CÁLCULO DEL CAUDAL MÁXIMO DE CRECIENTE EN LA QUEBRADA NEGRA HASTA LA DESEMBOCADURA EN LA QUEBRADA BURIBURI MUNICIPIO DE OTANCHE DEPARTAMENTO DE BOYACÁ CON ANÁLISIS DE GEOLOGÍA REGIONAL.

JESSICA TORRES BUESAQUILLO
CARLOS RODRIGO TÉLLEZ PÁEZ

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
TRABAJO DE GRADO
BOGOTÁ D.C.
2016
CÁLCULO DEL CAUDAL MÁXIMO DE CRECIENTE EN LA QUEBRADA NEGRA HASTA LA DESEMBOCADURA EN LA QUEBRADA BURIBURI MUNICIPIO DE OTANCHE DEPARTAMENTO DE BOYACÁ CON ANÁLISIS DE GEOLOGÍA REGIONAL.

JESSICA TORRES BUESAQUILLO
CARLOS RODRIGO TÉLLEZ PÁEZ

Tesis experimental.

Ing. Fernando González Casas.

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD TECNOLÓGICA
TRABAJO DE GRADO
BOGOTÁ D.C.
2016
Monografía de tipo aplicada, Facultad Tecnológica Universidad Distrital Francisco José de Caldas, para optar por el grado académico de Tecnólogo en Construcciones Civiles.

Firma del presidente del jurado.

Firma del jurado.

Firma del jurado.
Contenido

RESUMEN ... 8

INTRODUCCIÓN .. 9

1. OBJETIVOS .. 11

1.1. OBJETIVO GENERAL ... 11

1.2. OBJETIVOS ESPECÍFICOS .. 11

2. MARCO DE REFERENCIA ... 12

2.1. Localización geográfica y fisiografía .. 12

2.2. Geología del municipio ... 20

2.3. Marco conceptual ... 22

Características geomorfológicas de una cuenca hidrográfica ... 23

3. DISEÑO METODOLÓGICO .. 39

3.1. Población y muestra .. 39

3.2. Variables ... 39

3.3. Análisis ... 39

3.3.1. Análisis morfométrico de la micro-cuenca ... 39

Morfometría del relieve .. 41

Pendientes ... 44

Morfometría de la red de drenaje .. 49

3.3.2. Cálculo del caudal máximo .. 50

Periodo de retorno: ... 50

Tiempo de concentración: .. 50

Curva de Intensidad-Duración-Frecuencia IDF: ... 50

Coeficiente de escorrentía: ... 51

Aplicación de la fórmula del método racional: .. 53

Cálculo del caudal máximo de creciente empleando el método del triángulo SCS (Soil conservation service). ... 54

CONCLUSIONES .. 61

Bibliografía ... 63
LISTA DE ILUSTRACIONES.

Imagen 1 Mapa político de Colombia con sus principales .. 12
Imagen 2 Mapa del departamento de Boyacá con sus coordenadas N, M 13
Imagen 3 División política del departamento de Boyacá ... 14
Imagen 4 Regiones fisiográficas del departamento de Boyacá ... 17
Imagen 5 Geología del municipio ... 20
Imagen 6 Orden de corrientes según método aplicado .. 26
Imagen 7 Extensión media de la escorrentía superficial ... 28
Imagen 8 Curva hipsométrica ... 31
Imagen 9. Histograma de frecuencia .. 32
Imagen 10. Histograma de frecuencia altimétrica ... 43
Imagen 11. Curva de distribución de pendientes ... 46
Imagen 12. Perfil y pendiente del cauce principal ... 47
Imagen 13 Curva IDF estacion Otanche ... 52
Imagen 14. Periodo de retorno vs caudal máximo ... 54
LISTA DE TABLAS.

Tabla 1 Lista de municipios del departamento de Boyacá ... 15
Tabla 2 Regiones fisiográficas del departamento de Boyacá .. 16
Tabla 3 Veredas del municipio de Otanche .. 19
Tabla 4 Clasificación de cuencas según tamaño ... 23
Tabla 5 Clasificación de cuenca según la longitud de su cauce principal 23
Tabla 6. Clases de valor Kc .. 24
Tabla 7. Forma de la cuenca ... 25
Tabla 8 Categoría de cuenca según su densidad de drenaje .. 27
Tabla 9. Rango de pendientes .. 29
Tabla 10. Valor de masividad de una cuenca .. 32
Tabla 11. Clases de valor de corriente principal .. 33
Tabla 12 Valores del coeficiente de escorrentía en áreas rurales ... 36
Tabla 13 Periodo de retornos de diseño .. 38
Tabla 14. Símbolos de uso ... 40
Tabla 15. Cálculos de curva hipsométrica ... 42
Tabla 16. Cálculos de pendiente ... 45
Tabla 17. Cálculos de pendientes del cauce principal ... 48
Tabla 18. Cálculos de rectángulo equivalente ... 49
Tabla 19. Intensidad de precipitación ... 50
Tabla 20. Intensidad de precipitación ... 51
Tabla 21. Caudal máximo de creciente empleando el método racional 53
Tabla 22 Cálculo del volumen de agua de lluvia para periodos de retorno 56
Tabla 23 Cálculo del caudal ... 56
LISTA DE ANEXOS

Anexo 1. Plano Área de la cuenca de la quebrada Negra.
Anexo 2. Plano Método de la cuadrícula
Anexo 3. Plano Orden de las corrientes
Anexo 4. Rectángulo equivalente
Anexo 5. Perfil de la Quebrada Negra
Anexo 6. Memorias de cálculo
RESUMEN

El presente trabajo de grado se basa en la estimación del caudal máximo de creciente de la quebrada Negra del municipio de Otanche departamento de Boyacá empleando el método racional, acompañado de la caracterización geomorfológica y el análisis de la geología regional.

El cálculo del caudal máximo en la unidad hidrica se asocia a un periodo de tiempo entre 3 a 100 años acompañado de una fórmula que permita hacer una proyección a un periodo de tiempo requerido con el fin de constituirse como material de consulta para futuros proyectos de aprovechamiento hídrico de la zona.

Como herramienta se empleó cartografía a escala 1:25000, para el cálculo de las mediciones básicas (superficie, perímetro, longitud de la cuenca, cauces, elevación, desnivel del cauce principal y número de cauces de menor orden) y los registros de la estación del IDEAM con código 2023125085 de nombre estación OTANCHE.
INTRODUCCIÓN

La Hidrología es la ciencia que se encarga de estudiar el manejo y distribución de los recursos hídricos de la tierra, la Hidráulica que como rama de la ingeniería realiza el estudio de las propiedades mecánicas de los fluidos. Ambas ciencias sumadas y aplicadas en conjunto nos brindan métodos y procedimientos que hacen mucho más fácil realizar la medición y clasificación de los recursos hídricos del planeta.

Una de los estudios de estas ciencias permiten conocer y clasificar las cuencas hidrográficas cuantitativamente a partir de todas sus características físicas, y esta información permite conocer cómo funciona hidrológicamente determinada región con lo cual se puede hacer una planeación para su correcto manejo.

El siguiente trabajo es un estudio de la cuenca de la quebrada Negra ubicada en el municipio de Otanche departamento de Boyacá, que por su ubicación entre cordilleras posee un recurso hídrico importante para el país, por esto el estudio del comportamiento de esta cuenca representa un gran aporte.

Colombia es uno de los países con mayor oferta hídrica del mundo 57000m³/hab/año, esta oferta se da gracias a las lluvias, a los ríos, a los páramos y a la variación de climas que se presenta a lo largo del año en el país, por lo que es de suma importancia cualquier estudio que permita conocer y de alguna manera poder controlar un poco este gran recurso, ya que tiene repercusión no solo en la naturaleza y sus ecosistemas, sino también en la población y en la economía de cualquier región. Teniendo en cuenta lo antes mencionado, se justifica la importancia de un estudio como el que se realizara en este trabajo.

Una creciente es un evento que produce en un río o canal niveles muy altos, en los cuales el agua sobrepasa la banca e inunda las zonas aledañas. Las crecientes causan daños económicos, pérdidas de vidas humanas y trastornan toda la actividad social y económica de una región. Para el diseño de estructuras hidráulicas tales como canales, puentes, presas, alcantarillados, obras asociadas al diseño y construcción de vías es necesario estimar los caudales máximos asociados a un período de retorno determinado.

Al iniciar un estudio geomorfológico se debe empezar por la ubicación de los puntos donde existan en los ríos las estaciones de aforo, para así tener un estudio completo de las variables coexistentes en la cuenca.
Las características físicas de una cuenca forman un conjunto que influye profundamente en el comportamiento hidrológico de la zona. El estudio de los parámetros físicos de las cuencas es de gran utilidad práctica en la ingeniería para aplicación en proyectos hidrológicos, pues con base en ellos se puede lograr una transferencia de información de un sitio a otro por asociación de sus condiciones físicas que permiten inferir comportamientos que clasifican las unidades hídricas en función de sus condiciones.

La morfología de una cuenca proporciona información cuantitativa de su forma, lo que permite hacer un estudio comparativo entre otras cuencas que finalmente conducen a la interpretación de las diferentes características, comportamientos y variaciones hidrológicas propias de cada región.

Es importante mencionar que un estudio morfométrico es también de gran utilidad no solo porque se puede reconocer físicamente una cuenca, sino que una vez obtenidos los resultados correspondientes se pueden hacer comparaciones y relaciones que permiten establecer valores hidrológicos en otras zonas en las que no es fácil llevar a cabo un estudio debido a las condiciones económicas o geográficas, para así armar un conjunto de datos completos que detallen minuciosamente el recurso hidrológico de una zona determinada.

En el desarrollo de la investigación, se estudian las características propias de la región, correspondiendo esta vez al departamento de Boyacá, se realiza un estudio geológico y geográfico de la zona, especificado en trabajo documentado, por ser un lugar montañoso es abundante en recursos hídricos lo que muestra la importancia de cualquier estudio hídrico que se realice en la zona.

El propósito de este documento es determinar las características físicas propias de la cuenca de la quebrada Negra del municipio de Otanche del departamento de Boyacá así como el cálculo del caudal máximo para distintos períodos de retorno acompañados del análisis de geología regional, entendiendo la importancia del recurso hídrico en las dinámicas socio-económicas de una población, y como las características de tiempos de concentración, pendientes de la cuenca, periodos de retorno entre otros tantos juegan un papel fundamental en la planificación responsable y efectiva del aprovechamiento de este recurso.
1. OBJETIVOS

1.1. OBJETIVO GENERAL

- Realizar el cálculo del caudal máximo de creciente usando el método racional simple y el análisis geológico regional en la quebrada negra hasta la desembocadura en la quebrada Buri Buri en el municipio de Otanche departamento de Boyacá.

1.2. OBJETIVOS ESPECÍFICOS

- Caracterizar la cuenca de la quebrada negra estimando sus principales parámetros morfométricos hasta el sitio de su desembocadura en la quebrada Buri Buri.

- Estimar los caudales máximos de la quebrada negra utilizando el método racional para cálculos hidrológicos.

- Analizar los elementos constitutivos de la geología regional de la zona de influencia del estudio.
2. MARCO DE REFERENCIA

2.1. Localización geográfica y fisiografía

El territorio del Departamento de Boyacá se halla comprendido dentro de las siguientes coordenadas: desde los 4° 39’ de Latitud Norte (enclave sobre el Río Guavio en límites con el Departamento de Cundinamarca), hasta los 7° 08’ de Latitud Norte (enclave sobre el Río Cubugón en límites con el Departamento de Santander). Desde 71° 56’ al Oeste del meridiano de Greenwich, (en la desembocadura del Río Bojaba en el Arauca), hasta 74° 38’ al Oeste de Greenwich, (en la desembocadura del Río Negro en el Magdalena).

Imagen 1 Mapa político de Colombia con sus principales

Fuente: mapa geológico del departamento de Boyacá\(^{1}\)

Imagen 2 Mapa del departamento de Boyacá con sus coordenadas N, M

Fuente: mapa geológico del departamento de Boyacá

El departamento dispone de una extensión superficial de 23.189 Km², la cual representa el 2% de la extensión total del País IGAC, 1996. Políticamente está integrado por 123 Municipios, 123 Inspecciones de Policía y 10 Corregimientos, IGAC.

Imagen 3 División política del departamento de Boyacá

Fuente: mapa geológico del departamento de Boyacá

<table>
<thead>
<tr>
<th>N°</th>
<th>Municipio</th>
<th>N°</th>
<th>Municipio</th>
<th>N°</th>
<th>Municipio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tunja</td>
<td>42</td>
<td>Guicán</td>
<td>83</td>
<td>San pablo de Borbur</td>
</tr>
<tr>
<td>2</td>
<td>Aalmeida</td>
<td>43</td>
<td>Iza</td>
<td>84</td>
<td>Santana</td>
</tr>
<tr>
<td>3</td>
<td>Aquitania</td>
<td>44</td>
<td>Jenesano</td>
<td>85</td>
<td>Santa María</td>
</tr>
<tr>
<td>4</td>
<td>Arcabuco</td>
<td>45</td>
<td>Jericó</td>
<td>86</td>
<td>Sta. Rosa de Viterbo</td>
</tr>
<tr>
<td>5</td>
<td>Belén</td>
<td>46</td>
<td>Labranza grande</td>
<td>87</td>
<td>Sta Soía</td>
</tr>
<tr>
<td>6</td>
<td>Berbeo</td>
<td>47</td>
<td>La copilla</td>
<td>88</td>
<td>Sativa Norte</td>
</tr>
<tr>
<td>7</td>
<td>Beleitiva</td>
<td>48</td>
<td>La Uvita</td>
<td>89</td>
<td>Sativa Sur</td>
</tr>
<tr>
<td>8</td>
<td>Booviita</td>
<td>49</td>
<td>La victoria</td>
<td>90</td>
<td>Siachoque</td>
</tr>
<tr>
<td>9</td>
<td>Boyacá</td>
<td>50</td>
<td>Macanal</td>
<td>91</td>
<td>Soatá</td>
</tr>
<tr>
<td>10</td>
<td>Briceno</td>
<td>51</td>
<td>Marípi</td>
<td>92</td>
<td>Socotá</td>
</tr>
<tr>
<td>11</td>
<td>Buenavista</td>
<td>52</td>
<td>Miraflores</td>
<td>93</td>
<td>Socha</td>
</tr>
<tr>
<td>12</td>
<td>Busbanzá</td>
<td>53</td>
<td>Mongua</td>
<td>94</td>
<td>Sogamoso</td>
</tr>
<tr>
<td>13</td>
<td>Caldas</td>
<td>54</td>
<td>Monguí</td>
<td>95</td>
<td>Somondoco</td>
</tr>
<tr>
<td>14</td>
<td>Campohermoso</td>
<td>55</td>
<td>Moniquirá</td>
<td>96</td>
<td>sora</td>
</tr>
<tr>
<td>15</td>
<td>Cerinza</td>
<td>56</td>
<td>Motativa</td>
<td>97</td>
<td>Soracá</td>
</tr>
<tr>
<td>16</td>
<td>Ciénaga</td>
<td>57</td>
<td>Muzo</td>
<td>98</td>
<td>Sotaquirá</td>
</tr>
<tr>
<td>17</td>
<td>Combita</td>
<td>58</td>
<td>Nobsa</td>
<td>99</td>
<td>Susacón</td>
</tr>
<tr>
<td>18</td>
<td>Coper</td>
<td>59</td>
<td>Nueva Colón</td>
<td>100</td>
<td>Susacón</td>
</tr>
<tr>
<td>19</td>
<td>Corrales</td>
<td>60</td>
<td>oicotá</td>
<td>101</td>
<td>Sutatenza</td>
</tr>
<tr>
<td>20</td>
<td>Covarachía</td>
<td>61</td>
<td>Otanche</td>
<td>102</td>
<td>Tasco</td>
</tr>
<tr>
<td>21</td>
<td>Cubará</td>
<td>62</td>
<td>pachavita</td>
<td>103</td>
<td>Tenza</td>
</tr>
<tr>
<td>22</td>
<td>Cucaito</td>
<td>63</td>
<td>Páez</td>
<td>104</td>
<td>Tibaná</td>
</tr>
<tr>
<td>23</td>
<td>Cuitiva</td>
<td>64</td>
<td>Paipa</td>
<td>105</td>
<td>Tipacoque</td>
</tr>
<tr>
<td>24</td>
<td>Chinavita</td>
<td>65</td>
<td>Pajarito</td>
<td>106</td>
<td>Tíasososa</td>
</tr>
<tr>
<td>25</td>
<td>Chiquinquiá</td>
<td>66</td>
<td>Panqueba</td>
<td>107</td>
<td>Tinjacá</td>
</tr>
<tr>
<td>26</td>
<td>Chiquiza</td>
<td>67</td>
<td>Pauna</td>
<td>108</td>
<td>Toca</td>
</tr>
<tr>
<td>27</td>
<td>Chiscas</td>
<td>68</td>
<td>Paya</td>
<td>109</td>
<td>Toquí</td>
</tr>
<tr>
<td>28</td>
<td>Chita</td>
<td>69</td>
<td>Paz Fel Río</td>
<td>110</td>
<td>Tápaga</td>
</tr>
<tr>
<td>29</td>
<td>Chitaraque</td>
<td>70</td>
<td>Pesca</td>
<td>111</td>
<td>Toto</td>
</tr>
<tr>
<td>30</td>
<td>Chivotó</td>
<td>71</td>
<td>Pisba</td>
<td>112</td>
<td>Tunungua</td>
</tr>
<tr>
<td>31</td>
<td>Duitama</td>
<td>72</td>
<td>Pto. Boyacá</td>
<td>113</td>
<td>Turmequé</td>
</tr>
<tr>
<td>32</td>
<td>El cucuy</td>
<td>73</td>
<td>Ramiriquí</td>
<td>114</td>
<td>Tuto</td>
</tr>
<tr>
<td>33</td>
<td>El espino</td>
<td>74</td>
<td>Rondón</td>
<td>115</td>
<td>Tutasa</td>
</tr>
<tr>
<td>34</td>
<td>Firavitova</td>
<td>75</td>
<td>Saboyá</td>
<td>116</td>
<td>Ráquira</td>
</tr>
<tr>
<td>35</td>
<td>Floresta</td>
<td>76</td>
<td>Sáchica</td>
<td>117</td>
<td>Umbita</td>
</tr>
<tr>
<td>36</td>
<td>Gachativá</td>
<td>77</td>
<td>Samacá</td>
<td>118</td>
<td>Ventaquemada</td>
</tr>
</tbody>
</table>
El territorio departamental presenta diferencias marcadas puesto que se encuentra situado en la región andina, parte centro-oriental del País; dispone de parte de la zona de tierras planas del valle medio del Río Magdalena, y la Cordillera Oriental lo atraviesa de sur-oeste a nor-este, lo cual le otorga una compleja topografía, que origina 6 regiones fisiográficas, con características bien diferentes entre sí, las cuales de Occidente a Oriente son:

Tabla 2 Regiones fisiográficas del departamento de Boyacá

<table>
<thead>
<tr>
<th></th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VALLE MEDIO DEL MAGDALENA</td>
</tr>
<tr>
<td>2</td>
<td>VERTIENTE OCCIDENTAL DE LA CORDILLERA ORIENTAL</td>
</tr>
<tr>
<td>3</td>
<td>VALLE DE CHIQUINQUIRA</td>
</tr>
<tr>
<td>4</td>
<td>SECTOR DE MONIQUIRA</td>
</tr>
<tr>
<td>5</td>
<td>ZONA DE RAMIQUIRA</td>
</tr>
<tr>
<td>6</td>
<td>ALTIPLANICIE CENTRAL</td>
</tr>
<tr>
<td></td>
<td>A- ALTIPLANICIE</td>
</tr>
<tr>
<td></td>
<td>B- PÁRAMO</td>
</tr>
<tr>
<td>7</td>
<td>CORDÓN MAGISTRAL DE LA CORDILLERA ORIENTAL</td>
</tr>
<tr>
<td>8</td>
<td>VERTIENTE ORIENTAL DE LA CORDILLERA ORIENTAL</td>
</tr>
</tbody>
</table>
a. Valle Medio del Magdalena: Esta región se encuentra ubicada en el extremo occidental del departamento, y se halla comprendida entre el Río Magdalena y la vertiente occidental de la cordillera oriental, es una zona baja y selvática con alturas no mayores a los 500 m.s.n.m., denominada Valle Medio Magdalense o Territorio Vásquez.

b. Región de Otanche o Vertiente Occidental de la Cordillera Oriental: Está constituida por un terreno quebrado y de bastante minería, en ella se

 Fuente: mapa geológico del departamento de Boyacá (4)

encuentran las principales explotaciones de esmeraldas. Está limitada al oriente por el Valle de Chiquinquirá conformado por terrenos planos o levemente ondulados.

c. La subregión de Moniquirá – Ramiriquí: Se presenta al oriente del anterior, y es una zona caracterizada por presentar un relieve bastante quebrado.

d. La Altiplanicie Central: Al oriente de la anterior, presenta lo que se ha dado en llamar la continuación del altiplano Cundí-Boyacense. En términos generales, este altiplano en el departamento de Boyacá no constituye una meseta continua sino que se caracteriza por una serie de valles escalonados, alternados con montañas de elevaciones entre 2650 y 2800 metros. En este sentido el altiplano está formado por la meseta de Tunja, los valles de Tundama, Belén, Sogamoso, Corrales, Floresta y Paz de Río y las regiones de Susacón y Soatá, donde el altiplano se estrecha hasta desaparecer.

e. El Cordón Magistral de la Cordillera Oriental: Al Este de la Altiplanicie Central, aparece el Cordón Magistral de la Cordillera Oriental que presenta alturas hasta de 5.495 m.s.n.m. en el alto de Ritacuba, en la Sierra Nevada del Cocuy. En este sector nacen numerosos ríos que van a tributar a las cuencas del Magdalena y el Orinoco.

f. La Vertiente Oriental de la Cordillera Oriental: que es un área compuesta por terrenos quebrados y escarpados denominada también Piedemonte Llanero, en la cual, los ríos han modelado una serie de valles estrechos, donde se han depositado gran cantidad de sedimentos muy heterogéneos, que han originado depósitos en forma de conos o depósitos de derrubio, aluviales y torrenciales de edad Cuaternario. Las pendientes en esta vertiente, generalmente son pronunciadas, mayores de 30°.

El Municipio de Otanche, se encuentra localizado, al Occidente del Departamento de Boyacá, Provincia del Occidente, en el flanco Occidental de la Cordillera Oriental, limita por el Oriente con los Municipios de San Pablo de Borbur, Pauna, Ráquira, Tinjacá, Sutamarchán y Santa Sofía, por el Occidente le sirve de límite natural al Río Magdalena, que lo separa de los Departamentos de Caldas y Antioquia, limitando con Puerto Boyacá, por el Norte con el Departamento de Santander, con los Municipios de Florián, La Belleza y Bolívar; y por el sur con el Municipio de Yacopí Cundinamarca;

El nacimiento de la quebrada Negra se ubica el punto con coordenadas 5° 39’29.20” N 74°6’16.79” W en cercanías al alto serranía del municipio de otanche y desemboca en la quebrada Buriburi en el punto con coordenadas 5°40’31.79” N 74°6’16.86” la cual posterior mente desembocara en el rio Minero en cercanías al cerro Furateno
El Municipio de Otanche está conformado por 41 veredas, su identificación se establece en la carta catastral rural del Instituto Geográfico Agustín Codazzi

Para el área urbana se tiene seis barrios de los cuales los barrios el Centro, El Carmen y el Danubio son los más antiguos, el Porvenir, el Horizonte, el Bosque, han continuado la dinámica de crecimiento de casco urbano, este crecimiento es muy restringido, está determinado por la falta de terrenos para realizar nuevos desarrollos urbanísticos.

Tabla 3 Veredas del municipio de Otanche

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>VEREDA</th>
<th>ÍTEM</th>
<th>VEREDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Altazor</td>
<td>22</td>
<td>La florida</td>
</tr>
<tr>
<td>2</td>
<td>Altasona</td>
<td>23</td>
<td>La laguna</td>
</tr>
<tr>
<td>3</td>
<td>Buenaviata</td>
<td>24</td>
<td>La laja</td>
</tr>
<tr>
<td>4</td>
<td>Buenos aires</td>
<td>25</td>
<td>La llano</td>
</tr>
<tr>
<td>5</td>
<td>Buzal</td>
<td>26</td>
<td>Las quinchas</td>
</tr>
<tr>
<td>6</td>
<td>Cambuco</td>
<td>27</td>
<td>Los bancos</td>
</tr>
<tr>
<td>7</td>
<td>Camilo</td>
<td>28</td>
<td>Manca</td>
</tr>
<tr>
<td>8</td>
<td>Cartagena</td>
<td>29</td>
<td>Palenque</td>
</tr>
<tr>
<td>9</td>
<td>Centro</td>
<td>30</td>
<td>Pénjamo</td>
</tr>
<tr>
<td>10</td>
<td>Chaquipay</td>
<td>31</td>
<td>Pizarra Bolívar</td>
</tr>
<tr>
<td>11</td>
<td>Cobre neiva</td>
<td>32</td>
<td>plantanillal</td>
</tr>
<tr>
<td>12</td>
<td>Cocos</td>
<td>33</td>
<td>Sábripa</td>
</tr>
<tr>
<td>13</td>
<td>Cortadera</td>
<td>34</td>
<td>Samal</td>
</tr>
<tr>
<td>14</td>
<td>Curubita</td>
<td>35</td>
<td>San Antonio de la Cobre</td>
</tr>
<tr>
<td>15</td>
<td>El carmen</td>
<td>36</td>
<td>san José de Nazaret</td>
</tr>
<tr>
<td>16</td>
<td>El encanto</td>
<td>37</td>
<td>San Pablal</td>
</tr>
<tr>
<td>17</td>
<td>El mirador</td>
<td>38</td>
<td>San Vicente</td>
</tr>
<tr>
<td>18</td>
<td>El ramal</td>
<td>39</td>
<td>sevilla</td>
</tr>
<tr>
<td>19</td>
<td>El roble</td>
<td>40</td>
<td>Tapas del Quipe</td>
</tr>
<tr>
<td>20</td>
<td>La cunchala</td>
<td>40</td>
<td>Teusaquillo</td>
</tr>
<tr>
<td>21</td>
<td>La chuchalita</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Según el dato del Sisben la población total es de 10.494 habitantes, en el área urbana 3.995 habitantes y en área rural 5.597, en población flotante se tiene un 1,2% de la población total, el municipio es receptor de desplazados actualmente cuenta con 92 desplazados. En población por grupos de tenemos 1.058 niños menores de 5 años, 3.187 jóvenes de 6 a 18 años mayores de 60 años 893
2.2. Geología del municipio

Las rocas que afloran en el área de estudio, de origen sedimentario que Corresponden a las formaciones ROSA BLANCA y la formación PAJA, de edad Valangíniano Superior a Aptiano Superior. La geomorfología del área es abrupta y está controlada por estructuras sinclinales y anticlinales estrechos.

Imagen 5 Geología del municipio
a. Unidades de rocas estratigráficas

Los estratos que afloran en el área de interés fluctúan en edad de Valanginiano superior hasta el Aptiano superior y corresponden a la formación ROSA BLANCA del cretáceo inferior que aflora como la parte terminal del anticlinal del alto de la chapa y llega hasta el río minero y la formación PAJA respectivamente.

b. Formación Rosa Blanca

Esta formación consiste en una sucesión de capas de calizas arenosas de grano fino de colores grisáceos a amarillentos, estratificados en capas gruesas de más de 2 metros de espesor e intercalaciones de lutítas calcáreas grises oscuras con concreciones calcáreas paralelas a la estratificación y venas de calcita hacia la parte superior. En resumen, está compuesta por calizas arenosas grises con intercalaciones de lutítas negras, calcáreas y su espesor total se estima en unos 400 metros.

El contacto con la formación supra yacente o formación PAJA es neto, y está definido por la desaparición de los estratos importantes de calizas y comienzo de los niveles predominantemente arcillosos.

Esta unidad representa el Valanginiano superior y se depositó bajo condiciones costeras y neríticas poco profundas de un ambiente marino somero. Las rocas calcáreas afloran en la parte Noreste del área del occidente, aproximadamente a 1 Km al oeste del río Minero, formando las cuchillas del alto de la Chapa; es una secuencia claramente calcárea conformada por una alternancia de niveles duros y blandos en la que el carbonato está omnipresente en toda la secuencia; en los niveles blandos la roca es más arcillosa.

Esta unidad litológica se trata de calizas micríticas y microesparíticas afectadas por una actividad hidrotermal, que conforma un bloque más o menos rectangular orientado NE/SW, sulimie occidental es la falla que se ha llamado Calamaco, lo que pone en contacto ésta unidad con las lodolítas supra yacentes; su límite sur es la falla denominada la quebrada Caco, donde en el sector oriental el bloque calcáreo aparentemente está en contacto concordante con la unidad supra yacente.

c. Formación Paja

Representa una sucesión estratigráfica compuesta por lutítas negras ligeramente calcáreas y micáceas que contienen concreciones de calizas hasta de 30 cm
principalmente en su parte inferior. Consta en su base de lutítas y limolítas grises oscuras a negras con delgadas intercalaciones de areniscas arcillosas de grano fino.

La parte media está constituída por lutítas y arcillolítas grises con intercalaciones de caliza; esta formación subrayase a la formación ROSA BLANCA e infra yace a la formación TABLAZO.

Las lodolítas se les han llamado de esta forma genérica a la secuencia supra yacente al paquete calcáreo que aflora en la mayor parte del área. Las características litológicas de las lodolítas varían lentamente hasta que su partición se hace más coloidal o astillosa, lo cual le confiere una apariencia ocasionalmente más silícea.

2.3. Marco conceptual

Entendemos por Cuenca Hidrográfica a toda el área o superficie del terreno que aporta sus aguas de escorrentía a un mismo punto de desagüe o punto de cierre. La escorrentía la constituyen las aguas que fluyen por la superficie terrestre cuando, tras producirse una precipitación pluvial o cualquier otro aporte de agua, el agua comienza a desplazarse a favor de la pendiente hacia puntos de menor cota como consecuencia de la gravedad; las aguas que no han sido infiltradas por el suelo y han quedado por lo tanto en la superficie generan la escorrentía superficial, mientras que aquéllas que sí han sido infiltradas por el suelo y discurren por su interior reciben el nombre de escorrentía sub-superficial.

Además, en ocasiones una fracción de las aguas de filtración penetra en la corteza terrestre por percolación hasta alcanzar los acuíferos subterráneos. Una cuenca está formada por un entramado de ríos, arroyos y/o barrancos de mayor o menor entidad que conducen los flujos de agua hacia un cauce principal, que es el que normalmente da su nombre a la cuenca; su perímetro es una línea curvada y ondulada que recorre la divisoria de vertido de aguas entre las cuencas adyacentes.

El agua que se mueve por toda la superficie o el subsuelo de una cuenca hidrográfica hasta llegar a formar la red de canales constituye el sistema fluvial o red de drenaje de la cuenca.
Características geomorfológicas de una cuenca hidrográfica

a. Área de la cuenca (Ac)

Es la proyección horizontal de toda el área de drenaje de un sistema de escorrentía dirigido directa o indirectamente a un mismo cauce natural. Se realiza sobre un mapa topográfico en función a las curvas de nivel representadas, se califican según área como:

Tabla 4 Clasificación de cuencas según tamaño

<table>
<thead>
<tr>
<th>Rango de Área (Km²)</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a 5</td>
<td>Unidad</td>
</tr>
<tr>
<td>5 a 20</td>
<td>Sector</td>
</tr>
<tr>
<td>20 a 100</td>
<td>Micro cuenca</td>
</tr>
<tr>
<td>100 a 300</td>
<td>Subcuenca</td>
</tr>
<tr>
<td>> 300</td>
<td>Cuenca</td>
</tr>
</tbody>
</table>

b. Longitud del cauce principal (Lcp), perímetro (P) y ancho (W)

La longitud L de la cuenca viene definida por la longitud de su cauce principal, siendo la distancia equivalente que recorre el río entre el punto de desagüe aguas abajo y el punto situado a mayor distancia topográfica aguas arriba. Según este parámetro se clasifican así:

Tabla 5 Clasificación de cuenca según la longitud de su cauce principal

<table>
<thead>
<tr>
<th>Rango de Área (Km)</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9 a 10.9</td>
<td>Corta</td>
</tr>
<tr>
<td>11 a 15</td>
<td>Mediana</td>
</tr>
<tr>
<td>15.1 a 19.1</td>
<td>Larga</td>
</tr>
</tbody>
</table>

Al igual que la superficie, este parámetro influye enormemente en la generación de escorrentía y por ello es determinante para el cálculo de la mayoría de los índices morfométricos.

En cuanto al perímetro de la cuenca, P, informa sucintamente sobre la forma de la cuenca; para una misma superficie, los perímetros de mayor valor se
corresponden con cuencas alargadas mientras que los de menor lo hacen con cuencas redondeadas.

Finalmente, el ancho se define como la relación entre el área (A) y la longitud de la cuenca (L); se designa por la letra W de forma que:

\[W = \frac{A}{L} \]

Dónde: \(^{(5)}\)

A: superficie de la cuenca en km².

L: longitud de la cuenca en km.

C. Coeficiente de compacidad o índice de Gravelius \((k_c)\)

Relaciona el perímetro de la cuenca con el perímetro de una cuenca teórica circular de igual área; estima por tanto la relación entre el ancho promedio del área de captación y la longitud de la cuenca (longitud que abarca desde la salida hasta el punto topográficamente más alejado de ésta).

\[Kc = 0.282 \frac{P}{\sqrt{A}} \]

En donde: \(^{(6)}\)

P: perímetro de la cuenca, en Km

A: área de drenaje de la hoya, en Km²

Toma siempre un valor mayor a la unidad, creciendo con la irregularidad de la cuenca, se clasifican como.

<table>
<thead>
<tr>
<th>Rango de (Kc)</th>
<th>Clase de compacidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a 1.25</td>
<td>Redonda a oval redonda</td>
</tr>
<tr>
<td>1.25 a 1.5</td>
<td>Oval redonda a oval oblonga</td>
</tr>
<tr>
<td>1.5 a 1.75</td>
<td>Oval oblonga a rectangular oblonga</td>
</tr>
</tbody>
</table>

d. Factor de forma (kf)

Es la relación entre el ancho y la longitud axial de la cuenca. La longitud axial de la hoya se mide cuando se sigue el curso de agua más largo desde la desembocadura hasta la cabecera más distante en la cuenca. El ancho medio B se obtiene cuando se divide el área por la longitud axial de la hoya.

\[B = \frac{A}{L} \]

\[Kf = \frac{A}{l^2} \]

En donde: (7) (8)

B: ancho medio en Km
L: longitud axial de la hoya, en Km
A: área de drenaje, en Km²

Con el resultado de la fórmula se determina su factor de forma como

Tabla 7 Forma de la cuenca

<table>
<thead>
<tr>
<th>Rango de Kf</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 a 0.18</td>
<td>Muy poco achatada</td>
</tr>
<tr>
<td>0.18 a 0.36</td>
<td>Ligeramente achatada</td>
</tr>
<tr>
<td>0.36 a 0.54</td>
<td>Moderadamente achatada</td>
</tr>
</tbody>
</table>

De una manera más general se puede decir que si el factor de forma es menor a uno se dice que la cuenca es alargada y si es mayor que uno se dice que es redondeada

e. Orden de las corrientes de agua

El orden se relaciona con el caudal relativo del segmento de un canal. Hay varios sistemas de jerarquización, siendo los más utilizados el de Horton (1945) y el de Strahler (1952).

7 MONSELVE, op. cit (pág. 38).
Por el método de Horton los canales van numerados en función del número de afluentes que tengan, de forma que aquel que fluye desde el origen y no tiene ningún afluente es de orden 1, mientras que uno de orden 2 recibe dos afluentes. Si un canal recibe un afluente de orden 1 y otro de orden 2, su orden será 3. El orden de los canales va aumentando de uno en uno, de forma que aunque un canal recibiera uno de orden 2 y otro de orden 3, su orden sería 4. Cada canal tiene un único orden, que se corresponderá con el mayor que puede tener al final de su recorrido.

El método de Strahler es muy parecido a Horton, con la diferencia de que un mismo canal puede tener segmentos de distinto orden a lo largo de su curso, en función de los afluentes que le llegan en cada tramo. El orden no se incrementa cuando a un segmento de un determinado orden confluye uno de orden menor.

Imagen 6 Orden de corrientes según método aplicado
f. **Densidad de drenaje**

Está definida como la relación, Dd, entre la longitud total a lo largo de todos los canales de agua de la cuenca en proyección horizontal y la superficie total de la hoya:

\[Dd = \frac{L}{A} \]

Dónde: \(^9\)

L: longitud total de todas las corrientes de agua en km

A: área total de la cuenca en \(\text{km}^2 \)

<table>
<thead>
<tr>
<th>Rango de densidad</th>
<th>Clases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 a 1.8</td>
<td>Baja</td>
</tr>
<tr>
<td>1.9 a 3.6</td>
<td>Moderada</td>
</tr>
<tr>
<td>3.7 a 5.6</td>
<td>Alta</td>
</tr>
</tbody>
</table>

Tabla 8 Categoría de cuenca según su densidad de drenaje

g. **Índice de sinuosidad (S)**

Es la relación entre la longitud del río principal medida a lo largo de su cauce. La longitud del valle del río principal medida en línea curva o recta.

\[S = \frac{L}{L_s} \]

Dónde: \(^{10}\)

L: longitud del río principal

Ls: Longitud medida en línea curva

h. **Extensión media de la escorrentía superficial (E)**

Se define como la distancia media en que el agua de lluvia tendría que escurrir sobre los terrenos de una cuenca, en caso de que la escorrentía se diese en línea recta, desde donde la lluvia cayó, hasta el punto más próximo al lecho de una corriente cualquiera de la cuenca. Considerando que una cuenca de área Ac pueda ser representada por un área de drenaje rectangular, y teniendo un curso de longitud L, igual a la longitud total de las corrientes de agua dentro de ella, que pasa por su centro, como se muestra en la figura 9, la extensión media E, de la escorrentía superficial será. (11)

\[A = \frac{4}{L} \]

Imagen 7 Extensión media de la escorrentía superficial

i. Pendiente promedio de la cuenca.

Este parámetro es de importancia pues da un índice de la velocidad media de la escorrentía y su poder de arrastre y de la erosión sobre la cuenca. Uno de los métodos más representativos para el cálculo es el muestreo aleatorio por medio de una cuadrícula; llevando las intersecciones de la cuadrícula sobre el plano topográfico y calculando la pendiente para todos puntos arbitrariamente escogidos. Con todos estos valores se puede construir un histograma de pendientes que permite estimar el valor medio y la desviación estándar del

muestreo de las pendientes. Las pendientes para los puntos dados por las intersecciones de la cuadrícula se calculan teniendo en cuenta la diferencia de las dos curvas de nivel entre las cuales el punto quedó ubicado y dividiéndola por la distancia horizontal menor entre las dos curvas de nivel, pasando por el punto ya determinado.

Entre los métodos a utilizar también está en siguiente: se monta sobre la cuenca una cuadrícula de tamaño conveniente, se cuentan los cortes de las curvas de nivel con los ejes horizontal y vertical de la cuadrícula respectivamente y se tiene:

\[S_h = \frac{n_h h}{L_h} \]

\[S_v = \frac{n_v h}{L_v} \]

En donde

- \(h \): diferencia de cotas entre curvas de nivel
- \(n_h \): número de cruces de las curvas de nivel con líneas de igual coordenadas este
- \(n_v \): número de cruces de las curvas de nivel con líneas de igual coordenadas norte
- \(S_h \) y \(S_v \): pendientes horizontales y verticales de la cuenca

Se tiene entonces que la pendiente promedio es:

\[s = \frac{s_e + S_h}{2} \times 100\% \]

Una cuenca se puede clasificar en función a su pendiente como

Tabla 9. Rango de pendientes

<table>
<thead>
<tr>
<th>Rango</th>
<th>Termino descriptivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 2 %</td>
<td>Plano o casi a nivel</td>
</tr>
<tr>
<td>2 a 4%</td>
<td>Ligeramente inclinado</td>
</tr>
</tbody>
</table>
j. Altura y elevación promedio del relieve

La elevación promedia está referida al nivel del mar. Este valor puede ser encontrado usando la curva hipsométrica. La estimación por una media aritmética ponderada en el caso de la curva hipsométrica es calculando el área bajo la curva y dividiéndola por el área total.

La altura media, H, es la elevación promedia referida al nivel de la estación de aforo de la boca de la cuenca.

También se puede definir como:

\[
C = \frac{\sum_{i=1}^{n} (cota\; media\; intervalo\; i \times Área\; i)}{\sum_{i=1}^{n} (Área\; i)}
\]

Donde²ⁿ “n” número de intervalos de clase

k. Curva hipsométrica

Esta curva representa el área drenada variando con la altura de la superficie de la cuenca. También podría verse como la variación media del relieve de la hoya. La curva hipsométrica se construye llevando al eje de las abscisas los valores de la superficie drenada proyectada en km\(^2\) o en porcentaje, obtenida hasta un determinado nivel, el cual se lleva al eje de las ordenadas, generalmente en metros. Normalmente se puede decir que los dos extremos de la curva tienen variaciones abruptas.

La función hipsométrica es una forma conveniente y objetiva de describir la relación entre la propiedad altimétrica de la cuenca en un plano y su elevación. Es posible convertir la curva hipsométrica en función adimensional usando en lugar de valores totales en los ejes, valores relativos: dividiendo la altura y el área por sus respectivos valores máximos. El gráfico adimensional es muy útil en hidrología para el estudio de similitud entre dos cuencas, cuando ellas presentan variaciones de la precipitación y de la evaporación con la altura.

Imagen 8 Curva hipsométrica

![Curva hipsométrica](image)

I. Coeficiente de masividad (km)

Este coeficiente representa la relación entre la elevación media de la cuenca, dada en metros (m) y su superficie, dada en Kilómetros cuadrados (Km\(^2\))
Tabla 10. Valor de masividad de una cuenca

<table>
<thead>
<tr>
<th>Clases de valores de masividad</th>
<th>Rango Km</th>
<th>clase de masividad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 a 35</td>
<td>Muy Montañosa</td>
</tr>
<tr>
<td></td>
<td>35 a 70</td>
<td>Montañosa</td>
</tr>
<tr>
<td></td>
<td>70 a 105</td>
<td>Moderadamente montañosa</td>
</tr>
</tbody>
</table>

m. Histograma de frecuencias altimétricas

Es la representación de la superficie, en km2 o en porcentaje, comprendida entre dos niveles, siendo la marca de clase el promedio de las alturas. De esta forma, con diferentes niveles se puede formar el histograma. Este diagrama de barras puede ser obtenido de los mismos datos de la curva hipsométrica. Realmente contiene la misma información de ésta pero con una representación diferente, dándonos una idea probabilística de la variación de la altura en la cuenca.

Imagen 9. Histograma de frecuencia

n. Pendiente de la corriente principal

La velocidad de escorrentía de las corrientes de agua depende de la pendiente de sus canales fluviales: A mayor pendiente mayor velocidad

- Pendiente media (S1): Es la diferencia total de elevaciones del lecho del río dividido por su longitud entre esos puntos
• Pendiente media ponderada (S2): Para calcularlo se traza una línea, tal que el área comprendida entre esa línea y los ejes coordenados sea igual a la comprendida entre la curva del perfil del río y dichos ejes.

<table>
<thead>
<tr>
<th>Tabla 11. Clases de valor de corriente principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de pendiente</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>0.01 a 0.05</td>
</tr>
<tr>
<td>0.06 a 0.11</td>
</tr>
<tr>
<td>0.12 a 0.17</td>
</tr>
</tbody>
</table>

• Pendiente equivalente constante (S3): este índice viene a dar una idea sobre el tiempo de recorrido del agua a lo largo de la extensión del perfil longitudinal. Desacuerdo con la fórmula de Manning o Chezzy del río.

\[
S_3 = \left(\frac{Sl_i}{S \left(l_i / \sqrt{St} \right)} \right)^2
\]

o. Rectángulo equivalente

Supone la transformación geométrica de la cuenca real en una superficie rectangular de lados \(L \) y \(l \) del mismo perímetro de tal forma que las curvas de nivel se conviertan en rectas paralelas a los lados menores del rectángulo (l). Esta cuenca teórica tendrá el mismo Coeficiente de Gravelius y la misma distribución actitudinal de la cuenca original.

\[
L = \frac{K_c \sqrt{A}}{1.12} \left[1 + \sqrt{1 - \frac{(1.12)^2}{K_c^2}} \right] \tag{13}
\]

\[
l = \frac{K_c \sqrt{A}}{1.12} \left[1 - \sqrt{1 - \frac{(1.12)^2}{K_c^2}} \right] \tag{14}
\]

14 MONSALVE, op, cit (pág. 52).
En donde
L: altura del rectángulo en Km
L: base del rectángulo en Km
Kc: coeficiente de gravelius
A: superficie de la cuenca en Km2

Método racional

Cuando se quieren obtener solo caudales máximos, se pueden calcular haciendo uso de la fórmula racional. Este método, es uno de los más antiguos de la hidrología cuantitativa y es útil en cuencas pequeñas menores de 200 km2. Este límite está dado por las características de las lluvias en la zona y debe ser tal que la lluvia puntual se pueda considerar uniformemente distribuida en el área a considerar para lo cual se puede considerar sub-áreas (sub-cuencas).

$$Q = \frac{CIA}{3.6}$$

Dónde: (15)
Q: Caudal en m3/s
C: Coeficiente de escorrentía (adimensional)
I: Intensidad de la lluvia en mm/hora
A: Es el área de escorrentimiento en Km2

La fórmula resulta razonablemente buena si se elige adecuadamente el valor del coeficiente de escorrentía “C”.

a. Tiempo de Concentración.

El tiempo de concentración de la cuenca se define como el tiempo necesario para que la partícula de agua hidráulicamente más alejada alcance la salida de la cuenca (coincidente con el punto donde se desea calcular el caudal)

La duración de la lluvia, para obtener la intensidad “I” de la lluvia se debe elegir igual al Tiempo de Concentración Tc (definido por Lamas en 1993) de la cuenca para maximizar el caudal de diseño.

\[T_c = \left(\frac{0.87L^3}{H} \right)^{0.385} \]

Dónde: \(^{(16)}\)

L: Longitud del cauce principal en Km

H: desnivel medio del cauce principal en m

b. Coeficientes de Escurrimiento.

La aplicación de la fórmula racional depende del coeficiente de escurrimiento. Los coeficientes de escurrimiento dependen de las características del terreno, uso y manejo del suelo, condiciones de infiltración, etc. y se necesita un criterio técnico adecuado para seleccionar un valor representativo. En la tabla se entregan rangos usuales de este coeficiente para diversos tipos de situaciones. Se dan valores típicos del coeficiente para áreas rurales y urbanas, respectivamente.

Por otro lado, el valor del coeficiente de escurrimiento C se puede determinar también de acuerdo con la siguiente expresión: \(^{(17)}\)

\[C = \frac{V_e}{V_p} \]

Se puede definir como la relación entre el volumen de escurrimiento superficial, Ve, y el volumen de precipitación total, Vp, ambos expresados en m\(^3\). Ese coeficiente es función de varios factores, varía a través del tiempo de duración de la precipitación y es función de las características del terreno, tipo de suelo, vegetación, permeabilidad, humedad. Durante una precipitación, la infiltración disminuye y consecuentemente aumenta el valor de C. Para los fines de una fórmula simple

como la racional, el coeficiente C, se considera constante durante la duración de la lluvia.\(^{(18)}\)

Tabla 12 Valores del coeficiente de escorrentía en áreas rurales

<table>
<thead>
<tr>
<th>Características de la superficie</th>
<th>Periodo de retorno (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Área desarrollada</td>
<td></td>
</tr>
<tr>
<td>Asfalto</td>
<td>0.73</td>
</tr>
<tr>
<td>Concreto/techo</td>
<td>0.75</td>
</tr>
<tr>
<td>Zonas verdes (jardines, parques)</td>
<td></td>
</tr>
<tr>
<td>Condiciones pobre (cubiertas de pasto menor del 50% del área)</td>
<td></td>
</tr>
<tr>
<td>Plano 0-2%</td>
<td>0.32</td>
</tr>
<tr>
<td>Promedio 2-7%</td>
<td>0.37</td>
</tr>
<tr>
<td>Pendiente superior a 7%</td>
<td>0.4</td>
</tr>
<tr>
<td>Condiciones promedio (cubiertas de pasto mayor del 50 al 75% del área)</td>
<td></td>
</tr>
<tr>
<td>Plano 0-2%</td>
<td>0.25</td>
</tr>
<tr>
<td>Promedio 2-7%</td>
<td>0.33</td>
</tr>
<tr>
<td>Pendiente superior a 7%</td>
<td>0.37</td>
</tr>
<tr>
<td>Condiciones buenas (cubiertas de pasto mayor del 75% del área)</td>
<td></td>
</tr>
<tr>
<td>Plano 0-2%</td>
<td>0.21</td>
</tr>
<tr>
<td>Promedio 2-7%</td>
<td>0.29</td>
</tr>
<tr>
<td>Pendiente superior a 7%</td>
<td>0.34</td>
</tr>
<tr>
<td>Áreas no desarrolladas</td>
<td></td>
</tr>
<tr>
<td>Áreas de cultivos</td>
<td></td>
</tr>
<tr>
<td>Plano 0-2%</td>
<td>0.31</td>
</tr>
<tr>
<td>Promedio 2-7%</td>
<td>0.35</td>
</tr>
<tr>
<td>Pendiente superior a 7%</td>
<td>0.39</td>
</tr>
<tr>
<td>Pastizales</td>
<td></td>
</tr>
<tr>
<td>Plano 0-2%</td>
<td>0.25</td>
</tr>
<tr>
<td>Promedio 2-7%</td>
<td>0.33</td>
</tr>
<tr>
<td>Pendiente superior a 7%</td>
<td>0.37</td>
</tr>
<tr>
<td>Bosques</td>
<td></td>
</tr>
<tr>
<td>Plano 0-2%</td>
<td>0.22</td>
</tr>
<tr>
<td>Promedio 2-7%</td>
<td>0.31</td>
</tr>
<tr>
<td>Pendiente superior a 7%</td>
<td>0.35</td>
</tr>
</tbody>
</table>

c. Periodo de Retorno

Periodo de retorno es uno de los parámetros más significativos a ser tomado en cuenta en el momento de dimensionar una obra hidráulica destinada a soportar crecientes, como por ejemplo: el vertedero de una presa, los diques para control de inundaciones, o una obra que requiera cruzar un río o arroyo con seguridad, como por ejemplo un puente.

El periodo de retorno, generalmente expresado en años, puede ser entendido como el número de años en que se espera que medianamente se repita un cierto caudal, o un caudal mayor. Así podemos decir que el periodo de retorno de un caudal de 100 m3/s, para una sección específica de un río determinado, es de 20 años, si, caudales iguales o mayores de 100 m3/s se producen, en promedio cada 20 años.

d. Periodo de retorno para diseño

En la elección del periodo de retorno, frecuencia o probabilidad a utilizar en el diseño de una obra, es necesario considerar la relación existente entre la probabilidad de excedencia de un evento, la vida útil de la estructura y el riesgo de falla aceptable, dependiendo, este último, de factores económicos, sociales, ambientales, técnicos y otros.

La confiabilidad del diseño, representada por la probabilidad que no falle la estructura durante el transcurso de su vida útil, considera el hecho que no ocurra un evento de magnitud superior a la utilizada en el diseño durante la vida útil, es decir, no debe presentarse un evento de magnitud superior a la usada en el diseño durante el primer año de funcionamiento de la estructura, durante el segundo, y así sucesivamente. Dado que la probabilidad de ocurrencia para cada uno de estos eventos es independiente, la probabilidad de falla o riesgo (r) durante el período de vida útil de la estructura se determina mediante la siguiente expresión, en función del periodo de retorno (T, años) y la vida útil (n, años): \(^{(19)}\)

$$r = 1 - \left(1 - \frac{1}{T}\right)n$$

Teniendo presente los conceptos antes analizados, así como la experiencia nacional y de otros países, se deberán emplear para el diseño de las diferentes...

obras de drenaje de las Carreteras (Autopistas, Rutas Primarias y Secundarias) y de los caminos (Colectores, Locales y de Desarrollo), como mínimo, los Períodos de Retorno de Diseño que se señalan en la siguiente tabla:

Tabla 13 Período de retornos de diseño

<table>
<thead>
<tr>
<th>Riesgo (r, %)</th>
<th>Vida útil(años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>195</td>
</tr>
<tr>
<td>1</td>
<td>995</td>
</tr>
</tbody>
</table>
3. DISEÑO METODOLÓGICO

La metodología propuesta para el estudio de la quebrada Negra, desde su nacimiento hasta su desembocadura, es una metodología cuantitativa empleando una investigación descriptiva; se enfoca en obtener valores de referencia a través de modelos matemáticos que permitan conocer sus principales características y comportamiento.

3.1. Población y muestra

El objeto sobre el cual se realiza el estudio es la quebrada Negra con nacimiento en la coordenadas 5° 39´29.20" N y 74°6´16.79" W del municipio de Otanche departamento de Boyacá

3.2. Variables

Datos de elevación y características propias del relieve de zona. Las características físicas de una cuenca Posteriormente se llevaran a cabo la caracterización Geomorfológica de la cuenca de la quebrada Negra hasta el sitio de su desembocadura. En esta caracterización se incluirá la estimación de los siguientes parámetros:

- Área de drenaje, longitud, perímetro y ancho de la cuenca.
- Factor de forma, coeficiente de compacidad
- Índice de alargamiento, índice de asimetría
- Elevación media de la cuenca
- Coeficiente de masividad
- Índice de sinuosidad
- Pendiente, pendiente promedio de la cuenca
- Coeficiente de masividad
- Densidad de drenaje
- Orden de la cuenca
- Curva hipsométrica

3.3. Análisis

3.3.1. Análisis morfométrico de la micro-cuenca

Morfometría del área de captación

- Datos generales:
Quebrada: Negra
Departamento: Boyacá
Municipio: Otanche
Conecta: a Quebrada BuriBuri

- Tabla de símbolos:

Tabla 14. Símbolos de uso

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Ítem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wm</td>
<td>Ancho máximo</td>
</tr>
<tr>
<td>W</td>
<td>Ancho promedio</td>
</tr>
<tr>
<td>Ac</td>
<td>Área cuenca</td>
</tr>
<tr>
<td>Kc</td>
<td>Coeficiente de compacidad</td>
</tr>
<tr>
<td>Km</td>
<td>Coeficiente de masividad</td>
</tr>
<tr>
<td>Dd</td>
<td>Densidad de drenaje</td>
</tr>
<tr>
<td>Em</td>
<td>Elevación media de la cuenca</td>
</tr>
<tr>
<td>Eme</td>
<td>Elevación mediana de la cuenca</td>
</tr>
<tr>
<td>I</td>
<td>Extensión media de la escorrentía superficial</td>
</tr>
<tr>
<td>Kf</td>
<td>Factor Forma</td>
</tr>
<tr>
<td>Ia</td>
<td>Índice de alargamiento</td>
</tr>
<tr>
<td>Sn</td>
<td>Índice de sinuosidad</td>
</tr>
<tr>
<td>Lcp</td>
<td>Longitud cauce principal</td>
</tr>
<tr>
<td>Lc</td>
<td>Longitud cuenca</td>
</tr>
<tr>
<td>Lm</td>
<td>Longitud máxima</td>
</tr>
<tr>
<td>L+</td>
<td>Longitud total de las corrientes</td>
</tr>
<tr>
<td>S3</td>
<td>Pendiente equivalente constante</td>
</tr>
<tr>
<td>S1</td>
<td>Pendiente media</td>
</tr>
<tr>
<td>S2</td>
<td>Pendiente media ponderada</td>
</tr>
<tr>
<td>S</td>
<td>Pendientes de la hoya</td>
</tr>
<tr>
<td>P</td>
<td>Perímetro</td>
</tr>
<tr>
<td>TC</td>
<td>Tiempo de concentración</td>
</tr>
</tbody>
</table>
a. Área: El área para la cuenca es de 2.14 Km2, lo que la clasifica como una unidad ya que se encuentra entre el rango más bajo de 1 a 5 km2.

b. Perímetro: El perímetro correspondiente a esta unidad es de 6.97 Km; se toma como perímetro la divisoria de aguas establecida bajo los parámetros correspondientes.

c. Longitud máxima de la cuenca (Lm): Longitud máxima es 2.22 Km, tomando como referencia la longitud del cauce principal y su posible cauce en toda la unidad, lo que indica que la longitud es muy corta, no estando dentro de los parámetros de clasificación.

d. Ancho promedio (W): Se obtiene un resultado de 1.30 Km.

e. Factor Forma (kf): El factor forma hallado por la relación entre el ancho promedio y la longitud de la cuenca es de 0.76, es de forma alargada.

f. Coeficiente de compacidad (Kc): se halla un valor de 1.34, lo que significa que la cuenca posee una forma de redonda a oval alargada.

g. Índice de alargamiento (Ia): se encuentra un valor de 1.14, al ser un valor mayor a la unidad se denota que la cuenca presenta una forma alargada.

h. Tiempo de concentración (TC): El tiempo mínimo para que una gota de agua caída en el punto de la cuenca más alejado llegue a la salida de la cuenca es de 14 minutos con 28 segundos (14’28”).

Morfometría del relieve

a. Elevación media de la cuenca (Em):

 Método Área – elevación: La altitud media calculada es de 1404.64m

b. Elevación mediana de la cuenca: Al realizar la curva hipsométrica se obtiene el valor de 1384.67m., (véase imagen 10)

c. Curva hipsométrica:
Tabla 15. Cálculos de curva hipsométrica

<table>
<thead>
<tr>
<th>cota intervalo de clase</th>
<th>Elevación promedio (ei)</th>
<th>Área entre curvas (Ai) (km²)</th>
<th>Área acumulada</th>
<th>Porcentaje Área [%]</th>
<th>Porcentaje Acumulado</th>
<th>ei X Ai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700 - 1650</td>
<td>1675</td>
<td>0.204</td>
<td>0.204</td>
<td>9.53%</td>
<td>9.53%</td>
<td>341.64</td>
</tr>
<tr>
<td>1650 - 1600</td>
<td>1625</td>
<td>0.108</td>
<td>0.312</td>
<td>5.06%</td>
<td>14.59%</td>
<td>176.07</td>
</tr>
<tr>
<td>1600 - 1550</td>
<td>1575</td>
<td>0.161</td>
<td>0.473</td>
<td>7.51%</td>
<td>22.10%</td>
<td>253.40</td>
</tr>
<tr>
<td>1550 - 1500</td>
<td>1525</td>
<td>0.165</td>
<td>0.639</td>
<td>7.72%</td>
<td>29.82%</td>
<td>252.22</td>
</tr>
<tr>
<td>1500 - 1450</td>
<td>1475</td>
<td>0.154</td>
<td>0.793</td>
<td>7.21%</td>
<td>37.03%</td>
<td>227.70</td>
</tr>
<tr>
<td>1450 - 1400</td>
<td>1425</td>
<td>0.220</td>
<td>1.013</td>
<td>10.28%</td>
<td>47.32%</td>
<td>313.82</td>
</tr>
<tr>
<td>1400 - 1350</td>
<td>1375</td>
<td>0.187</td>
<td>1.200</td>
<td>8.74%</td>
<td>56.06%</td>
<td>257.34</td>
</tr>
<tr>
<td>1350 - 1300</td>
<td>1325</td>
<td>0.249</td>
<td>1.449</td>
<td>11.61%</td>
<td>67.66%</td>
<td>329.30</td>
</tr>
<tr>
<td>1300 - 1250</td>
<td>1275</td>
<td>0.291</td>
<td>1.740</td>
<td>13.61%</td>
<td>81.27%</td>
<td>371.58</td>
</tr>
<tr>
<td>1250 - 1200</td>
<td>1225</td>
<td>0.270</td>
<td>2.011</td>
<td>12.63%</td>
<td>93.91%</td>
<td>331.35</td>
</tr>
<tr>
<td>1200 - 1150</td>
<td>1175</td>
<td>0.130</td>
<td>2.141</td>
<td>6.09%</td>
<td>100.00%</td>
<td>153.30</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2.141</td>
<td></td>
<td>100%</td>
<td></td>
<td>3007.72</td>
</tr>
</tbody>
</table>
d. Coeficiente de masividad (Km): El coeficiente de masividad de la Unidad es de 1384.67 m/Km².

e. Índice de sinuosidad (S): Al dividir la longitud real del cauce entre la longitud en línea recta de este, se obtiene como resultado: 1.21, observando así que el cauce de la unidad tiende a ser recto.

f. Histograma de frecuencias altimétricas:
Pendientes.

a. Pendiente de la hoya hidrográfica

Se determina la pendiente de la cuenca promedio en 57.19\% calculada con el método de la cuadricula. El método implica calcular el valor de los intervalos de clase (K).

\[K = 1 + 3.3 \times \log(n) \]

Con un valor de n igual a 59 (determinado por el número de intersecciones de la cuadricula) K da como resultado 6.84 el cual se aproxima a 7.

Con el valor de K se calcula el valor de los intervalos el cual es 0.25m; calculado así:

\[C = \frac{\text{Pendiente Mayor} - \text{Pendiente Menor}}{K} \]

Con los valores de los intervalos se desarrolla la tabla de pendientes de la cuenca
Tabla 16. Cálculos de pendiente

<table>
<thead>
<tr>
<th>Pendiente mínima</th>
<th>Pendiente máxima</th>
<th>Numero de ocurrencias</th>
<th>Porcentaje del total</th>
<th>Porcentaje acumulado</th>
<th>Pendiente media del intervalo</th>
<th>(2) X (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.24503</td>
<td>7</td>
<td>11.864</td>
<td>100</td>
<td>0.123</td>
<td>0.858</td>
</tr>
<tr>
<td>0.246</td>
<td>0.49103</td>
<td>17</td>
<td>28.814</td>
<td>88.136</td>
<td>0.369</td>
<td>6.265</td>
</tr>
<tr>
<td>0.49104</td>
<td>0.73607</td>
<td>23</td>
<td>38.983</td>
<td>59.322</td>
<td>0.614</td>
<td>14.112</td>
</tr>
<tr>
<td>0.73607</td>
<td>0.98110</td>
<td>5</td>
<td>8.475</td>
<td>20.339</td>
<td>0.859</td>
<td>4.293</td>
</tr>
<tr>
<td>0.9811</td>
<td>1.22613</td>
<td>6</td>
<td>10.169</td>
<td>11.864</td>
<td>1.104</td>
<td>6.622</td>
</tr>
<tr>
<td>1.22614</td>
<td>1.47117</td>
<td>0</td>
<td>0.000</td>
<td>1.695</td>
<td>1.349</td>
<td>0.000</td>
</tr>
<tr>
<td>1.47117</td>
<td>1.71620</td>
<td>1</td>
<td>1.695</td>
<td>1.695</td>
<td>1.594</td>
<td>1.594</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td>33.742</td>
</tr>
</tbody>
</table>
Con los valores obtenidos de porcentaje acumulado y pendiente de la cuenca expresados en la tabla anterior se realiza la gráfica de distribución de pendientes.

Imagen 11. Curva de distribución de pendientes

b. Pendiente de la corriente principal

Se calculó la Pendiente media (S1), pendiente media ponderada (S2) la Pendiente equivalente constante (S3) empleado el perfil de la corriente principal. Para los cálculos de pendiente media ponderada se estiman los valores del área bajo el perfil de la corriente resultando 16.08 km².
- Pendiente media (S1): 0.15
- pendiente media ponderada (S2): 0.08
- Pendiente equivalente constante (S3): 0.93

Se puede decir que la velocidad de flujo es muy fuerte, al tratarse de un cauce con una pendiente pronunciada, puesto que a mayor pendiente mayor velocidad de desplazamiento del agua, menor tiempo de concentración y menor infiltración.

Imagen 12. Perfil y pendiente del cauce principal
Tabla 17. Cálculos de pendientes del cauce principal

PENDIENTE CAUCE PRINCIPAL

<table>
<thead>
<tr>
<th>Curvas de nivel</th>
<th>Cota menor</th>
<th>Cota mayor</th>
<th>Diferencia de cotas</th>
<th>Distancia horizontal entre cotas</th>
<th>Distancia inclinada entre cotas (li*)</th>
<th>Distancia inclinada acumulada (li**)</th>
<th>Pendiente por segmento (Si)</th>
<th>Si^1/2</th>
<th>li** / Si^1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1460</td>
<td>1450</td>
<td>10</td>
<td>13.225</td>
<td>16.580</td>
<td>16.580</td>
<td>0.756</td>
<td>0.798</td>
<td>20.786</td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td>1420</td>
<td>30</td>
<td>67.8052</td>
<td>74.145</td>
<td>90.725</td>
<td>0.442</td>
<td>0.914</td>
<td>81.079</td>
</tr>
<tr>
<td></td>
<td>1420</td>
<td>1390</td>
<td>30</td>
<td>66.7046</td>
<td>73.140</td>
<td>163.866</td>
<td>0.450</td>
<td>0.912</td>
<td>80.197</td>
</tr>
<tr>
<td></td>
<td>1390</td>
<td>1360</td>
<td>30</td>
<td>36.4469</td>
<td>47.206</td>
<td>211.071</td>
<td>0.823</td>
<td>0.772</td>
<td>61.140</td>
</tr>
<tr>
<td></td>
<td>1360</td>
<td>1330</td>
<td>30</td>
<td>97.1797</td>
<td>101.705</td>
<td>312.776</td>
<td>0.309</td>
<td>0.956</td>
<td>106.441</td>
</tr>
<tr>
<td></td>
<td>1330</td>
<td>1300</td>
<td>30</td>
<td>28.083</td>
<td>41.093</td>
<td>353.869</td>
<td>1.068</td>
<td>0.683</td>
<td>60.131</td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td>1270</td>
<td>30</td>
<td>146.6722</td>
<td>149.709</td>
<td>503.578</td>
<td>0.205</td>
<td>0.980</td>
<td>152.808</td>
</tr>
<tr>
<td></td>
<td>1270</td>
<td>1240</td>
<td>30</td>
<td>409.5621</td>
<td>410.659</td>
<td>914.238</td>
<td>0.073</td>
<td>0.997</td>
<td>411.760</td>
</tr>
<tr>
<td></td>
<td>1240</td>
<td>1210</td>
<td>30</td>
<td>64.4579</td>
<td>71.097</td>
<td>985.335</td>
<td>0.465</td>
<td>0.907</td>
<td>78.421</td>
</tr>
<tr>
<td></td>
<td>1210</td>
<td>1180</td>
<td>30</td>
<td>234.5894</td>
<td>236.500</td>
<td>1221.835</td>
<td>0.128</td>
<td>0.992</td>
<td>238.426</td>
</tr>
<tr>
<td></td>
<td>1180</td>
<td>1150</td>
<td>30</td>
<td>47.6948</td>
<td>56.345</td>
<td>1278.180</td>
<td>0.629</td>
<td>0.846</td>
<td>66.565</td>
</tr>
<tr>
<td></td>
<td>1150</td>
<td>1149</td>
<td>1</td>
<td>858.6241</td>
<td>858.625</td>
<td>2136.805</td>
<td>0.001</td>
<td>1.000</td>
<td>858.625</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2071.045</td>
<td>2136.805</td>
<td>-</td>
<td>5.350</td>
<td>10.757</td>
<td>2216.378</td>
</tr>
</tbody>
</table>
c. Rectángulo equivalente:

Se construye un rectángulo equivalente de área igual a la de la cuenca, tal que el lado menor sea I y el lado mayor L. Las curvas de nivel se representan por rectas paralelas al lado más pequeño del rectángulo, y las distancias entre las curvas de nivel se establecen de acuerdo con los porcentajes de área por encima de las diferentes curvas de nivel, que se muestran en el siguiente cuadro:

Tabla 18. Cálculos de rectángulo equivalente

<table>
<thead>
<tr>
<th>Cota intervalo de clase</th>
<th>Área acumulada</th>
<th>Longitudes acumuladas del rectángulo equivalente (Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700 - 1650</td>
<td>0.204</td>
<td>0.260</td>
</tr>
<tr>
<td>1650.000 - 1600.000</td>
<td>0.473</td>
<td>0.602</td>
</tr>
<tr>
<td>1600.000 - 1550.000</td>
<td>0.639</td>
<td>0.813</td>
</tr>
<tr>
<td>1550.000 - 1500.000</td>
<td>0.793</td>
<td>1.009</td>
</tr>
<tr>
<td>1500.000 - 1450.000</td>
<td>1.013</td>
<td>1.290</td>
</tr>
<tr>
<td>1450.000 - 1400.000</td>
<td>1.200</td>
<td>1.528</td>
</tr>
<tr>
<td>1400.000 - 1350.000</td>
<td>1.434</td>
<td>1.825</td>
</tr>
<tr>
<td>1350.000 - 1300.000</td>
<td>1.455</td>
<td>1.852</td>
</tr>
<tr>
<td>1300.000 - 1250.000</td>
<td>1.740</td>
<td>2.215</td>
</tr>
<tr>
<td>1250.000 - 1200.000</td>
<td>2.011</td>
<td>2.560</td>
</tr>
<tr>
<td>1200.000 - 1150.000</td>
<td>2.141</td>
<td>2.726</td>
</tr>
</tbody>
</table>

- Lado mayor del rectángulo equivalente (L): 2.73 km
- Lado menor del rectángulo equivalente (I): 0.79 km

Morfometría de la red de drenaje

a. Densidad de drenaje (Dd): La relación de la longitud de los ríos con la superficie de la cuenca es de 5.28, lo que indica una excelente red de drenaje, disminuyendo los tiempos de infiltración de las escorrentías.

b. Orden de la cuenca: El orden de la cuenca es 3, una clase de orden media, así se confirma que la cuenca posee una buena estructura de drenaje y que está en una fase de equilibrio.
c. Extensión media de la escorrentía superficial (E): El resultado obtenido es de 0.047 Km.

3.3.2. Cálculo del caudal máximo

Para los cálculos se emplearon los datos hidrológicos de la estación OTANCHE con código 2023125085

Periodo de retorno: los valores de periodo de retorno para los cálculos de caudal máximo de la quebrada Negra son de 3, 5, 10, 25, 50 y 100 años

Tiempo de concentración: el tiempo de concentración es el tiempo calculado en el análisis morfométrico de la cuenca el cual dio un valor de 14.47 minutos (14’ 28”)

Curva de Intensidad-Duración-Frecuencia IDF: con un periodo de retorno establecido y el tiempo de concentración calculado seleccionamos los valores de intensidad de precipitación medidos de la estación de otanche para periodos de retorno de 3, 5, 10, 25, 50 y 100 años los cuales se muestran en la siguiente tabla acompañados de la curva IDF.²⁰

<table>
<thead>
<tr>
<th>Tabla 19. Intensidad de precipitación</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIODO DE RETORNO</td>
</tr>
<tr>
<td>(años)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Con el valor calculado de tiempo de concentración para la cuenca de la quebrada Negra (14.47) ingresamos a la tabla No 14 para determinar la intensidad de precipitación para los periodos de retorno; resultando los datos presentados en la tabla 20

Tabla 20. Intensidad de precipitación

<table>
<thead>
<tr>
<th>Período de retorno (años)</th>
<th>Intensidad de precipitación (mm/h)</th>
<th>Intensidad de precipitación (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>113.6</td>
<td>3.15583E-05</td>
</tr>
<tr>
<td>5</td>
<td>130.1</td>
<td>3.61306E-05</td>
</tr>
<tr>
<td>10</td>
<td>150.8</td>
<td>4.18759E-05</td>
</tr>
<tr>
<td>25</td>
<td>156.3</td>
<td>4.34163E-05</td>
</tr>
<tr>
<td>50</td>
<td>196.3</td>
<td>5.45208E-05</td>
</tr>
<tr>
<td>100</td>
<td>215.5</td>
<td>5.98659E-05</td>
</tr>
</tbody>
</table>

Coeficiente de escorrentía: se selecciona para cada periodo de retorno en función a la pendiente de la cuenca y del tipo de cobertura presente en la zona. Los valores de escorrentía para el cálculo de la quebrada se escogieron de la tabla 12.
Curva IDF estación Otanche

Imagen 13 Curva IDF estación Otanche

Proyecto de grado: Construcción y análisis de curva Intensidad; Duración, Frecuencia para las estaciones Otanche y Villa Luisa en el departamento de Boyacá. Autor: Cesar Oswaldo Bohorques Salgado. Universidad Distrital, Facultad Tecnológica. 2014
Aplicación de la fórmula del método racional: con los datos requeridos de tiempo de concentración, coeficiente de escorrentía y área de la cuenca se calcula el caudal máximo de la quebrada negra por el método racional empleando la fórmula:

\[Q = \frac{C \cdot I \cdot A_c}{3.6} \]

Después de emplear la fórmula para los periodos de retorno seleccionados se obtiene los caudales máximos para dichos periodos los cuales se muestran en la tabla 20.

Tabla 21. Caudal máximo de creciente empleando el método racional

<table>
<thead>
<tr>
<th>Período de retorno (años)</th>
<th>Tiempo de concentración (min)</th>
<th>Coeficiente de escorrentía</th>
<th>Intensidad de precipitación (mm/h)</th>
<th>Área de la cuenca (Km²)</th>
<th>Caudal máximo calculado (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14.47</td>
<td>0.37</td>
<td>113.6</td>
<td>2.14</td>
<td>25.00</td>
</tr>
<tr>
<td>5</td>
<td>14.47</td>
<td>0.40</td>
<td>130.1</td>
<td>2.14</td>
<td>30.95</td>
</tr>
<tr>
<td>10</td>
<td>14.47</td>
<td>0.42</td>
<td>150.8</td>
<td>2.14</td>
<td>37.66</td>
</tr>
<tr>
<td>25</td>
<td>14.47</td>
<td>0.46</td>
<td>156.3</td>
<td>2.14</td>
<td>42.76</td>
</tr>
<tr>
<td>50</td>
<td>14.47</td>
<td>0.49</td>
<td>196.3</td>
<td>2.14</td>
<td>57.20</td>
</tr>
<tr>
<td>100</td>
<td>14.47</td>
<td>0.53</td>
<td>215.5</td>
<td>2.14</td>
<td>67.94</td>
</tr>
</tbody>
</table>

Con los valores de caudal máximo se efectúa una gráfica cruzando estos valores con los de periodos de retorno para visualizar de una manera gráfica la tendencia de la cuenca; de igual manera se presenta la ecuación que describe la gráfica con el objeto de calcular la proyecciones de crecientes para los periodos que se requieran.
Cálculo del caudal máximo de creciente empleando el método del triángulo SCS (Soil conservation service).

El ingeniero GUSTAVO SILVA MEDINA menciona en su trabajo Hidrología en cuencas pequeñas con información escasa que “Tratándose de estudios hidrológicos en cuencas con Información escasa no se Justifica hacer deducciones demasiado complicadas en el cálculo de hidrógramas unitarios sintéticos para estimativos de crecientes. Por esta razón, se recomiendan los más sencillos. Como son, los de Snyder y Taylor y el triangular del SCS (Soil conservation service). Los dos primeros Snyder y Taylor, dan resultados aceptables cuando se utilizan con coeficientes apropiados, deducidos para la región donde se efectúa el estudio; en caso contrario, cuando no es posible deducir los coeficientes propios de la región, es mejor no utilizarlos. El hidrógrafo unitario triangular del SCS es bastante bueno en cuencas pequeñas, menores de
100 km², y su aplicación es muy sencilla. El caudal pico de creciente resulta de la ecuación:

\[Q = \frac{P \times A}{(5.4 \times tc)} \]

Donde:
- Q: es el caudal pico en m³/s
- P: volumen de agua de lluvia en mm
- A: área de la cuenca en km²
- Tc: tiempo de concentración en horas

Para calcular la intensidad de la lluvia a partir del análisis de frecuencias de las lluvias máximas diarias, se determina la intensidad correspondiente a una duración igual al tiempo de concentración de la cuenca, en mm/hora. Sea \(i \) la intensidad, el volumen \(P \) resulta:

\[P = i \times tc \times C \]

Donde:
- P: volumen de agua de lluvia en mm
- i: intensidad calculada en mm/hora
- tc: es el tiempo de concentración en horas.
- C: coeficiente de reducción

Este coeficiente \(C \) depende de la magnitud de la cuenca y de la pendiente media de la ladera. En cuencas de pendiente muy fuerte y de área menor de 25 km², el coeficiente es próximo a 1; en cambio, en cuencas planas de gran área, es del orden de 0.15.

Empleado los valores de tiempo de concentración (tc) igual a 0.241 horas, sabiendo que la pendiente de la cuenca es de 57.19% y conociendo que el Área estimada de la cuenca es de 2.14 km² se toma como 1 el valor del coeficiente de reducción según los criterios expresados por GUSTAVO SILVA MEDINA; se calcula el volumen de agua de lluvia (P) en mm.
Tabla 22 Cálculo del volumen de agua de lluvia para periodos de retorno

<table>
<thead>
<tr>
<th>Período de retorno (años)</th>
<th>Tiempo de concentración (horas)</th>
<th>Coeficiente de reducción</th>
<th>Intensidad de precipitación (mm/h)</th>
<th>Volumen de agua de lluvia P (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.241</td>
<td>1</td>
<td>113.61</td>
<td>27.39</td>
</tr>
<tr>
<td>5</td>
<td>0.241</td>
<td>1</td>
<td>130.07</td>
<td>31.36</td>
</tr>
<tr>
<td>10</td>
<td>0.241</td>
<td>1</td>
<td>150.75</td>
<td>36.35</td>
</tr>
<tr>
<td>25</td>
<td>0.241</td>
<td>1</td>
<td>156.30</td>
<td>37.69</td>
</tr>
<tr>
<td>50</td>
<td>0.241</td>
<td>1</td>
<td>196.28</td>
<td>47.32</td>
</tr>
<tr>
<td>100</td>
<td>0.241</td>
<td>1</td>
<td>215.52</td>
<td>51.96</td>
</tr>
</tbody>
</table>

Obteniendo los valores de P se puede continuar calculando los valores de los caudales para cada periodo de retorno.

Tabla 23 Cálculo del caudal

<table>
<thead>
<tr>
<th>Período de retorno (años)</th>
<th>Volumen de agua de lluvia P (mm)</th>
<th>Caudal calculado (m3/seg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>27.39</td>
<td>45.07</td>
</tr>
<tr>
<td>5</td>
<td>31.36</td>
<td>51.60</td>
</tr>
<tr>
<td>10</td>
<td>36.35</td>
<td>59.81</td>
</tr>
<tr>
<td>25</td>
<td>37.69</td>
<td>62.01</td>
</tr>
<tr>
<td>50</td>
<td>47.32</td>
<td>77.87</td>
</tr>
<tr>
<td>100</td>
<td>51.96</td>
<td>85.50</td>
</tr>
</tbody>
</table>

Al observar los valores de caudal máximo calculado mediante el método del SCS se aprecia que los valores calculados por este método son más altos que los calculados por el método Racional. La selección de los valores de caudal máximo a emplear para diseños queda a criterio del diseñador.
GEOLOGÍA

El área de estudio se ubica en la cordillera oriental, la cual está caracterizada por un basamento constituido por rocas ígneas y metamórficas de edad precámbrica y paleozoica, el cual ha sufrido múltiples episodios deformativos durante eventos orogénicos pre-mesozóicos. Este basamento está supreyacido por una secuencia sedimentaria de gran espesor, de edad mesozoica cenozoica, las cuales, a su vez han sido frecuentemente deformadas durante el neógeno por fallamientos y plegamientos.

El valle del magdalena, la cordillera oriental y los llanos orientales constituyeron una cuenca sedimentaria importante desde el triásico hasta el mioceno medio. El desarrollo de la cuenca se inicia durante el triásico hasta principios del cretácico con una mega secuencia synrift relacionada a la separación de norte y del sur américa en el proto-caribe. El desarrollo de la cuenca continental durante el cretácico en un ambiente tectónico de back-arc al este de la subducción andina con un predominio de una sedimentación marina. La invasión marina de principios del cretácico tuvo lugar en lo que hoy es parte central de la cordillera oriental y el valle del magdalena, indicando que esta zona constituyo un gran depocentro durante esta época y por lo que muestran las reconstrucciones pelogeográficas relacionadas por esta condición se mantuvo durante la mayor parte del cretácico inferior.

En el contexto esa importante subsidencia del cretácico inferior, tuvo lugar la deportación de los sedimentos que hoy constituyen las unidades sedimentarias florantes en el área de estudio: formación rosa blanca, furatena, muzo, capotes entre otros.

La deposición marina fue interrumpida durante el maastrichtiano superior debido a la acreción final de los fragmentos de corteza oceánica de la cordillera occidental. Esta fase inicial pre-andina provoco de formación en el vale superior del magdalena y el segmento sur de la cordillera oriental. Posteriormente durante el Eoceno temprano a medio. Una última fase de deformación relaciona fundamentalmente con el levantamiento de la cordillera oriental, tuvo lugar durante el mioceno temprano, la cual es una fase reconocida en la bibliografía especializada como Orogenia Andina.

Además estas fases tectónicas, también se identifica una última fase pre-andina durante inicios del oligoeno, caracterizados por cabalgamientos y plegamientos a lo largo de los flancos del a cordillera oriental. Durante las fases del eoceno-oligoceno, probablemente ocurrió deformación transpresiva destral a lo largo de
los sistemas de falla de romeral y salinas como resultado de la convergencia oblicua entre la placa paleo-caribe y el noroeste de la Sur América. La acreción del terreno san Jacinto parece correlacionarse con estas fases deformativas.

El inicio de la deformación andina en la cordillera oriental durante el mioceno medio, aisló el valle del magdalena de la cuenca de los llanos. Esta deformación se debió a la acreción del arco baudo-panama, que al parecer bloqueo la subducción oceánica normal de la placa caribe debajo del continente, provocando que la velocidad de convergencia entre las placas disminuyera de modo que la deformación activa se trasladó hacia el este, hacia zonas de la litosfera continental debilitada por la misma subducción debajo ángulo y finalmente acomodo el acortamien to de las fallas normales antiguas. El acotamiento de la litosfera continental está asociado con una subducción de bu襄阳mento E-SE de la placa paleo-caribe debajo de la cordillera oriental.

La zona de estudio pertenece al segmento central de la cordillera oriental el cual incluye la sabana de Bogotá y sus piedemonte oriental y occidental, en los cuales se observan fallas inversas buzando hacia la cordillera. El levantamiento principal en el área de la sabana de Bogotá ocurrió en 3 y 5 Ma, según los datos palinológicos de depósitos del plegamiento, aunque deformación compresiva anterior se puede identificar en esta zona, en especial del mioceno, en la zona axial de la cordillera oriental. En estas, las rocas sedimentarias plegadas están supreyacidas por depósitos del plioceno inclinados con una pronunciada inconformidad angular.

GEOLOGÍA DEL MUNICIPIO

Las rocas que afloran en el área de estudio, de origen sedimentario que corresponden a las formaciones ROSA BLANCA y la formación PAJA, de edad Valanginiano Superior a Aptiano Superior. La geomorfología del área es abrupta y está controlada por estructuras sinclinales y anticlinales estrechos.

LITOLOGÍA

Unidades de rocas estratigráficas

Los estratos que afloran en el área de interés fluctúan en edad de Valanginiano superior hasta el Aptiano superior y corresponden a la formación ROSA BLANCA

(ORTEGA MEDINA, 2007)
del cretáceo inferior que aflora como la pare terminal del anticlinal del alto de la chapa y llega hasta el río minero y la formación PAJA respectivamente

Formación Rosa Blanca

Consiste en una sucesión de capas de calizas arenosas de grano fino de colores grisáceos a amarillentos, estratificados en capas gruesas de más de 2 metros de espesor e intercalaciones de lutitas calcáreas grises oscuras con concreciones calcáreas paralelas a la estratificación y venas de calcita hacia la parte superior. En resumen, está compuesta por calizas arenosas grises con intercalaciones de lutitas negras, calcáreas y su espesor total se estima en unos 400 metros.

El contacto con la formación supra yacente o formación PAJA es neto, y está definido por la desaparición de los estratos importantes de calizas y comienzo de los niveles predominantemente arcillosos.

Esta unidad representa el Valanginiano superior y se depositó bajo condiciones costeras y neríticas poco profundas de un ambiente marino somero.

Las rocas calcáreas afloran en la parte Noreste del área del occidente de Borbur, aproximadamente a 1 Km al oeste del río Minero, formando las cuchillas del alto.23

De la Chapa; es una secuencia claramente calcárea conformada por una alternancia de niveles duros y blandos en la que el carbonato está omnipresente en toda la secuencia; en los niveles blandos la roca es más arcillosa.

Esta unidad litológica se trata de calizas micríticas y microesparíticas afectadas por una actividad hidrotermal, que conforma un bloque más o menos rectangular orientado NE/SW, su límite occidental es la falla que se ha llamado Calamaco, lo que pone en contacto esta unidad con las lodolítas supra yacentes; su límite sur es la falla denominada la quebrada Caco, donde en el sector oriental el bloque calcáreo aparentemente está en contacto concordante con la unidad supra yacente.

Formación Paja

Representa una sucesión estratigráfica compuesta por lutitas negras ligeramente calcáreas y micáceas que contienen concreciones de calizas hasta de 30 cm

principalmente en su parte inferior. Consta en su base de lutítas y limolítas grises oscuras a negras con delgadas intercalaciones de areniscas arcillosas de grano fino.

La parte media está constituida por lutítas y arcillolítas grises con intercalaciones de caliza; esta formación subrayase a la formación ROSA BLANCA e infra yace a la formación TABLAZO. Las lodolítas supra yacen al paquete calcáreo que aflora en la mayor parte del área. Las características litológicas de las lodolítas varían lentamente hasta que su partición se hace más coloidal o astillosa, lo cual le confiere una apariencia ocasionalmente más silícea.\(^{(20)}\)
CONCLUSIONES

- Del análisis morfométricos realizado a la quebrada Negra ubicada en el municipio de Otanche departamento de Boyacá, se determina según los criterios de evaluación que: se clasifica como una unidad ya que el área es de 2.14 Km² presenta una pendiente 57.19%, un factor de forma 0.73 y un coeficiente de compacidad Kc de 1.34 lo que la caracteriza como una cuenca redonda a oval alargada.

- Por medio de la curva hipsométrica se determina que la quebrada Negra es de característica joven probable. La pendiente del cauce principal tienen un valor de 15%, se clasifica como fuertemente inclinada.

- El análisis morfométricos permite el cálculo del valor del tiempo de concentración que da como resultado 14.47 minutos, necesario para emplear el método racional en el cálculo del caudal máximo de creciente para la unidad de estudio.

- Al emplear el método racional se calcula el caudal máximo probable en la unidad ya que en este método no se tiene en cuenta la infiltración, es un cálculo en régimen permanente y el caudal que se calcula es un caudal constante producto de una precipitación constante., para áreas pequeñas

- De la aplicación del método racional se generan unos caudales máximos en la unidad aspectados a unos periodos de retorno de 3,5,10,25,50 y 100 años para, efectos de cálculos la ecuación que permite obtener el caudal máximo para un determinado periodo de retorno dentro de la unidad es $19.205x^{0.2729}$, en donde Q se expresa en m³/s y t en min.

- Los criterios para la selección del coeficiente de escorrentía para la aplicación del método racional son la condición de cobertura en la zona y la pendiente determinada por el análisis morfométricos de la unidad.

- Empleando el mapa geológico de Colombia, se logra determinar que la formación predominante en la zona de influencia de la cuenca es la formación paja, caracterizada por arcillolitas, shales negros con venas de yeso, predominantes de zonas sedimentarias que no han sufrido transformaciones por efectos de temperatura ni presión.
Las características litológicas para las formaciones Rosa Blanca y pajas permiten definir un ambiente Marino pasando de áreas con marcada influencia de zonas profundas de agua tranquilas a zonas con precipitación de carbonatos con variaciones alteradas y discontinuas.

La formación rosa Blanca presente en zonas aledañas al área de estudio está constituida por calizas arenosas grises con intercalaciones de lutitas negras, calcáreas y su espesor total se estima en unos 400 metros.

Las lutitas son formaciones predominantes en el sector de estudio, son uno de los problemas más comunes asociados a la inestabilidad al momento de excavaciones. Se puede minimizar su ocurrencia con una buena práctica de perforación y un buen programa de lodo.
Bibliografía

- IBAÑES ASENÇIO, S., RAMÓN MORENO, H., & BLANQUER GISBERT, J. M. (s.f.). Metología de las Cuencas Hídricas. Universidad Politécnica del Valle, Departamento de Producción Vegetal.

TITULO: CUENCA QUEBRADA NEGRA - OTANCHE - BOYACÁ

Anexo 3. ORDEN DE CORRIENTES

Tamaño del escala: 1:1000
L = 2.726 mt

l = 0.786 mt

TÍTULO: RECTANGULO EQUIVALENTE DE LA CUENCA

Universidad Distrital Francisco José de Caldas
Facultad Técnologica

Anexo 4
Escala: 1:1000
PERFIL LONGITUDINAL QUEBRADA NEGRA

Abscisa en mt

TITULO: CUENCA QUEBRADA NEGRA - OTANCHE - BOYACÁ

PERFIL LONGITUDINAL QUEBRADA NEGRA
Añexo 6. Memorias de cálculos

<table>
<thead>
<tr>
<th>Quebrada:</th>
<th>Negra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conecta a:</td>
<td>Quebrada Bury Bury</td>
</tr>
<tr>
<td>Departamento:</td>
<td>Boyacá</td>
</tr>
<tr>
<td>Municipio:</td>
<td>Otanche</td>
</tr>
</tbody>
</table>

ANÁLISIS MORFOMÉTRICO

<table>
<thead>
<tr>
<th>Forma:</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área cuenca (Ac):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Perímetro (P):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Longitud cuenca (Lc):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Longitud cuenca principal (Lcp):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Longitud máxima (Lm):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Ancho promedio (W):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Ancho máximo (Wm):</td>
<td>Medición digital (Auto CAD)</td>
</tr>
<tr>
<td>Factor Forma (Kf):</td>
<td>Kf = Ac / Lm²</td>
</tr>
<tr>
<td>Coeficiente de compacidad (Kc):</td>
<td>Kc = 0.282*(P/VAc)</td>
</tr>
<tr>
<td>Índice de alargamiento (Ia):</td>
<td>Ia = Lm / Wm</td>
</tr>
<tr>
<td>Tiempo de concentración (TC):</td>
<td>TC = ((0.87*Lcp^3) / H) ^ 0.385</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morfometría del relieve</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevación media de la cuenca (Em):</td>
<td>Em = (Ai * ei) / Ac</td>
</tr>
<tr>
<td>Elevación mediana de la cuenca (Eme):</td>
<td>Gráfica</td>
</tr>
<tr>
<td>Coeficiente de masividad (km):</td>
<td>Km = Em / Ac</td>
</tr>
<tr>
<td>Índice de sinuosidad (Sn):</td>
<td>S = Lcp / Lc</td>
</tr>
<tr>
<td>Pendiente de la corriente principal</td>
<td>S1 = (h1 - h0) / (L1 - L0)</td>
</tr>
<tr>
<td>Pendiente media ponderada (S2):</td>
<td>S2 = (h2 - h0) / (L1 - L0)</td>
</tr>
<tr>
<td>Pendiente equivalente constante (S3):</td>
<td>S3 = (Sli / Sli / (Si^1/2))^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morfometría de la red de drenaje</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad de drenaje (Dd):</td>
<td>Dd = L+ / Ac</td>
</tr>
<tr>
<td>Longitud total de las corrientes (L+):</td>
<td>S L. Drenajes</td>
</tr>
<tr>
<td>Orden de la cuenca:</td>
<td></td>
</tr>
<tr>
<td>Extensión media de la escorrentía (l):</td>
<td>l = Ac / 4L+</td>
</tr>
</tbody>
</table>