DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO DE MÁQUINA DISPENSADORA PORTABLE DE MEDICAMENTOS PARA PERSONAS CON ENFERMEDADES CRÓNICAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

FACULTAD DE INGENIERÍA

INGENIERÍA ELECTRÓNICA

BOGOTÁ, COLOMBIA

2016
DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO DE MÁQUINA DISPENSADORA PORTABLE DE MEDICAMENTOS PARA PERSONAS CON ENFERMEDADES CRÓNICAS

MILTON CENÉN PINZÓN SALAS
CARLOS JULIO PULIDO PORRAS

TRABAJO PRESENTADO COMO REQUISITO PARA OPTAR AL TÍTULO DE:
INGENIERO ELECTRÓNICO

DIRECTOR:
ING. JULIÁN ROLANDO CAMARGO LÓPEZ

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
INGENIERÍA ELECTRÓNICA
BOGOTÁ, COLOMBIA
2016
Nota de Aceptación

Firma de Jurado

Bogotá D.C., octubre de 2016
AGRADECIMIENTOS

Hay muchas personas a las cuales queremos agradecer, sin las cuales, la culminación de este proyecto no hubiera sido posible.

En especial queremos agradecer a nuestros padres Carlos Emilio Pulido, José Pinzón a nuestras madres Ana Silvia Porras y Blanca Mery Salas, por su apoyo, consejos y sacrificio durante todos estos años en favor de darnos lo mejor. A ellos les debemos todo y siempre han sido nuestro mayor motor y motivación. Agradecemos igualmente a nuestras familias y a todos los compañeros y amigos que durante estos años estuvieron presentes en este camino de duro trabajo y dedicación. Una mención especial a Diego Morera quien nos orientó en el diseño visual de la aplicación, también a nuestro director de tesis, el Ingeniero Julián Camargo por su acompañamiento y experiencia para llevar a cabo la culminación de este proyecto.
Contenido

INTRODUCCIÓN

1. PLANTEAMIENTO DEL PROBLEMA

2. JUSTIFICACIÓN

3. OBJETIVOS

3.1. OBJETIVO GENERAL

3.2. OBJETIVOS ESPECÍFICOS

4. MÁQUINAS DISPENSADORAS

4.1. INTRODUCCIÓN

4.1.1. DOSIFICADORES DE MEDICAMENTOS

4.1.2. TELEMEDICINA

4.1.3. DISPENSADORES INTELIGENTES

4.2. DOSIFICADORES EXISTENTES.

4.2.1. DOSIFICADORES DE GRAN CAPACIDAD

4.2.2. DOSIFICADORES UNIPERSONALES

4.2.2.1. DOSIFICADORES DE UN MEDICAMENTO

4.2.2.2. DOSIFICADORES SEMANALES

4.2.2.3 DOSIFICADORES DE GRAN CAPIIDAD

4.3. COMPONENTES PRINCIPALES DEL DISPENSADOR

4.3.1. MÓDULO BLUETOOTH

4.3.1.1. CARACTERÍSTICAS

4.3.1.2. ELECCIÓN DEL MÓDULO BLUETOOTH

4.3.2. MÓDULO RTC (REAL TIME CLOCK)

4.3.2.1. CARACTERÍSTICAS

4.3.2.2. ELECCIÓN DEL MÓDULO RTC

4.3.3. MICROCONTROLADOR

4.3.4. CARGADOR DE BATERÍA

4.3.5. BATERÍA

5. PLATAFORMAS DE DESARROLLO ANDROID

5.1. COMPARATIVO ANDROID VS OTRAS PLATAFORMAS

5.2. PLATAFORMAS DE DESARROLLO ANDROID
5.2.1. APPINVENTOR

5.2.1.1. APP INVENTOR DESIGNER

5.2.1.2. EL APP INVENTOR BLOCKS EDITOR

5.2.2. BASIC 4ANDROID

5.2.3. ANDROID STUDIO

5.2.3.1. ANDROID EMULATOR

5.3. PLATAFORMA A UTILIZAR

6. **DISEÑO E IMPLEMENTACIÓN APP**

6.1. INSTALACIÓN ANDROID STUDIO

6.1.1. CONFIGURACIÓN DEL PROYECTO

6.1.2. REQUERIMIENTOS DEL PROYECTO

6.2. DISEÑO DEL ENTORNO GRAFICO DE LA APLICACIÓN

6.2.1. DIAGRAMA DE FLUJO

6.2.2. DESCRIPCIÓN DEL ENTORNO GRAFICO

6.3. DESCRIPCIÓN DEL CÓDIGO IMPLEMENTADO

6.3.1. LIBRERÍAS A UTILIZAR

6.3.2. DESCRIPCIÓN DEL CÓDIGO IMPLEMENTADO

6.3.2.3. JAVA

7. **DISEÑO E IMPLEMENTACIÓN**

7.1. DESCRIPCIÓN DEL CIRCUITO ELÉCTRICO

7.1.1. CARGADOR DE BATERÍA

7.1.2. REGULADOR DE VOLTAJE

7.1.3. MODULO BLUETOOTH

7.1.4. MODULO “RTC”

7.1.5. MODULO DE ALARMAS

7.1.6. MICROCONTROLADOR

7.1.7. BATERÍA

7.1.8. DISPLAY

7.2. ENTORNO DE DESARROLLO CCS

7.2.1. HISTORIA

7.2.3. LIBRERÍAS A UTILIZAR

7.2.4. DESCRIPCIÓN DEL CÓDIGO IMPLEMENTADO
7.3 DISEÑO DE LA TARJETA DEL CIRCUITO IMPRESO (PCB) ... 60
 7.3.1 DESCRIPCIÓN DE LAS ETAPAS DEL PCB .. 60

7.4 PARTE MECÁNICA ... 62
 7.4.1 DISEÑO CARCASA ... 62
 7.4.2 DISEÑO SISTEMA MECÁNICO. ... 65

8. PRUEBAS DE FUNCIONAMIENTO .. 68
 8.1 FUNCIONAMIENTO DEL MÓDULO BLUE TOOTH ... 68
 8.2 COMUNICACIÓN APLICACIÓN – DISPENSADOR ... 69
 8.3 EMPAREJAMIENTO HORA CELULAR CON HORA DISPOSITIVO 71
 8.4 PROGRAMAR ALARMAS Y FRECUENCIA EN TOMA DE MEDICAMENTOS 72
 8.5 FUNCIONAMIENTO ALARMAS EN EL DISPENSADOR 73
 8.6 REPROGRAMAR ALARMA AL DISPENSAR MEDICAMENTO 74
 8.7 PRUEBAS CARGA DE BATERÍA ... 74

9. PRESUPUESTO ... 76

10. ANALISIS DE RESULTADOS .. 77

11. TRABAJO FUTURO ... 79

12. CONCLUSIONES .. 80

13. ANEXOS .. 81
 13.1 ESQUEMA ELECTRICO .. 81

14. REFERENCIAS .. 82
LISTADO DE FIGURAS

Figura 1. Organizador pastillero .. 17
Figura 2. Diagrama de bloques arquitectura del dispositivo ... 18
Figura 3. El sistema M2M consiste en tres partes: paciente, servidor, y ... 19
Figura 4. Contenedor de medicamentos electrónico .. 20
Figura 5. Dispensador Grifols ... 21
Figura 6. Dispensador automático Consis B ... 21
Figura 7. Dispensador CLYK .. 22
Figura 8. Dispensadores Medfolio y Medminder .. 23
Figura 9. Dispensadores ... 23
Figura 10. Dispensadores .. 24
Figura 11. Dispensadores .. 24
Figura 12. Modulo Bluetooth HC-05 utilizado en el proyecto, imagen tomada de la hoja de datos del fabricante ... 26
Figura 13. Diagrama de bloques del BQ32000, Tomada de la hoja de datos del fabricante 27
Figura 14. Módulo RTC .. 28
Figura 15. Diagrama de pines de PIC16F648A. Tomada de la hoja de datos del fabricante 29
Figura 16. Ícono característico de Android .. 32
Figura 17. Ícono característico de App Inventor ... 34
Figura 18. Entorno de desarrollo de App Inventor .. 35
Figura 19. Ícono característico de Basic 4Android .. 35
Figura 20. Ícono característico de Android Studio .. 36
Figura 21. Archivos representativos de Android Studio ... 36
Figura 22. Ventana selectora del tipo y características de dispositivo a emular.............................. 37
Figura 23. Dispositivo móvil emulado, para realizar pruebas .. 37
Figura 24. Página de descarga del software Android Studio .. 38
Figura 25. Complemento JDK para Android Studio ... 38
Figura 26. Página inicial Android Studio ... 39
Figura 27. SDK instalados en la plataforma Android Studio .. 39
Figura 28. Ventana de configuración del nombre y dominio del proyecto ... 40
Figura 29. Ventana de selección mínima versión de desarrollo Android ... 40
Figura 30. Ventana informativa de la cantidad de dispositivos que soportan las diferentes versiones de Android ... 41
Figura 31. Ventana selección del tipo de activity con la que se da inicio a la aplicación. 41
Figura 32. Diagrama de flujo, para desarrollar el entorno gráfico y aplicativo 42
Figura 33. Ventana inicial de la aplicación. ... 43
Figura 34. Ventana de inicialización de la programación de las alarmas .. 43
Figura 35. Ventana de selección del medicamento a programar ... 44
Figura 36. Ventana de configuración de alarma .. 44
Figura 37. Ícono de la aplicación .. 46
Figura 38. En la parte izquierda encontramos la paleta de objetos que podemos utilizar en nuestro entorno gráfico, en la parte derecha podemos visualizar como se visualizará nuestra ventana .. 47
Figura 39. Código que define la posición y características de los objetos previamente seleccionados en la interfaz gráfica. ... 48
Figura 40. Descripción en la implementación del selector de ítem utilizado para determinar la hora, minutos y veces, en la programación de los medicamentos. ... 49
Figura 41. Esquema eléctrico cargador batería .. 50
Figura 42. Esquema eléctrico del regulador lineal ... 51
Figura 42. Esquema eléctrico Módulo Bluetooth... 52
Figura 43. Esquema eléctrico Reloj tiempo real... 53
Figura 44. Esquema eléctrico driver dispensador medicamentos.. 53
Figura 45. Esquema eléctrico microcontrolador... 54
Figura 46. Batería Li-Po 2200mAH a 3.7 V... 55
Figura 47. Visualización de la hora y las tres alarmas de los medicamentos.......................... 56
Figura 48. Diagrama de flujo algoritmo microcontrolador.. 57
Figura 49. Esquema eléctrico microcontrolador .. 59
Figura 50. Diseño del PCB del dispensador de medicamentos... 61
Figura 51. Tarjeta circuito impreso ensamblada... 61
Figura 52. Diseño en dos dimensiones de la carcasa del dispensador de medicamentos........... 62
Figura 53. Extrusión hecha al diseño en dos dimensiones... 62
Figura 54. Aplicación de la herramienta sheel al bloque macizo... 63
Figura 55. Mejora de contornos al diseño... 63
Figura 56. Obtención de las dos partes que componen la carcasa... 64
Figura 57. Soportes para el cierre de la caja... 64
Figura 58. Diseño detalles de la carcasa... 65
Figura 59. Aspecto final de la carcasa del dispensador de medicamentos............................. 65
Figura 60. Inicio diseño del sistema mecánico dispensador de medicamentos...................... 66
Figura 61. Extrusión de la base sistema mecánico... 66
Figura 62. Diseño en dos dimensiones de los tubos contenedores de medicamentos............... 67
Figura 63. Extrusión de los tubos contenedores de medicamentos....................................... 67
Figura 64. Diseño mecanismo dispensador del medicamento... 67
Figura 65. Módulo Bluetooth encendido... 68
Figura 66. Sincronización del módulo Bluetooth con el dispositivo móvil.............................. 68
Figura 67. Icono de la aplicación “Dispensador”.. 69
Figura 68. Mensaje para activar permisos de activación del módulo Bluetooth del dispositivo móvil... 69
Figura 69. Se observa en el listado el dispositivo “DISPENSADOR” para ser seleccionado y realizarse la conexión.. 70
Figura 70. Módulo Bluetooth conectado al dispositivo móvil... 70
Figura 71. Ventana para sincronizar hora del dispositivo móvil con el “DISPENSADOR”........ 71
Figura 72. LCD para visualizar el correcto sincronismo de la hora y su funcionamiento........ 71
Figura 73. Ventana donde se selecciona la hora y minutos y veces....................................... 72
Figura 74. Buzzer .. 73
Figura 75. Micro-motor... 73
Figura 76. Indicador luminico del medicamento que debe tomar... 73
Figura 77. Presión del botón para detener las alarmas y dispensar el medicamento................ 73
Figura 78. Alarma del medicamento 1, configurada para activarse a las 00:07 su frecuencia 2 veces al día .. 74
Figura 79. Se reprograma alarma del medicamento 1, esta queda para las 12:07................ 74
Figura 80. Dispositivo funcionando por alimentación USB .. 74
Figura 81. Batería cargada al 100% ... 75
Figura 82. Dispositivo funcionando por alimentación desde la batería..................................... 75
LISTADO DE TABLAS

Tabla 1: Cuadro comparativo de los distintos módulos Bluetooth comerciales, los datos técnicos fueron tomados de las hojas de los fabricantes. ... 26
Tabla 2: Cuadro comparativo de los distintos RTC existentes en el mercado local. [datos tomados de las hojas de datos de los fabricantes] .. 27
Tabla 3: Cuadro comparativo de las diferentes características de algunos microcontroladores. [datos tomados de las hojas de datos de los fabricantes] .. 28
Tabla 4: Cuadro comparativo de las diferentes características de algunos cargadores de baterías. [datos tomados de las hojas de datos de los fabricantes] .. 29
Tabla 5: Cuadro comparativo de las diferentes características de algunos cargadores de baterías. [datos tomados de las hojas de datos de los fabricantes] .. 31
Tabla 6: Cuadro comparativo de las diferentes características de las plataformas de desarrollo. [datos tomados de artículo] .. 33
Tabla 7. Cosos de fabricación prototipo. .. 76
RESUMEN

En el presente trabajo de grado se realizó el diseño y la implementación de un prototipo de máquina dispensadora portable de medicamentos, de bajo costo, que permite la programación de los horarios mediante una aplicación móvil comunicándose por medio de tecnología Bluetooth con un prototipo dispensador de medicamentos el cual puede albergar tres tipos de medicamentos, de los más en enfermedades crónicas identificados según el Instituto Nacional de Salud en Colombia.

El dispositivo cuenta con un sistema de alarmas lumínicas, sonora y vibratoria las cuales se encargan de informar al usuario del momento de ingerir el medicamento respectivo de acuerdo a la programación realizada en la aplicación.

Se diseña la presentación final del prototipo mediante programas especializados para el modelamiento 3D. Al final se realizan las conclusiones y las posibles propuestas para mejoras en diseños futuros.
INTRODUCCIÓN

En el ámbito de la salud existen tratamientos donde se requieren medicamentos que deben ser suministrados en horarios estrictamente establecidos para poder llegar a ser verdaderamente eficientes y cumplan con el objetivo de mejorar la calidad de vida de quien los toma.

En Colombia el porcentaje de personas con padecimientos crónicos se encuentra en un 53%, donde las enfermedades de mayor atención son las cardiovasculares, estás enfermedades requieren ser tratadas mediante medicamentos de uso regular y estricto, para de esta manera garantizar una mayor longevidad del paciente y mejoramiento en la calidad de vida del mismo.

Otro factor que es habitual en estos pacientes es la no adherencia a los tratamientos farmacológicos, donde las principales causas es el olvido en la toma de los medicamentos, la confusión y sobre medicación, dando lugar al recrudecimiento de las enfermedades.

Las causas de la no adherencia a los tratamientos es prevenible mediante el uso de herramientas, en el mercado existen muchas de ellas, por ejemplo; el servicio de cuidadores que se encargan de suministrar medicamentos y asistir a los pacientes, aplicaciones móviles que se encargan de generar alertas en los horarios de la toma del medicamento, organizadores de pastillas y dispositivos de mayor robustez en donde los medicamentos son dispensados en horarios establecidos, estas herramientas tienen la debilidad de no ser portables, no mejora el inconveniente en la confusión de los medicamentos y la sobre dosis.

Partiendo de estos inconvenientes no solucionados, es donde este proyecto logra su principal objetivo, brindar un dispositivo dispensador de medicamentos portable que garantice la toma de los fármacos en los horarios establecidos, la no confusión de los medicamentos y sobre dosis de los mismos.
1. PLANTEAMIENTO DEL PROBLEMA

Día a día miles de personas deben tomar medicamentos a horas específicas para tratar enfermedades tales como: la tensión alta, el colesterol, problemas cardiacos, epilépticos, azúcar en la sangre, anticonceptivos y tratamientos en general. Estas personas deben ser muy estrictas en el suministro de los medicamentos, ya que es común el olvido o la irregularidad en la toma de los mismos, por esto se ven afectados los tratamientos hasta el punto de ser ineficientes e incluso causar la muerte de los pacientes.

Los tratamientos son dirigidos por médicos, son ellos quienes entregan una fórmula donde entregan las indicaciones del suministro de los medicamentos, dietas e indicaciones varias sobre el mismo. Los pacientes suelen perder la fórmula médica, adicional quienes son precavidos y desean una mayor efectividad utilizan la tecnología que tienen al alcance, como pueden ser los celulares, agendas electrónicas, entre otros. Estas herramientas permiten programar alertas o recordatorios a la hora de tomar los medicamentos, pero para quienes toman estos es muy dispensioso andar con los sobres o frascos de medicamentos, es por esto que suelen olvidarlos y cuando surge la alerta de la toma los medicamentos no se tienen a la mano por lo tanto se altera el suministro adecuado preestablecido, causando la ineficiencia del tratamiento.
2. JUSTIFICACIÓN

La organización Mundial de la Salud (OMS) afirma que en 2012 murieron cerca de 56 millones de personas en el mundo, el 68% de estos fallecimientos ocurrieron por enfermedades no transmisibles, en este grupo se encuentran las enfermedades cardiovasculares, el cáncer y la diabetes. Las enfermedades cardiovasculares (ECV) causaron 17.5 millones de muertes en el planeta, posicionándose como la principal causa de decesos.

En Colombia el Instituto Nacional de Salud (INS) y el Observatorio Nacional de Salud (ONS) detallan que en el 2011 las ECV causaron el 25.4% de las muertes y el 47,6% se presentaron en personas menores de los 65 años. Aproximadamente 7,3 millones de estas muertes se debieron a enfermedades coronarias y 6,2 millones se debieron a accidentes cerebrovasculares [2].

Cada año en Colombia se pierden en promedio 900.000 años potenciales de vida por la no adherencia de los pacientes a los tratamientos farmacológicos por descuido u olvido en la toma de los medicamentos, en vista de esto, uno de los propósitos de este proyecto es ayudar a aumentar el número de años potenciales de vida de la población colombiana y disminuir el costo en los tratamientos farmacológicos, contribuyendo con la eficacia de los mismos y además intensificando la adherencia de los pacientes a los tratamientos.

Uno de los métodos utilizados para mejorar la eficiencia en los tratamientos farmacológicos es la utilización de dispositivos existentes ya en el mercado, entre los cuales se encuentran los pastilleros, estos elementos son en esencia organizadores, físicamente es un recipiente cuyo interior está dividido en varias secciones, en estas secciones es donde se depositan los medicamentos que el paciente debe consumir diariamente, de esta forma se logra tener la medicina organizada para su administración. Estos elementos no tienen la posibilidad de generar algún tipo de alarma que le recuerde a la persona que debe tomar el medicamento.

Existen también algunos dispositivos electrónicos que son utilizados por algunos hospitales y centros médicos, estos aparatos tienen un tamaño considerable por esta razón deben ser ubicados en un sitio específico del hospital, además el costo de estos equipos también es alto.
Analizando este mercado se encuentra que no existe un dispositivo económico y de fácil manejo que permita llevar los medicamentos, con la misma facilidad que se lleva un teléfono móvil, a partir de esto se propone diseñar un prototipo de máquina dispensadora o dosificadora portable de medicamentos, para facilitar la dosificación correcta en el horario y tiempos establecidos por la fórmula médica, además de mejorar la adherencia, eficiencia y control de los tratamientos, también se pueden llegar a prevenir intoxicaciones por sobredosis.
3. OBJETIVOS

3.1. OBJETIVO GENERAL

- Diseñar e implementar un prototipo de máquina dispensadora de medicamentos portable para personas con enfermedades crónicas.

3.2. OBJETIVOS ESPECÍFICOS

- Analizar los diferentes microcontroladores existentes en el mercado para seleccionar el más adecuado según los requerimientos del proyecto.
- Diseñar una interfaz usuario - máquina amigable a través de una aplicación Android.
- Diseñar e implementar un software encargado de gobernar el dispositivo portable.
- Diseñar y construir el sistema mecánico para el suministro de los medicamentos.
- Diseñar y construir la carcasa para la presentación final del producto.
- Realizar pruebas de funcionamiento del prototipo.
4. MÁQUINAS DISPENSADORAS

4.1. INTRODUCCIÓN
Las máquinas dispensadoras en su inicio proporcionaban aperitivos, bebidas, golosinas y otros productos a los consumidores, estos mecanismos expendedores se basan en un sistema de autoservicio, es un procedimiento organizado que garantiza una prestación eficiente logrando la satisfacción de necesidades específicas. Es una forma muy eficiente de vender sin la presencia de un empleado que sería el encargado para cobrar los artículos. En cambio periódicamente un técnico repone el producto y también recoge el dinero en forma de monedas o billetes e incluso se puede pagar con tarjeta monedero, tarjeta de crédito o teléfono móvil.

Las posibilidades de las máquinas dispensadoras son amplias. Normalmente suelen vender refrescos, café, comida, golosinas, etc. Pero también existen modelos diseñados para vender prensa, libros, sellos de correos, billetes del transporte público, bebidas alcohólicas, cigarrillos de tabaco, también son frecuentes, en las oficinas que atienden al público.

4.1.1. DOSIFICADORES DE MEDICAMENTOS
En la actualidad existen diversos dispositivos disponibles para la dosificación de medicamentos, en donde el usuario debe introducir las dosis de manera individual dentro del dispositivo, adicional debe generar alertas para suministrar la dosis en los horarios que previamente se han dispuesto en las fórmulas médicas emitidas por el médico tratante.

![Figura 1. Organizador pastillero [14]](image-url)
4.1.2. TELEMEDICINA

Otra herramienta que se está volviendo muy popular actualmente es la telemedicina, en donde se monitorea y se supervisa al paciente por medio de llamadas telefónicas o internet. La telemedicina es un concepto relativamente nuevo, para poder funcionar necesariamente debe haber una conexión a internet de muy buena capacidad de intercambio de información, algunos de los inconvenientes que debe afrontar este tipo de tecnologías son los retards en la comunicación, lo que se traduce en errores en el suministro de los medicamentos y cambios en la ingesta de los mismos, así como costos elevados en la implementación.

Se encuentran estudios de una nueva arquitectura, la cual posee una serie de características que no se presentan en los estudios anteriores, su principal aporte es la ergonomía que presenta este dispositivo, en tamaño y donde el funcionamiento es continuo durante 24 horas los 7 días de la semana, también ofrece un sistema de comunicación mediante Bluetooth el cual utiliza un puente con teléfonos inteligentes o computadoras para tener acceso a la nube, de allí tomará los datos de la medicación generada por un médico o cuidador, para programar las alarmas pertinentes en la toma de los medicamentos y suministrará a la nube los datos de atención a las alarmas, de esta manera se realizará un control del tratamiento que el paciente debe estar cumpliendo, garantizando una mayor adherencia en el mismo.[6]

![Diagrama de bloques arquitectura del dispositivo](image6)

Figura 2. Diagrama de bloques arquitectura del dispositivo [6].

Otro estudio realizado en personas con movilidad reducida presenta el diseño inicial de una interface, donde un dispositivo evalúa los signos vitales del paciente, estos datos son evaluados en un servidor, el cual toma la decisión de enviar o no los
resultados de la medición que se le realizó al paciente, mediante un mensaje de texto al dispositivo inteligente del doctor o cuidador, el cual evalúa los datos recibidos y envía un nuevo mensaje de texto al dispositivo que contiene los medicamentos, en este se generará una alerta indicando que medicamento y dosis debe tomar.[7]

Figura 3. El sistema M2M consiste en tres partes: paciente, servidor, y médico [7].

4.1.3. DISPENSADORES INTELIGENTES

Posteriormente se han venido desarrollando estudios de diseño e implementación de un dispensador inteligente para usuarios que deben tomar medicamentos sin la supervisión de un profesional, en donde se estima eliminar errores de interpretación y de rigor en el cumplimiento de horarios en la toma de los mismos.

El dispensador de medicamentos inteligente está diseñado para evitar dos de los errores más comunes en la administración: la falta de comprensión de la fórmula médica y la consistencia en los horarios. Estos errores se atribuyen al 40% de todos los errores evitables en la ingesta de medicinas, ayudando a mejorar los tratamientos y evitando intoxicaciones.

Principalmente está dirigido a personas de edad adulta y pacientes con enfermedades crónicas, pero que no requieren de un cuidador, son personas totalmente independientes y pueden estar pendientes de su salud.
Este dispensador cuenta con contenedores de medicamentos, los cuales previamente se programan por medio de un SMS enviado por el médico o el farmaceuta, el cual se almacena en una tarjeta de memoria o un disco flash.

Posteriormente el medicamento se sitúa en una de las ranuras el cual queda anclado a la base del dispositivo, al generarse la alerta se ilumina qué medicamento debe tomarse y la cantidad de dosis aparece en el tablero de indicación, este dispositivo debe ir conectado a un tomacorriente. [3]

4.2. DOSIFICADORES EXISTENTES.

Los dispensadores existentes se pueden agrupar de acuerdo a su capacidad, pueden contener cientos de medicamentos de diferente composición, son generalmente utilizados en los hospitales o farmacias, también encontramos dosificadores unipersonales, en donde su capacidad se reduce a un solo medicamento.

4.2.1. DOSIFICADORES DE GRAN CAPACIDAD

El dispensador automático permite una integración continua y sencilla en los procesos de trabajo, requiere muy poco espacio, funciona con la máxima flexibilidad y su rendimiento es excelente.

Esta solución integral ayuda a las instituciones a administrar los medicamentos en forma segura y eficiente mediante funciones tales como el escaneo de códigos de
barras, que garantiza el suministro preciso de la medicación; la prevención de la carga del medicamento equivocado; y alertas activas que proporcionan medidas de seguridad adicionales para los medicamentos de alto riesgo. El sistema minimiza los errores y mejora los resultados clínicos, la satisfacción de los pacientes y la rentabilidad.

El Pyxis MedStation 4000 de CareFusion, distribuido en México por Grifols, el CONSIS.B de WILLACH – PHARMACY SOLUTIONS, el sistema “El Pharmatrack” entre otros son dispensadores de gran tamaño que suministran soluciones a las farmacias y hospitales.

![Figura 05. Dispensador Grifols](Image)

![Figura 06. Dispensador automático Consis B](Image)
4.2.2. DOSIFICADORES UNIPERSONALES

Los dispositivos utilizados para la dosificación de medicamentos van desde pastilleros en plástico hasta robustos sistemas eléctricos, a continuación, se describirán algunos dosificadores automáticos que se encuentran en el mercado.

4.2.2.1. DOSIFICADORES DE UN MEDICAMENTO

EL dispositivo “CLYK” de BAYER es un dispensador electrónico de píldoras anticonceptivas, está diseñado para el suministro diario y ajustado al ciclo menstrual, contiene alarma de recordatorio, avisos de olvido de la toma de la píldora y notificación de la necesidad de un método anticonceptivo adicional. [11]

Figura 07. Dispensador CLYK [12]

4.2.2.2. DOSIFICADORES SEMANALES

Se encuentran contenedores de medicamentos en forma de cajas, con sistemas de alarmas, iluminación y comunicación, además de incluir servicios de telemedicina, donde se mantendrá comunicación entre la persona que toma los medicamentos y su cuidador o familiares.

Medfolio y Medminder es una clara muestra de este tipo de instrumentos que se encuentra con estas características, poseen la facilidad de enviar mensajes de texto, correo electrónico entre el dispositivo y el paciente, al igual que sus familiares, cuidadores y médicos, ayudando a garantizar una adherencia en los tratamientos.
Otros dispositivos más sencillos en donde su única función es configurar alarmas y organizar los medicamentos por días, se encuentran “Medcenter system”, “The Smart Pill Box”, “Inlins smart pill box”.

También se encuentran dispositivos como “E-PILL”, “PIVOTELL” que previamente se programan por el farmaceuta o cuidador, contiene los medicamentos que el paciente debe tomar y solo en los tiempos en que se ha programado la alarma permite tomar los medicamentos, permiten tener un mayor control en la medicación evitando sobredosis.
4.2.2.3 DOSIFICADORES DE GRAN CAPACIDAD

Los dispositivos de mayor robustez, estos se encargan de dispensar el medicamento indicado en la hora programada, su fortaleza es permitir la dosificación correcta, almacena la información del paciente en el control de los horarios en la toma de los medicamentos, puede contener medicamentos por varios meses, en estos dispositivos encontramos a “LIFELINE” de PLILIPS y “LIVE”.

Figura 10. Dispensadores [18][19]

Figura 11. Dispensadores [20][21]
4.3. COMPONENTES PRINCIPALES DEL DISPENSADOR

4.3.1. Módulo BLUETOOTH

Bluetooth es la tecnología principal en las Redes Inalámbricas de Área Personal (WPAN) que posibilita la transmisión de voz y datos entre diferentes dispositivos mediante un enlace por radiofrecuencia en la banda ISM (Industrial, Scientific and Medical) de los 2,4 GHz. Las comunicaciones mediante tecnología Bluetooth se han vuelto muy populares en los hogares debido a que permite la interconexión de aparatos sin necesidad de cables, con distancias que varían de los 10 a los 30 metros.

Los dispositivos que utilizan con mayor frecuencia esta tecnología pertenecen a sectores de las telecomunicaciones y la informática personal, como PDA, teléfonos móviles, computadoras portátiles, ordenadores personales, impresoras o cámaras digitales.

Este tipo de comunicación es posible ya que el consumo de energía que demandsa para su funcionamiento es muy bajo, es tanto así que está presente casi en la totalidad de los teléfonos móviles que existen en el mercado. [26]

El nombre proviene del rey danés y noruego Harald Blåtand cuya traducción al inglés sería Harold Bluetooth, conocido por buen comunicador y por unificar las tribus noruegas, suecas y danesas. La traducción textual al idioma español es "diente azul". Precisamente esto es lo que se logra con este tipo de comunicación, interconectar distintos aparatos sin una conexión física.

4.3.1.1. Características

Se denomina Bluetooth al protocolo de comunicaciones diseñado especialmente para dispositivos de bajo consumo, con una cobertura baja y basados en transceptores de bajo costo.

Gracias a este protocolo, los dispositivos que lo implementan pueden comunicarse entre ellos siempre y cuando se encuentren dentro de su alcance. Las comunicaciones se realizan por radiofrecuencia de forma que los dispositivos no tienen que estar alineados y pueden incluso estar en habitaciones separadas si la potencia de transmisión lo permite.

Estos dispositivos se clasifican como "Clase 1", "Clase 2" o "Clase 3" en referencia a su potencia de transmisión, siendo totalmente compatibles los dispositivos de una clase con los de las otras.
• Clase 1 100 mW 20 dBm ~ 100 metros
• Clase 2 2.5 mW 4 dBm ~ 25 metros
• Clase 3 1 mW 0 dBm ~ 1 metro

4.3.1.2. Elección del módulo Bluetooth

Cuadro Comparativo módulos Bluetooth.

<table>
<thead>
<tr>
<th>Características</th>
<th>HC-05</th>
<th>RN-42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje de operación</td>
<td>1.8 a 3.6V</td>
<td>3 a 3.6V</td>
</tr>
<tr>
<td>Consumo Corriente</td>
<td>50 mA</td>
<td>50mA</td>
</tr>
<tr>
<td>Clase</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Frecuencia de operación</td>
<td>2.4GHZ</td>
<td>2.4GHZ</td>
</tr>
<tr>
<td>Costo en ($ USD)</td>
<td>7</td>
<td>39</td>
</tr>
</tbody>
</table>

Tabla 1: Cuadro comparativo de los distintos módulos Bluetooth comerciales, los datos técnicos fueron tomados de las hojas de los fabricantes.

Se analiza el cuadro comparativo y se decide optar por el módulo HC-05, principalmente por el costo, este componente es de origen chino, es más económico que el RN-42 fabricado por la empresa microchip.

![Figura 12. Modulo Bluetooth HC-05 utilizado en el proyecto, imagen tomada de la hoja de datos del fabricante.](image)

4.3.2. Módulo RTC (REAL TIME CLOCK)

Un Reloj en tiempo real (en inglés, real-time clock, RTC) es un reloj de un ordenador, incluido en un circuito integrado, que mantiene la hora actual. Aunque el término normalmente se refiere a dispositivos en ordenadores personales, servidores y sistemas embebidos, los RTC están presentes en la mayoría de los aparatos electrónicos que necesitan guardar el tiempo exacto. [33]
4.3.2.1. Características

Este dispositivo cuenta con una batería adicional de 3V tipo “botón”, esta batería es la encargada de mantener activo el RTC en caso de algún fallo en la batería principal, consta de un cristal 32.768Khz, es necesario utilizar un par de resistencias en las líneas de DATA y CLOCK, estas resistencias se denominan resistencias de PULL UP.

Figura 13. Diagrama de bloques del BQ32000, Tomada de la hoja de datos del fabricante.

4.3.2.2. Elección del Módulo RTC

Cuadro Comparativo RTC.

<table>
<thead>
<tr>
<th>Características</th>
<th>DS1307</th>
<th>BQ32000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje de operación</td>
<td>4.5 a 5.5 V</td>
<td>3 a 3.6V</td>
</tr>
<tr>
<td>Consumo corriente</td>
<td>200uA</td>
<td>100uA</td>
</tr>
<tr>
<td>Protocolo comunicación</td>
<td>I2C</td>
<td>I2C</td>
</tr>
</tbody>
</table>

Tabla 2: Cuadro comparativo de los distintos RTC existentes en el mercado local. [datos tomados de las hojas de datos de los fabricantes]

Uno de los requerimientos del proyecto requiere que el funcionamiento del dispositivo sea con batería de 3.7V, el RTC que mejor cumple esta exigencia es el BQ32000, este componente tiene exactamente los mismos registros que el DS1307,
la comunicación es I2C, adicional puede trabajar desde los 3V y el consumo de corriente es de 100uA, garantizando mayor durabilidad de la batería.

Figura 14. Módulo RTC.

El RTC es esencial en el correcto funcionamiento del dispensador de medicamentos, el cual se encarga de suministrar la hora exacta al microcontrolador, este realiza la comparación pertinente y activa distintas alarmas (alarma sonora, una luminosa y también la activación de un micro motor cuya función será hacer vibrar el dispositivo) de esta manera se alerta al usuario sobre la toma del medicamento correspondiente.

4.3.3. Microcontrolador

Cuadro comparativo Microcontroladores

<table>
<thead>
<tr>
<th>Características</th>
<th>Microchip (PIC16f648A)</th>
<th>Atmel (Atmega88A)</th>
<th>Texas Instruments (MSP430G2453IN20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memoria flash</td>
<td>7 KB</td>
<td>8KB</td>
<td>8KB</td>
</tr>
<tr>
<td>EEprom</td>
<td>256B</td>
<td>512B</td>
<td>256KB</td>
</tr>
<tr>
<td>Ram</td>
<td>256B</td>
<td>1KB</td>
<td>256B</td>
</tr>
<tr>
<td>Voltaje de operación</td>
<td>2 a 5.5V</td>
<td>1.8 a 5.5V</td>
<td>1.8 a 3.6 V</td>
</tr>
<tr>
<td>Consumo corriente</td>
<td>120uA a 1MHZ, 2V</td>
<td>200uA a 1MHZ, 1.8V</td>
<td>230uA a 1MHZ, 2.2V</td>
</tr>
<tr>
<td>USART</td>
<td>Si</td>
<td>Si</td>
<td>Si</td>
</tr>
<tr>
<td>I2C</td>
<td>No</td>
<td>Si</td>
<td>Si</td>
</tr>
</tbody>
</table>

Tabla 3: Cuadro comparativo de las diferentes características de algunos microcontroladores. [datos tomados de las hojas de datos de los fabricantes]

Teniendo en cuenta los requerimientos planteados para este proyecto, se decidió utilizar el microcontrolador 16F648A de la casa microchip, ya que es un dispositivo económico, de facial consecución en el mercado local, viene en presentación SMD, SSOP, trabaja correctamente con 3.3Voltios de alimentación, tiene 2 pines exclusivos para la comunicación serial, en el caso de la comunicación I2C se logró mediante software. La elección de este microcontrolador se hizo también por el
conocimiento que se tiene en el manejo de las herramientas de programación,
además tiene la capacidad de memoria adecuada para la ejecución del programa.

Figura 15. Diagrama de pines de PIC16F648A. Tomada de la hoja de datos del fabricante.

4.3.4. Cargador de Batería

Cuadro Comparativo circuitos cargadores batería.

<table>
<thead>
<tr>
<th>Características</th>
<th>MCP73871</th>
<th>TP4056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje de operación</td>
<td>4.4 a 6 V</td>
<td>4.5 a 5.5 V</td>
</tr>
<tr>
<td>Corriente de carga</td>
<td>Ajustable desde 50mA a 1A</td>
<td>Ajustable desde 50mA a 1A</td>
</tr>
<tr>
<td>Exactitud de la carga</td>
<td>0.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Voltaje de carga</td>
<td>4.2V</td>
<td>4.2V</td>
</tr>
<tr>
<td>Precio en ($ USD)</td>
<td>1.79</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Tabla 4: Cuadro comparativo de las diferentes características de algunos cargadores de baterías. [datos tomados de las hojas de datos de los fabricantes]
Para el diseño del dispensador de medicamentos se optó por el TP4056 debido a su encapsulado de superficie por facilidades en el proceso de soldadura, otro aspecto que se tuvo en cuenta fue el precio ya que los dos circuitos integrados poseen características muy similares.

4.3.5. Batería

Cuadro Comparativo baterías.

<table>
<thead>
<tr>
<th>Características</th>
<th>Batería Ni-Cd</th>
<th>Batería Ni-Mh</th>
<th>Batería Li-ion</th>
<th>Batería Li-po</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usos</td>
<td>Son baterías de uso doméstico e industrial, fueron utilizadas mayormente en cámaras fotográficas, receptores de radio portátiles y en linternas. Su uso ha disminuido considerablemente debido a que utilizan en su construcción el cadmio, una sustancia que es contaminante del medio ambiente.</td>
<td>Estas baterías al igual que las de Ni-Cd, fueron muy utilizadas en aparatos receptores de radio, cámaras fotográficas, calculadoras y juguetes electrónicos que presentaban bajo consumo de energía.</td>
<td>Estas baterías son las más comunes hoy día, ya que están presentes en un sin número de equipos electrónicos, están por ejemplo en los reproductores de música y en general en equipos portátiles.</td>
<td>Estas baterías de litio-polímero tienen su nicho en los equipos radio controlados, están por ejemplo en los drones, aparatos muy populares en la actualidad.</td>
</tr>
<tr>
<td>Voltaje nominal</td>
<td>1.2 Voltios</td>
<td>1.2 Voltios</td>
<td>3.7 Voltios</td>
<td>3.7 Voltios</td>
</tr>
<tr>
<td>Efecto memoria</td>
<td>Si lo presenta</td>
<td>Si lo presenta</td>
<td>No lo presenta</td>
<td>No lo presenta</td>
</tr>
</tbody>
</table>
Las principales características de las baterías es que sean seguras, ligeras, pequeñas, respetuosas con el medioambiente, con mayor densidad de energía y que tengan una autonomía en modo activo e inactivo prolongada. La configuración de la gestión energética y el uso de determinadas funciones (Wi-Fi, Bluetooth, GPS conexión de datos) o aplicaciones, por ejemplo, pueden incidir en la autonomía de las baterías cuando los aparatos se encuentran en los modos activo o inactivo.

Las baterías de iones de litio (Li-ion) y de hidruro de metal de níquel (NiMH) se utilizan sobre todo en los dispositivos electrónicos portátiles. Las baterías de Li-ion suelen ofrecer una mayor densidad de energía que las de NiMH, y además permiten realizar un mayor número de ciclos de carga/descarga sin efecto memoria, lo que garantiza una vida útil prolongada. Se calcula que las baterías de Li-ion se auto descargan hasta un 5% al mes, frente al 30% de pérdida mensual que registran las baterías de NiMH. [27]
5. PLATAFORMAS DE DESARROLLO ANDROID

Android es el sistema operativo utilizado en más de mil millones de teléfonos inteligentes y tablets. Estos dispositivos nos endulzan la vida, por eso decidimos poner a cada versión de Android el nombre de un dulce. Cada versión de Android hace que algo nuevo sea posible, como obtener direcciones o cortar en rodajas una fruta virtual. [22]

Este sistema operativo está basado en Linux, fue diseñado principalmente para dispositivos móviles, comúnmente llamados teléfonos inteligentes, su principal característica es la pantalla táctil. El hecho de ser código libre y licencia permisiva, permite que el software pueda ser modificado y distribuido libremente por los fabricantes de dispositivos móviles y desarrolladores. [23]

Figura 16. Icono característico de Android.

5.1. COMPARATIVO ANDROID VS OTRAS PLATAFORMAS

En la tabla comparativa siguiente nos enfocaremos en aspectos importantes como lo es la licencia de software, la cual para Android y Firefox OS es libre lo contrario de Apple, Windows y BlackBerry, otro aspecto muy importante es la variedad de dispositivos en los cuales las aplicaciones pueden ser descargadas y usadas, basándonos en este contexto encontramos que las aplicaciones Android tienen una variedad de dispositivos en los que encontramos teléfonos inteligentes, ordenadores portátiles, netbooks, tabletas, Google TV, relojes de pulsera y auriculares.

El lenguaje de programación de la plataforma Android está enfocada a JAVA, C++ su plataforma de desarrollo puede ser descargada en sistemas operativos Windows, Mac y Linux, su principal contendor es Apple el cual se enfoca en programación orientada en C++ y Objetive-C y solo es soportable en el sistema operativo MAC. [24]

Un aspecto fundamental en el desarrollo de aplicaciones es el mercado, en el cual encontramos que los dispositivos que usan Android está cerca del 81.5 % del mercado contra un IOS del 15%, las demás plataformas se reparten el 3.5% del
mercado restante volviéndolos un mercado no atractivo para las aplicaciones móviles. [25]

![Image of platforms: iOS 8, Android 6.0, Windows Phone 8, BlackBerry 10, Firefox OS 2.2]

<table>
<thead>
<tr>
<th>Compañía</th>
<th>Apple</th>
<th>Open Handset Alliance</th>
<th>Microsoft</th>
<th>BlackBerry</th>
<th>Mozilla Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleo del SO</td>
<td>MacOS X</td>
<td>Linux</td>
<td>Windows NT</td>
<td>QNX</td>
<td>Linux</td>
</tr>
<tr>
<td>Licencia de software</td>
<td>Propietaria</td>
<td>Libre y abierto</td>
<td>Propietaria</td>
<td>Propietaria</td>
<td>Libre y abierto</td>
</tr>
<tr>
<td>Año de lanzamiento</td>
<td>2007</td>
<td>2008</td>
<td>2010</td>
<td>1999</td>
<td>2013</td>
</tr>
<tr>
<td>Fabricante único</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>Variedad de dispositivos</td>
<td>Modelo único</td>
<td>Muy alta</td>
<td>Media</td>
<td>Baja</td>
<td>Muy baja</td>
</tr>
<tr>
<td>Soporte memoria externa</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Motor del navegador web</td>
<td>WebKit</td>
<td>WebKit/Chromium (Blink)</td>
<td>Trident</td>
<td>WebKit</td>
<td>WebKit</td>
</tr>
<tr>
<td>Tienda de aplicaciones</td>
<td>App Store</td>
<td>Google Play</td>
<td>Windows Marketplace</td>
<td>BlackBerry World</td>
<td>Firefox Marketplace</td>
</tr>
<tr>
<td>Número de aplicaciones</td>
<td>800.000 (marzo 2013)</td>
<td>800.000 (marzo 2013)</td>
<td>130.000 (enero 2013)</td>
<td>100.000 (enero 2013)</td>
<td>?</td>
</tr>
<tr>
<td>Coste publicar</td>
<td>$99 / año</td>
<td>$25 una vez</td>
<td>$99 / año</td>
<td>Sin coste</td>
<td>Sin coste</td>
</tr>
<tr>
<td>Otras tiendas sin supervisión</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Familia CPU soportada</td>
<td>ARM</td>
<td>ARM, MIPS, x86</td>
<td>ARM</td>
<td>ARM</td>
<td>ARM, x86</td>
</tr>
<tr>
<td>Soporte 64 bits</td>
<td>Sí</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Máquina virtual</td>
<td>No</td>
<td>Dalvik / ART</td>
<td>.net</td>
<td>No</td>
<td>Navegador Web</td>
</tr>
<tr>
<td>Lenguaje de programación</td>
<td>Objective-C, C++</td>
<td>Java, C++</td>
<td>C#, Visual Basic, C++</td>
<td>C, C++, Java</td>
<td>HTML5, CSS, JavaScript</td>
</tr>
<tr>
<td>Plataforma de desarrollo</td>
<td>Mac</td>
<td>Windows, Mac, Linux</td>
<td>Windows</td>
<td>Windows, Mac</td>
<td>Windows, Mac, Linux</td>
</tr>
<tr>
<td>Multiusuario</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Modo invitado</td>
<td>Sí</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Tabla 6: Cuadro comparativo de las diferentes características de las plataformas de desarrollo. [datos tomados de artículo]
5.2. PLATAFORMAS DE DESARROLLO ANDROID

El Desarrollo de Programas para Android se hace habitualmente en lenguajes de programación similares a Java y el conjunto de herramientas de desarrollo SDK (SDK, Software Development Kit), pero hay otras opciones disponibles. En Julio de 2013 existían más de 1.000.000 de aplicaciones contabilizadas para Android, con aproximadamente 25 mil millones de descargas. La plataforma Android ha crecido hasta ser una de las preferidas por los desarrolladores para plataformas móviles.

5.2.1. AppInventor

Este entorno de desarrollo es completamente Web, el uso en la programación es mediante bloques, muy parecido a armar un rompecabezas, en esta plataforma podemos realizar aplicaciones que no requieran de uso extensivo de librerías, el framework permite realizar aplicaciones funcionales, sin la necesidad de tener conocimientos en algún lenguaje de programación, es una plataforma de aprendizaje del MIT se aloja en http://appinventor.mit.edu/ su software es de código libre.

Figura 17. Icono característico de App Inventor.

La programación mediante App Inventor se realiza mediante dos interfaces

5.2.1.1. App Inventor Designer

En esta primera interfaz estarán todos los elementos y componentes que serán usados en la aplicación. Los componentes que llamaremos visibles son los que permiten generar la interfaz gráfica de usuario en estos encontramos imágenes, botones, seleccionadores, etc., y los no visuales son herramientas encargadas de controlar eventos del teléfono, tales como sensores, reloj, cámara, etc.,
5.2.1.2. El App Inventor Blocks Editor

Está constituido por un grupo de bloques entrelazados, estos definen el comportamiento secuencia de la aplicación, cada bloque representa el componente que previamente fue definido en la interfaz “Designer”, en esta interfaz también encontraremos herramientas que permiten desarrollar la lógica de la aplicación como lo son comparadores, condicionantes, etc.

Figura 18. Entorno de desarrollo de App Inventor.

5.2.2. Basic 4Android

La plataforma se caracteriza por su programación basada en el lenguaje VisualBasic, su entorno es más gráfico se puede ir observando visualmente los avances mediante vamos programando, su plataforma no es gratuita lo que genera inconvenientes al generarse actualizaciones de las librerías debes volver a pagar.

Figura 19. Icono característico de Basic 4Android.
5.2.3. Android Studio

Es un entorno de desarrollo integrado (IDE) oficial para el desarrollo de aplicaciones, está basado en IntelliJ IDEA; un entorno de desarrollo para programas, posee herramientas de edición de código, una de sus características es detectar errores en el análisis del código de forma inmediata. Contiene una interfaz de usuario que es diseñada previamente, en esta existen múltiples modelos de pantalla. Adicionalmente se abarca depuradores para emuladores y la posibilidad de trabajo con Logcat. IntelliJ IDEA soporta variados leguajes que se basan en JVM: Java, Clojure, Groovy, Kotin y Scala. Más un soporte para Maven y Gradle. Con esta tecnología asociada a Android Studio. La creación y construcción de aplicaciones para este sistema son cómodas gracias a sus múltiples lenguajes enlazados.

![Android Studio Icono](image)

Figura 20. Icono característico de Android Studio.

En cada proyecto, la aplicación contiene uno o más módulos con archivos de código fuente y archivos de recursos. Los cuales contienen; Android app módulos, Módulos de las bibliotecas, módulos de prueba, y módulos de App Engine. De forma predeterminada, Android Studio muestra los archivos del proyecto, en este punto se aprecia de forma organizada los módulos para proporcionar un acceso rápido a los archivos de código fuente clave.

![Archivo Representativo de Android Studio](image)

Figura 21. Archivos representativos de Android Studio.
5.2.3.1. Android Emulator

Este complemento simula un dispositivo y lo muestra en la computadora de desarrollo, permitiendo crear un prototipo de la aplicación de Android, para realizar pruebas en el desarrollo de la misma sin la necesidad de un dispositivo de Hardware. El emulador es compatible con teléfonos inteligentes, Tablet, TV, Wear puedes seleccionar la versión de Android en la cual deseas realizar pruebas visuales y estéticas al igual que su funcionalidad.

Figura 22. Ventana selectora del tipo y características de dispositivo a emular.

Figura 23. Dispositivo móvil emulado, para realizar pruebas.

5.3. Plataforma a utilizar

Al analizar las diferentes plataformas de desarrollo, encontramos que la plataforma **Android Studio** se familiariza más a los conocimientos previos adquiridos en la carrera, adicional permite visualizar en el emulador avances en la aplicación, también se encuentra que la plataforma es software libre, lo que nos permite el desarrollo de nuestra aplicación sin generar costos adicionales.
6. DISEÑO E IMPLEMENTACIÓN APP

6.1. INSTALACIÓN ANDROID STUDIO

Inicialmente vamos a instalar la plataforma de desarrollo que se ha escogido para trabajar, está la encontramos en la página oficial https://developer.android.com

![Android Studio](https://developer.android.com/images/adc.png)

Figura 24. Página de descarga del software Android Studio.

El siguiente paso es instalar JAVA - JDK en su última versión la cual podemos encontrar en http://www.oracle.com

![Java SE Development Kit](https://www.oracle.com/soa/images/jdk8u01.png)

6.1.1. CONFIGURACIÓN DEL PROYECTO

Previamente se ha instalado Android Studio, por lo tanto, se procede a abrir el software y configurarlo para realizar el diseño e implementación del mismo. En la ventana inicial del programa encontramos varias opciones para dar comienzo a nuestro proyecto, además en la parte inferior dos opciones la configurar y la de ayuda, escogeremos la de configurar para asegurarnos de poseer los SDK necesarios para nuestro proyecto.

![Figura 26. Página inicial Android Studio.](image)

En esta ventana se observa que SDK fueron instalados por defecto y cuales podemos instalar para nuestro proyecto.

![Figura 27. SDK instalados en la plataforma Android Studio.](image)
Luego de tener instalado los SDK necesarios para dar inicio, volvemos a la ventana principal donde escogeremos la opción de iniciar un nuevo proyecto de Android Studio.

La ventana que se abre nos indicará la configuración del nuevo proyecto, su ubicación y el nombre que le daremos.

![Ventana de configuración del nombre y dominio del proyecto](image)

Figura 28. Ventana de configuración del nombre y dominio del proyecto.

En la siguiente ventana se escoge el tipo de aplicación y dispositivo (Phone o Tablet, Tv, Glass, Wear) a la cual se enfoca nuestro proyecto. La opción del mínimo SDK se refiere a la versión desde la cual, se quiere que la aplicación que se está desarrollando funcione, para obtener una buena decisión se opta por seleccionar “HELP ME CHOOSE”.

![Ventana de selección mínima versión de desarrollo Android](image)

Figura 29. Ventana de selección mínima versión de desarrollo Android.
La ventana que se despliega nos indica la versión de Android que se encuentra en el mercado y para nuestro conocimiento el API correspondiente al mismo, también nos indica el porcentaje de dispositivos que poseen la versión de Android mencionada, observamos que a partir de la versión 4.1 API 16, el 95.2% de los dispositivos pueden utilizar la aplicación que se genere.

![Figura 30. Ventana informativa de la cantidad de dispositivos que soportan las diferentes versiones de Android.](image)

Por último escogemos una plantilla para dar inicio al diseño de la aplicación.

![Figura 31. Ventana selección del tipo de activity con la que se da inicio a la aplicación.](image)
6.1.2. REQUERIMIENTOS DEL PROYECTO

Para el diseño de la aplicación se requiere:

- Realizar conexión por medio de Bluetooth
- Sincronizar la hora del celular con el dispositivo “Dispensador de Medicamentos”
- Configurar los 3 medicamentos en cuanto hora de suministrarlos y frecuencia diaria.

6.2. DISEÑO DEL ENTORNO GRAFICO DE LA APLICACIÓN

En el diseño de la aplicación vamos a tener en cuenta la cantidad de “Activitys” o ventanas que contiene la aplicación.

6.2.1. DIAGRAMA DE FLUJO

Figura 32. Diagrama de flujo, para desarrollar el entorno gráfico y aplicativo.
6.2.2. DESCRIPCIÓN DEL ENTORNO GRAFICO

La primera Activity, esta diseño para entablar la conexión del módulo Bluetooth del celular con el módulo Bluetooth del dispensador.

![Figura 33. Ventana inicial de la aplicación.]

Se desplegará un listado de los dispositivos ya sincronizados con el celular, dentro de este listado se debe seleccionar el que contenga el nombre dispensador para realizar la sincronización con nuestro dispositivo y poder enviar los datos correspondientes a la configuración de las alarmas de los medicamentos y su frecuencia.

En la segunda Activity se encuentra un botón o pulsador el cual nos sincroniza la hora del dispositivo móvil y del dispensador.

![Figura 34. Ventana de inicialización de la programación de las alarmas.]

En la siguiente Activity se encuentra tres botones o pulsadores para realizar la configuración de las alarmas y su frecuencia, dependiendo del medicamento que se desee programar.

![Figura 35. Ventana de selección del medicamento a programar.](image)

Nos enviara a la siguiente Activity en la que programaremos los horarios de los medicamentos y su frecuencia.

![Figura 36. Ventana de configuración de alarma.](image)

Por último nos llevará de nuevo a la actividad anterior, actualizando la información del medicamento programado.
6.3. DESCRIPCIÓN DEL CÓDIGO IMPLEMENTADO

6.3.1. LIBRERÍAS A UTILIZAR
Las librerías son utilizadas para programar nuestra aplicación en la sección o interfaz JAVA y nos permite utilizar el modulo Bluetooth, interacciones entre activitys, utilizar variables internas del celular, como el día, hora, el acelerómetro entre otras, también nos permite tener acceso a los objetos previamente seleccionados en el Layout de nuestro proyecto.

- app.Activity;
- bluetooth.BluetoothAdapter;
- bluetooth.BluetoothDevice;
- bluetooth.BluetoothSocket;
- content.BroadcastReceiver;
- content.Context;
- content.Intent;
- content.IntentFilter;
- io.InputStream;
- io.IOException;
- io.OutputStream;
- os.Bundle;
- os.Handler;
- util.Calendar;
- util.Date;
- util.Log;
- util.TreeMap;
- util.UUID;
- view.View;
- view.Window;
- widget.AdapterView.OnItemClickListener;
- widget.AdapterView;
- widget.ArrayAdapter;
- widget.Button;
- widget.ListView;
- widget.Spinner;
- widget.TextView;
- widget.Toast;

6.3.2. DESCRIPCIÓN DEL CÓDIGO IMPLEMENTADO
El código implementado se divide en tres componentes (Manifest, JAVA y RES)
6.3.2.1 Manifests
Es el archivo principal y se conoce como AndroidManifest.xml, este es un archivo de configuración donde podemos aplicar las configuraciones básicas de nuestro proyecto. En este archivo se describe el número de versiones el cual debe irse modificando con cada versión generada, también se coloca el ícono de la aplicación que aparecerá posteriormente al instalarse en los menús y nombre de la misma.

Figura 37. Ícono de la aplicación.

Todas y cada una de las activitys de la app deben ser declaradas en esta sección, de no ser así no funcionarán. La actividad inicial de la aplicación debe ser declarada de tipo "LAUNCHER".

6.3.2.2 RES
En esta carpeta encontramos la subcarpeta Layout la cual contiene las diferentes activity de este proyecto, esta se realizará por medio de dos interfaces, Design y Text, en estas podemos definir objetos de tipo (text, button, list, spinner, etc), los cuales posteriormente definiremos las acciones que realizaran cada uno de estos en nuestra aplicación.

6.3.2.2.1 Design
En esta interfaz contamos con una paleta de objetos los cuales arrastramos y ubicamos de acuerdo a la necesidad descrita en el proyecto.
Figura 38. En la parte izquierda encontramos la paleta de objetos que podemos utilizar en nuestro entorno gráfico, en la parte derecha podemos visualizar como se visualizará nuestra ventana.

6.3.2.2.2 Text

En la interfaz Text se define el nombre de los ID de cada uno de los objetos que hemos seleccionado en la anterior interfaz, este ID es el que se utiliza para definir variables en la interfaz JAVA.

En esta sección también se define el tipo de alineación, márgenes, colores, letra, tamaño, visibilidad de cada uno de los objetos seleccionados para la aplicación en desarrollo.
Figura 39. Código que define la posición y características de los objetos previamente seleccionados en la interfaz gráfica.

6.3.2.3 JAVA

Se generan los archivos correspondientes a cada una de las Activity que se requieran en el proyecto, en estas se describen las acciones que se toman al seleccionar un ítem de una lista, al presionar un botón, texto o acción previamente enlazada en cada actividad.

Para dar inicio a la actividad se definen los ID de los objetos que vamos a utilizar durante nuestra actividad. En esta actividad se revisa si el dispositivo contiene modulo Bluetooth, esto se realiza por el método “checkBTState”, de contenerlo se procede a activarlo para poder dar inicio a la aplicación, posteriormente se lista los dispositivos que se encuentran enlazados con el celular.

Se utiliza el método OnItemClickListener para realizar la conexión entre el dispositivo móvil y el dispensador mediante el Bluetooth, en este mismo método se conecta con la siguiente Activity.

En la siguiente activity definiremos métodos de lectura y escritura del módulo Bluetooth, se define el método de llenado de los Spinner que contiene el índice de horas minutos y veces que desplegara para ser seleccionado.

Por medio de un SWITCH implementado en la clase MyOnItemSelectedListener se determina que alarma se programa para enviar la información correspondiente al dispositivo “DISPENSADOR”.
7. DISEÑO E IMPLEMENTACIÓN

Para el diseño del dispensador de medicamentos se tuvo en cuenta los criterios presentados al inicio del proyecto, en cuanto a la elección de microcontrolador, RTC, Módulo Bluetooth, Modulo cargador de batería, Batería todo esto fue presentado en el capítulo 4.3.

7.1. DESCRIPCIÓN DEL CIRCUITO ELÉCTRICO

7.1.1. CARGADOR DE BATERÍA

El cargador de batería está implementado por integrado TP4056, este componente es el corazón del circuito, adicional del integrado se requiere de un par de condensadores cerámicos, dos resistencias, una de estas es la encargada de ajustar la corriente que será suministrada a la batería, esta resistencia está ubicada en el pin PROG del TP4056 como se aprecia en la Figura 41., también están presentes dos diodos led cuya labor consiste en indicar cuando el circuito integrado esta energizado, el otro led indica el estado de carga de la batería.
7.1.2 REGULADOR DE VOLTAJE

En el diseño electrónico del dispensador de medicamentos fue necesario incluir una etapa de regulación de 3.3 voltios, debido a que cuando la batería del dispensador está completamente cargada puede llegar a entregar 4.2 voltios, este voltaje sin una etapa previa de regulación sería letal para los bloques constitutivos del diseño. El módulo Bluetooth utilizado en el diseño fue el HC-05, este dispositivo en condiciones normales de funcionamiento requiere un voltaje de alimentación de 3.3 voltios, el RTC utilizado en el diseño fue el BQ3200, este componente también exige para un correcto funcionamiento este mismo valor de voltaje, siguiendo las sugerencias de la hoja de datos que provee el fabricante del microcontrolador se encontró que el dispositivo puede trabajar correctamente en un rango de voltajes que va desde los 2.5 hasta los 5 voltios, según esto no tendría que haber ningún problema si este dispositivo fuese alimentado con los mismos 3.3 Voltios de la etapa de regulación como efectivamente se hizo.

En la actualidad casi cualquier equipo electrónico incluye algún tipo de etapa de regulación de voltajes, esta es la razón por la cual en el comercio de componentes electrónicos se encuentran muchas referencias de circuitos integrados diseñados específicamente para esta tarea. Existen reguladores de tipo “swtching” o conmutados, este tipo de circuitos han ganado mucha fama debido a su forma de funcionamiento, una característica, tal vez la más importante es que no presentan calentamiento excesivo ya que no están encendidos todo el tiempo, la topología de
estas etapas de regulación donde como componente principal está un circuito de estas características por lo general está compuesto de una bobina de más o menos 100uH, un diodo de recuperación rápida schottky y unos condensadores electrolíticos para mejorar el filtrado. Una etapa de regulación de este estilo fue descartada en el diseño del dispensador de medicamentos, a pesar que la eficiencia de este tipo de regulación es superior a la eficiencia que brinda una regulación lineal, la razón que influyó en esta decisión es que el circuito no consumía una corriente elevada.

Los circuitos integrados de la familia LM78XX son reguladores de voltaje lineales, estos componentes electrónicos son muy comunes en las tiendas de comercio electrónico en Bogotá (Colombia), es en parte por esto que su precio en comparación con un regulador conmutado es muy inferior, además que no necesita de más componentes externos para su funcionamiento, esto es una ventaja a la hora de diseñar el circuito impreso debido a que el área que ocupa la etapa de regulación es poca. Existen también otras referencias de circuitos integrados no tan populares pero que también fueron diseñados para estas labores, es el caso del MIC5205, es un regulador lineal pensado para entregar 3.3V a una corriente máxima de 250mA, además que su encapsulado es el SOT-23 ideal para aplicaciones donde el circuito impreso debe tener unas dimensiones reducidas, el inconveniente que se tuvo con este regulador es que no es muy común en el comercio electrónico en esta ciudad, otra opción que se busco fue el utilizar el ASM1117 este circuito integrado provee 3.3 V a una corriente de un amperio, con este último valor es claro que este regulador está sobredimensionado para utilizarlo en el diseño del dispensador de medicamentos, ya que el dispositivo consume 50 mA aproximadamente. Finalmente se incluyó en el diseño por su disponibilidad en el comercio local además por su precio muy inferior si se compara con la otra opción.

![Regulador 3.3V](image)

Figura 42. Esquema eléctrico del regulador lineal.
7.1.3 MODULO BLUETOOTH
El módulo de comunicación Bluetooth HC-05, es un componente que requiere para su correcto funcionamiento un voltaje de 3.3V como se mencionó anteriormente, posee dos pines para la comunicación serial, estos pines son el TX y el RX, cuando se trabaja con comunicación serial estos pines van cruzados, es decir, el pin TX del módulo debe ir al pin RX del microcontrolador, de igual manera el pin RX del módulo debe ir al pin TX del microcontrolador. Este componente tiene dos pines de salida donde es posible conectar dos diodos led con el fin de indicar cuando el modulo se encuentra energizado y cuando se ha establecido una comunicación en este caso cuando el módulo se conecta con el teléfono móvil.

Figura 42. Esquema eléctrico Módulo Bluetooth.

7.1.4 MODULO “RTC”
El RTC que se implementa en el dispensador de medicamentos es el BQ32000, este componente es el encargado de llevar la base de tiempos del sistema, posee dos pines para la comunicación I2C con el microcontrolador, este último está rescatando cada cierto tiempo esa información para darle servicio a las distintas alarmas, su configuración electrónica se base en los datos suministrados por la hoja de datos suministrada por el fabricante.
7.1.5. MODULO DE ALARMAS

En esta etapa se han utilizado 4 transistores 2N3904 de montaje superficial, en la base de cada transistor está conectada una resistencia de 1K, esto con el fin de no sobrecargar el microcontrolador en el manejo de los tres diodos led, el micro-motor y el buzzer.

Figura 44. Esquema eléctrico driver dispensador medicamentos.
7.1.6 MICROCONTROLADOR
El corazón del dispensador de medicamentos es el microcontrolador **PIC16F648A**, este componente se comunica con el módulo Bluetooth a través de comunicación serial, de esta manera obtiene la información que se le envía desde la aplicación Android, se ha incluido por software la comunicación I2C, para que pueda estar permanentemente con el “RTC” rescatando la hora real, con esta información el software que se ha diseñado para el microcontrolador compara en tiempo real la información suministrada por la aplicación con la hora real y producir la alarma respectiva en el momento específico.

Este microcontrolador posee memoria interna **EEPROM**, este recurso se ha utilizado para almacenar la hora, minuto, segundo y veces de cada una de las tres alarmas, esto con el fin de evitar perdida de información si llega a ocurrir algún problema con la batería.

![Figura 45. Esquema eléctrico microcontrolador.](image)

7.1.7. BATERÍA
La batería se conectará por medio de dos pines que se desprenden del módulo cargador de batería, el cargador cumple la función de suministrar energía al dispensador mientras la batería se encuentra cargando.

En el desarrollo del proyecto se utiliza una batería tipo Li-Po (polímero de litio), por las características que presenta, se tuvo en cuenta por ejemplo el voltaje nominal, estas baterías proveen un voltaje de salida del orden de los 4 voltios cuando están correctamente cargadas, también influyó en la decisión que el circuito electrónico
necesario para cargarla ocupa muy poco espacio en la tarjeta del circuito impreso. Otra razón que llevo al uso de este componente fue la posibilidad que presenta el circuito cargador de ser alimentado por medio de un puerto USB estándar.

Este tipo de baterías es muy utilizado en equipos radio-controlados, presentando un muy buen rendimiento cuando se le exige gran demanda de corriente. En este tipo de aplicaciones se requiere de una batería tenga una resistencia interna baja, y que pueda ser recargada aun presentado un nivel de carga en su interior, en las baterías de Ni-Cd y Ni-Mg esto no es posible, debido a que este tipo de baterías presenta una característica importante denominada el efecto memoria es básicamente que si la batería no está completamente descargada y se somete a una recarga la vida útil de esta se va a ver afectada. En las Baterías de polímero de litio no se presenta este fenómeno así que es posible recargarla en cualquier momento.

Gracias al avance en la fabricación de baterías es posible fabricar baterías de polímero de litio casi con cualquier forma, esta es otra de las razones por las que su uso se ha masificado recientemente.

Figura 46. Batería Li-Po 2200mAH a 3.7 V.

7.1.8 DISPLAY
El diseño del dispensador de medicamentos portable no contempla el uso de un Display para mostrar información, pero en el diseño de la tarjeta de circuito impreso se le ha incluido un conector de 4 pines, dos de estos pines están encargados de proveer 3.3V, los otros dos pines están conectados con el bus de datos I2C, esto con el fin que sea posible la conexión de un LCD 16x2 cuando el sistema requiera verificar o realizar algún ajuste.
En el anexo 13.1 se encuentra el conglomerado del diseño electrónico.

7.2. ENTORNO DE DESARROLLO CCS

El entorno de desarrollo va de acuerdo al microcontrolador que se escoge en el capítulo 4.3.3 el cual corresponde al **PIC16f648A**. **Se utiliza el entorno CCS C versión demo la cual tiene una durabilidad de 45 días y se descarga en** http://www.ccsinfo.com/ccsfreedemo.php.

7.2.1. HISTORIA

Custom Computer Services desarrollo el primer compilador C para microcontroladores **PIC** hace algo más de dos décadas, el compilador **C de CCS** fue desarrollado específicamente para **PIC MCU**, obteniendo la máxima optimización del compilador con estos dispositivos. Dispone de una amplia librería de funciones predefinidas, comandos de pre procesado y ejemplos. Además, suministra los controladores (drivers) para diversos dispositivos como LCD, conversores AD, Relojes en tiempo real, EEPROM serie, etc. [28]

Un compilador convierte el lenguaje de alto nivel a instrucciones en código maquina; un **cross-compiler** es un compilador que funciona en un procesador (Normalmente en un PC) diferente al procesador objeto. El compilador **CCS C** es un **cross-compiler**. Los programas son editados y compilados a instrucciones máquina en el entorno de trabajo del PC, el código máquina puede ser cargado del PC al sistema **PIC** mediante el ICD2 (o mediante cualquier programador) y puede ser depurado (Puntos de ruptura, paso a paso, etc.) desde el entorno de trabajo del PC.

El **CCS C es C** estándar y además de las directivas estándar (# include, etc.), suministra unas directivas específicas para **PIC** (# divice, etc.); además incluye funciones específicas (bit_set (), etc.).
7.2.2. DIAGRAMA DE FLUJO

Figura 48. Diagrama de flujo algoritmo microcontrolador.
7.2.3 LIBRERÍAS A UTILIZAR

En el desarrollo del programa para el microcontrolador PIC16F648A encargado de gobernar el dispensador de medicamentos se utilizan varias librerías que provee por defecto el PCW Compiler, para la comunicación serial se utiliza la librería RS232, para hacer uso de esta librería es necesario emplear el siguiente formato #USE RS232, esta directiva permite configurar varios parámetros del USART, como lo son, la velocidad de transmisión, pines utilizados entre otros [30]. Es posible modificar estos parámetros en cualquier parte del programa, pero se debe haber invocado previamente la directiva #USE DELAY. De esta manera se habilitan las funciones (GETCH, PUTCHAR y PRINTF).

La velocidad de transmisión de datos que se utiliza para comunicar el microcontrolador con el módulo Bluetooth fue de 9600 baudios, en cuanto a los pines del PIC16F648A se usan el TX y RX que vienen de fábrica para esa tarea, aunque es posible establecer una comunicación serial por software este no fue el caso.

La librería I2C también se utiliza en el desarrollo del proyecto, el bus I2C se basa en la comunicación a través de dos hilos. Cada dispositivo conectado al bus tiene una dirección. Puede configurarse como una comunicación de un maestro a varios esclavos o una configuración multimaestro. En ambas configuraciones, el dispositivo maestro es el que tiene la iniciativa en la transferencia, decide con quien se realiza el sentido de la misma (envió o recepción desde el punto de vista del maestro) y cuándo finaliza. Cuando el maestro inicia una comunicación, primero transmite la dirección del dispositivo con el cual se quiere comunicar y los esclavos comprueban si la dirección concuerda con la suya [30].

7.2.4 DESCRIPCIÓN DEL CÓDIGO IMPLEMENTADO

La programación en el PCW Compiler está basada en el conocido lenguaje de programación C, en las primeras líneas del código está la parte de declaración de las diferentes variables globales utilizadas en el programa, en este proyecto se utilizan variables de tipo “int” y de tipo “BYTE”, estas últimas se utilizan para la manipulación de los datos entregados por el RTC. Luego están las funciones, las cuales son el eje fundamental de la programación modular, son bloques de código especializados en el desarrollo de alguna tarea en particular, gracias a esta forma de programar mediante el uso de las funciones se puede bajar el grado de dificultad a un problema en programación.

Las interrupciones en los microcontroladores son una herramienta bastante importante debido a que permite parar el programa en ejecución para
inmediatamente dar servicio a esta, después de esto el programa se reanuda justo en el lugar donde estaba justo antes de producirse la interrupción.

El PIC16F648A posee varias fuentes de interrupción, en este proyecto se utilizaron 3 de estas, como se puede apreciar en la Figura 49, la interrupción por puerto serie se produce cuando el microcontrolador detecta que existe información en este puerto, inmediatamente detiene el programa y se va a la parte del código previamente definida por el programador, en este proyecto se utiliza la variable global “val” para almacenar la información extraída por la función “GETC ()”, esta es la función encargada de recoger los bytes que entran por el puerto serial. La directiva utilizada es “#INT RDA”.

El microcontrolador también tiene un pin destinado para producir interrupciones al programa desde el exterior, este pin es el “RB0”, el dispensador de medicamentos posee 3 cilindros donde están alojados cada uno de los medicamentos, cuando se da la alarma el usuario debe sacar el medicamento correspondiente, cuando esto sucede se activa un interruptor es en este momento donde se genera la interrupción externa, la directiva para el uso de esta interrupción es “#INT_EXT”.

Figura 49. Esquema eléctrico microcontrolador.
El bloque funcional **TIMER0WATCHDOG** es un contador (registro) de 8 bits, incrementado por hardware y programable. La cuenta máxima es de 255 (El incremento es constante e independiente). Este recurso se puede utilizar para el conteo de eventos externos o como se hizo en este proyecto, como un temporizador, la característica fundamental es que cuando llega el conteo a su valor máximo se produce una interrupción. Esta condición fue aprovechada en el proyecto para cada cierto tiempo poder rescatar la información que entrega el RTC y poder saber cuándo deben ser activadas cada una de las 3 alarmas, la directiva para el uso de este recurso es “**#INT TIMER0**”.

La función **VOID MAIN ()**, es la función principal de este programa, en esta parte del código se habilitan las diferentes fuentes de interrupción y se inicializan las funciones que controlan el RTC. También se hace la lectura de las diferentes posiciones de memoria en la “**EEEPROM**” y se carga esta información en las variables programadas para tal fin, la información que está almacenada en la memoria “**EEEPROM**” es la de las distintas alarmas del sistema.

Por último, se encuentra la función **void verificar ()**, este bloque de código fue diseñado utilizando la instrucción switch/case, en esta parte del programa se clasifica la información proveniente del puerto serial, según sea esta, el programa procede a cargar la hora en el RTC o programar cualquiera de las tres alarmas y la frecuencia con que el medicamento debe ser administrado.

7.3 DISEÑO DE LA TARJETA DEL CIRCUITO IMPRESO (PCB)

Para el diseño de la tarjeta de circuito impreso se utiliza el software EAGLE de la empresa CADSOFT, versión estudiantil el cual se descarga desde https://cadsoft.io/., se optó por este software por los conocimientos que se tenían para su manejo, pues fue necesario la creación de librerías debido a que el tamaño de la mayoría de componentes no concordaba con los tamaños que ofrecían las librerías que trae por defecto este software.

7.3.1 DESCRIPCIÓN DE LAS ETAPAS DEL PCB

1. Circuito cargador de batería desarrollado alrededor de circuito integrado TP4056.
2. Pines de conexión vía I2C para un LCD 16X2.
3. Regulador de voltaje lineal de 3.3V AMS1117.
4. Módulo Bluetooth HC-05.
5. Circuito reloj de tiempo real BQ32000.
6. Driver de los leds indicadores, del zumbador y el micro-motor.
7. Microcontrolador PIC16F648A.
8. Pines conexión batería.

Figura 50. Diseño del PCB del dispensador de medicamentos.

A continuación, se presenta el montaje final del circuito impreso con componentes de superficie.

Figura 51. Tarjeta circuito impreso ensamblada.
7.4 PARTE MECÁNICA

Para el diseño de la carcasa que lleva el dispensador de medicamentos se utilizó el software **FUSION 360**, esta es una herramienta 3D CAD/CAM basada en la nube para el desarrollo de productos, que combina diseño, colaboración y mecanizado industrial y mecánico en un solo paquete. Esta herramienta esta únicamente disponible para uso por parte de estudiantes y profesores [31]

7.4.1 DISEÑO CARCASA

Se inicia con un diseño en 2 dimensiones donde se especifica al software las distancias en milímetros, las diferentes formas y contornos que lleva el diseño.

Luego de tener el diseño en dos dimensiones con sus medidas correctas se procedió a hacer una extrusión lo que resulto se puede apreciar en la figura siguiente.

Figura 52. Diseño en dos dimensiones de la carcasa del dispensador de medicamentos.

Figura 53. Extrusión hecha al diseño en dos dimensiones.
En este punto del diseño se obtuvo un bloque macizo, fue necesario utilizar una herramienta llamada Shell, como se observa en la figura siguiente.

Figura 54. Aplicación de la herramienta shell al bloque macizo.

De esta manera el bloque macizo se convirtió en un cubo hueco, después de esto se procedió a mejorar los contornos de la figura con la herramienta *fillet* como lo evidencia la siguiente figura.

Figura 55. Mejora de contornos al diseño.
En este punto del diseño se procedió a dividir la pieza en dos partes esto con el fin de poder diseñar la carcasa según los requerimientos así.

Figura 56. Obtención de las dos partes que componen la carcasa.

Luego se generaron los soportes que sellan la caja.

Figura 57. Soportes para el cierre de la caja.

El siguiente paso es diseñar los detalles de la carcasa para poder ver los contenedores de los medicamentos, y los huecos que dan paso a los botones de apertura de los contenedores de medicamentos.
Finalmente se obtuvo un diseño de la carcasa para la presentación final del dispensador de medicamentos, a partir de este diseño se generaron los archivos correspondientes para la impresión en una máquina de impresión 3D.

7.4.2 DISEÑO SISTEMA MECÁNICO.

Para el diseño del sistema mecánico del dispensador de medicamentos se comenzó graficando un plano en dos dimensiones con las medidas correctas para que pudiera caber en la carcasa como lo muestra la Figura 60.
Después de tener las medidas y la ubicación correcta se utiliza la herramienta extrude para obtener el siguiente resultado.

En este punto del diseño se elaboraron los tubos contenedores de medicamentos, unaicalmente se hizo un diseño en dos dimensiones con la ubicación y medidas correctas como se aprecia en la Figura 62.
A continuación, se hizo uso de la herramienta extrude dando como resultado lo que se aprecia en la siguiente figura.

Luego se diseña el mecanismo dispensador del medicamento como se muestra en la siguiente figura.
8. PRUEBAS DE FUNCIONAMIENTO

8.1 FUNCIONAMIENTO DEL MÓDULO BLUETOOTH

La configuración se inicia mediante los comandos AT, esta configuración se realiza mediante el entorno de desarrollo Arduino, el cual nos permite acceder a estos comandos, para configurar las distintas características del módulo Bluetooth (Baudios, Nombre del dispositivo, Clave) estos comandos son consultados en el Datasheet, en el proyecto se trabaja a 9600 Baudios, se nombra al dispositivo DISPENSADOR y la clave es 1230.

Alimentaremos el módulo con 3.3 V y observaremos el parpadeo de un LED el cual nos indica que el módulo se encuentra encendido.

![Figura 65. Módulo Bluetooth encendido.](image)

Posteriormente en el dispositivo móvil se activa el módulo Bluetooth y se observa la existencia para realizar la sincronización del dispositivo Dispensador Figura 66. Al sincronizar solicitara la clave que previamente hemos asignado mediante comandos AT.

![Figura 66. Sincronización del módulo Bluetooth con el dispositivo móvil.](image)
8.2 COMUNICACIÓN APLICACIÓN – DISPENSADOR

La aplicación Dispensador se descarga al dispositivo móvil por medio de enlace USB, esta nos genera un ícono que representa la aplicación en nuestro dispositivo móvil.

Figura 67. Ícono de la aplicación “Dispensador”.

Al presionar sobre este ícono se inicia la aplicación la cual nos pregunta si deseamos activar el módulo Bluetooth para el funcionamiento de la misma.

Figura 68. Mensaje para activar permisos de activación del módulo Bluetooth del dispositivo móvil.
Previamente se ha sincronizado el dispositivo móvil con el Dispensador de medicamentos, esto permite observar en la ventana de la aplicación el dispositivo “DISPENSADOR” al cual debemos presionar para realizar la conexión entre ambos dispositivos.

![Seleccionar dispositivo](image)

Figura 69. Se observa en el listado el dispositivo “DISPENSADOR” para ser seleccionado y realizarse la conexión.

En el dispensador un LED nos indicara de manera permanente que el módulo Bluetooth se encuentra en conexión.

![Módulo Bluetooth](image)

Figura 70. Módulo Bluetooth conectado al dispositivo móvil.
8.3 EMPAREJAMIENTO HORA CELULAR CON HORA DISPOSITIVO

El emparejamiento de la hora se hace con el fin de establecer un sincronismo entre el dispositivo móvil y el “DISPENSADOR”, para facilitar los tiempos u horarios en la programación de la ingesta de los medicamentos.

Posteriormente al realizar la conexión entre el dispositivo móvil y el “DISPENSADOR”, nos traslada a una segunda ventana en la cual nos informara la importancia de tomar los medicamentos en los tiempos establecidos por los médicos y un botón para dar inicio a la programación de los horarios de los mismos.

Figura 71. Ventana para sincronizar hora del dispositivo móvil con el “DISPENSADOR”

Al presionar este botón se envía la hora que tiene el dispositivo móvil al “DISPENSADOR” en formato de 24 horas, como nuestro dispositivo no contiene un elemento de visualización, se implementa para pruebas un LCD de 16x2 para observar los datos enviados desde la aplicación a nuestro dispositivo, al igual observar el funcionamiento correcto del RTC.

Figura 72. LCD para visualizar el correcto sincronismo de la hora y su funcionamiento.
8.4 PROGRAMAR ALARMAS Y FRECUENCIA EN TOMA DE MEDICAMENTOS

Para dar inicio a la programación de los medicamentos, la aplicación nos envía a una ventana la cual contiene tres botones que nos indican que medicamento se desea programar.

![Figura 73. Ventana para elegir que medicamento Opciones programar.](image)

Al presionar uno de los tres botones nos traslada a la siguiente ventana donde indicaremos el momento en el que daremos inicio al tratamiento farmacéutico, estos son la Hora, Minutos yNumero de Veces que debemos tomar el medicamento al día.

![Figura 73. Ventana donde se selecciona la hora y minutos y veces.](image)
8.5 FUNCIONAMIENTO ALARMAS EN EL DISPENSADOR

En el prototipo de dispensador de medicamentos se ha establecido tres tipos de alarma cuando llega la hora de tomar un medicamento, estos son:

1. Alarma sonora se genera mediante un Buzzer Figura 74
2. Alarma vibratoria, esta se genera mediante un micro-motor Figura 75
3. Alarma lumínica la cual identificara el contenedor y botón que debe presionar el usuario para tomar el medicamento Figura 76.

![Figura 74. Buzzer.](image1)

![Figura 75. Micro-motor](image2)

Las tres alarmas se disparan al mismo tiempo y solo se detienen al presionar el botón que dispensa el medicamento.

![Figura 76. Indicador lumínico del medicamento que debe tomar.](image3)

![Figura 77. Presión del botón para detener las alarmas y dispensar el medicamento](image4)
8.6 REPROGRAMAR ALARMA AL DISPENSAR MEDICAMENTO

La reprogramación de las alarmas se genera mediante la programación previa del microcontrolador, esta se realiza al momento de activarse la alarma sumando el tiempo de acuerdo al número de veces que debe tomar el medicamento al día, esto lo visualizamos en la pantalla LCD al momento de activarse la alarma, como la hora de la nueva alarma varía de acuerdo a lo establecido previamente.

![Figura 78. Alarma del medicamento 1, configurada para activarse a las 00:07 su frecuencia 2 veces al día](image)

8.7 PRUEBAS CARGA DE BATERÍA

El cargador de batería tiene la facultad de alimentar el circuito sin la necesidad de una batería de por medio, se da inicio al “DISPENSADOR” alimentándolo directamente del puerto USB.

![Figura 80. Dispositivo funcionando por alimentación USB](image)
Posterior a esto colocamos la batería la cual se encuentra descargada, al momento de completar la carga se ilumina un LED azul indicándonos que la batería se encuentra cargada al 100%.

Figura 81. Batería cargada al 100%

A continuación, desconectamos el cargador de batería, dejando al dispositivo funcionar directamente con la batería previamente cargada.

Figura 82. Dispositivo funcionando por alimentación desde la batería.
9. **PRESUPUESTO**

Costos implementación prototipo dispensador de medicamentos.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Costo (Pesos Colombianos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarjeta de circuito impreso</td>
<td>20.000</td>
</tr>
<tr>
<td>Componentes pasivos superficiales</td>
<td>8.000</td>
</tr>
<tr>
<td>Microcontrolador PIC16F648A</td>
<td>10.000</td>
</tr>
<tr>
<td>RTC BQ32000</td>
<td>3.000</td>
</tr>
<tr>
<td>Regulado AMS1117</td>
<td>800</td>
</tr>
<tr>
<td>Modulo Bluetooth HC-05</td>
<td>23.000</td>
</tr>
<tr>
<td>Portapilas (batería 3V)</td>
<td>2.000</td>
</tr>
<tr>
<td>Batería Li-Po 2200mA/h 3.7 V</td>
<td>32.000</td>
</tr>
<tr>
<td>TP4056</td>
<td>10.000</td>
</tr>
<tr>
<td>Leds</td>
<td>1.500</td>
</tr>
<tr>
<td>Microruptores</td>
<td>1.000</td>
</tr>
<tr>
<td>Buzzer</td>
<td>1.000</td>
</tr>
<tr>
<td>Micromotor</td>
<td>1.000</td>
</tr>
<tr>
<td>Cable ribbon</td>
<td>1.000</td>
</tr>
<tr>
<td>Pulsador</td>
<td>200</td>
</tr>
<tr>
<td>Tornillos</td>
<td>200</td>
</tr>
<tr>
<td>Acrílico</td>
<td>10.000</td>
</tr>
<tr>
<td>Resortes</td>
<td>500</td>
</tr>
<tr>
<td>Cristal 4mhz</td>
<td>800</td>
</tr>
<tr>
<td>Carcasa Presentación final</td>
<td>Laboratorio prototipado UDFJ</td>
</tr>
<tr>
<td>Mecanismo dispensador</td>
<td>15.000</td>
</tr>
<tr>
<td>Otros</td>
<td>15.000</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>156.000</td>
</tr>
<tr>
<td>A.I.U. (12%)</td>
<td>18.720</td>
</tr>
<tr>
<td>TOTAL</td>
<td>174.720</td>
</tr>
</tbody>
</table>

Tabla 7. Cosos de fabricación prototipo.

El costo total de la tabla muestra el dinero necesario en pesos colombianos para la adquisición de los elementos necesarios para la puesta en marcha del dispositivo dispensador de medicamentos.
10. ANALISIS DE RESULTADOS

En este proyecto se plantea una serie de requerimientos que es oportuno mencionar antes de entrar a discutir los resultados obtenidos, el primero de estos plantea el diseño de una aplicación para un teléfono móvil en el sistema operativo Android, además esta aplicación debía establecer comunicación mediante tecnología Bluetooth, el dispositivo dispensador de medicamentos sería manejado por un microcontrolador de 8 bits, con capacidad para manejar comunicación serial y también el protocolo I2C, teniendo en cuenta que este componente debe ser de bajo costo y también presentar un encapsulado acorde para el montaje superficial.

El dispensador de medicamentos maneja tres tipos de fármacos, utilizados por las personas que presentan cuadros crónicos en su salud, basados en esto se incluye una base de tiempo fiable para la activación de cada una de las alarmas correspondientes a cada medicamento.

Otro requerimiento hace alusión a la batería que tendrá el dispositivo, esta debía ser de 3.7V y de un tamaño reducido, el circuito electrónico final debía tener una etapa encargada de recargar la batería, teniendo esto presente ya es posible entrar a discutir los resultados finales.

- La aplicación lograda con el software libre Android Studio muestra la practicidad que se desea para la programación de las diferentes alarmas de nuestro dispositivo, gracias a su entorno gráfico y el tamaño de memoria que ocupa dentro del dispositivo móvil que equivale a 7,39 MB.
- En las pruebas realizadas se comprueba que la aplicación logra mantener estable la comunicación Bluetooth entre el dispositivo “DISPENSADOR” y el móvil, al no presentar interferencia o perdida de información a una distancia aproximada de 10 metros.
- Al lograr la comunicación entre el “DISPENSADOR” y el dispositivo móvil no es posible la comunicación con otro dispositivo móvil, garantizando de esta manera la programación correcta del dispositivo.
- La comunicación entre el “DISPENSADOR” y el dispositivo móvil se suspende al salir de la aplicación si haber terminado la programación de alguno de los medicamentos, esto garantiza él no enviado de datos incorrectos al dispositivo.
- Con esta aplicación es posible sincronizar la hora actual que maneja el dispositivo móvil y enviarla al “DISPENSADOR”, para garantizar la misma base de tiempos manejada por el usuario.
- Se corrobora que el diseño de la aplicación realiza la programación de las alarmas de los medicamentos de manera secuencial y específica (Hora, Minutos y Veces), no es posible ingresar datos en otro orden.
- Al no lograr la sincronización entre el dispositivo móvil y el “DISPENSADOR”, la aplicación no permite avanzar de la ventana donde se encuentra.
- El diseño de esta aplicación está proyectado para que el usuario sea llevado de manera intuitiva garantizando la programación correcta de las alarmas.
- Se logra que el microcontrolador elegido realizar las comunicaciones serial e I2C, de esta manera es posible extraer la información enviada por el RTC manteniendo nuestro dispositivo con la hora exacta, garantizando los tiempos para generar las alarmas indicadoras del momento de la toma de los medicamentos.
- El diseño electrónico logrado permite la conexión de un Display LCD 16X2 convencional vía I2C, a través del mismo bus utilizado por el RTC, esto con el fin de aprovechar las salidas disponibles en el microcontrolador.
- Al analizar las diferentes alternativas que brinda el mercado de baterías se elige una batería Li-Po (Polímero de litio), con un voltaje nominal de 3.7 voltios y una corriente de 2200mA/h, logrando una autonomía del dispensador de aproximadamente 48 horas antes de tener que cargar nuevamente la batería ya que el circuito consume 45 mA, en condiciones normales de funcionamiento.
- El diseño electrónico logrado incluye una etapa encargada de recargar la batería, el corazón de esta es el circuito integrado TP4056, este circuito maneja 2 diodos led encargados de mostrar cuando la batería se está cargando y cuando la batería está totalmente cargada, esto le permite al usuario saber cuándo es el momento oportuno de desconectar él dispositivo del cable USB.
- El diseño del sistema mecánico es aceptable a nivel de prototipo, fue logrado al diseñarse en el software Fusion 360.
- La carcasa del dispositivo se diseñó en el software Fusion 360, con los archivos generados en este software y gracias al laboratorio de prototipado de la Universidad Distrital fue posible la elaboración de este modelo en la impresora 3D.
11. TRABAJO FUTURO

- Optimizar el algoritmo del microcontrolador donde se incluya la posibilidad de desconectar el módulo Bluetooth, para que esté no permanezca encendido todo el tiempo y de esta manera lograr reducir el consumo de la batería, lo que le daría al prototipo dispensador de medicamentos mayor autonomía y tiempo de vida.

- Incluir en el algoritmo del microcontrolador la posibilidad que envié a la aplicación información acerca del estado de la batería y la cantidad de medicamento que tiene el dispositivo en cualquier instante.

- Optimizar el sistema mecánico tendiendo a buscar reducir el tamaño logrado en esta ocasión, para así obtener un dispositivo más pequeño.

- Incrementar el número de contenedores de medicamentos, sin aumentar el tamaño del dispositivo.

- Incluir en la aplicación la posibilidad de manejar estadísticas del comportamiento del paciente y de esta manera poder evaluar e identificar problemas que puedan surgir a futuro logrando tener aún más información y poder mejorar la adherencia al tratamiento médico.
12. CONCLUSIONES

- En el desarrollo de este proyecto se cumple con los objetivos generales y específicos planteados al inicio del mismo, logrando aplicar los conocimientos obtenidos a lo largo de la carrera, adicional se incursiona en el diseño de piezas mecánicas, a través del uso de programas especializados, obteniendo resultados satisfactorios.

- El prototipo final logró cumplir los requerimientos planteados en la propuesta inicial del proyecto, como resultado se obtiene un dispositivo “DISPENSADOR” de medicamentos portable, para contener tres tipos de medicamentos.

- De acuerdo a la investigación de dispositivos existentes en el mercado, se logra obtener un dispositivo novedoso en cuanto a la programación de los horarios de la ingesta de las medicinas y la disposición de los contenedores para el almacenamiento de los medicamentos, en cuanto a la parte mecánica se debe mejorar para lograr un dispositivo con características comerciales.

- Se observó en el momento de realizar pruebas con el módulo Bluetooth que este componente es muy susceptible al ruido, por esta razón fue necesario diseñar un circuito impreso con un buen plano de tierra, esto con el fin de blindar esta etapa, además se procuró que las líneas de la comunicación serial sean lo más cortas posibles para evitar interferencias.
13. ANEXOS

13.1 ESQUEMA ELECTRICO

[Diagram of electrical schematic]
14. REFERENCIAS

[5] Capítulo 9 Fármacos cardiovasculares Dr. Ramón Bover Freire

[7] Designing machine-to-machine (M2M) system in health-cure modeling for cardiovascular disease patients: Initial study, I Ketut Agung Enriko ; Dept. of Electr. Engineering, Univ. Indonesia, Depok, Indonesia ; Gunawan Wibisono ; Dadang Gunawan

[14]https://www.medminder.com

[16]https://medqpillbox.com

[19]http://www.pivotell.co.uk/

[21]https://www.lifeline.philips.com

[22]https://www.android.com/intl/es-419_mx/history/

[23]http://upcommons.upc.edu/bitstream/handle/2099.1/18249

[26]“Evaluating Bluetooth Low Energy in RealisticWireless Environments”

[28]https://developer.android.com

[29]“libro Compilador ccs y simulador”

[30]“libro CCS para PIC”

[31]Tomado de la pagina oficial”.