipo de Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 3</td>
<td>2684.138</td>
<td>Geométrica</td>
</tr>
<tr>
<td>GR 1</td>
<td>2676.008</td>
<td>Geométrica</td>
</tr>
<tr>
<td>NP59 CD</td>
<td>2714.134</td>
<td>Geométrica</td>
</tr>
<tr>
<td>TT 2</td>
<td>2718.325</td>
<td>Geométrica</td>
</tr>
<tr>
<td>TT 12</td>
<td>2685.183</td>
<td>Geométrica</td>
</tr>
<tr>
<td>TT 14</td>
<td>2710.38</td>
<td>Geométrica</td>
</tr>
<tr>
<td>TT 16</td>
<td>2718.592</td>
<td>Geométrica</td>
</tr>
<tr>
<td>TT 18</td>
<td>2708.177</td>
<td>Geométrica</td>
</tr>
<tr>
<td>TT 20</td>
<td>2693.091</td>
<td>Geométrica</td>
</tr>
<tr>
<td>V 1</td>
<td>2742.002</td>
<td>Geométrica</td>
</tr>
<tr>
<td>V 6</td>
<td>2734.741</td>
<td>Geométrica</td>
</tr>
</tbody>
</table>

Se definió la red de nivelación Vivero, la cual fue desarrollada como proyecto de grado para la actualización de coordenadas de la universidad distrital sede el Vivero. En Tabla 3-2 se mencionan los puntos de la red geodésica Vivero y el tipo de altura, utilizados para este proyecto.

La línea base de partida de topografía directa es evaluada a partir de la red geodésica horizontal Vivero se resumen en la Tabla 3-3 las coordenadas geocéntricas X, Y, Z y geodésicas en época de referencia 1995,4.
3. Datos

<table>
<thead>
<tr>
<th>Coordenadas Línea Base</th>
<th>V6</th>
<th>V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(m)</td>
<td>1746390.514</td>
<td>1746356.978</td>
</tr>
<tr>
<td>Y(m)</td>
<td>-6116061.49</td>
<td>-6116062.317</td>
</tr>
<tr>
<td>Z(m)</td>
<td>508030.529</td>
<td>508044.264</td>
</tr>
<tr>
<td>Latitud</td>
<td>4°35'50.28289&quot;N</td>
<td>4°35'50.75033&quot;N</td>
</tr>
<tr>
<td>Longitud</td>
<td>74°3'49.49044&quot;W</td>
<td>74°3'50.54359&quot;W</td>
</tr>
<tr>
<td>RMS H</td>
<td>0.006</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Tabla 3-3. Coordenadas geocéntricas línea base red geodésica vivero
Fuente: (Guasca Gil, Segura, & Castillo Vivas, 2014)

3.4. Clasificación Morfométrica

Como se mencionó en la sección 1.5, donde se describe el terreno de manera cualitativa y cuantitativa. Para este proyecto se realizó la descripción cualitativa o clasificación morfométrica del terreno teniendo en cuenta las características del relieve, máxima pendiente y mínima pendiente. En la Tabla 3-4 se resume la clasificación morfométrica del lote B.

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Código</th>
<th>Grado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planicies</td>
<td>P</td>
<td>0-12%</td>
</tr>
<tr>
<td>Ondulado</td>
<td>O</td>
<td>12-25%</td>
</tr>
<tr>
<td>Colimado</td>
<td>C</td>
<td>25-50%</td>
</tr>
<tr>
<td>Lomerío</td>
<td>L</td>
<td>50-75%</td>
</tr>
</tbody>
</table>

Tabla 3-4. Clasificación morfométrica del terreno
Fuente: (Hernandez, 2007)
4. Análisis y Métodos

4.1. Topografía directa

4.1.1. Metadatos

Para determinar la calidad vertical y horizontal, se evaluó la información recolectada de los archivos nativos de estación total y las coordenadas resultantes norte, Este y altitud del levantamiento de topografía directa. El resultado definió que el levantamiento realizado en el año 2012, se procesó el levantamiento en el sistema de coordenadas planas Bogotá con un desplazamiento horizontal 15 cm y vertical 50 cm en la línea base.

De los metadatos analizados del levantamiento de topografía directa se resume que está proyectado en el sistema de coordenadas planas Bogotá y la línea base esta desplazada 15 cm en horizontal y 50 cm en vertical comparado con las coordenadas de la red geodésica horizontal y vertical vivero en la misma época de referencia y sistema de coordenadas planas. La poligonal trazada es cerrada con un total de 32 vértices. En la Ilustración 4-1 se observa la poligonal trazada en campo. (Carranza, Toro, & Lugo, 2012)
4.1.2. Calculo de velocidades

En los metadatos se mencionaba que las coordenadas de los puntos de partida o “línea base”, se encuentran en un sistema de coordenadas con 15 cm de diferencia horizontal. Por lo tanto se re proceso la poligonal y detalles a partir de las coordenadas de la red geodésica Vivero desarrollada para la actualización de coordenadas de mojones en los lotes A y B. Tabla 3-3.

De igual forma se trasladaron las coordenadas de partida a la misma época de georreferenciación de los puntos verdad de campo y se proyectan en el sistema de coordenadas planas “Vivero” corrigiendo el error de partida. En la Tabla 4-1 se presentan las velocidades (Modelo Geocol 2004) aplicadas para el traslado a la época de georreferenciación de los puntos “verdad de campo”.

<table>
<thead>
<tr>
<th>Velocidades por año</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX</td>
</tr>
<tr>
<td>VY</td>
</tr>
<tr>
<td>VZ</td>
</tr>
<tr>
<td>0.00070</td>
</tr>
<tr>
<td>0.00130</td>
</tr>
<tr>
<td>0.01310</td>
</tr>
</tbody>
</table>

Tabla 4-1. Velocidades promedio del lote B
Fuente: (Autores, 2015)
En el proceso de la poligonal y detalles tiene como referencia la época de partida el mes de agosto año 2015 o 2015.8. En la Tabla 4-2 se resumen las coordenadas geocéntricas correspondientes a la época de referencia.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-V1</td>
<td>1746390.51</td>
<td>-6116061.49</td>
<td>508030.529</td>
</tr>
<tr>
<td>GPS-V6</td>
<td>1746356.98</td>
<td>-6116062.32</td>
<td>508044.264</td>
</tr>
</tbody>
</table>

Tabla 4-2. Coordenadas geocéntricas época 2015.8
Fuente: (Autores, 2015)

Para re procesar la poligonal y detalles de topografía directa las coordenadas geocéntricas red geodésica Vivero Tabla 3-3 fueron trasladadas a la época 2015.8, para proyectarlas en el sistema de coordenadas planas Vivero. En la Tabla 4-3 se resumen las coordenadas base de la poligonal, proyectadas en el sistema de coordenadas planas de Vivero.

<table>
<thead>
<tr>
<th>Norte</th>
<th>Este</th>
<th>Cota Geométrica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000121.89</td>
<td>1001526.99</td>
<td>2742.002</td>
</tr>
<tr>
<td>6</td>
<td>1000136.25</td>
<td>1001494.51</td>
<td>2734.741</td>
</tr>
</tbody>
</table>

Tabla 4-3. Coordenadas plana línea base proyectadas en Vivero
Fuente: (Guasca Gil, Segura, & Castillo Vivas, 2014)

4.1.3. Calculo de poligonal
Para establecer la homogeneidad de la información se re procesaron los datos crudos de la estación total, en el sistema de coordenadas Vivero con cota geométrica en la línea base a la época de referencia 2015.8; lo cual arrojó una precisión horizontal de 1:12095 y vertical de -0.44 metros, como se observa en la Tabla 4-4 del reporte de cálculos, programa Autocad Civil 3D módulo survey.

<table>
<thead>
<tr>
<th>Resumen de poligonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Angular</td>
</tr>
<tr>
<td>Ajuste/lado Angular</td>
</tr>
</tbody>
</table>

4. Análisis y Métodos
4. Análisis y Métodos

### Resumen de poligonal

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Dy</th>
<th>Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>V10-4</td>
<td>-0.01</td>
<td>-0.07</td>
</tr>
<tr>
<td>TT-4</td>
<td>-0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

#### Módulo Survey Autocad Civil

Tabla 4-4. Reporte de ajuste poligonal de Autocad Civil

Fuente: (Autores, 2015)

4.1.4. Error medio cuadrático horizontal

Para la información reprocesada vectorial, obtenida a partir de estación total sección fue realizada la evaluación de desplazamiento por variación de tiempo y degradación de los datos nativos de estación. Como la evaluación de calidad los MDE, se realiza de manera absoluta, asumiendo que las coordenadas Norte, Este fijas para realizar la extracción de la cota. Por esta razón se determina el error medio cuadrático horizontal definiendo la precisión horizontal a partir de un control externo de la poligonal.

El método de evaluación fue realizado a partir de dos o más puntos verdad de campo y por el método de bisección inversa, donde se obtienen las coordenadas Norte, Este de los puntos de la poligonal. Se aclara que solo se chequean puntos aún materializados que para este caso son las placas V10-4 y TT-4 véase Ilustración 4-1 puntos 5 y 25.

En la Tabla 4-5 se resume el procedimiento para obtener el error medio cuadrático horizontal, para este caso los puntos identificados de la poligonal donde fueron obtenidas las coordenadas Norte, Este por los métodos de estación total y Gps.

<table>
<thead>
<tr>
<th>Puntos de chequeo</th>
<th>Derivado de la Poligonal</th>
<th>Errores Residuales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>Este</td>
<td>Norte</td>
</tr>
<tr>
<td>1</td>
<td>1000146.731</td>
<td>1001380.052</td>
</tr>
<tr>
<td>2</td>
<td>1000145.742</td>
<td>1001432.127</td>
</tr>
<tr>
<td>No. Puntos</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Media $\bar{X}$</td>
<td>-0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>Varianza $S^2$</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>Desviación Estándar S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>EMCe</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4-5. Evaluación de calidad horizontal derivado de puntos externos
Los resultados demostraron que el desplazamiento es de 0.06m o EMCe el error medio cuadrático total horizontal del re proceso de archivos nativos en el sistema de coordenadas planas vivero, comparado con los puntos de chequeo. La desviación horizontal demostró que no se han modificado los archivos nativos siendo no mayor al error absoluto horizontal del re proceso de la poligonal que es de 0.10 m.

De igual forma se determinó que no hay cambios significativos del terreno desde la adquisición hasta la actual evaluación de calidad. (ASPRS, 2015)

**4.1.5.Estructuración de datos vector topografía directa**

Previo a la modelación de la información vectorial, se estructura la información espacial a partir de la descripción de cada punto. En esta sección se dibujaron las líneas de quiebre donde hay cambios bruscos de pendiente o breaklines de edificaciones, obras de arte, acequia y canales. (ASPRS, 2015)

En la Tabla 4-6 se mencionan las siguientes descripciones que resaltan las obras de arte y estructuras abstraídas.

<table>
<thead>
<tr>
<th>DETALLE</th>
<th>DESCRIPCIÓN</th>
<th>DEFINICIÓN DEL MODELO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>Sumideros y canales</td>
<td>Breaklines</td>
</tr>
<tr>
<td>ESC</td>
<td>Escalera y zonas de paso peatonal</td>
<td>Breaklines</td>
</tr>
<tr>
<td>VIA</td>
<td>Borde vía interno, externo</td>
<td>Breaklines</td>
</tr>
<tr>
<td>BO</td>
<td>Zonas de paso peatonal adyacentes a las edificaciones</td>
<td>Breaklines</td>
</tr>
<tr>
<td>P</td>
<td>Edificaciones</td>
<td>Boundary</td>
</tr>
<tr>
<td>MU</td>
<td>Muro de contención</td>
<td>Breaklines</td>
</tr>
</tbody>
</table>

Tabla 4-6. Descripción de detalles para definición del modelo
Fuente: (Hernandez, 2007)

**4.1.6.Resumen modelo digital de elevación topografía directa**

La topografía directa cuenta con pendientes entre 1% hasta un 75%. Según la clasificación morfométrica del terreno cuenta con las clases citadas que son: plano, ondulado, colimado, iomério en un área 3.40 Has con una densidad de 2300 puntos. La Ilustración 4-2 resume a) la clasificación morfométrica de las pendientes del terreno b) curvas de nivel con pseudoimagen superpuesta c) topografía directa en 3D de malla rectangular.

4. **Análisis y Métodos**
4. Análisis y Métodos
La rugosidad del terreno presenta un nivel de complejidad medio, lo cual requiere de una abstracción de puntos mucho mayor para una mejor representación del modelo digital de elevación. La cota mínima es 2673 y la máxima 2769 m.s.n.m., cumpliendo con la restricción del sistema de coordenadas local vivero. Por otro lado el cuadrante 19 y una parte del cuadrante 26 tienen una superficie de 344 m²/ punto, lo cual se definió como una zona de baja densidad de abstracción.

4. Análisis y Métodos
4.2. Puntos “verdad de campo”

4.2.1. Materialización puntos de control

La materialización de los puntos de control, en cuanto a la cantidad y distribución, el United States Geological Survey o USGS\(^8\) recomienda un mínimo de 28 puntos: veinte internos y 8 en los bordes del MDE. Dichos puntos se denominaron como puntos de control “verdad de campo”. (USGS, 1999)

Para el caso de la ASPRS recomienda un mínimo de 20 puntos distribuidos uniformemente en la zona de estudio y teniendo en cuenta las condiciones del terreno véase sección 2.1. Una vez definidos el número de puntos se realizó la localización de los puntos en el lote B y apoyándose con GPS autónomo se realizó la materialización de 23 puntos de control o “verdad de campo”. (ASPRS, 2015)

De igual forma la ASPRS recomienda un recubrimiento total de la zona de estudio, lo cual para este proyecto se dividió el terreno a partir de grillas, permitiendo el control y la distribución uniforme de los puntos. Este método controló y determinó las áreas en donde los errores son derivados por fuentes externas. En la Ilustración 4-3 se observa la distribución de los puntos en el lote B, teniendo en cuenta las características morfométricas y el recubrimiento de puntos por grilla.

\(^8\) Servicio geológico y topográfico de Estados Unidos, entidad estatal encargada de control y monitoreo para la generación de mapas topográficos y geológicos
4.2.2. Áreas de baja confianza o ABC

Las áreas de baja de confianza son zonas delimitadas que presentan condiciones poco favorables para la restitución de información tales como: vegetación densa y sombras que se generan por la ubicación del sol de acuerdo a la dirección de vuelo, hora de toma de la fotografía y cambios del terreno por edificaciones y obras de arte. (ASPRS, 2015)

Como se mencionaba en la sección 4.2.1 la distribución de puntos partir de la grilla permitió un mayor control de localización. Aun así como se evaluaron dos MDE es importante contar con puntos sobre toda la zona aun si los puntos están sobre las ABC.

De tal modo que la superficie total de las áreas de baja confianza y vegetadas es de 1.09 Has o un porcentaje del 32% del área total. En la Ilustración 4-4 se observan las áreas de baja confianza donde están resaltados los polígonos de color verde.

Ilustración 4-3. a) Puntos materializados b) distribución de grilla en el Lote B
Fuente: (Autores, 2015)
4.2.3. Georreferenciación puntos verdad de campo y GCP’s

Luego de materializar los puntos verdad de campo se procedió a georreferenciar, por el método de estático relativo rápido con equipos doble frecuencia marca Hiper Lite plus y CHC X91. Cada punto se posicionó con un intervalo de rastreo de 30 minutos, teniendo en cuenta la longitud del vector y condiciones del terreno, lo cual mejora la eficacia del procesamiento.

Para este caso se determinó como punto base V6 por condiciones de seguridad y demás previamente mencionadas y en la georreferenciación de puntos de control o GCP imágenes aéreas, se determinaron zonas homogéneas entre pares estereoscópicos y de igual forma que en los puntos verdad de campo se procedió, a georreferenciar por el método de estático relativo rápido, como se observa en la Ilustración 4-5.
4.2.4. Cálculo y ajuste puntos de control horizontal

En este proceso se ajustó el punto V6 a partir de las bases activas BOGA y BOGT por doble determinación. Materializados y georreferenciados los puntos verdad de campo y utilizando la base pasiva V6 y activa BOGA se ajustaron los puntos verdad de campo y GCP’s; algunos puntos por condiciones e intervalo de rastreo no fue posible hacerlo por este método. En la sección 4.2.3 se definió este método de posicionamiento, esto para obtener eficacia en el procesamiento de datos.

De tal modo que para los puntos con mejores condiciones de posicionamiento se realizó el ajuste por doble determinación. En algunos casos solo se ajustó a partir de uno de los puntos, activo o pasivo, como se observa en la Ilustración 4-6 el posproceso en Leica Geo Office.

Ilustración 4-5. a) Georreferenciación punto verdad de campo 23 b) Georreferenciación punto suplementario 35
Fuente: (Autores, 2015)
Ilustración 4-6. Vectores de ajuste posproceso de gps
Fuente: (Autores, 2015)

<table>
<thead>
<tr>
<th>Punto</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Altura Elipsoidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOGA</td>
<td>4°38'19.25571&quot;N</td>
<td>74°04'47.81807&quot;W</td>
<td>2609.872</td>
</tr>
<tr>
<td>V6</td>
<td>4°35'50.75835&quot; N</td>
<td>74°03'50.54373&quot;W</td>
<td>2758.5771</td>
</tr>
</tbody>
</table>

Tabla 4-7. Puntos de control ajuste horizontal
Fuente: (Autores, 2015)

Para obtener mayor calidad de los puntos Verdad de campo se fija la precisión horizontal en 3 cm en el posproceso del programa Leica Geo Office 5.0, para la altura elipsoidal se omitió este paso. De este ajuste, arrojo un EMC de todo el muestreo no mayor a 2.84 cm en horizontal, lo cual cumple con un nivel de confianza del 95% para los puntos de control, fijado en la configuración del programa, de no mayor a 3 cm. (Farjas Abadia, 2011)

La Tabla 4-8 resume el resultado de las coordenadas geográficas y el EMC horizontal de los puntos procesados.

<table>
<thead>
<tr>
<th>Punto</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Altura Elipsoidal</th>
<th>Solución</th>
<th>EMC N</th>
<th>EMC E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4°35'51.16288&quot;N</td>
<td>74°03'54.40012&quot;W</td>
<td>2734.5424</td>
<td>Fase: todo fijo</td>
<td>0.0015</td>
<td>0.0033</td>
</tr>
<tr>
<td>2</td>
<td>4°35'52.28230&quot;N</td>
<td>74°03'55.39099&quot;W</td>
<td>2726.8627</td>
<td>Fase: todo fijo</td>
<td>0.0025</td>
<td>0.0049</td>
</tr>
</tbody>
</table>

4. Análisis y Métodos
<table>
<thead>
<tr>
<th>Punto</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Altura Elipsoidal</th>
<th>Solución</th>
<th>EMC N</th>
<th>EMC E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4°35'54.77947&quot;N</td>
<td>74°03'56.30314&quot;W</td>
<td>2704.5173</td>
<td>Fase: todo fijo</td>
<td>0.0012</td>
<td>0.0019</td>
</tr>
<tr>
<td>4</td>
<td>4°35'54.33795&quot;N</td>
<td>74°03'55.29221&quot;W</td>
<td>2726.9167</td>
<td>Fase: todo fijo</td>
<td>0.0016</td>
<td>0.0038</td>
</tr>
<tr>
<td>5</td>
<td>4°35'54.49291&quot;N</td>
<td>74°03'54.19450&quot;W</td>
<td>2742.3753</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.0023</td>
</tr>
<tr>
<td>6</td>
<td>4°35'56.91361&quot;N</td>
<td>74°03'54.40524&quot;W</td>
<td>2741.179</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>8</td>
<td>4°35'56.97351&quot;N</td>
<td>74°03'56.62488&quot;W</td>
<td>2703.6313</td>
<td>Fase: todo fijo</td>
<td>0.0009</td>
<td>0.002</td>
</tr>
<tr>
<td>9</td>
<td>4°35'58.82561&quot;N</td>
<td>74°03'55.15277&quot;W</td>
<td>2705.7142</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.0027</td>
</tr>
<tr>
<td>10</td>
<td>4°35'58.69144&quot;N</td>
<td>74°03'54.43530&quot;W</td>
<td>2713.7415</td>
<td>Fase: todo fijo</td>
<td>0.0007</td>
<td>0.001</td>
</tr>
<tr>
<td>12</td>
<td>4°35'59.31782&quot;N</td>
<td>74°03'52.62774&quot;W</td>
<td>2725.0176</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.0025</td>
</tr>
<tr>
<td>13</td>
<td>4°35'59.95780&quot;N</td>
<td>74°03'52.92541&quot;W</td>
<td>2715.173</td>
<td>Fase: todo fijo</td>
<td>0.0012</td>
<td>0.0022</td>
</tr>
<tr>
<td>14</td>
<td>4°36'01.29121&quot;N</td>
<td>74°03'50.48843&quot;W</td>
<td>2703.8732</td>
<td>Fase: todo fijo</td>
<td>0.0015</td>
<td>0.0057</td>
</tr>
<tr>
<td>17</td>
<td>4°35'51.64904&quot;N</td>
<td>74°03'54.96877&quot;W</td>
<td>2731.439</td>
<td>Fase: todo fijo</td>
<td>0.0015</td>
<td>0.0057</td>
</tr>
<tr>
<td>20</td>
<td>4°35'53.25049&quot;N</td>
<td>74°03'55.02794&quot;W</td>
<td>2735.0342</td>
<td>Fase: todo fijo</td>
<td>0.0011</td>
<td>0.0041</td>
</tr>
<tr>
<td>23</td>
<td>4°35'53.61069&quot;N</td>
<td>74°03'56.66269&quot;W</td>
<td>2699.7708</td>
<td>Fase: todo fijo</td>
<td>0.0031</td>
<td>0.0075</td>
</tr>
<tr>
<td>25</td>
<td>4°36'00.86211&quot;N</td>
<td>74°03'52.00273&quot;W</td>
<td>2722.186</td>
<td>Fase: todo fijo</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>26</td>
<td>4°36'00.50933&quot;N</td>
<td>74°03'50.70604&quot;W</td>
<td>2713.4054</td>
<td>Fase: todo fijo</td>
<td>0.004</td>
<td>0.0071</td>
</tr>
<tr>
<td>27</td>
<td>4°35'56.01329&quot;N</td>
<td>74°03'56.06990&quot;W</td>
<td>2712.9677</td>
<td>Fase: todo fijo</td>
<td>0.0013</td>
<td>0.0027</td>
</tr>
<tr>
<td>28</td>
<td>4°35'55.66809&quot;N</td>
<td>74°03'54.55961&quot;W</td>
<td>2743.5288</td>
<td>Fase: todo fijo</td>
<td>0.0007</td>
<td>0.001</td>
</tr>
<tr>
<td>29</td>
<td>4°35'52.39191&quot;N</td>
<td>74°03'54.87862&quot;W</td>
<td>2732.142</td>
<td>Fase: todo fijo</td>
<td>0.0011</td>
<td>0.0024</td>
</tr>
<tr>
<td>30</td>
<td>4°35'54.08419&quot;N</td>
<td>74°03'54.50126&quot;W</td>
<td>2735.7316</td>
<td>Fase: todo fijo</td>
<td>0.0019</td>
<td>0.0049</td>
</tr>
<tr>
<td>31</td>
<td>4°35'52.17256&quot;N</td>
<td>74°03'53.86528&quot;W</td>
<td>2734.8343</td>
<td>Fase: todo fijo</td>
<td>0.0019</td>
<td>0.0047</td>
</tr>
<tr>
<td>32</td>
<td>4°35'58.72721&quot;N</td>
<td>74°03'55.40105&quot;W</td>
<td>2700.328</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>33</td>
<td>4°35'57.90688&quot;N</td>
<td>74°03'55.53839&quot;W</td>
<td>2710.124</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>34</td>
<td>4°35'53.64370&quot;N</td>
<td>74°03'53.05116&quot;W</td>
<td>2745.239</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>35</td>
<td>4°36'01.44299&quot;N</td>
<td>74°03'50.15542&quot;W</td>
<td>2704.314</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>36</td>
<td>4°35'57.50511&quot;N</td>
<td>74°03'57.06931&quot;W</td>
<td>2698.053</td>
<td>Fase: todo fijo</td>
<td>0.001</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

Tabla 4-8. Coordenadas ajustadas puntos “verdad de campo”

Fuente: (Autores, 2015)

4. Análisis y Métodos
4.2.5. Nivelación puntos de verdad campo y GCP

La red de nivelación está distribuida en los lotes A y B Universidad distrital Francisco José de Caldas sección 3.3. Esta se empleó como chequeo de los circuitos o anillos de nivelación para obtener las cotas de los puntos verdad de campo y GCP. La precisión de los modelos determinó que la tolerancia de error para la nivelación es de tercer orden por lo cual no fue riguroso el ajuste. Se observa en la Ilustración 4-7 a) Rutas de nivelación en campo b) nivelación de anillos en campo.
Ilustración 4-7 a) Rutas de nivelación en campo b) Nivelación de anillos en campo
Fuente: (Autores, 2015)

Para la nivelación de los puntos verdad de campo y puntos de control de las imágenes aéreas o GCP se usaron los siguientes equipos: primer anillo un nivel automático topcon ATB-4 y a partir del anillo 2 hasta el 7 se usó el nivel digital topcon DL 102C, para reducir los errores de adquisición de niveles.

En la Tabla 4-9 se presentan el ajuste de anillos a partir de la Ecuación 6, sección 2.3.1 ecuación de tolerancia geométrica de longitud por anillo.

<table>
<thead>
<tr>
<th>Id</th>
<th>Cota (m)</th>
<th>Punto</th>
<th>Cota (m)</th>
<th>Punto</th>
<th>Tolerancia</th>
<th>Δz</th>
<th>Distancia (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anillo-1</td>
<td>2734.741</td>
<td>V6</td>
<td>2714.123</td>
<td>NP-59</td>
<td>11.1 mm</td>
<td>-11 mm</td>
<td>850</td>
</tr>
<tr>
<td>Anillo-2</td>
<td>2714.134</td>
<td>NP59</td>
<td>2684.103</td>
<td>CN-03</td>
<td>6.8 mm</td>
<td>-0.5 mm</td>
<td>322</td>
</tr>
<tr>
<td>Anillo-3</td>
<td>2723.6241</td>
<td>C-7</td>
<td>2718.592</td>
<td>TT-16</td>
<td>4.5 mm</td>
<td>-2.0 mm</td>
<td>143</td>
</tr>
<tr>
<td>Anillo-4</td>
<td>2718.5928</td>
<td>TT-16</td>
<td>2710.3807</td>
<td>TT-14</td>
<td>3.8 mm</td>
<td>-2.0 mm</td>
<td>102</td>
</tr>
<tr>
<td>Anillo-5</td>
<td>2684.1031</td>
<td>CN-03</td>
<td>2700.1677</td>
<td>BM-1</td>
<td>4.7 mm</td>
<td>2.0 mm</td>
<td>151</td>
</tr>
<tr>
<td>Anillo-6</td>
<td>2684.1031</td>
<td>CN-03</td>
<td>2684.1027</td>
<td>CN-3</td>
<td>7.6 mm</td>
<td>7.0 mm</td>
<td>400</td>
</tr>
<tr>
<td>Anillo-7</td>
<td>2700.168</td>
<td>BM-1</td>
<td>2678.873</td>
<td>BM-2</td>
<td>5.4 mm</td>
<td>3.0 mm</td>
<td>200</td>
</tr>
</tbody>
</table>

Tabla 4-9. Resumen de anillos de nivelación
Fuente: (Autores, 2015)

4. Análisis y Métodos
4.2.6. Coordenadas puntos verdad de campo y GCP

Para obtener las coordenadas de los puntos de control verdad de campo para la evaluación de calidad, se creó el sistema de coordenadas planas vivero en el programa Magna Sirgas pro de las coordenadas geográficas sección 4.2.4. Por otro lado se obtuvo la cota geométrica de cada punto derivado de los anillos de control sección 4.2.5.

Los resultados de los puntos verdad de campo y GCP, proyectados en el sistema de coordenadas planas vivero en época de referencia año 2015,8, referidos con cota geométrica de la red vertical Vivero se resumen en la Tabla 4-10; las coordenadas: Norte, Este y cota geométrica.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Norte Vivero</th>
<th>Este Vivero</th>
<th>Altura Geométrica</th>
<th>Observación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000148.702</td>
<td>1001375.572</td>
<td>2710.637</td>
<td>GPS</td>
</tr>
<tr>
<td>2</td>
<td>1000183.102</td>
<td>1001345.017</td>
<td>2703.459</td>
<td>GPS</td>
</tr>
<tr>
<td>3</td>
<td>1000259.841</td>
<td>1001316.89</td>
<td>2680.631</td>
<td>GPS</td>
</tr>
<tr>
<td>4</td>
<td>1000246.273</td>
<td>1001348.063</td>
<td>2702.980</td>
<td>GPS</td>
</tr>
<tr>
<td>5</td>
<td>1000251.035</td>
<td>1001381.913</td>
<td>2718.497</td>
<td>GPS</td>
</tr>
<tr>
<td>6</td>
<td>1000325.423</td>
<td>1001375.414</td>
<td>2717.427</td>
<td>GPS</td>
</tr>
<tr>
<td>7</td>
<td>1000327.264</td>
<td>1001306.969</td>
<td>2679.792</td>
<td>GPS</td>
</tr>
<tr>
<td>8</td>
<td>1000384.180</td>
<td>1001352.363</td>
<td>2681.838</td>
<td>GPS</td>
</tr>
<tr>
<td>9</td>
<td>1000380.057</td>
<td>1001374.488</td>
<td>2689.893</td>
<td>GPS</td>
</tr>
<tr>
<td>10</td>
<td>1000401.579</td>
<td>1001430.226</td>
<td>2701.177</td>
<td>GPS</td>
</tr>
<tr>
<td>11</td>
<td>1000418.973</td>
<td>1001421.047</td>
<td>2691.218</td>
<td>GPS</td>
</tr>
<tr>
<td>12</td>
<td>1000411.537</td>
<td>1001377.809</td>
<td>2679.092</td>
<td>GPS</td>
</tr>
<tr>
<td>13</td>
<td>1000390.945</td>
<td>1001467.180</td>
<td>2708.947</td>
<td>ESTACIÓN</td>
</tr>
<tr>
<td>14</td>
<td>1000459.949</td>
<td>1001496.195</td>
<td>2680.090</td>
<td>GPS</td>
</tr>
<tr>
<td>15</td>
<td>1000409.065</td>
<td>1001506.875</td>
<td>2687.351</td>
<td>ESTACIÓN</td>
</tr>
<tr>
<td>16</td>
<td>1000163.642</td>
<td>1001358.037</td>
<td>2707.649</td>
<td>GPS</td>
</tr>
<tr>
<td>17</td>
<td>1000212.855</td>
<td>1001356.213</td>
<td>2711.172</td>
<td>GPS</td>
</tr>
<tr>
<td>18</td>
<td>1000216.820</td>
<td>1001382.970</td>
<td>2719.534</td>
<td>ESTACIÓN</td>
</tr>
<tr>
<td>19</td>
<td>1000223.924</td>
<td>1001305.803</td>
<td>2676.038</td>
<td>GPS</td>
</tr>
<tr>
<td>20</td>
<td>1000446.762</td>
<td>1001449.499</td>
<td>2698.379</td>
<td>GPS</td>
</tr>
<tr>
<td>21</td>
<td>1000435.921</td>
<td>1001489.484</td>
<td>2689.573</td>
<td>GPS</td>
</tr>
<tr>
<td>22</td>
<td>1000297.756</td>
<td>1001324.082</td>
<td>2688.901</td>
<td>GPS</td>
</tr>
<tr>
<td>23</td>
<td>1000287.148</td>
<td>1001370.654</td>
<td>2719.615</td>
<td>GPS</td>
</tr>
<tr>
<td>24</td>
<td>1000186.470</td>
<td>1001360.817</td>
<td>2708.319</td>
<td>GCP</td>
</tr>
<tr>
<td>25</td>
<td>1000238.475</td>
<td>1001344.707</td>
<td>2711.829</td>
<td>GCP</td>
</tr>
<tr>
<td>26</td>
<td>1000381.156</td>
<td>1001344.707</td>
<td>2676.494</td>
<td>GCP</td>
</tr>
</tbody>
</table>
De acuerdo a la Tabla 4-10, columna observación, desde el punto 1 hasta el 28 se definen como puntos verdad de campo, a partir del punto 29 hasta el 36 se definen como GCP o puntos de control en tierra de las imágenes aéreas. Por otro lado los puntos 15, 18 y 22 presentaron en el posicionamiento condiciones poco favorables, por lo que se realizó el levantamiento de los puntos por bisección inversa o estación libre; con un resultado del EMC horizontal no mayor a 2 cm.

<table>
<thead>
<tr>
<th>Puntos</th>
<th>Norte Vivero</th>
<th>Este Vivero</th>
<th>Altura Geométrica</th>
<th>Observación</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>1000355.947</td>
<td>1001340.472</td>
<td>2686.373</td>
<td>GCP</td>
</tr>
<tr>
<td>34</td>
<td>1000224.938</td>
<td>1001417.169</td>
<td>2721.647</td>
<td>GCP</td>
</tr>
<tr>
<td>35</td>
<td>1000464.613</td>
<td>1001506.464</td>
<td>2678.908</td>
<td>GCP</td>
</tr>
<tr>
<td>36</td>
<td>1000343.601</td>
<td>1001293.264</td>
<td>2674.381</td>
<td>GCP</td>
</tr>
</tbody>
</table>

Tabla 4-10. Coordenadas verdad de campo
Fuente: (Autores, 2015)
4.3. Aerotriangulación

Ilustración 4-8 Diagrama de flujo procesamiento y generación de ortofotos
Fuente: (Erdas Imagine photogrammetry 2014) adaptación

Cuando se maneja una herramienta como LPS core se debe hablar de por lo menos dos imágenes. En este módulo fotogramétrico del software ERDAS, se pueden tomar esas dos imágenes o un grupo n de imágenes sueltas y conformar con estas imágenes un bloque de imágenes interrelacionada, mediante una serie de componentes que son necesarios para realizar este proceso de ajuste de bloque. El cual es una de las principales funciones de LPS.

Como se mencionó anteriormente, la primera fase del estudio fue necesario la creación del bloque homogéneo, a partir de dos imágenes (11 001 000 15 20 11 2007-11377 C.tif-11 001 000 15 20 11 2007-11378 C.tif) capturadas por el sensor UltraCamD Vexcel. El cual permitió en su último tratamiento la derivación de productos cartográficos como lo fue el MDE y ortofoto implementado para el estudio caso.
4.3.1. Metadatos

Para obtener la ortofoto y MDE es indispensable contar con los elementos que componen la imagen aérea como altura de vuelo, distancia focal y GSD. Como determinante para realizar la evaluación de calidad se calcula el GSD para el desarrollo de la aerotriangulación.

En esta sección se calculó el GSD de las imágenes aéreas, a partir de la distancia de una estructura visible de las imágenes con respecto a la distancia en campo; a partir de esta información también se obtiene la altura de vuelo. Por otro lado la distancia focal se obtuvo a partir de la referencia o marca de la cámara. El pixel medido en campo para estas imágenes, es aproximadamente de 18 cm, por lo tanto el GSD calculado según el tamaño de pixel en la imagen, a partir de la referencia medida en campo, es de 18 cm.

\[
GSD = \frac{17 \text{ cm}}{9 \text{ micrones}} = 18 \text{ cm}
\]

Ecuación 7. GSD
Fuente: (Inter American Geodesic Service)

Una vez calculado el GSD se determinó la altura de vuelo, la cual se calculó a partir de la ecuación 8 y teniendo en cuenta la distancia focal que es de 105.2 mm y el valor del GSD que es de 180 mm y por último el tamaño del pixel que es 9 micrones.

\[
H = \frac{105.2 \text{ mm} \times 180 \text{ mm}}{9 \text{ micrones}} = 2100 \text{ metros}
\]

Ecuación 8. Altura de vuelo
Fuente: (Inter American Geodesic Service)

La altura de vuelo de las imágenes aéreas es de 2100 metros en la zona de traslapo. En la Tabla 4-11 se resumen características de las imágenes como: altura de vuelo, GSD, distancia focal “f”, escala de mapa y escala de fotografía.

<table>
<thead>
<tr>
<th>Características de las Imágenes Aéreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotografías No: 11377-11378</td>
</tr>
<tr>
<td>Imagen 1: 11377</td>
</tr>
<tr>
<td>Imagen 2: 11378</td>
</tr>
<tr>
<td>Orientación de vuelo: Oriente-Occidente</td>
</tr>
<tr>
<td>GSD: 18 cm</td>
</tr>
</tbody>
</table>

4. Análisis y Métodos
4. Análisis y Métodos

Características de las Imágenes Aéreas

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño del pixel:</td>
<td>9 Micrones</td>
</tr>
<tr>
<td>Tamaño de la imagen (filas x columnas):</td>
<td>7500x11500</td>
</tr>
<tr>
<td>Fecha de captura:</td>
<td>Abril 2007</td>
</tr>
<tr>
<td>Recubrimiento (longitudinal-transversal):</td>
<td>60%-40%</td>
</tr>
<tr>
<td>Tamaño de la imagen (Ancho/Largo):</td>
<td>1.4 km/2.1 km</td>
</tr>
<tr>
<td>Referencia de cámara:</td>
<td>Ultracam Vexcel Microsoft</td>
</tr>
<tr>
<td>Distancia focal:</td>
<td>105.2 mm</td>
</tr>
<tr>
<td>Altura de vuelo:</td>
<td>2100 metros</td>
</tr>
<tr>
<td>Escala de fotografía:</td>
<td>1:3600</td>
</tr>
<tr>
<td>Escala de mapa:</td>
<td>1:2000</td>
</tr>
</tbody>
</table>

Tabla 4-11. Características de las imágenes aéreas

Fuente: (Autores, 2015)

Estas imágenes presentan un GSD de 18 cm, el manual ASPRS 2015, define que a partir de esta característica presenta un error medio cuadrático total o EMCe de 25 cm horizontal en la ortofoto. (ASPRS, 2015)

4.3.2. Orientación

Esta sección se realizó la selección de los puntos de control en tierra o GCP. Que determinan el traslapo de las imágenes, el recubrimiento y el área del proyecto. En la ilustración 4-9 se observan los GCP distribuidos en el lote B.
4.3.3. Orientación interior

El bloque creado contiene una serie de características como la proyección, que para este proyecto, fue la proyección Transversa Mercator del sistema de coordenadas planas “Vivero” Tabla 3-1, el cual está asociado sobre red vertical Vivero. A partir de estos sistemas de referencia y características de la cámara se aplicaron las correcciones de vuelo omega, fi y capa ($\omega$, $\varphi$, $\kappa$), como se observa en la Tabla 4-12.

<table>
<thead>
<tr>
<th>Imagen</th>
<th>Xs</th>
<th>Ys</th>
<th>Zs</th>
<th>OMEGA ($\omega$)</th>
<th>PHI ($\varphi$)</th>
<th>KAPPA ($\kappa$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1377</td>
<td>1001869.34</td>
<td>999750.158</td>
<td>5194.0346</td>
<td>-0.0186</td>
<td>-0.2902</td>
<td>88.4075</td>
</tr>
<tr>
<td>1378</td>
<td>1001877.71</td>
<td>1000104.1</td>
<td>5193.6769</td>
<td>-0.0233</td>
<td>-0.2937</td>
<td>88.9215</td>
</tr>
</tbody>
</table>

Tabla 4-12. Resultados de la orientación exterior
Fuente: (Autores, 2015)

Según la información obtenida, de los metadatos y una vez cargadas las imágenes en el programa ERDAS IMAGINE 2014, se realizó la orientación interior a partir de los
siguientes parámetros, distancia focal, marca principal en Xo y marca principal Yo como se observa en la Tabla 4-13.

<table>
<thead>
<tr>
<th>Imagen</th>
<th>f(mm)</th>
<th>Xo(mm)</th>
<th>Yo(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105.2</td>
<td>-0.18</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>105.2</td>
<td>-0.18</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 4-13. Parámetros orientación interna de las fotografías
Fuente: (Autores, 2015)

4.3.4. Orientación exterior

Luego de realizar un análisis a los detalles contenidos en las fotografías. Se eligieron los puntos con las siguientes condiciones: visibilidad del detalle en ambas fotografías y buena recepción para la georreferenciación. En la Tabla 4-14 se resume la selección de los puntos con las mejores condiciones, los cuales para este proyecto son: 29, 31, 32 y 35.

<table>
<thead>
<tr>
<th>Id</th>
<th>Norte</th>
<th>Este</th>
<th>Cota</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>1000186.47</td>
<td>1001360.817</td>
<td>2708.319</td>
<td>GCP</td>
</tr>
<tr>
<td>31</td>
<td>1000179.729</td>
<td>1001392.065</td>
<td>2710.994</td>
<td>GCP</td>
</tr>
<tr>
<td>32</td>
<td>1000381.156</td>
<td>1001344.707</td>
<td>2676.494</td>
<td>GCP</td>
</tr>
<tr>
<td>35</td>
<td>1000464.613</td>
<td>1001506.464</td>
<td>2678.908</td>
<td>GCP</td>
</tr>
</tbody>
</table>

Tabla 4-14. Coordenadas puntos de control GCP
Fuente: (Autores, 2015)

Las coordenadas de recubrimiento de la zona, determinaron la orientación exterior con un error medio cuadrático total de 13 cm. A partir de esta metodología eliminó la paralaje, logrando así en las dos imágenes una superposición. En la Tabla 4-15 se presentan los resultados del EMC de cada uno de los puntos localizados en la imagen 11377.

<table>
<thead>
<tr>
<th>Id punto</th>
<th>Vx</th>
<th>Vy</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>-0.037</td>
<td>-0.012</td>
</tr>
<tr>
<td>35</td>
<td>0.03</td>
<td>0.187</td>
</tr>
<tr>
<td>31</td>
<td>-0.036</td>
<td>0.142</td>
</tr>
<tr>
<td>29</td>
<td>0.043</td>
<td>0.251</td>
</tr>
</tbody>
</table>

Tabla 4-15. Resultado de Aerotriangulación imagen 11377
Fuente: (Autores, 2015)

La Tabla 4-15 resume que el resultado total de los puntos de control en tierra para la imagen 1 el EMC horizontal, para 4 puntos de control, en Este es de 0.037m y Norte es de 0.172m.


EVALUACIÓN DE CALIDAD EN MODELOS DIGITALES DE ELEVACIÓN GENERADOS A PARTIR DE METODOS DE CAPTURA DIRECTA E INDIRECTA; CASO DE ESTUDIO, LOTE B PERTENECIENTE A LA SEDE EL VIVERO DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS

### 4. Análisis y Métodos

<table>
<thead>
<tr>
<th>Punto ID</th>
<th>Vx</th>
<th>Vy</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.033</td>
<td>-0.005</td>
</tr>
<tr>
<td>35</td>
<td>-0.031</td>
<td>-0.175</td>
</tr>
<tr>
<td>31</td>
<td>0.043</td>
<td>-0.137</td>
</tr>
<tr>
<td>29</td>
<td>-0.04</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

Tabla 4-16. Resultado de Aerotriangulación imagen 11378
Fuente: (Autores, 2015)

Con un resultado para la imagen 2 del EMC horizontal para 4 puntos, en la coordenadas Este de 0.037m y en la coordenada Norte de 0.167m. Para un número total de puntos de 4 el EMC horizontal resultante en la coordenada Este es 0.037m y en la coordenada Norte de 0.17m.

Para este proyecto el error medio cuadrático total, de los puntos de control de tierra o GCP es de 13 cm. De acuerdo a lo mencionado en la sección 4.3.1, el valor del GSD de la imagen es de 18 cm. En la Ilustración 4-10 se observa el error medio cuadrático total de los puntos de control en tierra o GCP de las imágenes en el módulo fotogramétrico ERDAS 2014.

![Ilustración 4.10. Resultados de ajuste de EMC total](autores, 2015)

De la Tabla 4-17 se resume que: el error Medio Cuadrático horizontal de los 4 puntos en el par de imágenes presentan una desviación parcial en la coordenada Este que es de...
0.001m y en la coordenada Norte de 0.17m, y la desviación total de los 4 puntos de las imágenes en Este es de 0.001m y en Norte de 0.170m.

<table>
<thead>
<tr>
<th>Punto</th>
<th>Imagen</th>
<th>Vx</th>
<th>Vy</th>
<th>Imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-0.004</td>
<td>11377</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>0</td>
<td>0.004</td>
<td>11378</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0.001</td>
<td>0.181</td>
<td>11377</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>0.001</td>
<td>-0.181</td>
<td>11378</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0.001</td>
<td>0.14</td>
<td>11377</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>0.001</td>
<td>-0.14</td>
<td>11378</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0.001</td>
<td>0.251</td>
<td>11377</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>0.001</td>
<td>-0.251</td>
<td>11378</td>
</tr>
</tbody>
</table>

Tabla 4-17 Error medio cuadrático orientación exterior por imagen
Fuente: (Autores, 2015)

En la Ilustración 4-11 se presenta el bloque ajustado el cual permitió verificar la calidad de los puntos de control y parámetros en cada uno de los procesos. (Erdas Imagine photogrammetry 2014)

Ilustración 4-11. Bloque ajustado de las imágenes aéreas
Fuente: (Autores, 2015)
4.3.5. Modelo Digital de Elevación “Raster”

En la generación del modelo digital de elevación, se definió el formato de salida como raster. El programa según sus características e interoperabilidad permite el manejo del MDE y configuración para la salida raster.

Para la generación del MDE, fue utilizada la herramienta del DTM extracción del módulo de fotogrametría del software ERDAS IMAGINE 2014, en el cual fue configurado el tipo de archivo de salida del MDE como raster, con un tamaño de celda de salida de 1m por 1m, Ilustración 4-12.

Ilustración 4-12. Configuración del tipo de archivo y tamaño de la celda para el raster de salida Fuente: (Autores, 2015)

Por otro lado para el raster se configuró el sistema de coordenadas planas, de acuerdo a la configuración inicial en los puntos de control en terreno o GCP; se realizó la configuración del sistema de coordenadas planas en Vivero. En la Ilustración 4-13 se observa la configuración del sistema de coordenadas planas, para el formato de salida raster.

Ilustración 4-13 Configuración del sistema de referencia y las unidades de salida del MDE Fuente: (Autores, 2015)

En cuanto al modelamiento fueron implementados dos algoritmos distintos, debido a las características y cambio de pendientes del par estereoscópico de imágenes. Para el estudio caso se determinaron las siguientes configuraciones: High Urban y High Mountain.
En la Ilustración 4-14 se observa la configuración según el área de selección los algoritmos para la generación del raster de salida.

Ilustración 4-14 Configuración empleada para en la generación del MDE
Fuente: (Autores, 2015)

En la configuración de la propiedades avanzadas, se decidió alimentar el MDE con mediciones directas en el área de estudio para mejorar la definición del raster de salida, de esta manera se logró una evaluación más precisa, como se observa en la Ilustración 4-15 de los puntos levantados con estación total.

Ilustración 4-15 Mediciones directas para alimentación del raster de salida
Fuente: (Autores, 2015)

4. Análisis y Métodos
En el módulo de generación de extracción de modelo se suben los puntos, como feature con atributos de cota en 3d, de igual forma en este módulo se estableció la calidad de los puntos de unión o tie points, por lo tanto solo se generaron los puntos de unión en la zona de recubrimiento como se observa en Ilustración 4-15 la configuración en la pestaña alimentación de datos o seed data.

<table>
<thead>
<tr>
<th>Row #</th>
<th>Seed Data Source</th>
<th>Use As Seeds</th>
<th>Write Seeds to Output DTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Block GCPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Block Chk Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Block Tie Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>modelo/shape/obras/obras_arte.shp</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>5</td>
<td>modelo/shape/puntos/3dpoints.shp</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Ilustración 4-16 Configuración generación del MDE
Fuente: (Autores, 2015)

4.3.6. Resumen MDE topografía indirecta

La rugosidad del terreno de topografía indirecta es de complejidad media con pendientes del 1% hasta un 90% o con una clasificación morfométrica de: planicie, ondulado, colimado y lomerío.

La zona noroccidental tiene una altura máxima de 2580 metros, y es debido a la presencia de vegetación alta, como en esta zona no se realizó la alimentación de datos externos se generó este error en la identificación de altura en el pixel. Como se observa en la Ilustración 4-17 a) clasificación morfométrica b) raster con los puntos verdad de campo y c) modelo 3D malla rectangular, se observan los picos en el modelo o cambios de pendiente abrupto, en la zona de vegetación alta.
4. Análisis y Métodos

Ilustración 4-17. a) Clasificación morfométrica b) MDE Raster con los puntos verdad de campo superpuestos c) Modelo 3D malla rectangular

Fuente: (Autores, 2015)
5. Resultados

Para obtener las cotas de los MDE tipo raster y TIN se tomaron como base las coordenadas Norte y Este sección 4.2.6 de los puntos verdad de campo para realizar la extracción del raster en Arcgis 10.1 e interpolación de cota TIN en Autocad Civil 3d 2012. Se toman de forma absoluta las coordenadas Norte y Este de los puntos verdad de campo. Por ello en la sección 4.1.4 se evaluó el EMCe horizontal de topografía directa. Su resultado determinó que no hay degradación de los datos crudos o desplazamiento por cambios significativos de tiempo, en topografía directa.

Partiendo de los resultados del EMCe horizontal topografía directa y EMC del procesamiento de imágenes aéreas se realizó la evaluación de calidad. En la Tabla 5-1 se relaciona la cota geométrica o verdad de campo, trigonométrica o MDE topografía directa, raster o MDE topografía indirecta y diferencias entre verdad de campo versus topografía directa y verdad de campo versus topografía indirecta todo referido en unidades de metros.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2710.637</td>
<td>2710.624</td>
<td>2714.898</td>
<td>0.013</td>
<td>-4.261</td>
<td>ABC</td>
</tr>
<tr>
<td>2</td>
<td>2703.459</td>
<td>2703.380</td>
<td>2702.333</td>
<td>0.080</td>
<td>1.126</td>
<td>VVA</td>
</tr>
<tr>
<td>3</td>
<td>2680.631</td>
<td>2680.118</td>
<td>2687.979</td>
<td>0.513</td>
<td>-7.348</td>
<td>ABC</td>
</tr>
<tr>
<td>4</td>
<td>2702.980</td>
<td>2702.044</td>
<td>2701.570</td>
<td>0.937</td>
<td>1.410</td>
<td>VVA</td>
</tr>
<tr>
<td>5</td>
<td>2718.497</td>
<td>2718.162</td>
<td>2717.706</td>
<td>0.335</td>
<td>0.791</td>
<td>VVA</td>
</tr>
<tr>
<td>6</td>
<td>2717.427</td>
<td>2717.117</td>
<td>2715.758</td>
<td>0.309</td>
<td>1.669</td>
<td>NVA</td>
</tr>
<tr>
<td>8</td>
<td>2679.792</td>
<td>2678.885</td>
<td>2678.062</td>
<td>0.907</td>
<td>1.730</td>
<td>NVA</td>
</tr>
<tr>
<td>9</td>
<td>2681.838</td>
<td>2680.775</td>
<td>2680.399</td>
<td>1.063</td>
<td>1.439</td>
<td>NVA</td>
</tr>
<tr>
<td>10</td>
<td>2689.893</td>
<td>2690.020</td>
<td>2688.853</td>
<td>-0.126</td>
<td>1.041</td>
<td>NVA</td>
</tr>
<tr>
<td>12</td>
<td>2701.177</td>
<td>2701.426</td>
<td>2712.344</td>
<td>-0.249</td>
<td>-11.167</td>
<td>ABC</td>
</tr>
<tr>
<td>13</td>
<td>2691.218</td>
<td>2690.323</td>
<td>2695.839</td>
<td>0.895</td>
<td>-4.622</td>
<td>ABC</td>
</tr>
<tr>
<td>14</td>
<td>2679.092</td>
<td>2677.488</td>
<td>2677.427</td>
<td>1.604</td>
<td>1.664</td>
<td>VVA</td>
</tr>
<tr>
<td>15</td>
<td>2708.947</td>
<td>2708.711</td>
<td>2708.883</td>
<td>0.236</td>
<td>0.064</td>
<td>NVA</td>
</tr>
<tr>
<td>17</td>
<td>2680.090</td>
<td>2679.938</td>
<td>2722.783</td>
<td>0.152</td>
<td>-42.693</td>
<td>ABC</td>
</tr>
<tr>
<td>18</td>
<td>2687.351</td>
<td>2687.355</td>
<td>2720.362</td>
<td>-0.005</td>
<td>-33.011</td>
<td>ABC</td>
</tr>
<tr>
<td>20</td>
<td>2707.649</td>
<td>2707.203</td>
<td>2707.253</td>
<td>0.446</td>
<td>0.396</td>
<td>VVA</td>
</tr>
<tr>
<td>21</td>
<td>2711.172</td>
<td>2710.731</td>
<td>2710.754</td>
<td>0.441</td>
<td>0.417</td>
<td>NVA</td>
</tr>
</tbody>
</table>
5. Resultados

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2719.534</td>
<td>2718.962</td>
<td>2718.616</td>
<td>0.571</td>
<td>0.918</td>
<td>NVA</td>
</tr>
<tr>
<td>23</td>
<td>2676.038</td>
<td>2676.572</td>
<td>2686.285</td>
<td>-0.534</td>
<td>-10.247</td>
<td>ABC</td>
</tr>
<tr>
<td>25</td>
<td>2698.379</td>
<td>2697.971</td>
<td>2697.449</td>
<td>0.408</td>
<td>0.930</td>
<td>ABC</td>
</tr>
<tr>
<td>26</td>
<td>2689.573</td>
<td>2689.259</td>
<td>2705.779</td>
<td>0.314</td>
<td>-16.207</td>
<td>ABC</td>
</tr>
<tr>
<td>27</td>
<td>2688.901</td>
<td>2688.744</td>
<td>2687.337</td>
<td>0.157</td>
<td>1.564</td>
<td>NVA</td>
</tr>
<tr>
<td>28</td>
<td>2719.615</td>
<td>2718.566</td>
<td>2718.226</td>
<td>1.049</td>
<td>1.389</td>
<td>VVA</td>
</tr>
</tbody>
</table>

Tabla 5-1. Resumen de Alturas y diferencias
Fuente: (Autores, 2015)

La columna descripción divide los puntos verdad de campo de acuerdo a la localización por categorías, en relación a las condiciones del terreno.

5.1. Análisis de resultados

5.1.1. Evaluación de calidad método ASPRS

De acuerdo con la Tabla 5-2, las diferencias entre cota geométrica y trigonométrica presenta un EMCz vertical de 0.63 metros; a diferencia de verdad de campo versus topografía indirecta que es de 1.25 metros. De acuerdo con la NSSDA9 el nivel de confianza al 95% es de 2.44 metros. (ASPRS, 2015)

Cabe aclarar que se tienen en cuenta las restricciones y condiciones mencionadas, sección 2.1, áreas de baja confianza, por lo tanto se omitieron los puntos con diferencias atípicas como son los puntos 1, 3, 12, 13, 17, 18, 23, 25 y 26 para obtener mejor distribución de las diferencias, solo en el caso de la comparación verdad de campo versus topografía indirecta.

Para este caso los puntos se dividen en relación a las condiciones del terreno como NVA, VVA y son incluidas en la Tabla 5-1 para la evaluación del EMCz vertical, con el objetivo de determinar el nivel de confianza de las diferencias entre verdad de campo versus topografía indirecta a partir de la Ecuación 2. En la Tabla 5-2 se presentan las diferencias de cotas y estadística descriptiva puntos verdad de campo versus topografía directa e indirecta.

9 Estándar Nacional para precisión de Datos Espaciales de Estados Unidos
### Tabla 5-2. Relación de diferencias y evaluación de calidad ASPRS

<table>
<thead>
<tr>
<th>Puntos</th>
<th>DA (m)</th>
<th>Puntos</th>
<th>DB (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.013</td>
<td>2</td>
<td>1.126</td>
</tr>
<tr>
<td>2</td>
<td>0.080</td>
<td>4</td>
<td>1.410</td>
</tr>
<tr>
<td>3</td>
<td>0.513</td>
<td>5</td>
<td>0.791</td>
</tr>
<tr>
<td>4</td>
<td>0.937</td>
<td>6</td>
<td>1.669</td>
</tr>
<tr>
<td>5</td>
<td>0.335</td>
<td>8</td>
<td>1.730</td>
</tr>
<tr>
<td>6</td>
<td>0.309</td>
<td>9</td>
<td>1.439</td>
</tr>
<tr>
<td>8</td>
<td>0.907</td>
<td>10</td>
<td>1.041</td>
</tr>
<tr>
<td>9</td>
<td>1.063</td>
<td>14</td>
<td>1.664</td>
</tr>
<tr>
<td>10</td>
<td>-0.126</td>
<td>15</td>
<td>0.064</td>
</tr>
<tr>
<td>12</td>
<td>-0.249</td>
<td>20</td>
<td>0.396</td>
</tr>
<tr>
<td>13</td>
<td>0.895</td>
<td>21</td>
<td>0.417</td>
</tr>
<tr>
<td>14</td>
<td>1.604</td>
<td>22</td>
<td>0.918</td>
</tr>
<tr>
<td>15</td>
<td>0.236</td>
<td>27</td>
<td>1.564</td>
</tr>
<tr>
<td>17</td>
<td>0.152</td>
<td>28</td>
<td>1.389</td>
</tr>
<tr>
<td>18</td>
<td>-0.005</td>
<td>EMCz</td>
<td>1.225</td>
</tr>
<tr>
<td>20</td>
<td>0.446</td>
<td>No. Datos</td>
<td>14</td>
</tr>
<tr>
<td>21</td>
<td>0.441</td>
<td>Desv. Est</td>
<td>0.535</td>
</tr>
<tr>
<td>22</td>
<td>0.571</td>
<td>VAR</td>
<td>0.286</td>
</tr>
<tr>
<td>23</td>
<td>-0.534</td>
<td>3*Desv. Est</td>
<td>1.604</td>
</tr>
<tr>
<td></td>
<td>0.408</td>
<td>NSSDA</td>
<td>1.96*EMCe</td>
</tr>
</tbody>
</table>

Fuente: (Autores, 2015)

Las diferencias para topografía directa o DA, su resultado del error medio cuadrático vertical total o EMCz es de 0.634 metros y con una desviación estándar de 0.49 metros el

5. **Resultados**
valor del nivel de confianza al 95% es 1.242 metros. Por otro lado para topografía indirecta o DB el error medio cuadrático vertical total o EMCz es 1.225 metros con una desviación estándar de 0.535 metros el valor del nivel de confianza al 95% es 2.44 metros.

En la sección 5 se realizó la categorización, de acuerdo a las condiciones del terreno de la siguiente forma: sin vegetación o “NVA” y con vegetación o “VVA”. La clase VVA no necesariamente sigue una distribución normal; de igual forma el manual de la ASPRS resalta los valores que sobre pasen la restricción de tres veces la desviación estándar también definidos como no defendibles, y son puntos sin bases aplicativas para el cálculo del EMCx horizontal y EMCz vertical. Para este caso DB no sobrepasa esta restricción, pero DA sobrepasa este valor en el punto 14 y se incluye en la evaluación de calidad y pruebas de normalidad. (ASPRS, 2015)

De igual forma que la evaluación de calidad vertical se realiza la evaluación de calidad horizontal. Para este proyecto no se realizó la evaluación de calidad horizontal de la ortofoto por lo tanto los valores que se presentan en la Tabla 5-3 fueron obtenidos a partir del GSD que define la precisión horizontal de la ortofoto como un valor teórico.

<table>
<thead>
<tr>
<th>Clase de precisión Horizontal (cm)</th>
<th>EMCx EMCy (cm)</th>
<th>EMCex EMCey (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-18</td>
<td>17.5</td>
<td>24.7</td>
</tr>
</tbody>
</table>

Clase Horizontal nivel de confianza al 95% (cm) Escala del mapa

| 42.8 | 1:2000 |

Tabla 5-3.Précisión horizontal de la ortofoto ASPRS
Fuente: (Autores, 2015)

La Tabla 5-3 resume que:

- EMCx EMCy: A partir del GSD de la imagen se obtuvo el EMC horizontal de la ortofoto, de 25 cm. Este valor es teórico sin comprobación en campo y fue extraído del manual ASPRS 2015.

- Clase Horizontal nivel de confianza al 95%: esta es la derivación del nivel de confianza del valor EMCe total horizontal de los valores EMCx, EMCy multiplicado por 1.96.

La escala del mapa de topografía indirecta es de 1:2000, a partir del GSD de las imágenes aéreas citado de la sección 4.3.1, extraído del manual ASPRS 2015.

5. Resultados
5. Resultados

<table>
<thead>
<tr>
<th>Clase de precisión Vertical (cm)</th>
<th>EMCz NVA (cm)</th>
<th>NVA nivel de confianza 95% (cm)</th>
<th>VVA Percentil al 95% (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>123</td>
<td>240</td>
<td>147</td>
</tr>
</tbody>
</table>

Intervalo De Contornos

<table>
<thead>
<tr>
<th>CI 1990 ASPRS CLASE 1 (cm)</th>
<th>NMAS (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>400</td>
</tr>
</tbody>
</table>

Tabla 5-4. Precisión vertical del raster ASPRS
Fuente: (Autores, 2015)

La Tabla 5-4 resume que:

- **EMCz NVA**: este resultado está referido a los puntos del EMC vertical en las zonas que no presentan vegetación.

- **Nivel de Confianza al 95% de las zonas sin vegetación (NVA)**: este resultado está referido al cálculo del EMCz vertical de las zonas sin vegetación multiplicado por 1.96. Lo cual para este caso es un valor de 240 cm de precisión con una probabilidad al 95%.

- **Percentil al 95% de las zonas con vegetación (VVA)**: este valor está referido al descriptor estadístico percentil con un resultado de 147 cm. Este se calculó a partir de la interpolación entre el último valor y penúltimo previamente organizado en orden ascendente de las diferencias de cotas geométrica versus raster y determina el valor de confianza en las zonas de vegetación (VVA). Por lo general este valor se almacena en los metadatos del MDE. (ASPRS, 2015)

- **CI 1990 Clase 1**: Es la precisión de vertical multiplicado por 3. Para topografía indirecta el resultado es de 3.7 metros el intervalo de curvas intermedias, por otro lado para topografía directa es de 3.7 metros el intervalo de curvas intermedias.

- **NMAS Contornos de intervalos (CI)**: es el valor EMCz de NVA multiplicada por la constante 3.28. El resultado para topografía indirecta es de 4.03 metros el intervalo de curvas intermedias y para topografía directa de 4.07 metros.
5. Resultados

5.1.2. Estadística descriptiva y pruebas de normalidad

En el campo de los MDE se asume usualmente que los errores de datos espaciales están normalmente distribuidos. Sin embargo en algunos casos las diferencias de los MDE no siguen esta norma, debido a la frecuencia y dispersión de las diferencias. (Li, Zhu, & Gold, 2005)

Las características mencionadas de la sección 5 definen el comportamiento de las diferencias y la combinación de estas para determinar la normalidad datos. De tal modo que en esta sección se calculó y determinó la distribución de los datos de manera gráfica y teórica para las dos diferencias de cotas. Estos valores estadísticos descriptivos se calcularon para definir el comportamiento de las diferencias. En la Tabla 5-5 se resumen los resultados estadísticos descriptivos, para las diferencias de cotas DA y DB.

<table>
<thead>
<tr>
<th></th>
<th>DA</th>
<th></th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>-0.414</td>
<td></td>
<td>1.116</td>
</tr>
<tr>
<td>Error típico</td>
<td>0.102</td>
<td></td>
<td>0.143</td>
</tr>
<tr>
<td>Mediana</td>
<td>-0.335</td>
<td></td>
<td>1.258</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>0.491</td>
<td></td>
<td>0.535</td>
</tr>
<tr>
<td>Varianza de la muestra</td>
<td>0.241</td>
<td></td>
<td>0.286</td>
</tr>
<tr>
<td>Curtosis</td>
<td>0.356</td>
<td></td>
<td>-0.641</td>
</tr>
<tr>
<td>Coeficiente de asimetría</td>
<td>-0.454</td>
<td></td>
<td>-0.695</td>
</tr>
<tr>
<td>Rango</td>
<td>2.138</td>
<td></td>
<td>1.666</td>
</tr>
<tr>
<td>Mínimo</td>
<td>-1.604</td>
<td></td>
<td>0.064</td>
</tr>
<tr>
<td>Máximo</td>
<td>0.534</td>
<td></td>
<td>1.730</td>
</tr>
<tr>
<td>Suma</td>
<td>-9.514</td>
<td></td>
<td>15.619</td>
</tr>
<tr>
<td>Cuenta</td>
<td>23</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Mayor (1)</td>
<td>0.534</td>
<td></td>
<td>1.730</td>
</tr>
<tr>
<td>Menor(1)</td>
<td>-1.604</td>
<td></td>
<td>0.064</td>
</tr>
<tr>
<td>Nivel de confianza (95.0%)</td>
<td>0.212</td>
<td></td>
<td>0.309</td>
</tr>
</tbody>
</table>

Tabla 5-5. Estadística descriptiva diferencias de cotas

Fuente: (Autores, 2015)

El nivel de confianza al 95% Tabla 5-5 está relacionado con la desviación estándar y el número de datos multiplicado por 1.96. La evaluación de población por este método es válida si las diferencias presentan una distribución normal o diferencias no muy altas entre cada uno de los datos, lo cual presenta una aproximación de la precisión en relación a su desviación estándar o típica. (Li, Zhu, & Gold, 2005)

Las diferencias de cotas para topografía directa según su desviación estándar su nivel de confianza al 95% es de 0.21m, y para topografía indirecta el nivel de confianza al 95% es
de 0.309 m. Estos valores están calculados a partir de la desviación estándar y asumiendo una distribución normal de los datos.

Para la distribución o normalidad de los datos se realizó el histograma de frecuencias. Ilustración 5-1 “DA” o diferencias de verdad de campo versus topografía directa, lo cual presentó una distribución no normalizada o con un sesgo a la derecha, lo cual indica que presenta una mayor cantidad de datos positivos entre 0.5 y 1 m.

Ilustración 5-1. Histograma de Frecuencias de diferencias DA
Fuente: (R project)

De igual forma se realizó el gráfico probabilístico comparación de cuantiles normal que permite comparación de la distribución empírica de un conjunto de datos con la distribución normal. Este gráfico se puede considerar como una técnica gráfica para la prueba de normalidad de un conjunto de datos. La construcción del gráfico de probabilidad normal se realizó a través de los cuantiles de la normal estándar, de forma que aceptaremos la hipótesis de normalidad de los datos, siempre que los puntos en el gráfico tengan un comportamiento “suficientemente rectilíneo”. (Castillo & Lozano)

En la Ilustración 5-2 de comparación de cuantiles permite observar la distribución, lo cual no está normalizada en las diferencias y como se observa en la Ilustración 5-1 (histograma de frecuencia) que hay sesgo entre los rangos de 0.5 a 1 metro. Por lo tanto las diferencias de verdad de campo versus topografía directa no tiene distribución normal debido al sesgo en los valores de 0.5 a 1 metro.
5. Resultados

Ilustración 5-2. Comparación de cuantiles de diferencias en DB
Fuente: (R project)

El histograma de frecuencias Ilustración 5-4 de las diferencia entre verdad de campo y topografía indirecta; no presentó una distribución normal con sesgo a la izquierda y derecha, debido a que las diferencias para la evaluación de cota raster en su totalidad son valores positivos.
5. Resultados

En la Ilustración 5-4 se observa el comportamiento de las diferencias de una distribución normal. Para este caso las diferencias de cotas entre verdad de campo versus topografía indirecta presenta un sesgo a la izquierda entre 0.5 a 0.0 m. de tal modo que esta no es una distribución normal para las diferencias entre verdad de campo y topografía indirecta.

Por otro lado para el comportamiento general de las diferencias de cotas (DA, DB), comparación de cuantiles. Lo cual para este caso se observa la distribución de diferencias de datos con una alta dispersión de 0 a -0.5m con respecto a la línea de tendencia, o con sesgo a la izquierda entre los valores de 0 a -0.5m.
5. Resultados

Los valores de Ilustración 5-6 izquierda son: mínimo de -0.53, cuartil 25% de 0.65, cuartil del medio 0.34 cuartil 75% de 0.21 y máximo de 1.60; imagen derecha mínimo de 0.064 cuartil 25% de 0.82m cuartil del medio 1.25, cuartil al 75% de 1.53 valor máximo de 1.73. Comparando las dos distribuciones presenta un traslape el diagrama de la derecha entre el tercer cuartil o 75%, izquierda valor mínimo y el primer cuartil o 25%.

Fuente: (R project)
Conclusiones

Para evaluar la calidad de los MDE se homogenizó el sistema de referencia horizontal “Vivero” y, para el datum vertical se estableció la red vertical de Vivero esto se aplicó en cada uno de los procesos de cálculo en topografía directa e indirecta y puntos “verdad de campo”.

El lote B presenta un terreno con una clasificación morfométrica tipo: planicie, ondulado, colimado y lomerío con una rugosidad de complejidad media. Donde se obtuvieron valores de EMCz vertical para el primer conjunto de datos mediante topografía directa de 1.42 m. El valor calculado de EMCz vertical para la segunda muestra obtenida mediante topografía directa de 0.63 m.

En cuanto a los resultados, para un nivel de confianza al 95% a partir del EMCz, de topografía directa es de 1.24 m, lo cual define que para un terreno con las características y condiciones mencionadas, determina un intervalo de curvas a 4.08 m para presentación de planos análogos. Por otro lado, para topografía indirecta a un nivel de confianza del 95% el valor es de 2.40 m lo cual define qué para un terreno con las características y condiciones mencionadas el intervalo de curvas intermedias para presentación de planos análogos es de 4.0 m.

Los resultados de dispersión para un nivel de confianza al 95%, calculado a partir de la desviación estándar de 0.49 m el resultado es 0.21 m para topografía directa. Por otro lado para topografía indirecta es de 0.82 m, por lo tanto el nivel de confianza al 95% es de 0.39 m. Estos resultados varían de acuerdo al número de datos, grado de dispersión de las diferencias y de igual forma a partir de la Ecuación 5, se puede determinar el número de datos requeridos según la desviación estándar establecida o definida por el investigador.

Cabe resaltar que es necesario, según el manual de la ASPRS 2015 tener en cuenta la distribución de los puntos “verdad de campo”, área del terreno, número de puntos y cambios de pendiente abruptos para la materialización y georreferenciación de los puntos además de las áreas con vegetación y áreas de baja confianza para determinar la precisión del modelo.

Otro tipo de datos que pueden incluirse en futuros proyectos de grado como son métodos de captura indirecta a partir de tecnologías lidar terrestres y aéreos. De igual forma pueden incluirse imágenes aéreas capturadas por drones y planchas digitalizadas de las entidades oficiales de cartografía. La variación de los métodos de adquisición de cada modelo genera características diferentes, como son: GSD, escala del mapa y/o precisión horizontal.
Bibliografía


Erdas Imagine photogrammetry 2014. (s.f.). Erdas Imagine. Recuperado el 25 de Noviembre de 2015, de Hexagon Geospatial: https://www.youtube.com/watch?v=7dqnmM8VSow


IGAC. (2003). Red de Nivelación. Recuperado el 01 de abril de 2016, de http://www.igac.gov.co/wps/portal/igac/raiz/iniciohome/TramitesServicios/FueraDeServicio/%21ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP0s3hHT3d_JyYdDRwN3A083A08j1MDlXbXYw5bE_2CbEdFAGrs9g%21/?WCM_PORTLET=PC_7_AIGOB8A0G0IF0If2B50DTE38R4_WCM&WCM_GLOBAL_CONTEXT=/wps

Inter American Geodesic Service. (s.f.). Curso de aero triangulación analítica y semi analítica.


Microsoft . (s.f.). *Support Office*. Recuperado el 6 de Diciembre de 2015, de https://support.office.com/es-ar/article/Funci%C3%B3n-INTERVALO-CONFIANZA-75ccc007-f77c-4343-bc14-673642091ad6


R project. (s.f.). *Cran*. Recuperado el 1 de Diciembre de 2015, de http://www.cran.org.co

