INCLUSIÓN EN EL AULA DE MATEMÁTICAS COLEGIO OEA

AURA VIVIANA ACERO SOLANO
CLAUDIA PATRICIA ACOSTA PERILLA

Directora: DIANA GIL CHAVES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE CIENCIAS Y EDUCACIÓN
LICENCIATURA EN EDUCACIÓN BÁSICA CON ÉNFASIS EN MATEMÁTICAS

Bogotá, Colombia.

2016
Tabla de contenido

INCLUSIÓN EN EL AULA DE MATEMÁTICAS COLEGIO OEA .. 1
Tabla de contenido .. 2
Tabla de ilustraciones ... 4
Resumen ... 5
Introducción ... 6
Justificación ... 8
1 Presentación general de la pasantía ... 10
 1.1 Convenio .. 10
 1.1.1 Propósitos de la pasantía. .. 11
 1.1.2 Objetivos de la pasantía .. 12
 1.1.3 Marco teórico de la pasantía .. 12
 1.2 Descripción de las Instituciones propuestas en el convenio .. 21
 1.2.1 Universidad Distrital Francisco José de Caldas ... 21
 1.2.2 Institución Educativa .. 28
2 Presentación de la pasantía ... 30
 2.1 Objetivos .. 31
 2.1.1 Objetivo general: ... 31
 2.1.2 Objetivos específicos: ... 31
 2.2 Población .. 31
3 Desarrollo del plan de trabajo ... 38
 3.1 Formación en la Facultad de Ciencias y Educación ... 38
 3.1.1 Formación ... 38
 3.1.2 Formación en la Institución Educativa .. 46
 3.1.3 Formación autónoma ... 50
 3.2 Plan de acción .. 59
 3.2.1 Adaptación de materiales .. 59
 3.2.2 Apoyo extraescolar .. 65
 3.2.3 Acompañamiento en el aula ... 68
4 Conclusiones .. 72
4.1 Conclusiones ... 72
4.2 Reflexiones ... 73
 4.2.1 Claudia Patricia Acosta .. 73
 4.2.2 Aura Viviana Acero .. 75
4.3 Recomendaciones ... 77
5 Bibliografia .. 79
6 Anexos ... 80
<table>
<thead>
<tr>
<th>Ilustración</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>62</td>
</tr>
</tbody>
</table>
Resumen

En el marco del convenio de voluntades y cooperación entre el proyecto curricular Licenciatura en educación básica con énfasis en matemáticas y el Colegio OEA, se realiza la pasantía de extensión “La inclusión en el aula de matemáticas del Colegio OEA” como modalidades de trabajo de la Licenciatura en educación básica con énfasis en matemáticas.

Para el desarrollo de la pasantía, los pasantes proponen un plan de trabajo con base en el convenio realizado entre las dos Instituciones educativas, el cual tiene objetivos, propósitos y marco teórico, que sustenta la pasantía y el plan de acción de los pasantes. Las actividades centrales de los pasantes son: el acompañamiento en el aula a los estudiantes ciegos o de baja visión, el apoyo extraescolar a los estudiantes asignados y la adaptación de recursos didácticos para ser utilizados en las clases de matemáticas o en las asesorías con los estudiantes de baja visión o ciegos.

En el plan de acción, las pasantes realizan un proceso de formación teórico-práctico, el cual consistió, primero en un estudio teórico por medio de lecturas, capacitaciones y eventos, que permitieron construir conocimientos sobre: inclusión en el aula, adaptación de materiales, la relación de la discapacidad visual y con las matemáticas, y el segundo la implementación de esta teoría a la práctica, desarrollada a través de tres actividades estipuladas en el convenio de voluntades firmada entre el Colegio OEA y LEBEM, que son: apoyo extraescolar, acompañamiento en el aula y adaptación de materiales.
Introducción

En las políticas educativas se reconoce el contexto Colombia, puesto que en la Constitución Política de Colombia, (1991) se define y desarrolla la prestación de educación formal a todas las poblaciones vulnerables. Con base en ello, la Ley general de educación (1994) decreta la integración al servicio educativo de todos los educandos y las aulas especializadas con programas de apoyo pedagógico que permita cubrir la atención educativa, en cuanto a la formación de profesores se establece en el plan decenal de educación (2006 - 2015), una realidad educativa que es necesario abordar, como lo es en diseñar, aplicar y promover las políticas educativas donde se incluya a toda la comunidad.

El presente escrito da cuenta del desarrollo y los resultados del plan de trabajo para la pasantía desarrollada en el Colegio OEA, que se encuentra ubicada en la localidad de Kennedy, Barrio Provivienda en la Carrera 69 bis #39-30 sur, en la jornada mañana. Cuyo propósito fue la atención y acompañamiento en el área de Matemáticas a los estudiantes en condición de discapacidad visual de la educación básica, incluidos en el aula regular.

En la primera parte del informe se encuentran los elementos generales de la pasantía, se manifiestan los compromisos adquiridos por la Institución Educativa Distrital OEA y el proyecto curricular de Licenciatura en Educación Básica con Énfasis en Matemáticas (LEBEM). Además se exponen los propósitos, los objetivos y marco teórico, que sustentan la pasantía. Donde se tienen en cuenta las políticas inclusivas, las necesidades educativas especiales en el área de matemáticas, la inclusión en el aula y la adaptación de materiales para estudiantes en condición de discapacidad visual.

En la segunda parte del escrito se realiza una presentación de la pasantía donde se exponen los objetivos del plan de trabajo desarrollado por este grupo de pasantes y se hace una presentación caracterizando la población con la cual se desarrolló la pasantía.

En la tercera parte se muestra el desarrollo de la pasantía, mostrando por un lado como fue la formación en cuanto a las teorías de inclusión para la población en condición de discapacidad visual, la adaptación de material, el aprendizaje de esta población y el uso de la tiflotecnología. Por otro lado se muestra los procesos, resultados y análisis de lo ejecutado durante la pasantía.
tanto en el acompañamiento en el aula como en el apoyo extraescolar y la adaptación de los materiales.

En la última parte del escrito, se presenta las conclusiones, reflexiones y recomendaciones que surgieron a lo largo de la pasantía. La contribución de la pasantía a nuestra formación como profesores de matemáticas a través de los aprendizajes y las vivencias que dejó en cada una la participación como pasantes en la comunidad educativa del Colegio OEA.
Justificación

Este tipo de trabajo aporta a la formación de profesores, puesto que permite reconocer que los futuros docentes deben tener la formación adecuada para manejar los nuevos retos del contexto escolar, donde la diversidad juega un papel importante y el docente debe estar en la capacidad de reconocer las necesidades educativas de cada uno de sus estudiantes, sus fortalezas y capacidades, para ello es pertinente tener como base las políticas educativas, para que el docente planeé, diseñe, desarrolle y reflexione sus clases pensando en las particularidades de los estudiantes.

Específicamente en la población en condición de discapacidad, el docente debe tener en cuenta para el desarrollo del saber matemático, una adecuada trasposición didáctica, construirla pertinently para lograr incorporar a todos en el proceso de enseñanza – aprendizaje, de tal manera que la discapacidad no se convierta una limitación sino en una oportunidad para que todos logren construir, comprender los objetos, haciendo uso de recursos didácticos que todos puedan manipular.

En este trabajo se hace un especial énfasis en el reconocimiento de una adecuada transposición didáctica para el aprendizaje de las matemáticas, para estudiantes de la educación básica con cualquier condición: videntes, ciegos, baja visión etc. Por lo tanto la pasantía más allá de ser un trabajo pedagógico de atención y acompañamiento escolar en el área de matemáticas a los estudiantes en condición de discapacidad visual, es un proceso de formación teórico-práctico que permite a los estudiantes para profesor de matemáticas reflexionar a partir de la formación recibida y la identificación de las políticas educativas como se debería reconocerse la diversidad en el aula.

Colocando en práctica el conocimiento profesional construido a partir de los procesos de formación brindados en el proyecto curricular LEBEM, permitió el reconocimiento de la importancia de las representaciones de los objetos matemáticos, la construcción de imágenes mentales que posibilite a los estudiantes la construcción de esquemas mentales, puesto que la dificultad reconocida en diversas investigaciones está centrada en procesos de visualización, dificultad evidente en estudiantes que poseen condición de la discapacidad visual, por tanto en la pasantía se tuvo en cuenta estos aspectos teóricos para la adaptación de material didáctico, apoyo
extraescolar y acompañamiento en el aula, para facilitar y fortalecer la representación y la comprensión de los objetos matemáticos en los estudiantes.
1 Presentación general de la pasantía

1.1 Convenio

La pasantía que realizaron los estudiantes de la Licenciatura en Educación Básica con Énfasis en Matemáticas (LEBEM) de la Universidad Distrital, es un trabajo pedagógico de atención y acompañamiento escolar en el área de la Matemática a los estudiantes en condición de discapacidad visual de la educación básica, que se encuentran incluidos en el aula regular en la Colegio OEA - IED.

La pasantía se enmarca dentro de la normatividad existente en la Universidad Distrital, a continuación se presentan apartes de documentos vigentes en el momento:

La pasantía de la Universidad Distrital es entendida como:

La Pasantía es una modalidad de trabajo de grado que realizara el estudiante en una organización, institución pública o privada, o en organismos especializados o en regiones o localidades que lo requieran, asumiendo el carácter de practica social o de introducción a su quehacer disciplinar mediante la elaboración de un trabajo teórico-práctico relacionado con su futura profesión. Las labores del estudiante de pregrado en la empresa o institución, deberán estar acordes con cualquiera de las líneas terminales de su carrera y el nivel de profesionalización adecuado, las cuales estarán contenidas en el respectivo anteproyecto (Acuerdo Nº 029, 2013, p.3)

Particularmente el proyecto curricular de Licenciatura en Educación Básica con Énfasis en Matemáticas (LEBEM), entiende la pasantía como:

La posibilidad de contribuir con responsabilidad social, a la transformación de la enseñanza y el aprendizaje de las matemáticas, a partir del reconocimiento del contexto en el que se desenvuelven los sujetos que aprenden y del reconocimiento de la relación entre aprender matemáticas y aprender a interpretar la realidad de forma diferente. Es decir, la pasantía de extensión es una práctica social que promueve el acceso al conocimiento matemático y no solamente a la información. (Documento del Consejo Curricular “Definición de criterios de calidad y pertinencia” LEBEM, 2009)
Para la realización de la Pasantía se requiere que el Colegio OEA y el proyecto curricular de Licenciatura en Educación Básica con Énfasis en Matemáticas se comprometan con lo siguiente:

- Los estudiantes pasantes del proyecto curricular deben cumplir con 384 horas de servicio en el Colegio OEA, en la cual deben cumplir labores de acompañamiento en el aula de matemáticas, adaptación de material para facilitar la comprensión de conceptos propios de la matemática, por parte de los niños videntes e invidentes, refuerzos escolares en el área de matemáticas.

- El proyecto curricular de Licenciatura en Educación Básica con Énfasis en Matemáticas acompaña y orienta a los estudiantes pasantes en la elaboración de un plan de trabajo de grado suscrito a la modalidad de pasantía.

- El Colegio OEA brinda una capacitación en relación con la limitación visual, áreas tiflológicas, adaptaciones y estrategias curriculares en matemáticas, adaptación de material incluyente y estrategias pedagógicas incluyentes.

- El Colegio OEA garantizará las condiciones para que los estudiantes pasantes de la Universidad Distrital, puedan desarrollar su plan de trabajo como modalidad de grado. (Ver anexo 1 Acuerdo de voluntades entre la Universidad Distrital y el Colegio OEA).

1.1.1 Propósitos de la pasantía.

La pasantía que realizarán los estudiantes de la LEBEM, les permitirá contribuir con los procesos de desarrollo de pensamientos propios del aprendizaje del área de las Matemáticas de los estudiantes con discapacidad visual incluidos al aula regular del colegio OEA, a partir de colocar en práctica el conocimiento profesional construido en los procesos de formación dentro de la Universidad Distrital.

Inicialmente esta pasantía privilegiará el desarrollo de aspectos propios del pensamiento geométrico-variacional, donde se considera hay mayor necesidad, puesto que producto de indagaciones que se han realizado, en algunos trabajos de grado\(^1\) se puede afirmar que existen

pocas investigaciones y trabajos en esta línea. Además esta necesidad se ratifica al reconocer que el pensamiento geométrico - variacional está directamente vinculado con los procesos de visualización, dificultad evidente en estudiantes que tienen discapacidad visual, para lo cual, se requiere la adaptación de material inclusivo que favorezca las representaciones geométricas y variacionales partiendo de lo concreto a lo abstracto.

1.1.2 Objetivos de la pasantía

1.1.2.1 General:

Establecer, fortalecer y mantener convenio entre el proyecto curricular de Licenciatura en Educación básica con Énfasis en Matemáticas – LEBEM- y el Colegio OEA, para la atención a la población con discapacidad visual, desde la educación matemática y teniendo en cuenta los principios de la educación inclusiva.

1.1.2.2 Específicos:

1. Formar a los estudiantes pasantes de la Universidad Distrital suscritos al proyecto curricular LEBEM, en aspectos relacionados con el apoyo en lo que se refiere a la discapacidad visual, áreas tiflológicas y estrategias curriculares y pedagógicas.

2. Llevar a cabo la adaptación de material incluyente, pertinente para el área de matemáticas.

3. Realizar acompañamiento al docente del Colegio OEA que orienta el área de matemática.

1.1.3 Marco teórico de la pasantía

Se privilegian cuatro referentes que orientan la presente pasantía, considerados de vital importancia para el cumplimiento de los objetivos de la misma.

1.1.3.1 Políticas públicas de atención a poblaciones vulnerables.

La atención a la diversidad además de ser un compromiso social de los educadores, se convierte en un deber desde las políticas nacionales e internacionales. En Colombia se reconoce el derecho a la educación de las poblaciones en condición de vulnerabilidad sensorial, social, cultural y económica, de forma más destacada desde la Constitución Política de Colombia de 1991, Ley General de Educación de 1994, y en el Plan Nacional Decenal de Educación 2006 – 2016, como se muestra a continuación.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ley General de Educación. (1994)</td>
<td>Artículo 46.- Integración con el Servicio Educativo: Los establecimientos educativos organizarán directamente o mediante convenio, acciones pedagógicas y terapéuticas que permitan el proceso de integración académica y social de los educandos. Artículo 48.- Aulas Especializadas: Los gobiernos nacional y de las entidades territoriales incorporarán en sus planes de desarrollo, programas de apoyo pedagógico que permitan cubrir la atención educativa a las personas con limitaciones.</td>
</tr>
</tbody>
</table>
| Plan Decenal Educación. (2006-2015). Formación de Profesores. | **Inclusión, diversidad, diferencia, identidad y equidad:** Diseñar y aplicar políticas públicas articuladas intra e intersectorialmente que garanticen una educación en y para la paz, la convivencia y la ciudadanía, basadas entre otras en los principios de equidad, inclusión, diversidad social, económica, cultural, étnica, política, religiosa, sexual y de género. **Derechos, protección, promoción y población vulnerable con necesidades educativas especiales:** Aplicar políticas intra e intersectoriales para la restitución del derecho a una educación con calidad de todos los grupos poblacionales vulnerables, mediante la adopción de programas flexibles con enfoques diferenciales de derechos. **Equidad: Acceso, Permanencia y Calidad:** Garantizar y promover por parte del Estado, a través de políticas públicas, el derecho y el acceso a un sistema educativo público sostenible que asegure la calidad, la permanencia y la pertinencia en condiciones de inclusión, así como la...
Un estudiante tiene necesidades educativas especiales cuando con o sin discapacidad se le dificulta el acceso a contenidos curriculares particulares del contexto escolar. Por tanto, el estudiante requiere de apoyo pedagógico y didáctico particular y adicional, para lograr la superación de sus dificultades y lograr los aprendizajes esperados Espejo (2001) plantea que las necesidades educativas están presentes en todos los individuos y pueden ser carácter permanente o temporal.

La matemática es considerada como una de las áreas que más genera en los estudiantes deserción, frustración y abandono escolar en todos los niños y jóvenes, es decir se requiere de apoyo adicional, con mayor razón si se tienen además alguna situación de discapacidad o vulnerabilidad. Gross (2004) propone algunas razones más comunes para explicar las dificultades para el estudio de las matemáticas en niños de básica primaria y de básica secundaria, estas son:

- Dificultades específicas de aprendizaje: Por la forma de presentarles las tareas, ya que no se tienen en cuenta el manejo del leguaje, los problemas de la lectura y la escritura, ni la necesidad de una buena sintaxis y semántica.

1.1.3.2 Educación matemática y las Necesidades Educativas Especiales

Desarrollo Profesional, dignificación y formación de docentes:

directivos docentes: Fortalecer la calidad de la educación super con la implementación de propuestas para la formación de docentes universitarios que enfaticen en lo pedagógico, didáctico, epistemológico, ético e investigativo como producción de conocimiento, desde lo disciplinar y profesional.
• Pensar en abstracto: Los estudiantes memorizan aspectos, pero les resulta muy difícil
comprender lo que hacen. Pueden efectuar con soltura los cálculos, pero ser incapaces de
descubrir si, en un problema determinado, tienen que utilizar la suma, la resta, la
multiplicación o la división.

• Dificultades espaciales:

Estos niños pueden ser muy lentos a la hora de adquirir cualquier concepto de número o
para efectuar sencillas operaciones de adición o sustracción, porque pierden la cuenta de
los grupos de objetos o dibujos que intentan contar. Para ellos los números pueden
cambiar o modificarse de un modo que les impide asignar de manera fiable unos
símbolos a las distribuciones espaciales con las que se encuentran. (Gross, 2004, p. 279)

• Problemas con el lenguaje matemático:

La matemática exige mucho de la comprensión lingüística de los niños. El
desconocimiento del significado de expresiones matemáticas puede impedir que muchos
comprendan instrucciones o mantengan un diálogo matemático con otros. También, a
veces, han de aprender muchas palabras diferentes para los mismos conceptos. En otro
nivel, los niños pueden retrasarse a causa de la complejidad gramatical y la longitud
oracional de los problemas que tienen que resolver. Las dificultades de comprensión del
lenguaje de las matemáticas pueden deberse a la falta de experiencia preescolar de oír y
usar el habla matemática o a retrasos o trastornos específicos del lenguaje. (Gross, 2004,
p. 281)

• La necesidad de sobre-aprender:

Una dificultad común para los niños con necesidades especiales es que la enseñanza
pueda presentarles un nuevo concepto o una nueva idea, y pase a otra cosa antes de que
ellos hayan tenido ocasión de dominar con soltura y de forma automática la nueva
destreza. En matemáticas, donde con frecuencia el aprendizaje es secuencial y un
concepto o destreza se basa en otros anteriores, eso es particularmente perjudicial.
Significa que el fracaso en matemáticas sea, a menudo, acumulativo; provoca frustración
e irritación en maestros y padres, que no entienden por qué en un primer momento,
parece que el niño ha comprendido algo, pero lo olvida a los pocos días o semanas. (Gross, 2004, p. 282 y 283)

- Motivación, ansiedad y dependencia:

Las dificultades matemáticas también pueden surgir del modo de sentirse el niño en relación con las matemáticas y no de pautas cognitivas como aquellas. Muchos autores han comentado que las matemáticas despiertan complejas emociones en niños y en adultos, quizá porque más que cualquier otra materia, está abierta al fracaso absoluto. Las reacciones corrientes ante la posibilidad de un fracaso de este tipo son la ansiedad y el pánico, la dependencia excesiva del maestro para que ayude a lograr que todo esté bien o la evitación, en forma de poca concentración y baja motivación. (Gross, 2004, p. 285)

1.1.3.3 Inclusión en el aula regular

Este apartado se concibe desde diferentes documentos internacionales los cuales permiten identificar el problema de las concepciones de las necesidades educativas especiales para las poblaciones que tienen vulnerabilidad, esta problemática también se presenta en Colombia, por ello es pertinente proporcionar distintas posturas sobre la diversidad como se evidencia a continuación.

<table>
<thead>
<tr>
<th>Declaración Universal de los Derechos Humanos de la ONU (1948).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribuye a considerar a las personas discapacitadas como sujetos de Derecho.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Informe de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnok (Inglaterra, 1978)</td>
</tr>
<tr>
<td>Pone de manifiesto el concepto de necesidades educativas especiales. Este informe considera los aspectos médicos y los medios conducentes para la preparación para el mundo del trabajo.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año Internacional de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiene por lema “la plena participación y la igualdad”, definidas como el derecho de las personas con discapacidad a participar plenamente</td>
</tr>
<tr>
<td>Convenio sobre los Derechos del Niño (1989)</td>
</tr>
<tr>
<td>Decenio de las Naciones Unidas para los Impedidos (1983 - 1992)</td>
</tr>
<tr>
<td>Declaración Mundial de Educación para todos en Jomtien (1990)</td>
</tr>
<tr>
<td>Normas Uniformes de la ONU sobre la igualdad de oportunidades para las personas con discapacidad (1993)</td>
</tr>
</tbody>
</table>
Declaración de Salamanca (1994)

El principio rector de este Marco de Acción es que las escuelas deberían dar cabida a todos los niños, independientemente de sus condiciones físicas, intelectuales, sociales, emocionales, lingüísticas o de otro tipo. Muchos niños pueden experimentar dificultades y tener por lo tanto Necesidades Educativas Especiales en algún momento de su escolarización.

Foro Mundial sobre Educación Dakar (2000)

La educación es un derecho humano fundamental. Es la clave para el desarrollo sostenido, la paz y la estabilidad dentro y entre los países, y por ello constituye un medio indispensable para una participación efectiva en las sociedades y las economías del siglo veintiuno, que se ven afectadas por una rápida globalización. (Foro Mundial sobre Educación, 2000, par.6)

A partir de los esfuerzos que se han movilizado a nivel internacional, se comparte la necesidad de entender que la educación es un derecho, del cual deben gozar todos los seres humanos y por tanto la educación matemática debe aportar en el equiparamiento de oportunidades para todos los niños y jóvenes con o sin necesidades educativas especiales, para aprender matemáticas.

1.1.3.4 Adaptación de materiales para el trabajo en matemáticas con población ciega

Desde los marcos teóricos de diferentes investigaciones que se han abordado frente al tema de la relación entre matemática y deficiencia visual se pueden evidenciar dos hipótesis importantes sobre el aprendizaje en esta población. La primera hipótesis, es que los ciegos pueden aprender matemáticas y la segunda, es que si bien es cierto que tienen la capacidad, hay condiciones diversas que generan un retraso de al menos dos años en la adquisición de experiencias lógico matemáticas.

 Esto implica para las instituciones escolares y en particular para los profesores de matemáticas, por una parte, el compromiso de diseñar tareas específicas que permitan a los niños

2 Entre ellas la adelantada por Nuria Rosich (1996) en el marco de su publicación Matemáticas y deficiencia sensorial y la desarrollada por Carmen Molina (s.f) en el marco de su tesis doctoral.
y jóvenes ciegos superar, el posible atraso, a partir de experiencias de manipulación, donde se privilegien las tareas mediadas por la audición, la sensibilidad táctil y las sensaciones cenestésicas. Y por otra parte, la utilización de diferentes formas de representaciones hasta llegar a la representación abstracta de los objetos matemáticos, esto seguramente favorecerá a todos los estudiantes en la clase de matemáticas, a los ciegos y a los videntes.

Frente a lo anterior Rosich, Núñez & Fernández (1996), propone que para realizar el proceso de matematización es importante distinguir etapas que se producen en la cognición matemática a bajo nivel, para desarrollar un contenido matemático y no solo para esta población en particular, por ello a continuación se realiza la explicación de cada uno de los estadíos involucrados en el proceso de matematización:

a. Recogida de información sensible: Un contenido matemático puede presentarse bajo diferentes ropajes sensibles como lo es el visual, audible, háptico; capaz de estimular los correspondientes receptores sensoriales. (p. 157). Para la población ciega, esta primera fase demanda una serie de destrezas que deberán haber sido adquiridas de antemano.

b. Elaboración del correspondiente percepto: Esta fase tiene que ver con la forma como el sujeto elabora una representación del objeto matemático a partir de su percepción mediante los canales referenciados en la fase anterior.

c. Abstracción matemática: Se refiere al no acceso del objeto por vías directas: solo apreciable por introspección, dado el carácter inmaterial del objeto abstraído o directamente, a través de las reificaciones (p. 160).

*Es evidente entonces que:

3 Referente al tacto.
4 Se refiere al objeto tal como lo percibe el sujeto
- La integración del nuevo objeto se facilita si las expresiones a comparar o combinar se adecuan a la forma de lenguaje dominante en el percepto.

- La integración del nuevo objeto se facilita previa “traducción” del percepto que lo comporta a lenguajes en los que se manifieste mayor destreza representativa y combinatoria (p. 161).

e. Procesos de reificación expresiva y aplicativa: Tiene que ver con acciones concretas como reconocimiento de contenidos matemáticos en situaciones problemáticas, la producción de constructos complejas a partir de otras simples, la extracción de constructos simples de otros más complejos, la conversión de acciones exteriorizables por vía eferente.

Particularmente la autora cuyas tesis sostienen este referente, plantea 4 repercusiones que una discapacidad visual (parcial o total) tendrá en la actividad matemática de los estudiantes que la padece:

- Dificultades de comunicación: En relación con la lengua natural el estudiante invidente no tendrá dificultad para entender y expresarse de forma oral, sin embargo podrá faltarle en un momento determinado los referentes que le impidan dar significado a ciertos índices. En cuanto al lenguaje natural escrito el estudiante ciego usa el Braille, pero esta herramienta no necesariamente garantiza agilidad. El estudiante ciego seguramente escribirá de manera más lenta que el vidente. Para el lenguaje simbólico matemático, valen las mismas observaciones que para la lengua natural, pero con la dificultad general que deriva de la especificidad y exigencia de precisión que le son características (p. 178). Para el uso del lenguaje gráfico geométrico, los estudiantes invidentes pueden presentar dificultad en la traducción y descripción de situaciones gráficas, pero esta puede ser superada al presentarle dicha situación en relieve.

- Material específico: La problemática usual es la no utilización de los materiales adaptados por la población vidente, bien sea porque desconocen su existencia o porque no saben dónde conseguirlos. Particularmente para el ejercicio de la matemática se tienen ya algunas adaptaciones que permiten el desenvolvimiento en esta área como material/instrumental de lectura (textos en Braille), instrumental de escritura (regleta, maquina perkins), Instrumental
de dibujo (reglas, escuadras, compas, transportador, etc.), instrumental de cálculo tanto aritmético como algebraico (calculadoras, ordenadores y calculadoras programables, ábacos).

- Ubicación y desplazamientos: Es necesario proveer al estudiante invidente de un espacio confortable para el trabajo del aula, dado que las condiciones de este permiten un mejor manejo de los materiales. Igualmente se debe tener en cuenta que el estudiante vidente conozca el espacio donde trabaja, aunque el desplazamiento puede ser más lento que el resto de estudiantes es necesario que lo haga y establezca referentes de ubicación.

- Ritmo de realización de tareas: Los estudiantes ciegos presentan un ritmo más lento en la ejecución de tareas que se proponen en el aula entre otras cosas por la necesidad de utilizar material adaptado, lo que implica tiempo en disponer de éste; habituar el sistema háptico para el reconocimiento del material adaptado que hasta ahora se presenta; y curva de fatiga que puede asociarse con la duración de la tarea, los instrumentos y la práctica en el manejo de éstos.

1.2 Descripción de las Instituciones propuestas en el convenio

En este apartado se muestra la descripción general de las instituciones involucradas en el convenio, por una parte se encuentra la Universidad Distrital francisco José de Caldas, la facultad de ciencias y educación con su proyecto transversal de necesidades educativas especiales y posteriormente del proyecto curricular licenciatura en educación básica con énfasis en matemáticas donde se desarrolló, un resumen de las principales características tanto historia como de la actualidad y por otra parte del Colegio OEA describiendo aspectos históricos y actuales, adicionalmente se caracterizó a la población en la cual se desarrolló la pasantía en la institución y finaliza con los objetivos propuestos por los pasantes.

La información suministrada en los siguientes apartados se basa en las publicaciones oficiales de las Instituciones que firmaron el convenio, publicadas en las páginas web tanto de la Universidad Distrital Francisco José de Caldas, la facultad y el Colegio OEA.

1.2.1 Universidad Distrital Francisco José de Caldas

En el convenio se presenta la Universidad Distrital Francisco José de Caldas como una institución que hace parte de la pasantía, por ello es pertinente realizar una caracterización de
esta institución, desde sus inicios, sus logros y su evolución, se muestra una breve reseña histórica de la Universidad Distrital Francisco José de Caldas, en la cual se plasma su fecha de surgimiento, las características relevantes de esta época y como se ha trasformado a través del tiempo, además en la historia de la facultad de ciencias y educación, como fueron sus inicios y que proyectos curriculares se encontraban desde su origen hasta la actualidad.

Teniendo en cuenta los últimos 10 años de la Universidad Distrital francisco José de Caldas, de su estructura física, sus facultades y los proyectos curriculares; enfocado en algunos proyectos de la Facultad de Ciencias y Educación, donde se encuentra una breve descripción histórica del proyecto trasversal de Necesidades Educativas Especiales (NEES), puesto que como docentes se observa en el aula la diversidad de los estudiantes con sus problemáticas y sus condiciones particulares, seguido de ello se muestran aspectos históricos y actuales del proyecto curricular de Licenciatura en educación básica con énfasis en matemáticas (LEBEM) y algunos trabajos realizados por la diversidad y la pasantía de NEES.

1.2.1.1 Reseña histórica

La Universidad Distrital Francisco José de Caldas fue fundada en el año de 1948, por iniciativa del presbítero Daniel de Caicedo quien además, fue su primer rector. Se llamó inicialmente Universidad Municipal de Bogotá, para darles educación a los jóvenes más pobres de la ciudad. En el año de 1957 con Junta Militar de Gobierno de entonces se le da el carácter de Universidad del Estado, es decir, se convierte en una institución pública. En aquel entonces, la ciudad de Bogotá pasó a llamarse Distrito Especial y la Universidad se llamó Universidad Distrital.

Sus programas se escogieron de tal forma que solucionaran problemas de la ciudad. Así, la primera carrera que se creó fue radiotécnica, que con el tiempo se transformaría en la carrera de ingeniería electrónica. La otra carrera fue topografía que aún existe y que con el tiempo dio origen a la carrera de ingeniería catastral. Otra carrera fue dedicada al cuidado y a la conservación de lo ambiental denominada más tarde ingeniería forestal.

El nombre de Francisco José de Caldas, lo tomó la Universidad al momento en el cual se expidió el decreto de la Junta de Gobierno para cambiar el nombre de Universidad Municipal de
Bogotá por el de Universidad Distrital Francisco José de Caldas. A la Universidad se le dio vía jurídica a partir de 1970 con el Decreto 1030 de ese año.

Al llegar a los 70 se crearon los departamentos de Física y Química y la Universidad incrementa notablemente su población estudiantil. Debido a la inexistencia de un lugar de trabajo propio, esta estuvo ubicada de manera provisional en varios sectores. La Universidad siguió creciendo, introduciendo más carreras, lo cual atrajo mayor población estudiantil. Allí nacieron programas académicos y definidos como tales: Ingeniería de Sistemas, Ingeniería Electrónica, Ingeniería Industrial. Se crean de manera simultánea las licenciaturas en educación como: lingüística y literatura, español e inglés, ciencias sociales, química, física, matemáticas y biología. A mediados de la década de los 70, se logra la adquisición de los predios que dan sobre la carrera séptima dentro de la misma nomenclatura de la calle 40 y en los que hoy en día se encuentra la nueva Torre Administrativa y la Sede Central (de Ingenierías).

La Universidad y la ciudad fueron creciendo, pasando las sedes de un lugar a otro, esta dificultad de organización junto con las políticas, provocaron en 1979 el cierre de la Universidad, reabierta nuevamente, totalmente renovada mediante el decreto 80 de 1980 con una nueva sede recién construida, en el barrio La Macarena al oriente de la ciudad. Con el tiempo, esta nueva sede se convirtió en el sitio de referencia de la Universidad.

Para los años de 1993 y 1994, surge la Facultad Tecnológica, se fortalece la Facultad de Ingeniería y se crea la Facultad de Medio Ambiente y Recursos Naturales. En esa época se establece que había un segmento estudiantil de Bogotá que no estaba cubierto por el sector público de la educación superior, era la formación a nivel tecnológico. Por lo tanto se crea la facultad tecnológica en la localidad de ciudad bolívar. La universidad pasa por distintas reformas de todo tipo, generando lo que es hoy en día.

Actualmente la Universidad Distrital Francisco José de Caldas es una institución de educación superior, de carácter público del Distrito Capital de Bogotá y la Región Central de la República de Colombia. El proyecto Educativo Institucional se enfoca en la apropiación, cuestionamiento y enriquecimiento del saber universal, buscando que sus educandos tengan:

- Capacidad de actuar como protagonistas del cambio social y de sí mismo, en la formación del espíritu científico aplicado a la indagación, interpretación y modificación de la
realidad y en la contribución a forjar ciudadanos idóneos para promover el progreso de la sociedad.5

Además busca contribuir a forjar una sociedad más justa, equilibrada, en pro de la realización plena de un ciudadano autónomo y digno. Como tiene una condición de ente universitario autónomo, tiene la responsabilidad por un lado de garantizar las libertades de investigación, cátedra, aprendizaje y expresión, por otro lado, ampliar el acceso a la educación superior de los colombianos en especial de los egresados de colegios oficiales que cumplan con los requisitos de admisión.

Como Universidad del Distrito Capital ofrece sus servicios en 10 sedes ubicada en las diferentes localidades, interconectadas con tecnología de la información y las comunicaciones, permitiendo conformar a si un único campus a nivel virtual. En la actualidad cuenta con 5 facultades: Ciencias y Educación, Tecnológica, Artes, Ingenierías y Medio ambiente, donde se desarrollan 43 programas de pregrado y 34 de posgrado.

1.2.1.1.1 Misión y Visión6

La misión de la Universidad Distrital Francisco José de Caldas es la democratización del acceso al conocimiento para garantizar, a nombre de la sociedad y con participación de Estado, el derecho social a una Educación Superior con criterio de excelencia, equidad y competitividad mediante la generación y difusión de saberes y conocimientos con autonomía y vocación hacia el desarrollo sociocultural para contribuir fundamentalmente al progreso de la Ciudad – Región de Bogotá y el País.

La Universidad Distrital Francisco José de Caldas, en su condición de Universidad autónoma y estatal del Distrito Capital, será reconocida nacional e internacionalmente por su excelencia en la construcción de saberes, conocimientos e investigación de alto impacto para la solución de los problemas del desarrollo humano y transformación sociocultural, mediante

5Universidad Distrital Francisco José de Caldas. (s.f.). historia UDFJC. febrero 10, 2015, de Universidad Distrital Francisco José de Caldas Sitio web: https://www.udistrital.edu.co/#/universidad.php.

6Universidad Distrital Francisco Jose de Caldas. (s.f). Misión – Visión UDFJC. febrero 10, 2015, de Universidad Distrital Francisco José de Caldas Sitio web: https://www.udistrital.edu.co/#/universidad.php.
el fortalecimiento y la articulación dinámica, propositiva y pertinente de sus funciones universitarias en el marco de una gestión participativa, trasparente y competitiva.

1.2.1.2 Facultad de Ciencias y Educación

Creada en 1988, orientada a la formación integral de ciudadanos que como profesionales de la docencia y la investigación puedan contribuir en la búsqueda, construcción de nuevas significaciones a sí mismo valoraciones para la transformación de sujetos y colectividades del país. Actualmente la Facultad cuenta con 10 proyectos curriculares de pregrado, 3 proyectos transversales y 15 de postgrado: 8 especializaciones, 6 maestrías y un doctorado.

1.2.1.2.1 Misión y Visión

La Facultad de Ciencias y Educación, a través del desarrollo de actividades de investigación, docencia y extensión, y en razón del carácter público de la Universidad, tiene la misión de formar ciudadanos que ejerzan como profesionales en los campos de la educación y de las ciencias, que reconozcan y coexistan con la diversidad y que con sus conocimientos, valores y prácticas contribuyan a la comprensión y construcción de significados que les permitan aportar al mejoramiento de entornos individuales, sociales, culturales y naturales para la construcción de una sociedad justa y en paz.

Para el año 2020, la Facultad de Ciencias y Educación de la Universidad Distrital Francisco José de Caldas, en ejercicio de una postura académica crítica, será reconocida por su alta contribución a la formación de profesionales de la ciencia y de la educación a través de currículos enfocados a la investigación, innovación y producción de conocimiento, constituyéndose así en un referente nacional en la toma de decisiones relacionadas con sus campos de acción.

1.2.1.2 Proyecto académico transversal de formación de profesores para poblaciones con necesidades educativas especiales - "NEES".

El proyecto académico transversal de Necesidades Educativas Especiales (NEES), surge a partir de la necesidad sentida por algunos docentes de la Facultad de Ciencias y Educación, al evidenciar la dificultad con la que se enfrentan los estudiantes para profesor al encontrar niños en condición de discapacidad vinculados al aula regular. El interés surge en los programas de: Especialización en Educación Matemática, Licenciatura EBEM, pedagogía infantil, lingüística. Desde el 2005, todos los programas de formación de profesores incluyen dentro de su plan de estudios dos créditos obligatorios para la formación en la cátedra o seminario de NEES.

Además el proyecto, brinda apoyo a varios grupos de investigación orientados a las NEES, se crean espacios de formación electivos tales como: lengua de señas colombianas, procesos de lectura y escritura para personas ciegas (braille, ábaco, orientaciones y movilidad) y mediaciones semióticas y culturales para la comunicación en el aula con población ciega.

1.2.1.3 Proyecto curricular Licenciatura en Educación Básica con Énfasis en Matemáticas

La Licenciatura en Educación Básica con Énfasis en Matemáticas (LEBEM), parte del anterior programa de Licenciatura en Matemáticas. La creación y diseño de la LEBEM parte de considerar las necesidades de formación de los estudiantes para profesor para lograr que la matemática pueda ser aprendida por todos en la educación básica y media. Para el diseño se tuvo en cuenta las investigaciones realizadas por el Grupo de Investigación MESCUD, donde se evidencia la importancia de formar a los futuros profesores a partir de sus propias concepciones e ideas sobre el ser profesor de matemáticas y la forma de trabajar en el aula, para lograr transformar las prácticas educativas por medio de la reflexión de sus prácticas. Entonces en el marco del Decreto 272 de 1998, se la LEBEM inicia actividades en el segundo semestre de 2000.

El proyecto curricular de LEBEM tiene como finalidad contribuir a la formación de un profesional de la Educación Matemática, para ello cuenta con un plan de estudios de 168 créditos, distribuidos en cuatro ejes de formación: eje de problemas y pensamiento matemático avanzado, eje de didáctica, eje de práctica docente y el eje contextos. La metodología de enseñanza y aprendizaje es la resolución de problemas, donde el estudiante adquiere habilidades investigativas, comunicativas, argumentativas que le permiten la reflexión y aplicación de los
saberes pedagógicos y didácticos de la matemática en el ámbito escolar y en particular la habilidad de reflexionar y analizar sus propias prácticas como profesor de matemáticas.

1.2.1.3.1 Misión y Visión

Contribuir a la formación de un profesional de la EDUCACIÓN MATEMÁTICA comprometido con la construcción y producción de conocimientos en la pedagogía como disciplina fundante, en los saberes disciplinares y de referencia y con el estudio, transformación e innovación de las prácticas educativas y pedagógicas, (que asume su función docente y profesional como una acción social y cultural, cuyo ejercicio requiere de acciones-reflexiones, un saber, unas competencias específicas), en el marco de la participación en la construcción de sujetos sociales en las dimensiones del desarrollo humano o (ético-valorativas, artístico-estéticas, cognoscitivas) construidas y validadas por la comunidad de educadores matemáticos, la sociedad y la cultura. En el área de la educación en matemática. Contribuyendo a su formación personal como un sujeto autónomo, crítico, no segregador.

Ser para Bogotá, la región y el país, factor de desarrollo educativo, cultural y social, mediante la actualización, el estudio, la innovación y la investigación en procesos formativos iniciales continuados y permanentes de ciudadanos y ciudadanas, como profesionales de la educación con conocimientos, habilidades, destrezas y actitudes en el campo de la educación matemática.

Dentro de los trabajos realizados por el proyecto curricular LEBEM, enfocados a las NEES y a la diversidad, la etno-matemática en comunidades campesinas, artesanas, entre otros oficios, también se cuenta con trabajos que se orientan a otro tipo de NEES, como lo es el déficit de atención o concentración. Se encuentran alrededor de 20 trabajos de grado producto de procesos de pasantías e intereses de los estudiantes por estas poblaciones. Además, se generan convenios con Instituciones Educativas Distritales que necesitan un apoyo a la población con NEES

8Proyecto Curricular LEBEM Facultad de Ciencias y Educación de la Universidad Distrital Francisco José de Caldas. (s.f.). Misión – Visión LEBEM. febrero 10, 2015, de Facultad de Ciencias y Educación de la Universidad Distrital Francisco José de Caldas Proyecto curricular LEBEM Sitio web: http://www.udistrital.edu.co:8080/en/c/document_library/get_file?uaid=9a17de9b-de4d-44ae-a06f-6c7299d35b3a&groupId=29497
abriendo la posibilidad de realizar el trabajo de grado de los estudiantes a través de la pasantía de extensión.

En el 2004 se evidencian producciones en esta línea. Al transcurrir el tiempo este tipo de trabajos van tomando fuerza y se incrementa el número de producciones que apuntan al trabajo con las NEES y la diversidad. Entre estos trabajos se encuentran informes de pasantía que involucran a comunidades escolares que incluyen a personas en condición de discapacidad visual y auditiva, además investigaciones, propuestas de enseñanza que además de incluir estas dos discapacidades involucran el déficit cognitivo leve.

Todos estos trabajos apuntan a diferentes objetos matemáticos como, la ubicación y la localización espacial, relaciones geométricas, la elipse, poliedros, las nociones de fracción, áreas, relaciones aditivas, etc., procesos matemáticos de representación, comunicación, razonamiento, argumentación y resolución de problemas y algoritmos.

1.2.2 Institución Educativa

El Colegio OEA (Organización de Estados Americanos) abre sus puertas en el año 1967 por el Sacerdote Carvajal tomando un arriendo de dos casas para educar a niños principalmente de primaria, la Alcaldía de Bogotá realiza la construcción oficial del Colegio como tal, mientras que en 1970 el Colegio sufre un cambio, es decir, se inicia la jornada de la mañana y de la tarde para solo nivel de primaria.

En el año 1990 se realiza un proceso organizativo y administrativo en la secretaría de educación terminando en el año de 1994 en donde se reconoce como Centro Educativo de Educación Básica y Media OEA en la jornada de la tarde, en los años siguientes se inicia el proceso organizativo y administrativo en la jornada de la mañana y con el tiempo se establece la educación Básica y Media también en la jornada de la tarde.

En el año de 1998 se inicia el programa de integración de estudiantes en condición de discapacidad visual al aula regular y en el año 2002 se graduó el primer estudiante invidente. Además el Colegio se fusiona con la Concentración Escolar Antonia Santos tomando el nombre del Colegio OEA con ello queda conformada por dos sedes: la primera la sede A ubicada en carrera 72L N° 34 – 19 donde funcionan en las dos jornadas desde preescolar hasta grado
Undécimo y la segunda sede B está ubicada en la carrera 69 Bis N° 39 – 30 funciona en las dos jornadas solo primaria.

En el año 2006 se postula y se escoge al colegio para pertenecer en el proyecto en la Secretaría de Educación “Articulación de la educación media con la educación superior” ofreciendo los programas de formación en Tecnología de Mecatrónica y Sistemas Empresariales desarrollándose desde el año 2007.

Por otro lado actualmente el Colegio cuenta con el proyecto transversal de inclusión educativa de niños y jóvenes con limitación visual al aula regular, en el que se propone una reflexión hacia la labor docente en ¿Cómo proporcionar los mismos conocimientos a invidente y videntes? ¿Qué estrategias y recursos permiten desarrollar una competencia igualitaria en el aula regular? Con ello no se pretende:

Ignorar las diferencias para educarse juntos, es ofrecer las condiciones para que estas diferencias sean respetadas. Hay que hacer de la Institución Educativa, el medio más adecuado para potenciar el desarrollo de todos los niños, hacia niveles superiores, brindándoles una educación integral, sin discriminaciones.

La institución educativa cuenta con un aula de apoyo entendida como:

El aula de apoyo se concibe como el conjunto de servicios, estrategias, recursos didácticos, logísticos y técnicos, creada para canalizar las necesidades diversas de la población, de la diversidad de la población, encontrándose a cargo de un Docente de Apoyo, atendiendo necesidades e intereses de los estudiantes, como también orientando y asesorando a padres de familia y profesores y sensibilizando a la comunidad en general.

En el Colegio se encuentra el aula de tiflología que abre sus puertas en la jornada de la mañana, esta aula se encuentra a cargo de una Tifióloga, un docente Ciego, tres o cuatro mediadoras o docentes de educación especial, ellos ofrecen a los estudiantes su apoyo durante las clases y extracurricular para realizar un seguimiento a los estudiantes que más lo necesitan, además en

9*Inclusión educativa de niños jóvenes con limitación visual en el aula regular.* (s.f.). Recuperado el 10 de febrero de 2015, de http://www.redacademica.edu.co/webcolegios/08/oea/p_invidentes.html

10*Inclusión educativa de niños jóvenes con limitación visual en el aula regular.* (s.f.). Recuperado el 10 de febrero de 2015, de http://www.redacademica.edu.co/webcolegios/08/oea/p_invidentes.html
el aula se encuentran materiales adaptados, herramientas y tecnologías que les permiten adaptar material para que el estudiante puedan tener una mayor comprensión de las temáticas trabajadas en el plan de estudios del Colegio.

2 Presentación de la pasantía

El plan de trabajo que se presenta a continuación hace referencia a las diversas actividades que se desarrollan en el Colegio OEA en el transcurso de la pasantía. El plan de trabajo se encuentra conformado de dos partes: La primera hace referencia al plan de formación; aquí se argumenta todo lo relacionado con la apropiación que se tiene de las teorías respecto a la población ciega e inclusión, la búsqueda de información pertinente sobre material didáctico o sobre el aprendizaje de la población ciega y el uso de la tiflotecnología.

En la segunda parte, hace referencia al plan de acción, se presenta lo que se espera realizar en cuanto a la adaptación de material, acompañamiento en el aula, acompañamiento de apoyo pedagógico extra clase, diseño de una propuesta didáctica entre otros aspectos.
2.1 Objetivos

2.1.1 Objetivo general:

Conocer y comprender, por parte de las pasantes, las necesidades de la población en condición de discapacidad visual en el Colegio OEA, cuando trabaja con las matemáticas en diferentes grados de la educación básica y media, para la realización del acompañamiento pedagógico dentro y fuera del aula, la adecuación y/o diseño de material didáctico que apoye al aprendizaje de los estudiantes.

2.1.2 Objetivos específicos:

- Diseñar actividades extra clases para apoyar y fortalecer los aprendizajes de las matemáticas en los estudiantes en condición de discapacidad visual.
- Apoyar el trabajo del profesor titular de matemáticas a partir de la adecuación de material didáctico, facilitar la comunicación, y otras solicitudes que se realicen para el trabajo particular del estudiante en condición de discapacidad visual en la clase de matemáticas.
- Elaborar adaptaciones de recursos y material didáctico que posibilite y facilite el reconocimiento de diferentes representaciones para el aprendizaje de los estudiantes del Colegio OEA.

2.2 Población

A continuación se presenta el reconocimiento de cada uno de los estudiantes, con los cuales se desarrolló el trabajo de la pasantía. Los nombres de los estudiantes no se colocan, solo son seudónimos, para guardar la identidad de cada uno de los niños.

Para ello se recolecta la información en el siguiente formato, este tiene en la primera fila los seudónimos de los estudiantes, la edad, el curso, el nombre del docente del área de matemáticas asignado al grado; en la segunda fila se menciona el tipo de enfermedad diagnosticada por los médicos y si utiliza algún tipo de ayudas especialmente ópticas; en la tercera fila se encuentran si emplea algunos instrumentos específicos para el área de matemáticas, los textos de referencia para el estudio o trabajo con cada estudiante; la última fila se mencionan las características de la exportación húpticas (sensibilidad táctil) y el manejo de ábaco y braille, una vez finalizado el
cuadro se encuentra una descripción de los aspectos actitudinales y del desempeño en el área de matemáticas.

<table>
<thead>
<tr>
<th>Nombre del estudiante:</th>
<th>Laura Salazar</th>
<th>Edad: 16 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso: Octavo</td>
<td></td>
<td>Profesor de matemáticas: Jaime Ramírez</td>
</tr>
<tr>
<td>Tipo de ceguera:</td>
<td>ceguera de ambos ojos</td>
<td>Uso de ayudas ópticas (si tiene resto visual): No aplica</td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula:</td>
<td>calculadora parlante, kit geométrico en braille, escritura en braille, punzón.</td>
<td>texto/s de referencia para estudio y trabajo: Adaptación de materiales</td>
</tr>
<tr>
<td>Características de la exploración haptica:</td>
<td>Se observa que la estudiante tiene una gran capacidad haptica aunque en simbología matemática le cuesta reconocer el significado de los símbolos.</td>
<td>Manejo de ábaco y braille: se identifica en el manejo del braille gran habilidad y rapidez en la escritura aunque en el lenguaje matemático tiene vacíos de simbología en braille, en cuanto al ábaco la estudiante manifiesta que sabe las operaciones básicas con este recurso, aunque no lo utiliza mucho, prefiere la implementación de la calculadora parlante.</td>
</tr>
</tbody>
</table>

Se observa de la estudiante en su desempeño que en ocasiones es bueno y depende de mucha oralidad, pero hay aspectos matemáticos que le generan un mayor grado de dificultad provocando la no comprensión de las temáticas tratadas en clase de matemáticas, se observa que tiene nociones básicas de matemáticas aunque le genera mucha dificultad trabajar las operaciones algebraicas, la relación con los compañeros es buena, puesto que se fortalece con la ayuda de ellos para su propio conocimiento, es activa, compañerista, en algunas ocasiones habla mucho en clase y su actitud en la clase es de poca motivación por las actividades propuestas por el docente de matemáticas.

<table>
<thead>
<tr>
<th>Nombre del estudiante:</th>
<th>Cindy Cárdenas</th>
<th>Edad: 16 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso: Octavo</td>
<td></td>
<td>Profesor de matemáticas: Jaime Ramírez</td>
</tr>
</tbody>
</table>
Tipo de Ceguera: baja visión y déficit cognitivo leve

Uso de ayudas ópticas (si tiene resto visual):
Gafas y guías que este un poco más grande de lo normal.

Instrumental específico que usa el estudiante en el aula:
el estudiante hace uso de los materiales corrientes, es decir, cuadernos, esferos, lápices, etc.

Texto/s de referencia para estudio y trabajo:
Adaptación de materiales para baja visión y déficit cognitivo.

Características de la exploración húptica: No aplica

Manejo de ábaco y braille: No aplica

Con esta estudiante se observa en su desempeño en matemáticas que le genera dificultad comprender algunas temáticas propuestas por el docente, en ocasiones en la clase manifiesta comprender todo, pero luego no puede realizar las actividades, tiene nociones básicas de matemáticas aunque le genera dificultad trabajar las operaciones algebraicas. En cuanto a su relación con los compañeros, es satisfactoria puesto que es compañerista, además es callada, amable y colaboradora y muestra una actitud desinteresada en la clase, en algunas ocasiones no presenta las tareas propuestas por el docente y no manifiesta sus preguntas o inquietudes frente a las temáticas vistas en clase.

<table>
<thead>
<tr>
<th>Nombre del estudiante:</th>
<th>Jessica Campos</th>
<th>Edad: 16 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso:</td>
<td>Octavo</td>
<td>Profesor de matemáticas: Jaime Ramírez</td>
</tr>
<tr>
<td>Tipo de ceguera:</td>
<td>discapacidad múltiple entre cognitivo y visual</td>
<td></td>
</tr>
<tr>
<td>Uso de ayudas ópticas (si tiene resto visual):</td>
<td>No aplica</td>
<td></td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula:</td>
<td>Calculadora parlante, escritura en braille, punzón y hojas bond.</td>
<td></td>
</tr>
<tr>
<td>Texto/s de referencia para estudio y trabajo:</td>
<td>Adaptación de materiales</td>
<td></td>
</tr>
<tr>
<td>Características de la exploración húptica:</td>
<td>Se observa que la estudiante tiene una gran capacidad Háptica,</td>
<td></td>
</tr>
<tr>
<td>Manejo de ábaco y braille:</td>
<td>Se identifica que el estudiante maneja el sistema de braille, aunque no reconoce algunos simbolismos</td>
<td></td>
</tr>
</tbody>
</table>
aunque en la simbología matemática le cuesta reconocer el significado de los símbolos. matemáticos y el ábaco manifiesta que lo sabe usar aunque no lo utiliza con frecuencia.

Su rendimiento en la clase de matemáticas es preocupante ya se observa poca comprensión de las actividades propuestas por el docente aunque tiene un buen manejo con las operaciones básicas le genera dificultad las operaciones algebraicas, la relación con los compañeros no es muy buena puesto que le cuesta trabajo realizar actividades en grupos, falta mucho a las clases y cuando asiste muestra que tiene diferentes tipos de dolores en el cuerpo, lo cual genera que su proceso de aprendizaje se vea afectado y en la clase de matemáticas presenta poca motivación con las actividades propuestas por el docente, no cumple con las tareas y en ocasiones no lleva el material pertinente para la actividad.

<table>
<thead>
<tr>
<th>Nombre del estudiante:</th>
<th>Natalia Gonzales</th>
<th>Edad: 11 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso:</td>
<td>Sexto</td>
<td>Profesor de matemáticas: María del Carmen</td>
</tr>
<tr>
<td>Tipo de ceguera:</td>
<td>dificultad visual severa: astigmatismo hipermetropía en ambos ojos, baja visión</td>
<td>Uso de ayudas ópticas (si tiene resto visual):</td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula:</td>
<td>ábaco, kit geométrico en braille, escritura en braille, punzón y hojas bond.</td>
<td>No aplica</td>
</tr>
<tr>
<td>Texto/s de referencia para estudio y trabajo:</td>
<td></td>
<td>Adaptación de materiales</td>
</tr>
<tr>
<td>Características de la exploración háptica:</td>
<td>Se observa que la estudiante tiene una gran capacidad Háptica aunque también reconoce la letra en tinta pero por facilidad realiza todo en braille y reconoce simbología matemática básica.</td>
<td>Manejo de ábaco y braille: se observa que la estudiante tiene un uso frecuente de la escritura braille y del ábaco lo utiliza con frecuencia aunque en ocasiones se le olvida el proceso, de las operaciones aritméticas con este recurso y se confunde.</td>
</tr>
</tbody>
</table>

34
El desempeño en la clase es favorable en cuanto al alto grado de comprensión de temáticas de matemáticas aunque presenta dificultad al operar las fracciones, esto puede ser debido a que la docente explica diferentes formas de realización de las operaciones con fraccionarios, lo cual puede generar confusión en la estudiante, la relación con sus compañeros es buena pero hay ocasiones que por su bajo tono de voz al momento de interactuar con los profesores o compañeros provoca que no haya una buena relación con algunos compañeros y se observa que tiene un alto nivel de compromiso en sus labores académicas puesto que cumple con sus tareas y actividades propuestas por el docente.

<table>
<thead>
<tr>
<th>Nombre del estudiante: Xilena Pineda</th>
<th>Edad: 13 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso: séptimo</td>
<td>Profesor de matemáticas: María del Carmen</td>
</tr>
<tr>
<td>Tipo de ceguera: (Glaucoma congénito invidente) Baja visión</td>
<td>Uso de ayudas ópticas (si tiene resto visual): Gafas y gotas</td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula: el cuaderno en bond, punzón y ábaco.</td>
<td>Texto/s de referencia para estudio y trabajo: Adaptación de materiales</td>
</tr>
<tr>
<td>Características de la exploración háptica: tiene una desarrollo háptico satisfactorio aunque reconoce la letra en tinta con aumento y hay alguna simbología matemática que no le han enseñado.</td>
<td>Manejo de ábaco y braille: maneja tanto el ábaco como el braille además entiende la letra y los números en tinta.</td>
</tr>
</tbody>
</table>

En la estudiante se observa que su desempeño es satisfactorio puesto que tiene un dominio de las temáticas trabajadas por la docente, tiene una compañera que le colabora en lo que se escribe en el tablero y de temas que no entiende por la forma como se lo explican es una persona alegre, activa y con alto grado de vida social en el aula y su actitud en la clase es pertinente ya que cumple con las actividades y tareas propuestas por el docente.

<table>
<thead>
<tr>
<th>Nombre del estudiante: Daniela Pulido</th>
<th>Edad: 12 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso: sexto</td>
<td>Profesor de matemáticas: María del Carmen</td>
</tr>
<tr>
<td>Tipo de ceguera:</td>
<td>Uso de ayudas ópticas (si tiene resto visual):</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Baja visión</td>
<td>Gafas</td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula:</td>
<td>Texto/s de referencia para estudio y trabajo:</td>
</tr>
<tr>
<td></td>
<td>Instrumental específico que usa el estudiante en el aula: el estudiante hace uso de los materiales corrientes, es decir, cuadernos, esferos, lápices, etc.</td>
</tr>
<tr>
<td></td>
<td>Gafas</td>
</tr>
<tr>
<td></td>
<td>No aplica</td>
</tr>
<tr>
<td>Características de la exploración háptica:</td>
<td>Manejo de ábaco y braille:</td>
</tr>
<tr>
<td>No aplica</td>
<td>No aplica</td>
</tr>
</tbody>
</table>

En la estudiante se observa un desempeño necesario para tener algunas nociones básicas de las temáticas que se desarrollan en la asignatura, aunque presenta dificultades en los procedimientos de los algoritmos de la fracción, le gusta compartir tiempo con los compañeros mostrando una buena relación con sus compañeros, habla en la clase, es activa, alegre y en cuanto a su actitud no le motivan las actividades propuestas por la docente y no cumple con las tareas ni con los materiales propuestos por la docente.

<table>
<thead>
<tr>
<th>Nombre del estudiante:</th>
<th>Lían Castro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso:</td>
<td>sexto</td>
</tr>
<tr>
<td>Edad:</td>
<td>12 años</td>
</tr>
<tr>
<td>Profesor de matemáticas:</td>
<td>María del Carmen</td>
</tr>
<tr>
<td>Uso de ayudas ópticas (si tiene resto visual):</td>
<td>No aplica</td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula:</td>
<td>Texto/s de referencia para estudio y trabajo:</td>
</tr>
<tr>
<td>Regleta, cuaderno de hojas bond, punzón, kit de geometría en braille y ábaco</td>
<td>Adaptación de materiales</td>
</tr>
<tr>
<td>Características de la exploración háptica:</td>
<td>Manejo de ábaco y braille:</td>
</tr>
<tr>
<td>Se observa que la estudiante tiene una gran capacidad Háptica y reconoce la mayoría de la simbología matemática en braille.</td>
<td>Se identifica que la estudiante realiza todos sus trabajos en braille y utiliza frecuentemente en ábaco para las operaciones aritméticas.</td>
</tr>
</tbody>
</table>
El desempeño de la estudiante es satisfactorio puesto que tiene un buen dominio de las temáticas trabajadas por la docente, en sus relaciones con los compañeros es muy buena puesto que es muy compañerista, es respetuosa, activa, alegre y deportista y su actitud frente a la clase de matemáticas es de responsabilidad porque cumple con las tareas y actividades propuestas por la docente.

<table>
<thead>
<tr>
<th>Nombre del estudiante:</th>
<th>Karen Cano</th>
<th>Edad: 10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso:</td>
<td>tercero</td>
<td>Profesor de matemáticas: Carmen Benavidez</td>
</tr>
<tr>
<td>Tipo de ceguera:</td>
<td>baja visión y cognitivo</td>
<td>Uso de ayudas ópticas (si tiene resto visual): Gafas</td>
</tr>
<tr>
<td>Instrumental específico que usa el estudiante en el aula:</td>
<td>materiales corrientes es decir, esferos, lápiz y cuaderno, etc.</td>
<td>Texto/s de referencia para estudio y trabajo: Adaptación de materiales</td>
</tr>
<tr>
<td>Características de la exploración háptica:</td>
<td>No aplica</td>
<td>Manejo de ábaco y braille: No aplica</td>
</tr>
</tbody>
</table>

En el desempeño de la estudiante en la clase de matemáticas no se tiene referencia puesto que no se realizó un acompañamiento en el aula, pero en los apoyos extraescolares se observa que se le dificulta concentrarse en una sola actividad, además tiene dificultad en comprender algunas temáticas propuestas por la docente, no se evidencia claramente cuál es su relación con sus compañeros, pero es muy activa y en ciertos momentos le motiva actividades de las matemáticas aunque en otros presenta actitudes negativas.
3 Desarrollo del plan de trabajo

3.1 Formación en la Facultad de Ciencias y Educación

La Universidad Distrital Francisco José de Caldas, en la Facultad de Ciencias y Educación ofrece diferentes espacios de formación, algunos de estos buscan: caracterizar las necesidades educativas especiales, brindando herramientas y habilidades para enfrentarse a la diversidad de las aulas, sensibilizar a los estudiantes para profesor sobre la diversidad en la comunidad educativa, cambiar las diferentes concepciones sobre las necesidades educativas, entre otras.

Los espacios de formación cursados que contribuyeron al conocimiento, adquisición de herramientas y sensibilización frente a la diversidad, fueron los siguientes: Necesidades educativas especiales, la electiva de lengua de señas nivel I, capacitación de las regletas de Cuisinaire y la electiva de procesos de lectura y escritura braille, estos espacios de formación se amplían a continuación con las descripciones de las características generales y la relación de estos espacios con la labor de la pasantía.

3.1.1 Formación

3.1.1.1 Necesidades educativas especiales

El espacio de formación Necesidades Educativas Especiales (NEES) hace parte del plan de estudios del proyecto curricular LEBEM, además es una asignatura obligatoria complementaria que tiene 2 créditos; este espacio permitió reconocer qué poblaciones o en qué situaciones se habla de necesidades educativas especiales. Mostrando que hablar de NEES, no se refiere solamente a las personas que poseen algún tipo de discapacidad, sino que todas las personas en algún momento hemos tenido alguna necesidad educativa especial, puesto que en algunas situaciones de nuestra vida académica ha existido alguna actividad u objeto de estudio que generara dificultades.

Hablar de NEES también es hablar de poblaciones vulnerables donde no solo están las personas en condición de discapacidad sino otras poblaciones tales como, los indígenas, afro descendientes, habitantes de frontera, entre otros, que requieren una atención educativa especial. Es decir, discutir acerca de NEES también involucraba elementos tales como: políticas
educativas, metodologías especiales, inclusión, poblaciones especiales, limitaciones, recursos, etc.

Las temáticas abordadas inicialmente en el curso permitieron sensibilizarnos sobre las poblaciones especiales, haciendo una reflexión profunda de qué se entendía por normalidad y como estas concepciones crean barreras sociales ligadas a patrones de normalidad, poniéndonos en la tarea de pensar como desde el aula y nuestra vida cotidiana podemos eliminar esta barreras. Además de diversas lecturas sobre este tema, se contó con recursos de tipo audio visual, películas como “Escritores de libertad” en la que se reconoció la importancia de la escuela para cambiar concepciones discriminatorias en el espacio escolar.

Luego del reconocimiento de los lineamientos y políticas de atención educativa para poblaciones vulnerables, se profundizó en:

- Discapacidad sensorial
- Discapacidad visual
- Discapacidad cognitiva o intelectual
- Discapacidad motriz

En cada una de ellas se clasificó y caracterizó la discapacidad, reconociendo las necesidades educativas de cada una de estas poblaciones, nos centramos en las atenciones pedagógicas que se plantean desde los documentos legales y los manuales de atención, por último se hicieron análisis y reflexiones acerca de cómo y qué conocimientos necesitamos como docentes para contribuir al proceso de enseñanza y aprendizaje de los estudiantes que se encuentran en condición de discapacidad.

3.1.1.2 Lengua de señas nivel I

En este espacio de formación electivo extrínseco adquirimos vocabulario en un nivel básico de la lengua de señas colombiana, este lenguaje se caracteriza por ser una lengua de expresión corporal, donde se emplean gestos y la percepción visual o incluso táctil, también requiere del manejo del espacio. Es la lengua materna de las personas sordas y sordo-ciegas, que permite establecer un canal de comunicación social, ya que les permite comunicarse con otros de su misma condición o con cualquier persona que conozca la lengua de señas.
Esta electiva aunque no tenía influencia directa con la población con la que se tuvo contacto en la pasantía, permitió tener sensibilidad con otro tipo de poblaciones, fue muy enriquecedora por que hubo contacto con varias personas sordas y sordo-ciegas.

Entre el vocabulario adquirido están los números, las frutas, alimentos comunes, los saludos, animales, algunos objetos cotidianos, establecimos la seña personal, entre otros elementos que nos hicieron ser más conscientes de la expresividad facial y corporal que utilizamos para comunicarnos, que utilizamos todo el tiempo pero no somos conscientes.

3.1.1.3 Capacitación de las regletas de Cuisinaire

La capacitación de las regletas fue realizada por parte de las docentes encargadas dela pasantía en la LEBEM en varios momentos que se muestran a continuación:

- En el primer momento se realiza un acercamiento con el material en donde se caracterizan cada una de los elementos que conforman este recurso, se plantea que se pueden trabajar con niños de 4 años en adelante y que lo primero que se debe dejar hacer es que los estudiantes interactúen y experimenten con el material para que posteriormente realicen las instrucciones con el material, esto se evidencia en la ilustración 1 y 2.

Ilustración 1
En un segundo momento se realiza un ejercicio de descomponer una de las regletas (Ilustración 3), en donde se evidencia que hay relaciones entre cada una de los diferentes tamaños de las regletas, hay una regleta unidad, se establecen relaciones de equivalencia, transitividad, la propiedad conmutativa y se propone trabajar con los niños de forma simbólica, es decir, a cada regleta se le coloca el nombre con la primera letra del color o también se le nombran con otras letras, esto se muestra en la ilustración 4, por ejemplo b →r es v, significaría una ficha blanca con la roja es una verde clara.
En el siguiente momento se realizan sumas y restas con las regletas por medio de la comparación del mínimo número de regletas y de comparación entre éstas, en el ejercicio se evidencia la reversibilidad, características aditivas y multiplicativas, constante de proporcionalidad y relaciones de proporcionalidad, la actividad se observa en la ilustración 5 y 6.
Esta capacitación permite realizar la reflexión de como el estudiante con discapacidad visual puede utilizar este material puesto que en ciertos momentos al simbolizarlo el estudiante solo puede sentir sus tamaños, no los colores a menos que estuvieran adaptados para que los estudiantes identificaran cual es el color al que pertenece cada una de las fichas, aunque se plantea la idea de que los estudiantes invidentes lo primero que se reconocen son los tamaños, por tanto se puede asociar el color con el tamaño así poder utilizar este material y explotar todos sus beneficios en las matemáticas.

3.1.1.4 Proceso de lectura y escritura braille

En este espacio de formación en primera instancia se realiza una introducción histórica del braille y sus características generales del sistema braille, en donde Louis Braille fue una persona ciega y por la necesidad de escribir y leer generó el sistema braille, posteriormente se habla del signo generador del braille y se realiza la trascipción del nombre con base en el abecedario en braille, teniendo en cuenta que cuando se escribe el orden de los número se invierte para así poder leerlo.

En general se desarrolló algunas de las normas características del sistema braille, para escribir y leer el braille, también se realizaron varios materiales adaptados para estudiantes con limitación visual para diferentes temas esto se evidencia en las ilustraciones en la cual se muestra el mapa de Colombia y las divisiones en regiones, ilustración 8 se realiza el material con diferentes formas y texturas, e ilustración 9 evidencia el ciclo de vida de la mariposa.
También se realizó una capacitación de movilidad y orientación para identificar los roles de cuando uno está en condición de discapacidad visual y la persona que lo orienta, en donde se dan
las características de la pertinencia de la orientación de los tipos de bastón y de acuerdo al tamaño de la personas y de acuerdo a la zona en la que se encuentran se utiliza de diferentes formas, esta parte de movilidad y orientación se evidencia en la ilustración 10.

Además de la sesión de movilidad se realizó una sesión del ábaco en donde se mostró la suma y resta con esta herramienta, la docente a cargo de la electiva propone realizarse estas operaciones con los ojos cerrados para ver qué dificultades implica enseñar el ábaco a personas en condición de discapacidad visual, posteriormente plantea como se divide y se multiplica, como se representan los números decimales en el este instrumento.

También se presentan diferentes métodos de lectura-escritura tanto en niños como en adultos, tanto en videntes como en invidentes, se muestran brevemente las características del método de tomillo, pérígamo, entre otras, que evidencia la importancia de la lectura y la escritura en todas las poblaciones, aunque se realiza una reflexión de la población ciega puesto que se inicia con el signo generado y las diferentes combinaciones que se pueden realizar en este sistema de códigos.

En el proceso de aprendizaje, dentro de la electiva fue importante para la realización de la pasantía, puesto que muchas de las herramientas propuestas en esta, fueron utilizadas en el desarrollo de la pasantía, por un lado en cuanto a la adaptación de los materiales, en la transcripción de braille a tinta o viceversa y en la concientización frente a las necesidades educativas que presenta esta población y como se pueden buscar estrategias, metodologías para poder superar estas necesidades, como futuros profesores de matemáticas.
3.1.2 Formación en la Institución Educativa

En este apartado se evidencian las capacitaciones y reuniones realizadas en el proceso de la pasantía en el Colegio OEA, en donde se plantea una descripción detallada de lo propuesto en el Colegio OEA sobre la inducción, la finalización de la pasantía en el Colegio y las diferentes salidas pedagógicas en la cual se realizó el acompañamiento pertinente.

3.1.2.1 Descripción de la jornada de reunión

Fecha: 4 de agosto del 2014 reunión de inducción y primera capacitación

En el primer acercamiento de los pasantes con el Colegio OEA, se realiza una inducción a las dinámicas del Colegio, es decir, las responsabilidades como pasantes en el momento de realizar acompañamientos en las clases de matemáticas, en adaptar materiales, en los apoyos extraescolares, entre otras actividades propias del tiempo de la pasantía. Además se presentan los horarios que corresponden a cada pasante.

La formación brindada por la institución consistió en el reconocimiento y adecuada utilización del braille, donde se trabajaron las siguientes características:

El reconocimiento del braille por medio de la pizarra, con sus partes como: la bisagra, donde están cogidas las tapas, los pines, que es donde se aprieta la hoja y hay unos puntos los cuales permiten guiar que se escribe de derecha a izquierda, estos vienen separados por cinco cajetines, que sirven para la ubicación de los niños ciegos, el punzo el cual de acuerdo a sus características tiene un nombre específico y los que permiten realizar la escritura en braille.

En cuanto a la escritura se expone que de acuerdo a la pizarra se puede realizar inter punto, es decir que se puede escribir en braille por ambos lados de la hoja por medio de unos puntos denominados guía en los cuales los estudiantes invidentes toman de referencia para seguir en orden y lograr realizar la escritura.

Además realiza una reflexión de que en una página escrita en arial 12 al trascribirlas en braille gastarían aproximadamente cuatro hojas, es decir que para escribir en braille se gasta mucho papel, no es pertinente utilizar cualquier papel para la escritura, puesto que hay algunos que son muy delgados generando que se rompa y al leer lo que se escribió no se sienten los puntos, por ello es mejor utilizar una hoja de bond 150.
En la institución se promueve el hecho de leer y escribir en braille, aunque hay algunos estudiantes que son muy digitales puesto que utilizaron letra en tinta pero con el tiempo desarrollaron la discapacidad, así que se considera importante la realización de la lectura y escritura braille.

El signo generador, se plantea para identificar donde se generan los signos de seis puntos, se debe tener en cuenta la diferencia de los signos en braille de cuando se lee a cuando se escribe, éstos se nombran de la siguiente manera de acuerdo al caso, como se evidencia en la ilustración 11.

![Ilustración 11](image)

El alfabeto y otros signos gramaticales y matemáticos se desarrollan a partir de la combinación de este signo generador, generalmente se aprende por series en donde las primeras letras del abecedario se realizan por medio de las combinaciones de los números 1, 2, 4 y 5 teniendo en cuenta signo generador, posteriormente la combinación de los números anteriores añadiéndole el número 3 y así sucesivamente van aumentando las combinaciones, en el que se convierte en un aprendizaje mecanizado puesto que así se construyó el braille.

Adicionalmente es importante tener en cuenta que para enseñarle braille a un niño se realiza de la misma manera que un niño vidente, en que se sea un aprendizaje significativo y se tiene los métodos de lectura y escritura, éstos permiten enseñar a leer y escribir, por otro lado es importante tener claro que si un niño vidente se demora un año en su proceso de lectura y escritura, los estudiantes con discapacidad visual se demoran más tiempo en este proceso además.
de tener clara la ubicación espacial (derecha, izquierda, arriba y abajo) para posteriormente desarrollar sus habilidades de escritura con el signo generador ubicándolos espacialmente, seguido de ello se va disminuyendo el tamaño del signo generador hasta llegar a la de las pizarras.

Leer y escribir es establecer un código como se aprende a hablar, pero si un niño tiene mal desarrollado el lenguaje va a tener mal la parte de lectura y escritura, puesto que la parte de representación simbólicamente está reducida, por ello es importante los diferentes métodos de aprendizaje para estos procesos.

Seguido de esta introducción general se realiza una actividad de experimentación, la cual pretende que los pasantes mecanicen el proceso del signo generador además logren mecanizar los códigos en braille, con algunos signos del alfabeto y algunos números.

Fecha: 26 de noviembre del 2014 reunión de finalización de la pasantía en el Colegio OEA

Para culminar el proceso de la pasantía en el Colegio OEA, en un primer momento se hace entrega de un informe de cada uno de los estudiantes, en el que se plasma los aspectos importantes de cada estudiante como sus fortalezas y dificultades, lo que se realizó y lo que hay que seguir apoyando en el proceso de aprendizaje de los diferentes conceptos matemáticos.

Posteriormente se realiza una reflexión en cuanto a la inclusión en el colegio, en donde cada pasante realiza intervenciones como:

- La mayoría de docentes de matemáticas que se encuentran actualmente en el Colegio no están capacitados para generar actividades en las cuales incluyan a los estudiantes en condición de discapacidad visual, además fue muy evidente que algunos docentes no presentan una disposición a mediar entre estas situaciones y siguen haciendo las clases para todos sin tener en cuenta las particularidades y diferencias de los estudiantes.
- En cuanto a los apoyos extraescolares fue muy difícil identificar un proceso de aprendizaje, puesto que por situaciones del Colegio no se realizó el apoyo desde el inicio de la pasantía y cuando inicio fue muy intermitente debido a varias actividades programadas por el colegio, como, el programa 40 *40, las salidas pedagógicas, días sin clase etc., que afectaron este proceso.
• En ocasiones es muy difícil pensar en una actividad para todos en lo que se incluya a los invidentes aunque en la experiencia de evidenció que hay una docente se genera este tipo de actividades para todos y por ello nuestro reto como futuros docentes es poder realizar esta inclusión puesto que si es posible y hay una conscientización de esta población que tiene necesidades educativas especiales.

3.1.2.2 Participación de actividad

En el proceso de pasantía se realizó un acompañamiento a diferentes salidas pedagógicas propuestas por el colegio y en los tiempos que se tenían libres, un docente de tifloología exponía diferentes preparaciones de acuerdo a los pasantes que se encontraban en el momento, es decir, no era una reunión como tal sino en el proceso de capacitación se iban fortaleciendo conocimientos sobre las herramientas o recursos que los estudiantes invidentes pueden utilizar en el aula de tifloología y algunos códigos de lectura y escritura braille.

En las capacitaciones realizadas por un docente de tifloología, se muestran los diferentes recursos que se encuentran en esta aula de tifloología, como: láminas en braille donde hay diferentes representaciones de las diferentes asignaturas entre éstas se observa algunas gráficas de la función cuadrática, tabla periódica de química, entre otras, hay diferentes libros de algunas asignaturas que se encuentran en braille, la maquina perkins, impresora braille, un escáner que lee las hojas y se guardan en una memoria, lupas para los estudiantes de baja visión, ábacos, regletas de Cuisinaire, fichas, entre otros materiales y se fortalece la simbología matemática en braille.

En cuanto a las salidas pedagógicas, el propósito era incentivar a los estudiantes a través de actividades culturales, de esparcimiento e integración, en donde todos los estudiantes participaron, se realizaron dos que se presentan a continuación:

• El parque Metropolitano Timiza: se encuentra ubicado en la localidad de Kennedy en la ciudad de Bogotá, en donde se llevan a los estudiantes en condición de discapacidad visual con el grupo de tifloología dejando a un lado los compañeros que tienen en el salón de clases, además para la salida era importante el bastón, puesto que les permitió su desarrollo de movilidad y del espacio en el cual nos encontrábamos, adicionalmente al trasladar a los estudiantes era indispensable una buena comunicación y descripción de los lugares en el que nos encontrábamos para que tengan una representación mental del
parque. Lo realizado en esta actividad permite identificar la complejidad de la movilización de las personas con discapacidad visual, puesto que al no encontrar algún punto de referencia generaría dificultades en la ubicación dentro del parque, por otro lado sería un peligro puesto que había un lago y no hay una adecuada prevención para esta población y es importante tener consciencia sobre el momento de ubicar a estas personas para ser específicos desde el terreno hasta crear en ellos puntos de referencia para que se puedan ubicar espacialmente.

- **El parque Mundo Aventura**: está ubicada en la localidad de Kennedy en la ciudad de Bogotá, igual que en la salida anterior, solo se están con el grupo de tiflología y no se quedan con sus compañeros de clase, por otro lado en el parque se realiza una valoración médica antes de hacerles entrega de los pasaportes, además deben tener un acompañante que se haga responsable de la persona en condición de discapacidad.

3.1.3 Formación autónoma

Para el desarrollo de la pasantía es indispensable tener información de referencia que permita tener un acercamiento teórico sobre la población en condición de discapacidad visual, además cuáles son sus necesidades educativas, las estrategias que los docentes pueden utilizar, las investigaciones que se han realizado sobre el tema por ello a continuación se realiza una descripción de esta información.

3.1.3.1 Participaciones en eventos

Los eventos en los cuales hemos asistido son: en 14° Encuentro Colombiano de Matemáticas Educativas ECME-14 realizada en la universidad del Atlántico (Barranquilla - Colombia) los días 9, 10 y 11 de octubre del 2013; El 21° Encuentro de Geometría y sus aplicaciones efectuada en la Universidad Pedagógica Nacional (Bogotá – Colombia) los días 19, 20 y 21 de junio del 2013 y La XXVIII Reunión Latinoamérica de Matemática Educativa RELME -28 realizada en la Universidad del Atlántico (Barranquilla - Colombia) los días del 28 de julio al 1 de agosto del 2014. A continuación se realiza una descripción de las ponencias relacionadas con la población que se encuentra en condición de discapacidad visual. (Ver anexo 2 certificados de asistencia a los eventos)
En el 14° Encuentro Colombiano de Matemáticas Educativas ECME–14 se destacan las siguientes ponencias:

- **Una propuesta inclusiva para la representación geométrica de poliedros con población en condición de discapacidad visual:** en esta presentación se evidencia un diseño, ejecución y evaluación de una secuencia de actividades en el año 2012 en el colegio José Félix Restrepo, primero inician con su desarrollo teórico desde lo legal con la ley general de educación para argumentar la inclusión de la población con discapacidad visual en la escuela hasta el concepto matemático que se va a trabajar en este caso es los poliedros, la finalidad de esta propuesta es potenciar el reconocimiento del espacio bidimensional y tridimensional a partir de la geometría poligonal y poliédrica con los estudiantes invidentes, seguido de ello se muestran las actividades propuesta, las que permitieron concluir que es importante identificar el conocimiento previo de los estudiantes partiendo de la experiencia al realizar dibujos que representaran los poliedros y se realizaron adaptación de materiales para estas actividades implementadas en el aula. (Torres & Gaviria, 2013)

- **Una propuesta inclusiva de la enseñanza de la ubicación y localización espacial para estudiantes de grado tercero:** Se presenta una propuesta inclusiva para estudiantes con discapacidad visual, en la que se centra en el pensamiento espacial en cuanto a la localización (sistemas de referencia) caracterizando el sistema, por ejemplo: dónde se encuentras ubicados y cómo se orientan en el espacio, además se realizan diferentes actividades basadas en los niveles de Van Hiele en donde primero se identifica los conocimientos básicos de los estudiantes en cuanto a las nociones de situación (arriba, abajo, derechas, cerca de, etc.) por medio de los vocablos implementados y posteriormente se realiza una apropiación conceptual, por medio de la construcción de planos y maquetas con recursos adaptados para orientarse de forma gráfica y tangible. (Santana, Eparza, Guerrero & Salcedo, 2013)

- **Enseñanza de la geometría en población invidente y de baja visión:** el grupo muestra el desarrollo de las dificultad de la población en condición de discapacidad para desarrollar actividades con la geometría, por ello se presenta un estudio para dar algunas soluciones a esta problemática, como las siguientes: hay que tener en cuenta las necesidades educativas especiales apoyándose de estrategias didácticas que favorecen el aprendizaje significativo...
en la geometría y que es posible una inclusión si se tiene en cuenta las adaptaciones curriculares pertinentes. (Niño & Vanegas, 2013)

- **Uso de las TICS una apuesta a la diversidad**: se presenta el diseño de situaciones en donde se vinculen las matemáticas con los números enteros y el lenguaje con la narrativa y la argumentación para la población con limitación visual y auditiva, además muestran que la investigación surge con un semillero de investigación interdisciplinar en didáctica del lenguaje y las matemáticas (SIIDL y M) donde se incorpora la tecnologías en el aula inclusiva, basándose en las TIC y cuál sería la necesidad educativa para estas poblaciones; presentan que parte de la investigación se realizó por medio de diseños y experimentos de enseñanza, dando relevancia a la práctica y buscaron generar oportunidades para conocer, comprender y cambiar la realidad educativa en determinado contexto. (Velasco, Palomá, González & Tapiero, 2013)

- **Propuesta de un material didáctico para la enseñanza – aprendizaje de polinomios para población con limitación visual**: se presenta una propuesta de un material didáctico que permita al estudiante invidente trabajar el concepto de polinomio en el aula regular, además realizan una contextualización de cómo surge este trabajo, mostrando que se desarrolló en una pasantía de extensión en el colegio José Félix Restrepo, en donde tenían que realizar acompañamientos en el aula en las clases de matemáticas, apoyo extra escolar y adaptaciones de materiales, esto se desarrolló en la jornada nocturna, en la experiencia vivida con los estudiantes en condición de discapacidad visual observan la falta de material adaptado para concepto del álgebra, por ello realizan un análisis desde el álgebra geométrica, las nociones de los polinomios, Euclides con algunas proposiciones, específicamente en cuanto al algebra geométrica, en este análisis se obtuvo que el álgebra geométrica se convierte en una herramienta manipulable, intuitiva, deductiva y analítica permitiendo realizar las adaptaciones pertinentes para finalizar se muestra el material para los polinomios logrando así caracterizar los polinomios y los estudiantes con déficit visual participan activamente dentro de las clases de matemáticas. (Jimenez, Barreto & funeme, 2013)

- **Adaptación e implementación de recursos didácticos para la enseñanza de ecuaciones de primer y segundo grado a niños con discapacidad visual en el aula inclusiva**: se muestra la implementación de un material para facilitar el aprendizaje en cuanto a la transición de
la aritmética al algebra con ecuaciones, muestran las diferentes actividades y materiales por ejemplo: la ficha tapada, la balanza, el puzzle algebraico, domino algebraico y guías en braille, logrando así que los estudiantes escriban ecuaciones de primer y segundo grado con sus elementos característicos. (Correa & Pulido, 2013)

- **Experiencia de aula para la construcción de la noción de fracción en sus interpretaciones parte – todo y cociente, haciendo uso de recursos didácticos en un aula inclusiva en estudiantes con discapacidad visual para grado quinto:** presentan que esta experiencia surge de una práctica realizada en el Colegio José Félix Restrepo, realizando así una propuesta de enseñanza con las interpretaciones de la fracción parte – todo y cociente, ademas se basan en el grupo DECA para estas actividades, en primera instancia trabajan con tapas de gaseosa en diferentes colores para utilizar un contexto discreto de la fracción, posteriormente con tiras fraccionadas y naipes fraccionarios todos se adaptaron para los estudiantes en condición de dificultad visual, con ello se logró acercar a los estudiantes a la noción de la fracción en sus dos interpretaciones en contextos discreto y continuo. (Unvacia & Uñate, 2013)

- **Una experiencia en la enseñanza de la radicación con números enteros en un estudiante con limitación visual:** muestran que para enseñar a un estudiante con déficit visual a obtener raíces de un número entero se realiza por medio del ábaco o soloban, es importante este material manipulativo ya que en él se realizan diferentes operaciones matemáticas (suma, resta, multiplicación, división, etc.) en un sistema decimal, además es un instrumento de acción – reflexión atractivo para la actividad mental que hace posible la comprensión de los procesos llevados a cabo en las operaciones, lo que permite que los estudiantes hagan agrupaciones de los factores primos de la cantidad de subradical buscando la raíz, para ello el grupo tomaba dos ábacos, uno en donde se reduce el número y el otro con los factores primos aunque se genera la dificultad de que el estudiante se vuelve dependiente del instrumento para poder realizar las operaciones de raíces y a veces ahí confusiones por el hecho de trabajar con dos ábacos al tiempo. (Moreno & Jimenez, 2013)

- **Minicomputador de papy como instrumento de enseñanza de las operaciones básicas para alumnos con limitación visual:** se presenta una secuencia de actividades en torno a la enseñanza de las operaciones básicas, para ello se realizan adaptaciones para personas
con discapacidad visual de un juego común, observando las nociones de adición y sustracción operándolo con números enteros, además se muestra el instrumento el cual está por casillas y tienen diferente color, se evidencia la adaptación de este instrumento por medio de diferentes texturas que corresponden a cada color y en las fichas se coloca un imán para que se adhiera al tablero, con ello los estudiantes logran utilizar diferentes estrategias para operar con el minicomputador adaptado, tienen una organización decimal y cuentan con las operaciones básicas como: adición, sustracción, multiplicación, división, potenciación, radicación y logaritmación. (Rubio, Zolaque, Mantilla & Rodríguez, 2013)

En el 21° encuentro de Geometría y sus Aplicaciones se encuentra solo una ponencia que se centre en la población con déficit visual:

- **Propuesta para la enseñanza del algebra geométrica a estudiantes con discapacidad visual a través de la adaptación de material inclusivo:** se muestra que se debe tener en cuenta la apropiación del docente frente a las adaptaciones de material, las áreas tiflológicas y la signografía braille, sobre todo en el álgebra como lenguaje permite que sea conciso en la escritura en tinta aunque esto no ocurre en la simbología matemática en braille, ello permite que la geometría posibilite la resignificación y la comprensión de las expresiones algebraicas para el caso de la factorización, asumiendo el paso del lenguaje algebraico al geométrico, logrando la adquisición de la noción de trinomio cuadrado perfecto, para ello se requiere adaptación de material en este caso de cuadrados perfectos y con ayuda del braille se escriben cada material para que el estudiante identifique a que se está refiriendo. (Velasco & Montes, 2013)

La XXVIII reunión Latinoamérica de matemática educativa RELME -28 solo se encuentra una ponencia la cual es:

- **La enseñanza de la matemática a alumnos ciegos y disminuidos visualmente. El reto de una experiencia (argentinos):** presentan la capacitación a los estudiantes para profesor, en donde se pueda mejorar el aprendizaje de la población de dificultad visual para así poder integrarlos en las escuelas comunes, para ello se realiza en primera instancia un apoyo personalizado y adaptación de propuestas didácticas. En la actualidad los estudiantes por ley los integran al aula regular así que la jornada
contraria asisten a escuelas donde hay docentes de educación especial, ellos no están capacitados para hacer las consultas sobre conceptos de matemática por ello los estudiantes de esta población tienen dificultades y errores en el aprendizaje de la matemática. Es importante que el docente de matemáticas sea cuidadoso y preciso en el vocabulario puesto que en tinta o braille las posiciones de cada elemento pueden ser diferentes como en el caso de la fracción, en tinta sería \(\frac{\text{numerator}}{\text{denominator}} \) pero en braille es al contrario, por ello la explicación debe ser adecuada y apoyada en el material adaptado para que los estudiantes en esta condición puedan participar activamente en la clase de matemática.

El desarrollo de esta ponencia se realizó en varios momentos, el primero fue el diseño de folletos informativos acerca de la problemática específica de la enseñanza de la matemática con la población ciega, en cuanto al segundo momento fueron unos talleres en donde se realizan adaptaciones curriculares y la importancia de los recursos en la clase de matemática, en un tercer momento se realizan conferencias sobre la enseñanza de la matemática a personas con dificultad visual en la escuela secundaria, la importancia del braille y concientización de los docentes que tiene algún estudiante ciego puesto que él merece el mismo nivel de enseñanza y exigencia que cualquier otro alumno y para finalizar, se realizó observaciones en las escuelas comunes donde se encuentran los estudiantes con limitación visual.

Los voluntarios ejecutaron actividades según lo planeado con los docentes, así los estudiantes para profesor lograron ampliar su conocimiento y darse cuenta de la realidad de los colegios con sus diferentes problemáticas, realizando una propuesta de enseñanza de conceptos matemáticos se decide trabajar la fracción por medio de rompecabezas adaptados.

Una de las reflexiones en el documento fue: la integración bien hecha se logra a través de una escuela especial porque esta le da los medios necesarios para interactuar con otros que tienen la misma discapacidad.
Con la revisión de las diferentes investigaciones realizadas se destaca la importancia de los recursos didácticos, el cual permita tanto a estudiantes videntes como invidentes construir un conocimiento matemático significativo, concluyendo que a pesar de las dificultades que se pueden encontrar al enfrentarse con la población que tiene condición de discapacidad visual, es importante la labor docente que pueda reflexionar de sus prácticas para poder dar sus mejores conocimientos a los estudiantes en la construcción de los conceptos matemáticos y reestructurar sus actividades de acuerdo a la respuesta de los estudiantes.

3.1.3.2 Lecturas de apoyo para la pasantía

Para la realización de la pasantía se realizó una documentación de diferentes textos que permitía conocer un poco más de la población invidente, las diferentes adaptaciones en las cuales se pueden realizar para una comprensión de las temáticas que se desarrollan en el aula, diferentes recursos que potencia las relaciones matemáticas y los procedimientos algorítmicos, estos documentos se recolectaron en RAE los cuales permiten realizar un resumen analítico de la información e identificar lo importante de cada documento.

El primer documento consultado es de Castro & del Castillo (2007) en donde se encuentran algunos ejemplos de adaptaciones pertinentes, además de ello es importante destacar sobre todo los materiales que se deben tener en cuenta para realizar estas adaptaciones, puesto que cualquier material no sirve para que se perciba el objetivo del docente, por ello este documento permite un acercamiento a cuál debe ser los materiales más adecuados para trabajar con un estudiante en condición de discapacidad, además se identifica la diferencia entre el material para un estudiante ciego y un estudiante de baja visión. En el proceso de pasantía fue importante tener en cuenta esta información, puesto que permitió la identificación de los tipos de materiales y el momento pertinente para utilizarlos, de acuerdo a las actividades planeadas por los docentes, por ejemplo, adaptación de guías, imágenes adaptadas, entre otros elementos o actividades que se realizaron en el colegio. (Ver anexo 3)

En cuanto a las relaciones con los estudiantes en condición de discapacidad visual en lo planteado por Páez (2003) se propone una reflexión en torno a las actitudes tanto de los docentes como de los estudiantes en busca de una aceptación a la diferencia, generando en los estudiantes en condición de discapacidad visual un buen autoconcepto y autoimagen que le permita fortalecer la autoestima, articulando la familia y la escuela, en donde es importante el factor emocional para
un favorable proceso de aprendizaje, en el desarrollo de la pasantía las relaciones entre los estudiantes con limitación visual y los docentes era apática y muchos de los docentes no reconocían la diferencias de cada uno de los estudiantes buscando homogenizarlos a todos, aunque se evidenció que los estudiantes invidentes tienen buenas bases afectivas y la mayoría reconoce como es, a pesar de que hay padres que se resiste a aceptar esta situación. (Ver anexo 4)

En lo propuesto por Rosich, Núñez & Fernández (1996) permitió tener una orientación más específica sobre la relación del estudiante con discapacidad visual y el aula de matemáticas con todo lo que interviene en ello, un de las primeras orientaciones es que como docentes se debe tener conocimiento del diagnóstico clínico del estudiante, con base en ello se pueda reconocer cuales serían las posibles dificultades de los estudiantes en la clase de matemáticas y se esperaría que los padres les realizarán exámenes seguidos para así identificar si la situación médica del estudiantes avanza o permanece en las mismas condiciones.

Teniendo en cuenta el diagnóstico del estudiante se inicia con la identificación de lo que podría necesitar el estudiante y como se puede ayudar, por ello primero se precisa cuales con los aspectos cognitivos con lo que los estudiantes de la población con discapacidad visual cuentan, puesto que en el libro se realiza la aclaración que esta población puede aprender matemática, que efectivamente algunos tienes más habilidades y destrezas en esta área que otros, pero eso no impide que se pueda aprender matemáticas como los videntes. Es indispensable considerar que para los estudiantes que se encuentran sin ningún resto visual, es importante el sistema perceptivo háptico y lo cinestésico, puesto que con ellas los estudiantes pueden adquirir información del mundo que los rodea por medio de una adecuada exploración.

Además es pertinente identificar el proceso de matematización en los estudiantes que presentan discapacidad visual puesto que los autores proponen cinco estadios que se producen en la cognición matemática los cuales son: recolección de información sensible, elaboración del correspondiente percepto, proceso de matematización abstractiva, integración del nuevo contenido matemático y el proceso de reificación expresiva y aplicativa, en esto se hace explícita la importación del lenguaje, de cómo se está comunicando, los signos con su significado entre otros.
Es importante tener en cuenta las interacciones de los estudiantes ciegos con sus compañeros videntes en el aula, puesto que se presentan dificultades específicas en la comunicación de lo simbólico y otros aspectos, por ello como docentes debemos estar preparados para realizar una adecuada comunicación de imágenes, simbología, etc. Por tanto, es importante brindar materiales que se puedan en el aula, para que todos los estudiantes pueda trabajar en ellos y puedan construir sus experiencias, así todos puedan llevar un ritmo de aprendizaje parejo entre sus compañeros.

También es indispensable tener conocimiento sobre instrumentos, recursos, adaptaciones en contenidos como la aritmética, geometría, estadística, medición y el álgebra, puesto que existen muchos recursos elaborados, que se pueden utilizar en el aula para que el estudiante con discapacidad visual pueda tener sus respectivos conocimientos frente a estas temáticas.

Además hay que implementar la tecnología puesto que ésta ahorra muchos esfuerzos tediosos por parte de los estudiantes, permite una mejor comprensión y puede identificar y superar algunas dificultades o errores que se presenten en el uso de las herramientas y el concepto que se está construyendo.

En cuanto a la participación de docente en el proceso de enseñanza – aprendizaje es vital, puesto que es importante una reflexión constante frente a lo curricular, a las actividades que se propongan, a los tiempos, al nivel en que se encuentra todo el grupo sin dejar de lado a los estudiantes que se encuentren con discapacidad visual, a la evaluación, entre otros aspectos relevantes en la labor docente y por medio de la reflexión se puede realizar las modificaciones pertinente para que todo puedan aprender matemáticas sin que sea una excusa la discapacidad. (Ver anexo 5)

La lectura manual de signografía Braille permitió adquirir un manejo básico de la simbología Braille en general, en cuanto al lenguaje matemático nos dotó de simbología para representar cantidades, magnitudes, medidas, operaciones, los signos de agrupación etc., las reglas básicas como no dejar espacios o cajetines vacíos entre los símbolos matemáticos, las distintas formas de representar fracciones y las operaciones, el uso adecuado del punzón y la regleta a la hora de representar las operaciones de manera vertical, pues requiere cierto nivel de atención y conteo de
las cifras a representar. Además nos muestra la riqueza simbólica del sistema de lectoescritura Braille en las distintas áreas del conocimiento (Ver anexo 6).

Sánchez (2003) en la cartilla “como orientar al estudiante con limitación visual en su clase de matemáticas”, muestra como el docente debe fomentar en el aula la participación y el reconocimiento de los estudiantes con déficit visual, partiendo de sus intereses, necesidades y el respeto por sus procesos de aprendizaje. Muestra diversos materiales didácticos creados y utilizados de manera especial por los estudiantes con déficit visual, el uso de tecnologías que permiten el acceso y el desarrollo de los conceptos matemáticos. De las recomendaciones claves que emplea la autora está, el lugar designado para los estudiantes con limitación visual cerca al tablero, el uso adecuado de los materiales didácticos, la adaptación de todo tipo de textos, materiales, representaciones para la clase, la creación de un ambiente solidario, la descripción detallada en todo momento de lo que sucede y se hacen clase, así mismo de los materiales y las indicaciones para su uso. (Ver anexo 7)

Una de las lecturas que habla del ábaco japonés como herramienta de cálculo y de comprensión de los procesos algorítmicos de las operaciones básicas en matemáticas, como la suma, la resta, la multiplicación y la división. Donde es evidente la importancia del reconocimiento del valor posicional, el uso espacial y la comprensión del concepto de estas operaciones. Esta cartilla da un paso a paso detallado de como representar y operar las cantidades, reconociendo que es una herramienta que todos pueden utilizar en el aula de matemáticas, hace la recomendación de pasar de esta representación táctil a la oral y a la escrita, incorporando el lenguaje matemático y en especial la signografía Braille de manera clara para los estudiantes ciegos (Ver anexo 8).

3.2 Plan de acción

3.2.1 Adaptación de materiales

En este apartado se evidencia los diferentes materiales implementados en el desarrollo de la pasantía en el Colegio OEA, en donde se tendrán en cuenta una descripción general de cada uno de los materiales adaptados para uso del proceso de enseñanza- aprendizaje y con qué fin se realiza la adaptación del material.
La mayoría de adaptaciones que se realizaron en la pasantía fue realizar relieve en las guías propuestas por el docente titular, como se evidencia en la ilustración 12, donde se presenta una guía sobre fracciones, en ella se plantea una situación con base en estas representaciones pictóricas de la fracción en la interpretación parte-todo. Para realizar la adaptación del material se utiliza silicona y colbón, la silicona para que se identificara el entorno de la torta y la cantidad de divisiones que se encuentran en la torta, mientras que el colbón permite pegar la escarcha en las partes que se tomó de la fracción puesto que tiene una textura diferente, con ello permite que el estudiante ciego logre identificar en cuantas partes está dividido el círculo y cuantas partes se tomaron de la fracción.

Además de la adaptación de las guías se realizó un material en fomi para fortalecer la representación de la fracción con la interpretación en parte todo, este material permite que los estudiantes tenga una manipulación sobre la representación de la fracción construyendo un esquema mental, también es importante porque a los estudiantes videntes les permite reconocer y comprender el cambio de registro de la fracción. Este material adaptado se evidencia en la ilustración 13; primero se realiza un círculo el cual va a representar la unidad, luego se muestran diferentes partes en las que se dividió la unidad, es decir, hay partes del círculo que tienen diferentes tamaños por ejemplo primero se tiene la división del círculo en dos piezas iguales, luego se tiene la división del círculo en tres partes iguales y así sucesivamente hasta tener la división del círculo en 10 partes iguales.
Teniendo en cuenta lo plantead por Llinares & Sánchez (1988), en la enseñanza de la fracción el estudiante debe partir de la representación gráfica para poder establecer un control simbólico, logrando conectar esta representación mentalmente con la representación verbal y simbólica. Las adaptaciones de la representación de las fracciones se enmarcaban en un contexto continuo tanto circular como rectangular enmarcadas con silicona, colbón u otros materiales evidenciados en las ilustraciones 12 y 13, en las cuales los estudiantes caracterizaban la relación parte-todo, reconociendo la importancia de las partes congruentes que es vital para la construcción del concepto de fracción. Estas adaptaciones permitieron que los estudiantes partieran de las representaciones gráficas, como lo exponen los autores mencionados anteriormente y además trabajaran en la interpretación de la fracción como parte-todo, donde la fracción es una relación entre un número de partes y el total de las partes, designando al todo como unidad. Para la comprensión y operatividad de los materiales adaptados fue indispensable trabajar con los estudiantes en la identificación de la unidad, la realización de divisiones reconociendo la conservación de la cantidad y el manejo de la idea de área ya que se adaptaron representaciones continuas.

En la ilustración 14 se evidencia la adaptación de una guía sobre las representaciones de polígonos, para la adaptación se realiza en la tabla de dibujos negativas y el rodachina permite que las figuras que se presentan en la hoja en la parte del entorno tenga un relieve y el estudiante ciego pueda realizar un esquema mental y tenga una representación de la figura para así identificar que figuras representan polígonos y cuáles no.
Para la realización de representaciones de diferentes sólidos se desarrolló el material con cartulina, para que las figuras tridimensionales tuvieran una buena consistencia se pegan con silicona, esta adaptación se realiza para que los estudiantes tanto invidentes como videntes logren identificar las características de los sólidos (ilustración 15 y 16). En el caso de las piramides la adactacion permitió comprensiónde la diferencia entre la altura de la piramide y el apotema, el material se muestra en la ilustración 15.
Desacuerdo con lo expuesto por Fischbein (1993) en las representaciones geométricas de polígonos y sólidos mostrados en las ilustraciones 15 y 16, facilitaron a los estudiantes la construcción de una imagen mental de las figuras geométricas, de tal manera que estas representaciones gráficas o concretas de los objetos geométricos son un modelo materializado, donde todas las figuras representan constructos mentales que posee simultáneamente propiedades conceptuales y figúrales. Es por ello que estas adaptaciones crearon la asociación entre concepto y figura, es decir, una imagen visual que provoca nuevo pensamiento, la cual influye en la representación mental de la propiedad espacial. Además estas adaptaciones también permitieron que se manipularan representaciones de las propiedades espaciales (forma, posición magnitudes métricas expresadas).

La tabla de dibujos negativas y la rodachina también permitió alzar en relieve las gráficas de diferentes funciones cuadráticas y lineales, un ejemplo de ello se evidencia en la ilustración 17 para la gráfica de la función lineal.

Otro elemento que permitió la representación de diferentes gráficas lineales presentes en un material llamado saber matemático que tenían que resolver todos los estudiantes, fue el plano
cartesiano para invidentes, como se muestra en la ilustración 18, la adaptación de las diferentes gráficas de las funciones lineales mostradas en el saber matemático, fueron representadas en el plano cartesiano mermitiendo que los estudiantes resolvieran los ejercicios planteados.

Ilustración 18

En la ilustración 18 se observa una lámina sobre la función cuadrática, en ella permite adaptar la situación, con ella se permite que el estudiante invidente logre tener una representación mental de la gráfica de la función cuadrática con las características de este tipo de funciones.

Ilustración 19

Las adaptaciones evidenciadas en las ilustraciones 17, 18 y 19 tenían como objetivo que los estudiantes reconocieran las características y los elementos que forman la representación gráfica de la función lineal y cuadrática, desde lo expuesto por Sánchez (2003), la representación gráfica para los estudiantes con limitaciones visuales, es esencial para la formación de imágenes mentales, que les dan información útil en su aprendizaje. En el campo didáctico de las matemáticas autores como Duval (1993), plantean la importancia de mostrar diferentes tipos de representación de un objeto matemático, que pueden dar los diferentes registros semióticos. Por ello es importante que para abordar un objeto matemático se debe usar varios registros de
representaciones semióticas, en este caso además de la verbal y simbólica que los estudiantes podían adquirir en sus clases, las adaptaciones permitieron que ellos caracterizaran como los elementos de las funciones lineales y cuadráticas se presentaban en la representación gráfica, posibilitando al estudiante pasar de una representación a otra.

Como se muestra en la ilustración 20 en la trascipción de un documento en tinta al braille, este tipo de adaptación de materiales se trabajó tanto en el área de matemáticas como en las otras asignaturas del Colegio OEA, puesto que la adaptación del material permitía a los estudiantes invidentes poder acceder a la información propuesta por los docentes que es la misma a la que accedían los estudiantes videntes, para la realización de la adaptación de material se utiliza la pizarra y el punzón o si el contenido era muy extenso se implementaba por medio de la computadora y se imprime en la impresora braille.

Ilustración 20

3.2.2 Apoyo extraescolar

Para el desarrollo del apoyo extraescolar por petición de la tiflóloga del Colegio OEA se centró en la signografía matemática puesto que la experiencia le ha permitido identificar la dificultad de escritura de los estudiantes invidentes en la escritura matemática, por ello es importante que en el apoyo se logre fortalecer esta escritura y se aclaren por medio de ésta aspectos de las temáticas que se desarrollan en las clases de matemáticas.
El apoyo extraescolar se realizó los días miércoles en una jornada de 11:30 am hasta las 2:30 pm, en donde se dividía en dos partes, la primera parte es para los estudiantes de primaria que va de 11:30 am a 12:30 pm y la segunda parte es para los estudiantes de bachillerato, este apoyo solo se realiza para los estudiantes de tiflología, es decir para los estudiantes que se encuentran en condición de discapacidad visual, además cada uno de los pasantes contaba con uno o dos estudiantes en las jornadas puesto que no todo los estudiantes con discapacidad visual asistieron al apoyo. En el anexo 9 se observa el formato de apoyo extraescolar, que se realiza en cada una de las sesiones que se desarrollaron, en este se evidencia el proceso de los estudiantes, lo que se realizó durante el apoyo y la tarea que se le deja al estudiante para realizar en casa, cabe resaltar que los apoyos extraescolares se vieron afectados por diversas actividades de la institución y de los estudiantes generando días en los cuales no se pudo realizar el apoyo.

A continuación se presenta las características específicas de cada estudiante en el apoyo extraescolar, aclarando el hecho de que éstas son las que se hicieron entrega al Colegio para que se evidencie el proceso de los estudiantes en el apoyo, desde su estado inicial hasta el estado final, aunque es importante resaltar que el tiempo que se desarrolló el apoyo fue muy reducido para que los estudiantes puedan superar en su totalidad las dificultades pero si se logró fortalecer la signografía matemática con las temáticas que se trabajaban en el aula de matemáticas.

Nombre del estudiante: Karen Cano

Curso: tercero

Estado inicial o diagnóstico: al inicio de la pasantía (apoyo extraescolar) se observa que tiene dificultades en reconocer el valor posicional del algoritmo de la multiplicación, división, resta y suma cuando hay más de dos cantidades (números), además no identifica los nombres de cada uno de los elementos de los algoritmos básicos (suma, resta, multiplicación y división) y tiene dificultades en el concepto aditivo y multiplicativo puesto que no reconoce que algoritmo implementar en un enunciado verbal.

Estado final: en el trascurso de la pasantía se evidencia una comprensión del valor posición aunque para ello se realiza la composición y descomposición de los números, posteriormente se trabaja con el algoritmo de la suma cuando hay tres números de tres o cuatro cifras mostrando que logra ordenar los números aunque necesita de ayuda puesto que se desconcentra con gran
facilidad, se recomienda seguir fortaleciendo el concepto aditivo y multiplicativo para que así tenga una mayor comprensión de los algoritmos.

Nombre del estudiante: Natalia Gonzales

Curso: sexto

Estado inicial o diagnóstico: al inicio de la pasantía se observa que tiene dificultad en operaciones de suma y resta de fracciones heterogéneas por la forma de enseñanza de los algoritmos aunque se evidencia que con fracciones homogéneas no hay ninguna dificultad y tiene conocimientos de la simbología matemática de las fracciones, mixtos, decimales y las operaciones entre fraccionarios en braille aunque en ocasiones se confunde por la comunicación en el aula de clase.

Estado final: al finalizar la pasantía se logra que la estudiante identifique la diferencia de las operaciones (suma y resta) cuando son homogéneas y heterogéneas aunque a veces presenta errores de cálculo y se fortalece la simbología matemática de las fracciones, mixtos, decimales y las operaciones en braille.

Laura Salazar y Jessica Campos

A petición de la tiflóloga del colegio, en el apoyo extraescolar se enfatizó en la adquisición y manejo de la simbología matemática en el sistema Braille.

Estado inicial o diagnóstico: tenían conocimientos de la representación simbólica de las operaciones aritméticas elementales, pero no les era claro como representar algunos algoritmos cuando se operaban más de 2 cantidades, tenían dificultades para expresar números racionales tanto en su representación como fracción y decimal, no expresaban de manera clara expresiones algebraicas, manejaban un lenguaje verbal y algunos símbolos.

Estado final: la simbología básica en cuanto a las operaciones básicas quedo del todo clara. Pero aún las estudiantes tienen dificultades en la simbología para el sistema algebraico, como lo son las fusiones, polinomios y los casos de factorización, pues aunque ya manejan mayor simbología base tienen un lenguaje sincopado, es decir, hacen uso de lenguaje verbal y algunos símbolos.
3.2.3 Acompañamiento en el aula

Al comenzar la pasantía se establecen los horarios de acompañamiento en el aula, los días lunes y martes se disponen para desarrollar esta labor, por ello la mayoría de estudiantes que se les realizó el acompañamiento en el aula se da una vez a la semana.

Para el desarrollo del acompañamiento en el aula fue poco tiempo para evidenciar en cada uno de los estudiantes el proceso final de las temáticas que se desarrollaban en el aula, puesto que en la semana los estudiantes tenían más horas de matemáticas que no se lograba observar, por ello se establece el proceso que se realizó pero no se puede afirmar si el estudiante tuvo un aprendizaje significativo y superó las dificultades presentadas en el proceso del abordaje de las temáticas.

En el aula de matemáticas fue importante nuestra labor, ya que el docente titular no prestaba la atención necesaria a los estudiantes que se encontraban con discapacidad visual por otras variables que influyen como: se encuentran aproximadamente en cada salón 45 estudiantes, además no se encuentran preparados para afrontar solos estos estudiantes con discapacidad visual, el apoyo brindado por los pasantes era indispensable tanto para los estudiantes invidentes como para los videntes, puesto que con los materiales adaptados, por las explicaciones o la descripción detallada de lo que ocurría con el docente o sus compañeros les permitían tener herramientas para lograr comprender las diferentes temáticas que se desarrollaron en el aula de matemáticas.

En el anexo10 se observa con detalle cada una de las actividades que se desarrollaron en la clase, los materiales que se implementaron para la comprensión y desarrollo de las temáticas trabajadas en el aula y los resultados de cada semana para identificar el proceso de los estudiantes con discapacidad visual de acuerdo a la temática que se está trabajando.

Laura Salazar

Curso: octavo

Estado inicial o diagnóstico: se logra evidenciar que la estudiante no comprende con claridad los primeros casos de factorización, tiene dificultades para realizar la construcción de algunos cuerpos geométricos como las pirámides de diferentes bases, el uso de la calculadora suele ser en
algunas ocasiones innecesario o exagerado. No cuenta con la simbología matemática en el sistema Braille.

Estado final: La estudiante caracteriza los elementos de las pirámides y de los cuerpos redondos como el cilindro y la esfera, es decir, reconoce que es una arista, cual es la altura de los cuerpos, las caras, entre otros elementos. Además comprende y utiliza las fórmulas que le permiten saber el área y el volumen de los cuerpos geométricos. Presenta un mejor manejo de la calculadora, para estos cálculos. Presenta dificultades para la construcción de estas figuras tridimensionales dados los recursos que planea el docente, ya que se basa en el dibujo y la manipulación de cartulina.

Maneja algunos casos de factorización que cuentan con un proceso corto, que no necesita tantos pasos, como el caso 6 trinomios de la forma $x^2 + bx + c$, cuando b y c, son cantidades pequeñas, o el caso 1 de factor común monomios, el caso 2 por agrupación de términos entre otros. Los casos que no maneja con claridad necesitan de alguna ayuda ya sea los apuntes, o los practicantes.

Jessica Campos

Curso: octavo

Estado inicial o diagnóstico: se evidencia que la estudiante no comprende con claridad los primeros casos de factorización, tiene dificultades para realizar la construcción de algunos cuerpos geométricos como las pirámides de diferentes bases. No cuenta con la simbología matemática en el sistema Braille.

Estado final: La estudiante caracteriza los elementos de las pirámides y de los cuerpos redondos como el cilindro y la esfera, es decir, reconoce que es una arista, cual es la altura de los cuerpos, las caras, entre otros elementos. Presenta dificultades para comprender y utilizar las fórmulas que le permiten saber el área y el volumen de los cuerpos geométricos. Presenta dificultades para la construcción de estas figuras tridimensionales dados los recursos que planea el docente, ya que se basa en el dibujo y la manipulación de cartulina.

Maneja algunos casos de factorización que cuentan con un proceso corto, que no necesita tantos pasos, como el caso 6 trinomios de la forma $x^2 + bx + c$, cuando b y c, son cantidades
pequeñas, o el caso 1 de factor común monomios, el caso 2 por agrupación de términos entre otros. Los casos que no maneja con claridad necesitan de alguna ayuda ya sea los apuntes, o los practicantes, o no los ha trabajado debido a su inasistencia.

Cindy Cárdenas

Curso: octavo

Diagnóstico o estado inicial: tiene dificultades para realizar la construcción de pirámides de diferentes bases y de algunos prismas, por el mal uso de las herramientas geométricas y la elaboración del desarrollo de la misma. En cuanto a los conceptos de estadística tiene dificultad para organizar la información estadística en tablas de distribución y realizar las medidas de tendencia central, ya que no distingue inicialmente la variable dependiente y la independiente o confunde algunos procedimientos.

Estado final: La estudiante caracteriza los elementos de las pirámides y de los prismas, es decir, reconoce que es una arista, cual es la altura de los cuerpos, las caras, entre otros elementos. Además comprende y utiliza las fórmulas que le permiten saber el área y el volumen de estos cuerpos geométricos. Presenta un mejor manejo de la calculadora, para estos cálculos. Maneja mejor las herramientas geométricas y establece con más facilidad el desarrollo de estas figuras tridimensionales, lo que le ha permitido superar las dificultades para la construcción de las mismas.

En cuanto a los conceptos de estadística reconoce con mayor facilidad la variable dependiente en diferentes situaciones, con ayuda de apuntes o los practicantes, logra realizar la tabla de distribución de frecuencias y las medidas de tendencia central, reconociendo que la primera le permite organizar la información y hacer una descripción inicial del comportamiento de datos y la segunda le reduce la información y le permite representar el conjunto de datos, para poder realizar conclusiones de las situaciones expuestas.

Natalia Gonzales

Curso: sexto
Diagnóstico o estado inicial: tiene dificultades en el los algoritmos aditivos en números naturales y racionales, puesto que la docente titular explicaba los algoritmos a todos pero al desarrollarlos en el ábaco presentaba confusiones.

Estado final: por el corto tiempo en el que se desarrolló este acompañamiento no se evidencia el proceso de superación de las dificultades.

Xilena Pineda

Curso: séptimo

Diagnostico o estado inicial: tiene un buen dominio al caracterizar el plano cartesiano con los números enteros, sin embargo comete algunos errores al ubicar algunas coordenadas en el plano cartesiano, por el geoplano que utilizaba, además presenta dificultad en identificar la razón y la proporción en un enunciado verbal.

Estado final: se logra fortalecer la ubicación de coordenadas en el geoplano y se fortalecen el proceso de identificar en un enunciado verbal las variables y como se establece la razón y la proporción, además no presenta ninguna dificultad en encontrar el valor desconocido de una proporción.

Lian Castro

Curso: séptimo

Diagnóstico o estado inicial: presenta nociones de la representación de fracciones en contexto continuo, identifica las características de los números primos y compuestos, desarrolla los algoritmos aditivos y multiplicativos de las fracciones cuando son homogéneas y heterogéneas.

Estado final: se evidencia el fortalecimiento de procesos de comprensión de las representaciones de las fracciones con sus operaciones básicas, además presenta buen dominio de la descomposición en factores primos por medio del ábaco y su agilidad mental, además se observa que no presenta dificultad en hallar el área de figuras geométricas descomponiendo la figura en cuadrados y rectángulos.
4 Conclusiones

4.1 Conclusiones

El desarrollo de la pasantía permitió conocer y comprender algunas necesidades que presenta la población con discapacidad visual en el Colegio OEA y las diferencias estrategias y recursos que se implementaron para el acompañamiento en el aula de matemáticas:

- Fortalecer las temáticas trabajadas en el aula de matemáticas, puesto que no es suficiente el tiempo en el aula para tener un aprendizaje significativo, por ello consideramos conveniente diseñar actividades extracurriculares que apoyen las temáticas desarrolladas en las clases, además logren superar las dificultades que se presentan en el proceso de aprendizaje de los objetos matemáticos y la escritura en braille, esto se evidencia en el desarrollo del apoyo extracurricular donde se identifica las temáticas abordadas por el docente titular, las dificultades y fortalezas que se presentan con respecto a las temáticas y construir un plan de mejoramiento por medio de actividades que promuevan la superación de las dificultades.

- Por medio del trabajo cooperativo entre los docentes, tifólogo y los pasantes se logra apoyar el trabajo del docente titular por medio de la adaptación del material didáctico, puesto que estos recursos didácticos permitieron que los estudiantes tanto videntes como invidentes comprendieran y construyeran su propio conocimiento de las temáticas que se desarrollan en las clases de matemáticas.

- La pasantía formó un ambiente de cercanía con los estudiantes en condiciones de discapacidad visual, facilitando en gran medida que los estudiantes comunicarán más sus inquietudes frente a la clase y el objeto matemático trabajado, puesto que se sentían en confianza para realizar cualquier pregunta, debido a que la atención era más personalizada.

- En las matemáticas es importante reconocer las diferentes representaciones de un mismo objeto matemático, puesto que con ellas les permite construir significados para así tener un conocimiento del objeto matemático, por medio de la adaptación de materiales didácticos posibilita y facilita el reconocimiento de las representaciones de visualización y
logra identificar patrones de las temáticas que se abordan en el aula de matemática para tener un aprendizaje significativo de los estudiantes.

- Conocer el proceso de inclusión de los estudiantes con discapacidad visual en el Colegio OEA, permite recoger que los docentes del área matemáticas deben diseñar las clases pensando en la diversidad, reflexionar acerca de los procesos de evaluación que posibilite la igualdad de oportunidades para todos.

- La presencia de las pasantes contribuyó a la visualización y el reconocimiento de los docentes frente a las necesidades educativas especiales de esta población, evidenciando la importancia de los usos de materiales manipulativos tangibles especialmente, además conocieron algunos materiales ya existentes para el trabajo en el área de matemáticas para personas invidentes que ellos no conocían.

- Tanto la población con déficit visual, como los estudiantes del aula regular se vieron beneficiados con el acompañamiento en la clase, pues las pasantes fomentaban la comprensión de los saberes matemáticos trabajados, en diversas ocasiones eran consultadas por diversos estudiantes y también las adaptaciones de materiales empleados para representar conceptos permitían una mayor comprensión no solo a los estudiantes del apoyo sino a sus compañeros de clase.

4.2 Reflexiones

En este apartado es importante establecer que el proceso de la pasantía logro en cada una de las pasantes tener una reflexiones particulares de acuerdo a sus vivencias en el aula, en la realización de materiales, en el apoyo extraescolar y acompañamiento en el aula, por ello es pertinente que a continuación se evidencia reflexiones de Aura Viviana Acero y Claudia Patricia Acosta.

4.2.1 Claudia Patricia Acosta

En el desarrollo de la pasantía en el Colegio OEA permitió reflexionar sobre diferentes aspectos como las siguientes:

- El material adaptado logró el fin con el cual fue construido, puesto que en ocasiones era muy difícil realizar una descripción detallada de las representaciones matemáticas, de acuerdo a la temática correspondiente en la clases de matemáticas, además fue
importante que al principio de la pasantía se realizará una capacitación por parte del Colegio, porque logre identificar cómo utilizar en el aula de matemáticas los elementos que se encuentran en el aula de tiflología para construir las adaptaciones necesarias para los estudiantes en condición de discapacidad visual.

- También es motivante para todos los estudiantes desarrollar conocimiento matemático por medio de materiales manipulativos, puesto que los estudiantes videntes sienten curiosidad y centran más la atención por manipular el recurso y a los estudiantes invidentes les permite ver de una manera diferente los conocimientos, logrando así que todos los estudiantes construyan los objetos matemáticos y superen errores o dificultades que se pudieron presentan en el proceso de aprendizaje

- En cuanto a las acciones de los docentes en el aula, es importante reconocer que algunos docentes que están en las Instituciones Educativas no se encuentran preparados para reconocer, afrontar y tomar decisiones pensando en que en el aula hay estudiantes con discapacidad visual. Lo que me parece importante resaltar es que la LEBEM ha permitido la concientización de los estudiantes para profesor de matemáticas de pensar y diseñarse las clase en la que todos los estudiantes puedan construir conocimientos matemáticos teniendo en cuenta los propuesto por Espejo (2001) en que un estudiante tiene necesidades educativas especiales cuando con o sin discapacidad se le dificulta el acceso a contenidos curriculares en la interacción con su contexto escolar, por lo tanto a reconocer las dificultades presentes en los estudiantes se pueden abordar metodologías que apoyen este aprendizaje.

Para ello se debe tener un apoyo educativo con estrategias innovadoras y flexibles que permitan equiparar toda la diversidad en el aula, es indispensable que como futuros docentes logremos reconocer a cada una de las poblaciones y necesidades educativas que tienen los estudiantes, permitiendo enfrentarse a la enseñanza de todos y estando convencido de que se puede enseñar a todos los estudiantes con calidad y equidad si se identifica, reconoce y planifica las implicaciones de la educación para todos, además que la actitud del docente cuenta en el proceso de aprendizaje de los estudiantes puesto que se trasmite a ellos.

- Otro aspecto a tener en cuenta son las temáticas que se imparten en el aula, considero que se debería desarrollar el pensamiento matemático y no tanto a la ejercitación de
procedimientos en donde se pueda retomar las diferentes experiencias y el contexto de los estudiantes relacionándolo con las matemáticas para que sea un aprendizaje significativo y que se fomente la comprensión de cada uno de los conceptos matemáticos, además es importante que en el desarrollo de este aprendizaje se puedan generar errores o dificultades que se pueden superar por medio de diferentes estrategias o recursos didácticos para que posteriormente no queden arraigados a ellos.

4.2.2 Aura Viviana Acero

La pasantía permitió la reflexión sobre el cumplimiento de las políticas educativas, con respecto a la inclusión de los estudiantes con NEES en el sistema educativo, donde el docente tiene el reto de diseñar otras formas de analizar, mirar, asumir y actuar en el aula de matemáticas inclusiva, pues se requiere una adecuación de las prácticas pedagógicas y didácticas de profesores como de las instituciones educativas frente a las necesidades y requerimientos de todos los estudiantes.

El reto en especial para el docente es reconocer las capacidades de los estudiantes, sin centrar la mirada en las necesidades y discapacidades, sino en sus posibilidades. Ya que requiere de la escucha, diálogo, participación, la cooperación, el preguntar, la confianza, el aceptar y el acoger, acciones donde se deben tener en cuenta las orientaciones básicas para orientar a los estudiantes con limitación visual en el área de matemáticas como:

- Describir que se está haciendo en el tablero, las acciones de todas las personas frente al desarrollo de las actividades propuestas.
- Adaptaciones adecuadas, trabajo con materiales concretos.
- Conocimiento y manejo de los materiales didácticos desarrollados para este tipo de población.

En la institución notamos que estas orientaciones no las tienen tan presentes los docentes en el desarrollo de sus clases, pues no cuentan con la capacitación y trabajo de sensibilización que les permita en cierto sentido visibilizar más a los estudiantes con limitaciones visuales, dado que al llevar los materiales didácticos especializados y las adaptaciones al aula, además de enterarse de la existencia de ellos, también reconocían que el trabajo y en especial la representación para los
estudiantes con limitaciones visuales requería de más elementos, especialmente manipulativos, comenzando en cierta medida a reconocer sus necesidades.

Tanto docentes como pasantes observamos la potencialidad de la inclusión, pues al llevar las adaptaciones y materiales especialmente notábamos que estos elementos podían ser utilizados por los estudiantes videntes, pues en muchas ocasiones las representaciones con los materiales eran muy llamativas y permitían mejor comprensión de los objetos matemáticos tanto para estudiantes videntes como con limitaciones visuales, como ejemplo de ello podemos referimos al trabajo de las fracciones con las fichas en fomi, la representación de funciones lineales en el plano cartesiano en especial para el concepto de pendiente, los sólidos de cartón que manipularon todos los estudiantes para el reconocimiento de sus elementos.

Personalmente considero que los docentes no han asumido el reto, por su falta de abrirse a concebir la educación y la población con NEES desde otra perspectiva y esa es nuestra labor para que se pueda desarrollar la inclusión hay que reconocer la individualidad, que todos son únicos en capacidad, que tanto videntes como los chicos en condición de discapacidad visual u otras, pueden aprender y aportar, y el papel del docente es brindar un espacio óptimo donde todos tengan la oportunidad de aprender y enriquecer desde la variedad de las experiencias propias y de los demás, creando comunidades de práctica. Donde las decisiones individuales y grupales permiten que los estudiantes sin distinción reconozcan su responsabilidad tanto individual como colectiva.

Aspectos que como nueva generación de profesores debemos reconocer para que cambien las prácticas educativas en especial del área de matemáticas, más que reconocidas deben ser sentidas y vivenciadas, pues es la forma más adecuada para mostrar que los estudiantes son seres que construyen, que identifican relaciones entre las matemáticas y la realidad, que reflexiona, autoevalúa, que desarrolla la autonomía, que es protagonista de su propio proceso de aprendizaje, capaz de plantear problemas y solucionarlos a partir de la modelación, pues es un ser con capacidades para investigar, argumentar, exponer, decidir, reflexionar y validar.

Dejando atrás las concepciones tradicionales de la educación matemática, que no son suficientes ni acordes para atender las necesidades educativas tanto de los estudiantes en condición de discapacidad y los que no, por ello nuestra labor debe permitir que cambie esta
concepción que se queda en la transmisión de contenido, y pasar a otras que reconozcan el contexto en el que se desarrollan los estudiantes, sus dificultades pero también sus habilidades.

Especialmente los docentes nos reconocemos como facilitadores del aprendizaje de las matemáticas, generadores de ambientes de confianza donde los estudiantes son escuchados y retroalimentados oportunamente, desarrollando procesos de aprendizaje de los objetos matemáticos a partir de las interacciones entre ellos, el docente y el conocimiento matemático. Esto requiere ser un docente investigador de su propia práctica, innovador, autocritico, en formación permanente, crítico, que cuestiona e indaga las argumentaciones de los estudiantes, se apoya en ellas para los procesos de institucionalización.

Otro aspecto importante frente al desarrollo de la pasantía tiene que ver con la experiencia y desarrollo del trabajo de grado bajo esta modalidad puesto que fue muy satisfactorio y de gran enriquecimiento tanto académico como personal, pues amplió mi experiencia en cuanto al ámbito educativo y una perspectiva humanista, reconociendo la importancia de un currículo abierto y flexible a la diversidad de los estudiantes, en donde plantean que todos aprendan quienes son los otros y que deben incluirlos, en conjunto, en cada uno de sus elementos y hacia la sensibilidad de las diferencias, lo cual le permite derribar barreras sociales y comunicativas.

4.3 Recomendaciones

Surgimiento de pasantías donde se tenga en cuenta todos los tipos de discapacidades en diferentes instituciones o entes que ofrezcan procesos educativos, donde se brinden espacios para compartir las experiencias vividas en las diferentes instituciones, que puedan retroalimentarse entre pares y docentes que desarrollan este tipo de pasantías.

En los diferentes espacios de formación del proyecto curricular LEBEM (problemas, didáctica, contexto y práctica) se generen espacios de discusión sobre los procesos de inclusión, las herramientas y análisis frente a la transposición didáctica y materiales didácticos para el proceso de enseñanza-aprendizaje de los diferentes objetos matemáticos.

Brindar como alternativa de trabajo de grado pasantías de este tipo, en todos los proyectos o programas de formación de profesores de matemáticas, que permitan la sensibilización, la reflexión y orientación frente al trabajo en el aula con estudiantes que tienen NEES.
Se considera importante establecerle a un pasante algunos de los estudiantes de forma permanente para que pueda evidenciar los errores, dificultades y poder seguir el proceso de superación de estas dificultades, puesto que en nuestro caso varios pasantes observaron partes del proceso del estudiante con discapacidad visual.

A los estudiantes y a los docentes para que se apropien de la simbología matemática Braille, ya que se evidencia poco manejo, en cuanto al lenguaje algebraico los estudiantes posen un lenguaje sincopado para referirse a expresiones algebraicas.

Las Instituciones Educativas brinden capacitación a docentes, de tal manera que les permita reconocer las NEES de los estudiantes, sensibilizarse, comprender y contribuir a la inclusión en las aulas y ofrecer espacios de formación de las matemáticas para todos.

A las políticas educativas reconocer que la inclusión requiere de procesos educativos más personalizados, que son difíciles de llevar cuando se encuentran en las aulas una considerable cantidad de estudiantes. Por otro lado un mayor control a las instituciones frente al cumplimiento de las políticas educativas dirigidas a NEES, junto con esto generar mayor accesibilidad al sistema educativo de las poblaciones vulnerables.

Los docentes del área de matemáticas deben comprometerse con la transformación de las prácticas educativas tradicionales, donde la transposición didáctica tenga en cuenta las posibilidades de abordaje al objeto matemático de cada estudiante, generando en el aula comunidades de práctica que reconocen las potencialidades individuales y de sus compañeros, donde cada uno es protagonista de su propio aprendizaje. Los docentes guían y orientan los procesos de enseñanza-aprendizaje, son sensibles y reconocen la diversidad en el aula, utiliza metodologías adecuadas, se mantiene en un proceso reflexivo de su propia práctica en las diferentes fases, diseño, ejecución y evaluación de la educación matemática.
5 Bibliografía

6 Anexos

Anexo 1

Acuerdo Voluntades entre:
Licenciatura en Educación Básica con Énfasis en Matemáticas de la Universidad Distrital Francisco José de Caldas y el Colegio OEA IED
Para el desarrollo de pasantías de estudiantes de la Licenciatura en Educación Básica con Énfasis en Matemáticas

JOSÉ TORRES DUARTE coordinador del Proyecto Curricular de Licenciatura en Educación Básica con Énfasis en Matemáticas, adscrito a la Facultad de Ciencias y Educación de la Universidad Distrital Francisco José de Caldas, Institución de Educación Superior de carácter público de la ciudad de Bogotá y ESILDA TEJEDA VÁSQUEZ rectora del Colegio OEA- IED, Institución Educativa Distrital de Bogotá, se reunieron para establecer un acuerdo de voluntades que tiene como propósitos:

- Establecer y fortalecer un acuerdo de pasantía entre la Licenciatura en Educación Básica con Énfasis en Matemáticas – LEBEM- y el colegio OEA - IED, en el que estudiantes para profesor de matemáticas de LEBEM, aporten a la formación matemática de la población en condición de vulnerabilidad y de discapacidad visual del colegio OEA-IED, bajo las orientaciones de la educación matemática y la educación inclusiva.
- Formar a los estudiantes pasantes de la LEBEM, en aspectos relacionados con el apoyo a población en condición de discapacidad visual, en áreas tifológicas y estrategias curriculares y pedagógicas.
- Plantear reflexiones pedagógicas y didácticas con los pasantes, sobre el aporte de la educación matemática a la diversidad y la inclusión de la población con limitaciones visuales.
- Propender por una formación integral del profesor de matemáticas que atienda a estudiantes en condición de discapacidad visual.

Las partes reconocen que el presente Acuerdo de Voluntades se rige por el Acuerdo 029 del 2013, por el que se reglamenta el trabajo de grado para los estudiantes de pregrado de la Universidad Distrital, según el cual: "la pasantía es una modalidad de trabajo de grado que realiza el estudiante en una entidad nacional o internacional, asumiendo el carácter de práctica social, empresarial o de introducción a su quehacer profesional, mediante la elaboración de un trabajo teórico-práctico, relacionado con su área del conocimiento", en consecuencia se establece que los pasantes desarrollen un trabajo teórico-práctico, que tendrá una duración mínima de 304 horas, en un tiempo no mayor a seis (6) meses, que involucre las siguientes actividades:

- *Acompañamiento en el aula*, que consiste en el apoyo que el pasante hace a los estudiantes en condición de limitación visual en el aula de matemáticas, en el horario correspondiente a cada uno de los grados asignados, mientras el profesor titular desarrolla su clase.
- *Apoyo extraescolar*, que consiste en apoyar a la población en condición de discapacidad visual y/o vulnerable, mediante el diseño de estrategias y
actividades pedagógicas, con las que se explique, refuerce o aclare, algún tema particular tratado en clase o que sea base para la clase de matemáticas.
La institución asignará a cada pasante un número no mayor a cinco estudiantes en condición de discapacidad visual o en condición de vulnerabilidad para realizar el trabajo.
- **Adaptación de recursos**, consistente en la adecuación, adaptación, modificación de materiales y recursos didácticos para la comprensión de los objetos de la matemática escolar, necesarios tanto en el acompañamiento en el aula como en el apoyo extraescolar.

Las partes acuerdan que:

1. El informe de pasantía se elaborará en relación con los tres tipos de actividades anteriormente descritas.

2. Las responsabilidades asignadas al Proyecto Curricular LEBEM son:
 - Hacer convocatoria pública para estudiantes activos del Proyecto Curricular que hayan cursado como mínimo el 80% de los créditos.
 - Asignar un profesor del Proyecto Curricular como director de la pasantía.
 - Brindar herramientas a los pasantes para la atención a la población diversa desde espacios de formación, como electivas y prácticas pedagógicas.
 - El director de la pasantía orientará al estudiante en relación con aspectos didácticos y pedagógicos y conceptuales propios de la educación matemática.
 - El Proyecto Curricular asignará un profesor evaluador.

3. Las responsabilidades asignadas al colegio son:
 - Designar un profesional de la Institución "encargado de acompañar el desarrollo de la pasantía" y de evaluar el desempeño de los pasantes (artículo 3, parágrafo sexto del Acuerdo 029 de 2013).
 - Realizar el proceso de formación de los pasantes, que tiene que ver con la atención a los estudiantes en condición de discapacidad visual y/o en condición de vulnerabilidad.
 - Asegurar el acompañamiento, los espacios físicos y tiempos del desarrollo de la pasantía.
 - Garantizar un tiempo de 384 horas en un semestre, distribuido en dos días a la semana.
 - Asignar y garantizar la asistencia de los estudiantes del colegio a las jornadas de apoyo extraescolar.
 - Informar al director de la pasantía, de manera oportuna algún tipo de irregularidad que se presente en ésta.
 - Certificar a los pasantes el tiempo y culminación de la pasantía e informar sobre su desempeño.

4. La continuidad del presente Acuerdo de Voluntades se dará hasta en tanto algunas de las dos partes manifieste su intención de suspenderlo.

En constancia de lo anterior firman:

[Signature]

ESILDA TEJEDÁ VÁSQUEZ
C.c. 41 575 124
Rectora Colegio OEA IED

[Signature]

JOSÉ TORRES DUARTE
C.c. 79593951 e Bogotá
Coordinador LEBEM-UD
Anexo 2

14° ENCUENTRO COLOMBIANO de matemática educativa
ECME - 14

La Universidad del Atlántico a través de su Facultad de Ciencias de la Educación
y la Asociación Colombiana de Matemática Educativa - ASOCOLME

CERTIFICAN QUE

CLAUDIA PATRICIA ACOSTA PERILLA
CC. 1019628494
ASISTÓ

al 14° Encuentro Colombiano de Matemática Educativa ECME-14, realizado en la Universidad del
Atlántico (Barranquilla - Colombia) los días 9, 10 y 11 de octubre de 2013 (duración 24 horas).

JANETH DEL CARMEN TOVAR GUERRA
Decana Facultad de Ciencias de la Educación
Universidad del Atlántico

GILBERTO DE JESUS OBANDO ZAPATA
Presidente Asociación Colombiana de Matemática Educativa

Certifican que:

CLAUDIA ACOSTA

Participó en el

21° Encuentro de Geometría y sus Aplicaciones

Efectuado en Bogotá los días 19, 20 y 21 de junio de 2013

Luis Eduardo Espitia Supelano
Decano
Facultad de Ciencia y Tecnología
Universidad Pedagógica Nacional

82
XXVIII
REUNIÓN LATINOAMERICANA DE
MATEMÁTICA EDUCATIVA
Barranquilla - Colombia

El Comité Latinoamericano de Matemática Educativa y el comité organizador de RELME 28 otorgan el presente certificado a:

CLAUDIA ACOSTA

Por su participación en calidad de:

ASISTENTE

Barranquilla, del 28 de Julio al 1 de agosto de 2014

Certifican que:

Nuria Anelo

Participó en el
21º Encuentro de Geometría y sus Aplicaciones

Effectuado en Bogotá los días 19, 20 y 21 de junio de 2013

Eduardo Echeverry Noguera
Rector
Facultad de Ciencias Exactas
Universidad Pedagógica Nacional
Tabla de Contenido:

- Para la elaboración y adaptación de materiales didácticos7
- Recursos que puede utilizar ..8
- Características del material didáctico para estudiantes con limitación visual......9
- Materiales para estudiantes ciegos..10
- Materiales para estudiantes de baja visión..19

Palabras Claves: adaptación, materiales, limitación visual, estudiantes, ciegos y baja visión.

Descripción:

Carilla dirigida a la comunidad educativa, en donde se involucra la atención a los...
estudiantes con discapacidad visual, esta contiene sugerencias básicas para la elaboración o adaptación de material didáctico, incluye un listado de recursos o materiales para la elaboración y adaptación de materiales didácticos para estudiantes ciegos o para estudiantes con baja visión.

Fuentes: Ninguna referencia

Resumen:

Las orientaciones de la cartilla se plantea que no hay que utilizar materiales que ofrezcan peligro alguno, puntas afilada y es importante poder probar el material con estudiantes con limitación visual.

Además se recomienda el uso de los siguientes materiales: papel base 28, cartulina, cartón paja, acetato acrílico, tijeras papel en diferentes texturas, marcadores, silicona, rodachina, pitas, lanas, hilos de diferentes grosores, aserrín, plastilina, piedras, escarcha, telas y tablas de dibujo.

Cuando se adapta materiales se debe tener en cuenta: que sea real, tamaño proporcional, modelos tridimensionales, resistente al tacto y para las representaciones graficas elabore modelos bidimensionales.

Para alzar relieve para los estudiantes ciegos se recomienda utilizar lana o pita gruesa sobre el contorno y para fijarla con pincele se le coloca pegante, también la tabla de dibujos negativa, esta se utiliza con rodachina permitiendo alzar relieve rápidamente en figuras sencillas trabajándose al revés de la hoja, además la tabla de dibujo positiva es de superficie corrugada que regularmente es en maya se necesita crayones y papel permitiendo trabajar siempre por el derecho, las gráficas sobre puestas permite con cartón paja o cartón grueso se coloca sobre la figura y se pega sobre la hoja y es importante tener diferentes texturas del relieve como: plastilina, arcilla aserrín entre otras.

Los materiales adaptados dependen de la discapacidad del estudiante bien sea con relieve para estudiantes ciegos o con colores como Blanco- negro, amarillo- rojo y verde-azul para estudiantes de baja visión.
Para los estudiantes de baja visión se recomienda los renglones resaltados, uso de lápiz 2B, 4B o 6B, tipo de letra grande, los trazos deben ser gruesos pero no exagerados, el papel blanco y tinta negra son elementos que proporcionan mayor contrasté y visibilidad, al usar grafica escoja aquellas que no tengan mucha información visual, usar papel opaco y colores fuertes no brillantes, aumentar el tamaño de los dibujos y tratar de que las gráficas sean lo más real posible.

Conclusiones:

Esta cartilla nos permite identificar y reconocer los diferentes métodos de adecuación de material didáctico tanto para estudiantes ciegos y con baja visión, realizando unas recomendaciones de cuáles son los materiales más utilizados y los prácticos para representar lo que desea que el estudiante vea.

Observaciones sobre el documento:

El documento nos hace unas muy buenas recomendaciones, aunque ha evolucionado la manera de adaptar material en ciertas cosas, por ejemplo para alzar relieve es más práctico utilizar la pistola de silicona, endureciéndose rápidamente y queda fija casi instantáneamente.

Anexo 4

| UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS |
| PROYECTO CURRICULAR DE LICENCIATURA EN EDUCACIÓN BÁSICA |
| CON ÉNFASIS EN MATEMÁTICAS |
| FICHA DE RESUMEN ANALÍTICO DE INFORMACIÓN |

Fecha: 25 de febrero del 2015
Nº 2

Elaborado por: Claudia Patricia Acosta

Título: el maestro y el alumno con limitación visual
Tipo de Documento: páginas de reflexión con maestros de alumnos ciegos y de baja visión

Autor: Héctor Fabián Páez Osorio

Lugar: internet

Dirección: http://www.inci.gov.co/

Tabla de Contenido:

- Página de gratuidad……………………………………………………………………5
- ¡viva la diferencia! ……………………………………………………………………………9
- El amor propio ……………………………………………………………………………13
- La aceptación de la limitación visual en el estudiante ……………………………16
- Los sentimientos y las actitudes del docente ante su alumno con limitación visual ……20
- Sexualidad y educación sexual ………………………………………………………34
- Habilidades sociales ………………………………………………………………………39
- El psicólogo apoya el maestro …………………………………………………………44
- Todos somos diferentes……………………………………………………………….49

Palabras Claves: orientaciones hacia el docente, estudiantes con limitación visual y baja visión y educación.

Descripción: en este documento se realiza en gran medida una reflexión del docente en el momento de enfrentarse a estudiantes con dificultad visual, muestran unas orientaciones generarles, cuál debe ser la labor docente desde formar a esta persona, como formarla, que expectativas se tiene de esta población, sus estereotipos o perjuicios, que actitudes nos permite identificar si se está realizando bien la orientación hacia situaciones que se
presentan en la vida escolar y como sería la mejor manera de afrontar estas situaciones partiendo desde mi forma de ser como docente y ser humano.

Fuentes: hay cinco referentes teóricas las que más importantes son:

La constitución nacional (1991) sobre el derecho a la educación

Ley 115 de 1993 y los derechos reglamentados (1860 y 2082) son políticas educativas que plasman los beneficios a las personas que se encuentran en condición de discapacidad visual, entre otras limitaciones.

Resumen:

Páginas de gratuidad: en este apartado se evidencia a un maestro que tienen esta vocación desde mucho tiempo y también decidió ser psicólogo, además plantea que el la actividad humana la escuela promulga nuevas maneras de entendimiento y conocernos para tolerar y aceptarnos en nuestras diferencias.

Viva la diferencias: para el docente la clase es el principio de todo su labor permitiendo identificar la variedad de tonalidades que proyecta cada estudiante, por ello la escuela se convierte en un entorno donde se valora, se entiende, tolera y aceptan las diferencias individuales aunque se pretenda uniformas hasta los pensamiento y emociones, por ello es importante la aceptación de ser diferente y e docente debe tener en cuenta el reconocimiento y respeto ante las diferencias eliminando los prejuicios además debe estar preparado para orientarse cuando un alumno tiene problemas asociados (déficit cognitivo, autismo, etc.) y de ser necesario hay que buscar ayuda con otro profesional.

El amor propio: lo esperado es que la escuela trabaje la formación de nuevos hombres con un criterio de libertad cada día más grande, para ello es pertinente trabajar en el valor único del otro por medio del desarrollo afectivo, cabe resaltar que en los colegios hay estudiantes que carecen de autosatisfacción propia de docentes que los rotulan, es indispensable desarrollar en los estudiantes el concepto de sí mismo, esto dependerá su éxito y su felicidad personal. Por ejemplo en los niños de limitación visual es importante el autoconcepto, incluyendo el desarrollo de la autoimagen, esto es responsabilidad del
docente puesto que el estudiante sea capaz de amarse a sí mismo y a los demás fortaleciendo así la autoestima.

La aceptación con la limitación visual en el estudiante: el grado de aceptación que la persona tiene de su limitación parte de una consciencia, actitudes asumidas por los padres de familia ante la situación, por ello es indispensable apropiarse de su realidad de forma natural, libre de pesimismos a pesar de que siempre a preguntas de porqué ocurrió esta situación. Muchas de las dificultades en el aprendizaje pueden remitirse a factores emocionales y el docente debe tener en cuenta hasta qué punto afecta estas circunstancias, por ejemplo la negatividad de usar el bastón cuando se es adolescente para ello hay que fortalecer su autoestima, por ello es importante que el docente se fije en metas reales para la persona que se encuentra en condición de discapacidad visual.

Los sentimientos y las actitudes del docente ante sus alumnos con la discapacidad visual: el docente debe conocer los componentes emocionales, actitudes originales, puesto que algunos sentimientos son inconscientes y afloran a la consciencia en actitudes de rechazo, sobreprotección y exageración de la admiración, como el docente es importante descubrir qué sentimientos originan sus propias actitudes aunque generalmente son miedos por ejemplo: la lastima y la conmiseración los impedimentos los ofrece el medio y la no limitación a sí mismo, actitudes de sobreprotección el estudiante con limitación visual es inferior generado una inseguridad y dependencia, la indiferencia y el rechazo encubre el temor a lo desconocido o a lo diferente, la aceptación todo extremo es perjudicial algunos ocasionan no subvaloran sino que se exceden de admiración obstaculizando el proceso de socialización en el estudiante, la ambivalencia las exigencias del estudiante con dificultad visual, el altruismo fundamentado puede contribuir la aceptación social de la persona invidente y la aceptación honesta basada en el afecto.

Vida escolar: en la escuela se debería preparar para la vida no solo para lo académico sino contribuir a la adaptación de estrategias humanas para abordar el mundo, es indispensable que el estudiante en condición de discapacidad visual asuma su propio rol como estudiante y el docente le genera incertidumbre estas situaciones: el desarrollo cognitivo el estudiante invidente aprende como cualquier otro niño vidente siempre y cuando no tenga factores
asociados pero si cambian los ritmos de aprendizaje para todos los estudiantes, construir un autoconcepto adecuado, conocer el nivel de aceptación del estudiante con limitación visual, no eximir a los estudiantes con limitación del cumplimiento de las normas de convivencia, identificar si las relaciones son armónicas en todos los contextos educativos, respetar las decisiones de los estudiantes, generar herramientas didácticas y adecuaciones de recursos para que los estudiantes participen.

Sexualidad y educación sexual: formar a los estudiantes sobre la sexualidad que tengan orientación de toda la comunidad educativa, lograr comprender nuestro genitales, sentimientos y actitudes, por ello cabe resaltar que los niños con déficit visual también siente lo mismo que los videntes por esto es importante fortalece en los estudiantes el autoestima, herramientas conceptuales, información sobre los peligros de la sexualidad, generar la identidad de género.

Habilidades sociales: hay varias definiciones sobre que son las habilidades sociales, en el que se tienen en cuenta que las habilidades sociales son conductas que manifiestan en situaciones interpersonales, deben ser socialmente aceptadas, convirtiéndose en un mecanismo de éxito y de retroalimentación, el docente debería tener en cuenta: las relaciones intrafamiliares no adecuadas puesto que genera déficit de aprendizaje y estereotipos, hay variables de desempeño de las habilidades sociales como: grado de deficiencia visual ya que las personas que presentan resto visuales presentan factores potencialmente positivos, fomentar el trabajo en equipos.

El psicólogo apoyo del maestro: el psicólogo valora la situación para hacer la respectiva remisión al área de la salud, como docente puede apoyarse en el psicólogo para: superar miedos, prejuicios y ansiedades, obtener valoraciones relacionados al desarrollo del estudiante, identificar los rasgos de la personalidad, actitudes e intereses y de la inteligencia.

Todos somos diferentes: es reflexionar sobre los estilos de vida con el cumplimiento de la constitución con todos los derechos, en donde es necesario trabajar por una sociedad que promueva la toleración y el respecto al otro, especialmente a la diversidad a pesar que la misma educación generé segregaciones a los que se encuentran en condición de
discapacidad, para ello hay que erradicar los prejuicios, temores y apatía a los compromisos y realizar las innovaciones a los procesos educativos.

Conclusiones:

Este documento permite reflexionar sobre las prácticas educativas, en donde se generen orientaciones a los docentes de sus propias actitudes frente a la diferencia, especialmente a los estudiantes que se encuentran en condición de discapacidad visual y concientizarse frente a la profesión social que está desempeñando, puesto que las asignaturas son un pretexto para formar ante todo seres humanos con diferencias.

Observaciones sobre el documento:

Me pareció muy significativo puesto que al leerlo lo lleva a pensar que hay muchas acciones, actitudes que como docentes realizamos inconscientes y estas acciones generan impactos positivos o negativos dependiendo de la acción, además es importante reflexionar que a pesar de que somos docentes también tenemos diferentes estereotipos, prejuicios y hasta apatías frente a circunstancias de la vida en una institución educativa y es importante que uno pueda aprender a conocernse a sí mismo para cuando se esté ejerciendo la profesión se puedan corregir tanto los estudiantes como uno mismo ante la diversidad.

Anexo5

Universidad Distrital Francisco José de Caldas
Proyecto Curricular de Licenciatura en Educación Básica
Con Énfasis en Matemáticas
Ficha de Resumen Analítico de Información

<table>
<thead>
<tr>
<th>Fecha: 2 de abril de 2015</th>
<th>Nº 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaborado por:</td>
<td>Claudia Patricia Acosta</td>
</tr>
<tr>
<td>Título:</td>
<td>Matemáticas y deficiencia sensorial</td>
</tr>
</tbody>
</table>
Tabla de Contenido:

Segunda parte: didáctica de las matemáticas y deficiencia visual
Introducción ...133
Capítulo 4: Deficiencia visual y educación
4.1 Ceguera y deficiencia visual en relación con la educación137
4.1.1 El recurso a la visión ...138
4.1.2 Deficiencias visuales: clasificación ...141
4.1.3 Atención y ayudas ..145
4.2 Aspectos cognitivos diferenciales ...148
4.2.1 Deficiencia Visual y matemáticas ..148
4.2.2 El “sistema perceptivo háptico” ...150
4.2.3. El progreso de matematización ...156
4.2.3.1 Recogida de información sensible157
4.2.3.2 Elaboración del correspondiente percepto159
4.2.3.3 Abstracción matemática ..160
4.2.3.4 Incorporación al cuerpo de conocimientos estructurados160
4.2.3.5 Proceso de reificación expresiva y aplicativa161
4.3 Formación matemática y comunicación ...163
4.3.1 Los lenguajes de comportamientos físicos164
4.3.2 El “habla común” y la didáctica de la matemática166
4.3.3 El lenguaje simbólico matemático ...167
4.3.4 El lenguaje de las representaciones gráfico-geométricas169
4.3.5 Comunicación y actividad didáctica en matemática175
4.4 Alumno ciego entre otros ...177
4.4.1 Dificultades de comunicación ...177
4.4.2 Material específico ...179
4.4.3 Ubicación y desplazamiento ...181
4.4.4 Ritmo de realización de tareas ...181

Capítulo 5: El aprendizaje de la matemática por el alumno ciego
5.1 Aritmética: con los ojos cerrados ..186
5.1.1 Déficits iniciales ..187
5.1.2 Dificultades instrumentales ...189
5.1.2.1 Mediciones y estimaciones ..189
5.1.2.2 Expresión de cantidades ...192
5.1.2.3 Iniciación al cálculo aritmético ...195
5.1.3 El “triángulo de destrezas calculatorias” ...196
5.1.3.1 Cálculo mental ...198
5.1.3.2 Cálculo escrito ...204
5.1.3.3 Cálculo electrónico ...212
5.2 La matemática que entra por las manos: el dibujo213
5.2.1 Comunicación gráfico–geométrica en el aula213
5.2.2 El alumno ciego y el dibujo ...216
5.2.3 Limitaciones y adaptaciones ...220
5.2.4 Representaciones gráficas espaciales ..224
5.2.4.1 Diagramas de árbol y mapas conceptuales224
5.2.4.2 Tablas ..225
5.2.4.3 Representaciones planas de sólidos ..226
5.3 Algebra de los dedos ...227
5.3.1 Problemas básicos en la escritura algebraica braille228
5.3.2 La comunicación didáctica ...231
5.3.3 Recursos didácticos: el ordenador ..233
Capítulo 6: Un alumno ciego en el aula

6.1 La actitud de profesor ...239
6.2 Adaptaciones curriculares ..242
 6.2.1 Objetivos ..243
 6.2.2 Contenidos ...245
 6.2.3 Temporización ..249
6.3 Adaptaciones de actividades ...250
6.4 Evaluación del trabajo del alumno ciego ...255
 6.4.1 Autoevaluación ...256
 6.4.2 El “día a día” ...257
 6.4.3 Pruebas y controles ...258
6.5 Coordinación con el “profesor especialista”261
Anexo: sistema braille ...267

Palabras Claves: Estudiantes ciego y de baja visión, adaptaciones curriculares, recursos de apoyo, matemáticas.

Descripción: En el libro se observa una descripción detallada de algunos elementos que se deben tener en cuenta para conocer a la población con discapacidad visual, como lo es la clasificación clínica para que se considere con discapacidad, además las teorías pertinentes para realizar la relación de las matemáticas con respecto de la población con discapacidad visual y como una orientación como docentes cuales son las consideraciones, materiales adaptaciones y conocimientos que debe implementar en el aula para que esta población aprenda las matemáticas.

Fuentes: hay 20 citas en el documento
Modelo de K. Inde y O. Backman (1988) para realizar una clasificación funcional de patologías o etiologías de la perdida visual.
Villey (1946) y G. Révész (1950) habla del tacto de las yemas de los dedos
Hay tres autores que han realizado estudios sobre sobre las sensaciones tácticas:
Katz (1925) propone:
Las sensaciones táctiles se comprenden: las térmicas, de percepción y vibratorias las últimas se centran en la rigurosidad y textura.
La mano tiene un papel activo.
Al emplear los cinco dedos se logra mayor rapidez y garantías.

Gibson (1962, 1966) y Révész (1950) plantean los siguientes aspectos:
- Las sensaciones propioceptivas: localización de miembros y órganos.
- Los sistemas perceptivos: integrados por los receptores, vías y los centros nerviosos superiores.
- Diferencia entre tacto pasivo y tacto activo: por tacto activo la cinestesia y el tacto propiamente dicho.
- El sistema háptico debe considerarse como un procesamiento exploratorio y no como un sentido meramente perceptivo, atribuyéndole la capacidad de actitudinal de buscar información de forma selectiva.
- Capacidad de obtener información por el sistema háptico evoluciona.
- El reconocimiento háptico es propositivo, la mano no solo para entrada de la información con ella las representaciones y procesos mentales implicados.

Resumen:
Capítulo 4: deficiencia visual y educación
4.1 ceguera y deficiencia visual en relación con la educación
Se consideran personas ciegas o invidentes cuando carecen de visión, implicando la falta absoluta de la visión mientras que las personas de baja visión carecen una pérdida parcial de la visión.
Es importante un juicio oftalmológico para que los educadores puedan tener accesos y tener de base este tipo de información la cual se espera que sea actualizada y que se realicen en estos juicios de forma continua.
Se considera tener en cuenta que la población con resto visual ha ido aumentando por ello se debe tener en cuenta el progreso oftalmológico y que ayudas ópticas son pertinentes, porque con base en esto la educación implementar apoyos a los estudiantes, puesto que este tipo de problemas puede generar en algunos estudiantes el fracaso escolar.
4.1.1 el recurso a la visión

El uso del sentido de la vista en procesos de enseñanza – aprendizaje de las matemáticas en diferentes estudios aunque también son importantes la lecto-escritura en la educación matemática en donde se tienen en cuenta la implementación de las siguientes aspectos:

- Lectura de textos impresos
- Lectura de textos manuscritos a corta distancia o en el tablero.
- Lectura de expresiones simbólicas a corta distancia y en el tablero.
- Reconocimiento de representaciones a corta distancia y en el tablero.
- Trabajo en ordenadores o en pantallas.
- Observación de fenómenos, situaciones físicas y manipulación en ciertas actividades.

Para la parte escrita se debe tener en cuenta la legibilidad o de fácil comprensión y para la actividad lectora se destaca características:

a) Elementos ópticos: la lectura consiste en una interacción entre pausas y rápidos movimientos de los ojos (movimientos sacádicos). El texto se capta en las pausas intermedias que se denominan movimientos de fijación. Se explora la lectura con los ojos haciendo movimientos de derecha a izquierda denominada “regresión”, al cambiar de línea se realiza un movimiento de retorno, todos estos movimientos los hace los ojos no la cabeza, por ejemplo, un niño que tiene dislexia se multiplica el número de movimientos sacádicos y la duración de tiempo de fijación.

b) Habilidades específicas: para desarrollar la lectura son:

1. Discriminativas: facilita la identificación y discriminación visual y auditiva del contenido por medio de: letras por su forma, dirección y tipografía, palabras por la percepción de la forma globalizada, colores de fondo y discriminación auditiva.

2. Habilidades de reconocimiento de palabras (formas gráficas): corresponde con lo que se observa con lo que se escucha sobre una determinada representación.

3. Habilidades semánticas: percepción de las palabras, solo cuando las palabras tienen un significado para el lector para obtener los significados se tienen en cuenta: el vocabulario el cual permite reconocer las palabras para contextualizarlas, estructurarlas y el diccionario para tener el contexto
conocimiento de los términos.
4. Integración audiovisual: incapaz de integrar información inter-sensorial aunque el niño aprende a discriminar.
5. Organización espacio – temporal: percepción de relaciones espaciales en signos gráficos y producirlos bajo la forma de una sucesión temporal.
6. Posible predominio cerebral y lateralidad: los estudiantes con deficiencia visual tienen dificultades en la lectoescritura por los patrones de movimientos oculares.

4.1.2 deficiencias visuales: clasificación

A. Personas con “escotoma central”: es un área de percepción lumínica nula o disminución dentro del campo visual normal o relativamente normal. Hay dos tipos fundamentales unos son los positivos los que impiden que la luz entre al ojo y los otros son los negativos que son lesiones en la retina generando un vacío visual, estos a su vez se derivan en relativos que ven las cosas difuminadas, cambian los matices de los colores y los absolutos en donde no hay imagen, el cerebro lo compensa con las imágenes más cercanas (el fondo). Generalmente los estudiantes necesitan ayudas ópticas con bastante aumento para poder ayudar a esta afectación.

B. Personas con “nistagmus”: puede ser definido como un movimiento oscilatorio involuntario rítmico y con amplitud casi siempre constante, por ello estas personas tienen incapacidad de fijar adecuadamente y voluntariamente, el ojo afecto a la lectura y el análisis de dibujos.

C. Personas con pérdida de “visión periférica”: tienen limitado su campo de fijación solo pueden captar unas pocas letras o símbolos, siempre y cuando no esté afectada la mácula puesto que permite distancia del trabajo normal. Si esto no ocurriera se necesitaría ayudas ópticas, deben tener un argumento y mayor campo visual.

D. Personas con miopía magna: tienen la facilidad en la visión cercana de los miopes al tratar de enfocar objetos cercanos y ser la miopía un exceso de refracción aunque en ciertas ocasiones se podría enfocar perfectamente, por ello la lectura es fluida a corta distancia cuando no hay problemas en la retina, con el tiempo puede afectar la retina provocando la disminución de la agudeza visual generando el uso del microscopios.
E. Personas con “hemianopsia”: es ceguera en una mitad del campo visual que puede ubicarse en diferentes zonas dependiente del caso de la persona.

F. Personas con otras deficiencias visuales sin problemas de campo: como cataratas congénitas, albinismo, etc. generalmente se necesitarán aumentos según su agudeza visual y la distancia del trabajo.

4.1.3 **Atención y ayudas**

Realizar las valoraciones funcionales de la visión y con ello permite prescribir las ayudas pertinentes por ello se considera oportuno tener en cuenta las siguientes aspectos:

1. Evaluación oftalmológica.
2. Examinaciones por los ópticos.
3. Valoración funcional: como la agudeza visual, test, texturas, etc.
4. Programas de estimación visual: valoración de la edad mental.
5. Ayudas ópticas: como gafas o lupas con aumento.
6. Otras recomendaciones: condiciones de las actividades académicas como el material en el aula.

Recomendaciones

El estudiante de baja visión debería utilizar su resto visual a menos que el médico lo prohíba, mejorar la postura o movimientos inadecuados de ojos o cabeza al realizar actividades de escritura, lectura o dibujo.

4.2 Aspectos cognitivos diferenciales

4.2.1 deficiencia visual y matemáticas

Hay varios estudios en los cuales permiten tener dos hipótesis una de ellas es que no hay ámbito o dominio de las matemáticas vedado para un ciego, pero esto no quiere decir que todo los ciegos tengan esta capacidad para entender las matemáticas, por ello se habla de una didáctica especial de las matemáticas para ciego además de ello no hay que ignorar las dificultades de orden material y técnico mejorando el ritmo de trabajo y el rendimiento académico otra de las hipótesis es que el proceso de desarrollo psicológico del niño ciego padece de un retraso medio cerca de dos años de referencia a la adquisición de experiencias lógico-matemáticas, este se va disminuyendo hasta neutralizarse a la edad de 12 a 14 años de edad. Por otra parte se tiene en cuenta la importancia de que el docente realice estimulaciones en experiencias de manipulación y de representación a las
relaciones entre la experiencia y el correlato lingüístico.
Se va a entender por correlato lingüístico a los comportamientos globales de la población sometida a la experiencia con intención de análisis referente a un objeto, la realidad matemática, su percepción, comprensión y expresión.

4.2.2 El “sistema perceptivo háptico”
En la percepción de las formas, dimensionales y texturas de cuerpos exentos como de patrones realizados y el braille interviene, es algo más que el tacto de las yemas de los dedos es el conjunto de procedimientos exploratorios empleando “el arte de palpar”.
Hay diferentes formas de explorar: pellizcos, asir, deslizar el dedo por encima de una superficie, extender y trazar o seguir con el dedo al borde del objeto, por ello es importante la diferencia entre la localización e identificación: por la primera son espacios ordinarios tomando como referencia el cuerpo y en cuanto a la segunda se da por medio de análisis de la posición relativa de los puntos de la piel estimulada.
Por otra parte se establecen tres tipos de movimiento como los manuales para la percepción Háptica globalizadora: a) encerramiento todo el objeto entre las manos, b) encerramiento parcial y c) seguimiento de contornos del objeto.

4.2.3 El proceso de matematización
Existen acuerdos generales en la matemática abstracta que pueden ser expresados y representados mediante un lenguaje propio el lenguaje matemático o simbólico-matemático y gozan de unas relaciones. La matemática nace de la realidad física propiamente dicha, es decir lo matemática está en lo físico y lo abstraemos mediante un proceso espacial.
Se concibe la matemática como abstracción de lo concreto, preferiblemente de lo concreto físico y próximo, de lo cotidiano, mediante un proceso peculiar, por ello las abstracciones no se enseñan: las obtiene el propio sujeto, ejerciendo esa forma específica de conocimiento, además este proceso se lleva a cabo por la manipulación de lo concreto.
Para el proceso de matematización se distinguen etapas o estadios que se producen en la cognición matemática a bajo nivel para un contenido determinado:

1. Recogida de la información sensible.
2. Elaboración del correspondiente percepto.
3. Procesos de matematización abstractiva.
4. Integración de nuevos contenidos y matemáticos.
5. Procesos de reificación expresiva y aplicativa.

4.2.3.1 Recogida de información sensible

Este estadio se halla fuertemente condicionado por la vía sensorial receptora de la información. Un mensaje matemático puede representarse o trasmitirse bajo diferentes ropajes sensibles: visuales, audibles, háptico, capaz de estimular los correspondientes receptores sensoriales. Dicha comunicación depende de: la claridad y precisión del mensaje matemático que se desea trasmitir, la claridad sensible de los mensajes y la correcta aplicación sensorial a la recepción del mensaje en relación con aspectos estimulativos.

Por defecto o exceso, puede arruinar la comunicación generando un error en el receptor, será necesaria una exploración consciente para recoger la estimulación completamente y garantizar que ha sido así.

El estudiante ciego tiene tres vías sensoriales: la audición, la sensibilidad táctil y las sensaciones cestésicas, aprovechándose mejor. Es importante tener claro que no hay un valor de suplencia ni de sustitución de unas vías por otras, por ejemplo: el tacto es incapaz de percibir el color, como la vista o el oído la dureza pero la práctica desarrolla destrezas exploratorias y a un aprovechamiento exhaustivo de los recursos disponibles (saber tocar y saber mirar).

La información de tipo háptico exige a sí mismo una exploración en búsqueda de estímulos diferenciadores, provocando propiamente de los estímulos y actuación en paralelo de receptores cutáneos y cinestésicos aunque en lo posible la información mediante mensajes hápticos de muy diversos tipos, buena muestra de ello es el sistema braille y las representaciones gráficas. Así la deficiencia visual en cualquier grado, implica además de la adecuación de los aspectos físicos del mensaje a las características perceptivas, el ejercicio por el receptor de una serie de destrezas que deben haber sido adquiridas de ante mano.

4.2.3.2 Elaboración del correspondiente percepto

Complementa la estimulación provocada por el mensaje es sus aspectos físicos, se genera el percepto o producto. Donde se observa por nuestra parte: vía sensorial estimulada, existe discrepancia en la especificidad de este percepto para las sensaciones visuales o
hápticas, identificar en la práctica este producto perceptivo con el producto abstractivo y la
temporalidad afecto los estímulos que lo integran el perceptor.
Esta información temporal se desprecia atencionalmente por acto voluntario o reflejo, en el
momento de completación de puzzle que es el perceptor o constructo, puede aplicarse a
perceptos complejos, casos de perceptos hápticos extensos patrones realizados e imágenes
visuales, composición de otras fragmentarias por campos visuales reducidos.

4.2.3.3 Abstracciones matemáticas
Inasequible al control directo: solo apreciable por introspección, dado el carácter
inmaterial del objeto abstraído o indirectamente, a través de identificaciones, en presencia
del perceptor a partir del cual se genera al extraerse es independiente de la vía sensorial,
pero estas tesis reducen lo abstracto a meras simplificaciones de perceptos, ya sea de sus
elementos y de las relaciones de configuración.

4.2.3.4. Incorporación al cuerpo de conocimientos estructurados
Es independiente a la vía sensorial, precisa por tanto de espacios de memoria que permitan
la combinación y comparación, es imposible pensar sin lenguaje, no se puede pensar sin
imágenes, sin confundir el pensamiento y lenguaje como no se debe confundir pensar e
imaginar.
Un mismo contenido matemático es susceptible de presentación bajo diferentes formas de
lenguaje, es evidente entonces que: la integración del nuevo objeto se facilita si las
expresiones a comparar o combinar se adecua al lenguaje en el perceptor y la integración
del nuevo objeto se facilita la traducción del perceptor que le comporta a lenguajes en los
que se manifiesten mayor representativa y combinatoria.

4.2.3.5 Procesos de reificación expresiva y aplicativa
Mediante las cuales y en forma de imágenes o percepto se posibilita:
 a) La actuación atencional de perceptos para su comparación, evocados o con
 persistencia de la estimulación sensible generante: es el proceso seguido en la
 actividad aplicativa o de reconocimiento de contenidos matemáticos en situaciones
 problema.
 b) La producción de constructos complejos a partir de otros simples o al menos más
 simple en una operación de síntesis controlada.
 c) La extracción de constructos simples de otros más complejos con relación a ellos
en una operación de análisis: posibilitan que la información y productos mentales sean almacenadas en forma elemental concretamente para la lengua ordinaria, entendiendodo que estos elementos de información de carácter conceptual.

d) La conversión en acciones exteriorizables por vía eferente: fonética, de expresión corporal, de grafa escrita, gráfica-geométrica, gestual, etc.

Si se culmina el proceso de exteriorización se obtienen “formas de lenguaje” de comunicación interpersonal, se deducen de inmediato dos importantes conclusiones: la primera es la conveniencia de cultivar la actividad expresiva en las diferentes formas de lenguaje y la segunda es la conveniencia de disponer de diferentes versiones expresivas para un mismo contenido matemático.

Esta práctica incluye los ejercicios de traducción, la proliferación de ejemplos y reificaciones relativos a un concepto, resolución y creación de situaciones problemáticas más que puros ejercicios, actividades de búsqueda de correlatos reales (fotografías, collages, etc.)

Al plantearnos las características de los lenguajes en la matemática y los modos expresivos del alumno ciego y deficiencia visual, al no poder contrastar sus acciones manipulativas puras o representativas con las que se vayan efectuando en el aula y el profesor le preste una atención más personalizada.

4.3 formación matemática y comunicación

Un objeto matemático esta primariamente en la realidad física, de ahí se extrae una vez por alguien y se enseñan a otros a hacerlo, pero también está en una expresión de habla común (oral o escrita) como en una expresión simbólica- matemático o gráfico- geométrico como la materia sustenta la forma.

El concepto de sistemas de signos que sirven para comunicar y expresar ideas, en este sentido podemos distinguir para la matemática:

a) El lenguaje de comportamientos físicos que encubren realidades matemáticas.

b) El lenguaje gestual y de signos corporales.

c) La expresión oral o escrita en “habla común” de conceptos y referencias.

d) El lenguaje de las representaciones gráfico- geométricas bidimensionales.

e) El lenguaje escrito y también verbalizable propiamente simbólico matemático.

Todos ellos responden a nuestros requisitos: colección de signos sensibles, portadores de
ideas (matemáticas), con valor comunicativo interpersonal y merced a convenios previos. Veamos el papel que cada uno de estos lenguajes pueden jugar en didáctica de las matemáticas y en qué medida la deficiencia visual puede condicionar su empleo eficaz.

4.3.1 **Los lenguajes de conocimientos físicos.**

Ciertos gestos y signos corporales en conexión con el discurso matemático, en situaciones u ordenaciones físicas que pueden ser interpretadas como expresivos de contenidos matemáticos, destacamos las expresiones lingüísticas clasificables de lengua hablada o escrita, lenguajes simbólico – matemático en sentido estricto y las representaciones bidimensional del lenguaje gráfico – geométrico.

Se discute si realmente se trata de un lenguaje ciertamente sus signos, naturales o artificiales son ilimitados, su morfología y su sintaxis por tanto difícilmente delimitable. El lenguaje lingüístico es un comportamiento o serie de comportamientos físicos “es síntoma como de expresión del hablante, es decir, en cuanto manifiesta algo acerca de quien lo produce. Si el mensaje es provocado por un material integrante de una situación de partida de enseñanza –aprendizaje la intención comunicativa es clara por parte del profesor o autor, al receptor o espectador corresponderá desviarlo de las circunstancias y estímulos de la situación por medio de la manipulación o preparación por ejemplo en los materiales: bloques lógicos, geoplano, tablero de Galton, formulas y construcciones geométricas, etc. El espectador o receptor descubre un contenido o realidad matemática en un comportamiento físico sin aparente intención o intervención previa de un agente conocido. Estas formas de comunicación pueden ser insuficientes, carece de conectores lógicos y gramaticales equivocadas, etc. Pretende poner de manifiesto la semántica pragmática, formuladas en habla común actuando este como metalenguaje, afectando el contexto delimitando el dominio del significado y estableciéndose pautas de interpretación para los posibles mensajes. La mayoría de mensajes son visual pero es frecuente que coopere la vía háptica si es posible el acceso directo del receptor al emisor, al trabajar con alumnos de deficiencia visual se impone la necesidad de asegurar la recepción de los mensajes, garantizando una correcta aplicación de este, sino se produce una traducción a formas hápticas o descripción verbal.
4.3.2 El “habla común” y la didáctica de las matemáticas

El acto didáctico el habla común es la lengua franca, el vehículo ordinario de comunicación profesor-alumno, alumno-profesor, y alumno-alumno, con él se restringen significados, se establecen definiciones de términos y valores de símbolos, se esclarecen relaciones, etc.

Se acuden a metáforas que persiguen un triple fin: abrir horizontes a la actividad matemática, establece por modo de analogías como el sentido de los conceptos y relaciones matemáticos, introducir elementos motivacionales de variedad y color semántico. Además la independencia de las condiciones de transmisión, la claridad del mensaje puede estar afectada por la precisión de los términos empleados, la corrección sintáctica o incluso por la adecuación de imágenes que despierta.

4.3.3 El lenguaje simbólico – matemático

Al hablar del lenguaje simbólico – matemático debería incluirse la escritura numérica, pero aquí entendemos por tal la lectoescritura de expresiones algebraicas, por cuanto a la numeración forma parte habitual de la lengua natural, cualquier afirmación que la matemática es una ciencia de símbolos, en cuanto al lenguaje simbólico es el propio de las matemáticas, es preferible que la afirmación de que el lenguaje simbólico ha facilitado su unificación convenida, la intercomunicación entre los matemáticos de todas las lenguas y que por ello ha favorecido el desarrollo de nuestra ciencia.

Su crecimiento es permanente dando el carácter de lengua viva al igual que el lenguaje gráfico –geométrico, toda la matemática puede expresarse en braille, pero la representación es diversa contrariamente a como ocurre con la formulación de tinta y en cuanto al braille de Madrid se ha llegado a una notación científica matemática coherente completa y de rasgos sencillos desde el punto de vista matemático y braille.

Los problemas de comunicación para el alumno ciego serán numerosos, no estriban solamente en la dificultad intrínseca a la notación científica braille, los textos y el instrumento de escritura en la sesión de clase se estará sirviendo de un lenguaje completamente diferente a la versión utilizada por profesor y compañeros quedando prácticamente vedada la comunicación directa, dándose la necesidad de una traducción permanente al habla común en forma oral que para ser metalenguaje a lengua franca.

4.3.4 Lenguaje de las representaciones gráfico –geométricas
Puede hacerse matemática empléndola fundamentalmente esquemas y dibujos, tal vez la aceptaran para el ámbito geométrico, sin embargo la matemática es la artística ciencia de los esquemas, son pocos los que aceptan el valor matemático del lenguaje gráfico – geométrico, si no se reduce a los aspectos relacionados directa o indirectamente con la geometría.

Defendemos el lenguaje de las representaciones gráfico – geométricas como el propio de la didáctica de las matemáticas y esto a pesar de su bajo nivel de desarrollo, escases de términos, estructura poco esclarecida y limitada aceptación entre los matemáticos profesionales.

La geometría como esquematización primera abstracción de la realidad física, lleva la mejor parte puesto que la realidad se restringiría a formas o aspectos de cuerpos y edificios o terrenos, posiciones y movimientos, en suma de lo directamente observable, estática y dinámicamente.

A través de la historia de las matemáticas hay nuevos convencionalismos, permitiendo en su visualización hacer más fácilmente comprensible realidades matemáticas abstractas expresivas de relaciones entre magnitudes, mensurables de cualquier tipo, mediando la formulación algebraica se convierte una representación, asequible a muchos, de lo abstracto y difícil para casi todos. La representación gráfico- geométrico en matemática ha ido adquiriendo y profundizando los rasgos de lo que llamamos lenguaje con todas sus consecuencias, mientras que en cuanto a los signos del lenguaje no aparecieron como hemos visto de forma espontánea, universal, simultánea y repentina, además son fruto de convenciones, inventadas y propuestas por alguien en un momento determinado y aceptadas después paulatina o rápidamente por otros.

El signo es un instrumento que está por una idea, un concepto por los cuales el signo mismo no coincide, un instrumento que evoca en particular un concepto en virtud de una convención y de acuerdo con una tradición determinada.

Al hablar de lenguaje gráfico – geométrico superamos la pura expresión plana de los conceptos geométricos, aunque sea en sentido amplio, donde se resalta el lenguaje como el sistema convencional de símbolos, empleando el calificativo gráfico-geométrico para distinguirlo explícitamente del lenguaje ordinario y del simbólico - matemático escritos. Como lenguaje cuenta con elementos morfológicos como: puntos, líneas,
superficies, segmentos, flechas, etc. Sus funciones y sintaxis: posición, orientaciones. Sus polisemias y sinonimia: sus elipses y redundancias, además es el puente entre la realidad física y la abstracta, entre el mundo físico y el matemático por ello es imprescindible su traducción a formas hápticas, la cenestésica guiada por el tacto y referida al esquema corporal.

4.3.5 Comunicación y actividad didáctica en matemática

Se distinguen canales o corrientes de comunicación: profesor –alumno y su reciproco, alumno –alumno y realidad-alumno, se prima el canal del profesor –alumno y puede incluso restringirse a un solo lenguaje, el símbolo: tableros repletos de fórmulas, y que pasa entonces con el alumno ciego si la forma expresiva por parte del profesor es solo la escrita, dando origen a la reducción de la comunicación a menos que disponga de una traducción o forma oral, sea porque el profesor lee en voz alta lo que va escribiendo o sea porque los compañeros lo hagan por él.

Por otro lado si se realiza una actividad por equipos de trabajo, los alumnos discuten entre si la resolución de problemas, intentando formular expresivas en lenguaje oral, escrito, gráfico, simbólico – matemático, manipulación del material, entre otros, con ello el estudiante ciego tiene la posibilidad permanente de asegurar una comunicación veraz, solicitando cuantas aclaraciones o precisiones que estime oportunas, adaptando el ritmo del grupo a las necesidades de cada uno de sus miembros.

En la conformación de equipos es importante no jugar a la integración social o servirse de trabajo de aula para vencer resistencias en la aceptación personal, es mejor que se funden en la naturalidad y la aceptación mutua de todos los integrantes.

Salvo le expresión oral del profesor, las restantes serán más dificultosas para el deficiente visual, requiriendo empleo de ayudas y mayor tiempo de exploración, estarán vedadas al alumno ciego requiriendo una traducción verbal o háptica.

4.4 Un alumno ciego entre otros

4.4.1 Dificultades de comunicación

Alcanzarán a todas las formas de lenguaje, tanto en la clase de matemática como en cualquier momento de la vida aunque en grado diverso:

- Lenguaje natural o habla común en forma oral: no se hallara dificultad alguna para entender y expresarse en forma oral, sin embargo puede faltarle en un momento
dado los referentes que impidan dar significado a ciertos índices.

- **Lengua natural en forma escrita:** el alumno con resto visual podrá servirse ordinariamente de él para leer textos impresos y escribir por sí mismo, para los textos escritos en el tablero, en cuanto al alumno ciego total se servirá ordinariamente del sistema braille, generalmente más lento, escritos voluminosos, máquinas de escribir algo ruidosa, reclamo en un primer momento para la curiosidad de los compañeros y elementos permanente de distracción.

- **Lenguaje simbólico –matemático:** con la dificultad general que deriva de la especificidad y exigencia de precisión que le son características.

- **Lenguaje gráfico-geométrico:** la comunicación se facilita, en términos generales y paradójicamente las dificultades las presenta el alumno ciego total, al intentar traducir o describir las figuras y situaciones gráficas desde este lenguaje en forma visual o la oral sin más que reproducirse en relieve.

- **Lenguaje gestual y actitudinal:** la situación de forma geométrica o comportamientos funcionales, la mirada inquisitiva o encauzada en la atención general, los alumnos ciegos y deficiencia visual se encuentran disminuidos para estas formas de comunicación con incapacidad plena para recibir y para emitirlos.

- **Lenguaje de comportamientos o estados físicos:** como formas físicas, sombras, perfiles e imágenes especulares, trayectorias, entre otras, además repercute por ser estáticas, dinámicas o cambiantes con el paso del tiempo.

4.4.2 Material específico

Centrándose en la las de matemática se agrupan estos medios en cinco tipos:

- **Material/instrumental de lectura:** las ayudas ópticas como: atril o mesa de tablero abatible, flexo, gafas especiales, lupas o telelupas, telescopios o catalejo, etc. De alguna otra forma empleará textos en sistema braille que son voluminosos, de incomodo trasporte, con escasos recursos gráficos que requiere de mucha sustentación y lectura.

- **Instrumental de escritura:** no se diferencia esencialmente del que emplea un alumno vidente esto es para los de dificultades visuales, pero para nos alumnos ciegos total escribirán en sistema braille, sirviéndose de una máquina perkins o análoga, en matemáticas no serán útiles ni las regletas braille ni el braille hablado,
procesador de textos portátil, con teclado braille y display parlante.

- Instrumental de dibujo: el que empleará el alumno con resto visual aprovechable será análogo al ordinario, mientras que si carece de resto visual deberá empeñar instrumental especial.

- Instrumental de cálculo: para el cálculo aritmético (calculadoras) y algebraico o analítico (ordenadores y calculadoras programables), entre las calculadoras se encuentra con la calculadora parlante o con display braille y los ordenadores como: braille hablado, infovox, etc.

- Material pedagógico auxiliar: es decir generador de situaciones didácticas, puntos de partida para procesos de matematización.

4.4.3 Ubicación y desplazamiento

Si es necesario el alumno ciego disponer de otra mesa o pupitre auxiliar, si tiene resto visuales no olvidemos la conveniencia del tablero abatible, en todo caso la ubicación debe facilitar el acceso del profesor para eventuales consultas o supervisiones, cuando se realicen actividades en grupo es importante la facilidad de movilidad en el aula para el intercambio de trabajos, documentos, material, conviene tener presente que el alumno deficiente visual estará ligado a su mesa de trabajo aunque es importante que con naturalidad en el trato y participación investiguen escribiendo o dibujando para todos, deberá ayudarle un compañero con el que se encuentre compenetrado que haga las veces de escribiente al dictado.

4.4.4 Ritmo de realización de tareas

Consideraciones de llamadas de atención acerca de la lentitud relativa de trabajo de un alumno deficiente visual, hay cierto factores modificable ya sean de carácter externo, actitudinal del alumno o consecuencias curriculares anterior, inciden en el proceso mitigando o endureciendo aquellas.

Factores que inciden en el ritmo de trabajo en alumnos deficiencia visual:

- con resto de visión y sin resto visual:
 - Tipos de ayudas ópticas a utilizar.
 - Características del resto visual y movimientos de exploración.
 - Probable complejidad de receptos.
 - Lentitud de esfuerzos exploración/perceptos
En tanto es como decir que las circunstancias ambientales y tipo de tarea repercuten en el ritmo de trabajo del alumno y su rendimiento, con independencia de que parezca o no una tal deficiencia. Las consecuencias y sugerencias son numerosas por ejemplo:

- Evaluación de los medios empleados con posible sustitución o modificación.
- Evaluación inicial del estado de adquisición y desarrollo de las destrezas empleadas.
- Control del ritmo de realización de las tareas.
- Organización de actividades y adecuación del ritmo del grupo.
- Previsión del tiempo suplementario para tareas evaluatorias.

5 El aprendizaje de las matemáticas por el alumno ciego

En la educación se interesa mucho más el proceso que por el producto mismo objeto de la actividad didáctica, por ello el enseñar o aprender la matemática es intervenir en los procesos de matematización: participar activamente en el descubrimiento y construcción matemáticos, además hay que saber manejarlos oportuna y diestramente para uno mismo.

5.1 Aritmética: con los ojos cerrados

Hace referencia a los dominios numéricos y sus operaciones: cuantificar aquellos aspectos de la realidad que permitan interpretarla mejor, utilizando técnicas de recogida de datos: instrumentos de medida, clases de números y realización de cálculos.

Se concretan tres aspectos básicos de la matemática:

- Extracción de una dimensión de la realidad, matematización o más medición.
- Expresión numérica, aritmetización.
- Manipulación abstracta y/o simbólica, calculo aritmético.

Para distinguir las dificultades de los alumnos ciegos o deficiencia visual se distinguen dos momentos: déficits iniciales inherentes a una cobertura insuficiente de los objetivos propuestos en la escuela primaria y las dificultades motivadas por su visión deficiente en relación con las actividades a desarrollar en esta etapa.

5.1.1 Déficits iniciales

Las insuficiencias iniciales abarcan dos grandes grupos: el primero es el déficit en el orden conceptual en las que se destaca: no se discrimina que operación aplica en una
situación concretas, vaciado de significado real de los elementos o de los productos figúrales o intermedios de una operación, dificultades graves para generar o expresar situaciones concretas que respondan a datos o situaciones numéricas abstractas y la confusión de unidades de medida, su homogeneidad y adecuación y en el segundo son los déficits en el orden procedimental y manipulativo como: deficiencia en la representación numérica, insuficiencia dominio de rudimentos del cálculo mental, falta de destreza en el manejo de los útiles especiales de escritura o cálculo, incorrecta aplicación de los algoritmos elementales, desconocimientos en el uso de instrumentos básicos y graves errores en el cálculo estimativo de magnitudes.

El origen puede ser diversos como: práctica escasa, insuficiencia contraste entre los propios productos y textos escritos y evaluación incorrecta.

5.1.2 Dificultades instrumentales

Distinguiremos dos grupos empleados por el alumno ciego o deficiencia visual en relación con la aritmética y sus aplicaciones: instrumento de medida, útiles de escritura y representación, instrumental de cálculo.

5.1.2.1 Mediación y estimaciones

Los siguientes materiales son fáciles de conseguir o se pueden adaptar: cintas métricas, reglas, cintas métricas de dimensiones superiores (decámetros), medidas de capacidad, balanzas, cronómetros y medición de ángulos, además ahí instrumentos de precisión adaptados al uso de los ciegos con los que se puede lograr mediciones de gran aproximación como de tornillos micrométricos, calibradores, entre otros.

Para la utilización de estos instrumentos es importante tener habilidades y conocimientos de cómo utilizarlos, hay que aprender a utilizar estos materiales, además el docente debe estar en la capacidad implementar estos recurso en el aula sin ser un obstáculo el alumno con deficiencia visual y debe tener en cuenta diferentes situaciones que permitan la comprensión de estos conceptos sin necesariamente utilizar estos recursos pero que si logren desarrollar conocimientos de medida y estimación.

5.1.2.2 Expresión de cantidades

El sistema braille permite la expresión escrita de cualquier género de cantidad matemática (entero, decimal, fracción, entre otros) y de unidades previstas en el S.I (sistema internacional) o de sus múltiplos o submúltiplos en el sistema métrico decimal con sus
símbolos y formulas en correspondencia con la representación ordinaria en tinta.

5.1.2.3 Iniciación al cálculo aritmético
En cualquier campo hay que distinguir dos estadios o momentos bien distintos: introducción a las operaciones y practica automatizada de aplicación en situaciones problema, para ello se encuentran materiales pedagógicos para la introducción de las operaciones matemáticas por ejemplo los bloques lógico, números de colores de Gateño, entre otros y los instrumentos de cálculo desde la representación grafico – simbólica hasta la calculadora electrónica y el ábaco japonés.

Es importante la ampliación a otros campos numéricos desarrollando de estrategias operativas y empleo de útiles de cálculo y sobre todo la aplicación a situaciones mucho más complejas que exijan estrategias cognitivas múltiples y variadas.

5.1.3 El “triángulo de destrezas calculatorias”
La aplicación definitiva del cálculo en situaciones problema se realiza por tres vías no excluyentes: el cálculo mental, cálculo escrito y empleo de la calculadora. El dominio del cálculo la escritura permite la conservación de resultados y buena parte de los procesos, con posibilidad de localizar y corregir errores, obtener reglas y automatismos estrechamente ligados a la representación gráfico –simbólica, además se revistió de una potencia realmente con la escritura posicional de cantidades y con el cálculo mental puesto que es el soporte del cálculo escrito.

5.1.3.1 Cálculo mental
El cálculo mental parece haber perdido puntos en la escala didáctica, pero el cálculo mental es fundamento para el cálculo escrito y auxiliar del cálculo por calculadora, algunas motivaciones más evidentes por ello aceptadas y eficaces: cotidianidad, empleo interdisciplinar, valor instrumental en la ciencia físico –matemática, manifestación de aspectos instrumentales algebraicos, desarrollo de la memoria inmediata, desarrollo de la capacidad de concentración, desarrollo de la atención y agilidad mental, prestigio social y autosatisfacción.

El cálculo mental es una motivación en sí mismo útil para recabar la atención predisponer al esfuerzo de matematización, regalo para el caminante fatigado de lo absurdo y abstracto. Para los alumnos ciegos parecen tener cierta propensión al cálculo mental, cuentan con una facilidad general para la actividad representativa interior y la comunicación verbal, por
efecto de la práctica caso perfectamente fruto de la necesidad o exceso educativo y frecuentemente muestran gusto por el cálculo mental y habilidades superiores a la de sus iguales en edad o nivel.

Con la mirada puesta en su objetivo: rapidez, exactitud y seguridad, además es importante ir subiendo la escala de dificultad en: operaciones, campos numéricos, tamaños de las operaciones.

5.1.3.2 Cálculo escrito
En la enseñanza de ciegos, la mayoría de esfuerzos se han orientado hacia la producción de instrumentos de cálculo, la escritura decimal en tinta posee potencialidades relacionadas directamente con estos objetivos: reductibilidad a cálculos elementales según técnicas o algoritmos, posibilidad de comprobación y posibilidad de rectificación esto no ocurre en el sistema braille puesto que se señala por: relativa juventud del braille, características del instrumental de escritura y la perfección o inadecuación de los instrumentos disponibles.

Se ha intentado reproducir la forma de cálculo escrito mediante dispositivos varios que han merecido el calificativo de instrumental del cálculo para ciegos: caja de aritmética, cubaritmo, taylor, ábaco japonés, tinkunako y dattiloritmica.

El cálculo escrito es una manipulación simbólica aunque en su nivel más bajo tiene un correlato real físico, los algoritmos y las reglas se alejan de ser situaciones física para convertirse en una gráfico – simbólico con vacíos de sentido significativo, por ello se le dan dos usos a la representación escrita en cálculo: plasmación de cantidades (términos, operaciones indicadas y resultados) y ejecución de operaciones propiamente dicha, estas a su vez corresponden a dos formas de expresión escrita en la matemática: escritura en línea y escritura bidimensional.

Para los estudiantes ciego para realizar la escritura pueden utilizar el instrumento de punto positivo, para ello necesita la escritura braille y tener destrezas previas como: capacidad de reconocer con fluidez los signos braille, adecuada orientación espacial en los textos braille, destreza en la escritura lineal en maquina en braille y destreza en la reubicación adecuada de la cabeza de impresión de la máquina. Además para representar el braille en el cálculo se adoptan criterios locales aunque no están aceptados universalmente como: seguir el código matemático unificado para la lengua castellana, en la escritura bidimensional de operaciones se presiden de signo de número, punto separador de grupos de cifras,
indicador braille de periodo decimal, signos de operación y trazos de separación entre términos.

5.1.3.3 Cálculo electrónico

En el mercado existen dos tipos fundamentales de calculadoras adaptadas al ciego: la calculadora con display braille y la calculadora parlante. El braille hablado incorpora una calculadora aritmética dotado con seis memorias y hasta doce dígitos de aproximación y para las indicaciones de uso didáctico serían semejantes a las aplicaciones con alumnos videntes, tal vez con mayor lentitud de manejo según las habilidades manipulativas personales.

5.2 La matemática que entra por las manos: el dibujo

5.2.1 Comunicación gráfico – geométrica en el aula

En el afán analítico se pueden distinguir aspecto sin número como: la regularidad, intensidad y firmeza del trazo, sus dimensiones, su color, contraste entre otras. Con ello permite decir que el acto lingüístico es por su naturaleza acto eminentemente individual vinculado socialmente por su misma finalidad que es la de decir a otros algo acerca de algo.

La naturalidad, claridad o diafanidad expresiva son cualidades extrínsecas convenientes sin duda a la finalidad comunicativa o didáctica pero fruto del convenio esencial del lenguaje, como el dibujo, la representación gráfica ya no es lo que se ve o lo que parece a cualquiera hay que convenir que quiere significar, a qué clase de objetivos se están refiriendo, así es la comunicación dinámica por instantáneo o parcial que se nos antoje un mensaje está en el tiempo, es preciso reparar en el producirse el proceso de percepción.

El signo que es una representación gráfico – geométrica aparece como productos por tres vías: simple observación como producto acabado siendo testigo de su generación, mediante reproducción o realización de una copia y mediante producción autónoma o decididamente expresiva.

En matemática para comprender hay que dibujar puesto que facilita la comprensión además es un acto de comunicación es decir comprensivo de una realidad matemática.

5.2.2 El alumno ciego y el dibujo

El lenguaje grafico – geométrico se presenta como paso conveniente entre la manipulación y la abstracción matematizante propiamente dicha como lenguaje adecuado a los esquemas
empíricos forjados por las experiencias lógico–matemáticas interiorizadas.

Una primera forma de comunicación en lenguaje gráfico con el alumno ciego es la del autor de texto, representaciones prefabricadas por ejemplo el docente puede utilizar las siguientes materiales: thermoform, horno fuser o minolta, edición de gráficos mediante impresora braille a partir de programas de ordenadoras, tablero de fieltro y la lámina de cucho.

Se cuenta así con instrumental de dibujo o representación gráfica para matemáticas análogo al empleado por el vidente, puesto que el dibujo está en relieve y marcado en tinta sin necesidad de técnicas especiales, otro alumno o el profesor pueden colaborar en el alumno ciego complementando representaciones o indicando aspectos erróneos.

No basta con tener el instrumental para realizar las representaciones el alumno debe aprender a manejarlo autónomamente, a su vez esto implica la aplicación adecuada de los recursos hápticos táctiles y cinestésicos y desarrollar destrezas varias como: dominio de los conceptos topológicos, control del esquema y referencia corporal, orientación espacial en el ámbito de dibujo, determinación de posiciones reconocimiento de elementos, comparación de distancias, direcciones y ángulos, etc.

La verdadera práctica de decodificación y codificación en las claves del lenguaje gráfico: aprender a reconocer, aprender a copiar y aprender a dibujar significantes matemáticos, el arte de la exploración háptica y aprender a dibujar, siempre en el dominio del lenguaje de representación gráfica – geométrica de la matemática, haciendo alusión al reconocimiento háptico de forma lineal plana que excede el contacto simultáneo de todos los puntos de información táctil supone que: la información básica es de carácter cinestésico aportada por el esquema corporal de dedos y manos, la determinación de regiones del plano en las que se encuentran el grafico y el esfuerzo manipulativo por concretar progresivamente la representación gráfica.

5.2.3 Limitaciones y adaptaciones

Distinguiremos grupos de limitaciones ninguna insuperable:

- Limitación inherente a las aptitudes del alumno: aptitudes hápticas y manipulativas escasamente estudiadas en su nivel de normalidad, se ha trabajado para tener un nivel aceptable con el que basta la ejercitación en el aula, simultánea al trabajo matemático. Cabe resaltar, primero que las representaciones en relieve exigen por
parte del observador ciego un esfuerzo perctivo notable y el segundo está ligado al tiempo.

La adaptación a las características de la percepción háptica son: relieve o intensidad del trazo, dimensiones del conjunto no superiores al ámbito bimanual, separación discriminante entre líneas o puntos y esquemas corporales adecuados.

- Limitaciones debidas a las posibilidades intrínsecas del material: los materiales construidos no tienen tan buena precisión además está casi vedada las ilustraciones mediante simbolismos o formulas, lo que es importante cuando la representación se va elaborando por uno mismo ya que cada término está determinado conceptualmente.

- Limitaciones debidas a la complejidad de la representación: pueden surgir representaciones complejas no tanto por la diversidad de enfoques como por la de líneas o elementos intervinientes, para ello es pertinente la simplificación por medio de desdoblamientos o despiece una representación por zonas o aspecto parciales y presidir de los elementos superfluos.

- Limitaciones para la comunicación en el aula: la solución es el intermediario o interprete en actuación diferencial ya sea un compañero, pero cooperar no es suplantar, es el alumno quien debe dibujar sus propias representaciones no basta con explorar lo que le dibujen es mejor que lo haga con ayuda de indicaciones

- Limitaciones derivadas del tipo y grado de visión residual: las adaptaciones deben gozar de unas características que faciliten su percepción.

- El material empleado habitualmente por los deficientes visuales es análogo al de los videntes

- Tampoco causara perturbación el tratamiento de representaciones complejas en su caso.

- Limitaciones para la comunicación en el aula

5.2.4 Representaciones gráficas especiales

5.2.4.1 Diagramas en árbol y mapas conceptuales

Se caracterizan como estructuración especial del concepto o estados representados por expresiones simbólicas o de habla y determinadas por líneas o trazos, marcan una sucesión en los estados o prelación de tipos: ramificaciones o llaves, sucesión temporal o divisan de
clases.
La más apropiada parece la representación del sistema braille, no existirá dificultad para la escritura de las expresiones simbólicas o literales pero surgirán dos inconvenientes: solo podrían representarse trazos rectos horizontales y verticales y la limitación espacial de la hoja braille, por ello se ha sustituido por estructura escalera reservando espacios en blanco a la izquierda de los conceptos, haciendo necesaria la comprensión y memorización global para poder navegar por el diagrama convenientemente.

5.2.4.2 Tablas
Numéricos por lo general sobre todo en nuestro caso: ordenación de datos, tablas operacionales, matrices, cálculos estadísticos, tablas de verdad, etc. Su configuración suele ser rectangular aunque no falten ejemplos de configuración triangular, puede definirse como ordenación bidimensional de valores con sintaxis direccional bien definida. La forma exclusiva de ponerlas al alcance del alumno ciego es la expresión braille como hay limitaciones se puede solucionar como: adopción de convenios representativos, trasposición respecto de una diagonal, convirtiendo en presentación vertical, seleccionar o simplificación de situaciones y presentación a doble página braille.

5.2.4.3 Representaciones planas de sólidos
El espacio físico tridimensional se transforma proyectivamente en el plano de dibujo, para lo ciegos la proyección es fruto de una elaboración racional que precisa explicaciones y entrenamiento por ello es frecuente que una representación de este tipo sea incomprendible en primera instancia, así que se debe reconstruct la forma física a partir de las relaciones de los elementos con el eje tal vez por vía psicomotriz.
Se debe distinguir dos funciones representativas como medio y como objetivo: como medias estas representaciones pretenden representaciones pretenden ilustrar situaciones tridimensionales que escaparían a las páginas del libro, como objetivo se pretende que el alumno sea capaz de producir con cierta aproximación geométrica.

5.3 Álgebra en los dedos
El álgebra es el cálculo con letras en última instancia el termina en cálculo con experiencias algebraicas, las letras juegan un papel fundamental, para su expresión escrita se realiza por: letras números y signos operacionales.

5.3.1 problemas en la escritura algebraica braille
Tres son las fuentes intrínsecas de problemas en la lectoescritura en braille de expresiones algebraicas:

- Polivalencia de los signos braille: según el contexto ya sea literatura, matemática, química darán lugar a la necesidad de construir signos por yuxtaposición de signos elementales que ocupan dos y hasta tres celdillas.
- Riesgo de error: la omisión o adición de uno de ellos puede alterar el significado del signo.
- Carácter lineal del braille: muchas expresiones matemáticas deben transformarse en expresiones lineales concordes con el carácter unidimensional del braille.

Para resolver este problema se han ideado: ciertos signos identificadores sustitutivos de la posición relativa y los paréntesis auxiliares braille, además la ortografía matemática braille es compleja en sus signos, difícil de interpretar lenta de escribir pronta al error y difícil de corregir.

5.3.2 La comunicación didáctica
Para aprender la escritura de expresiones algebraicas se realiza: mediante autoevaluación contrastada como la observación y contraste entre los propios productos y los ajenos, mediante la heteroevaluación llevada a cabo por el profesor en cuanto a la escritura braille se sabes que la mayoría de los profesores no saben así que no les pueden corregir su escritura dejándolo a al profesor especialista.

5.3.3 Recursos didácticos: el ordenador
Son muy escasos los recursos didácticos de orden manipulativos para la introducción del álgebra, como el álgebra por definición es una tarea abstracta que dispone de una expresión escrita esta es formal, convencional, simbólica en extremo, hasta el momento solo se han tratado de diseñar juegos de palancas y de balanzas.

El cálculo algebraico y analítico dispone de un instrumento equivalente a una calculadora en aritmética, los programas de ordenador para cálculo racional o formal, por ejemplo el programa DERIVE puesto que: ahorra tiempo, denuncia cierto errores de escritura en expresiones algebraicas, presentación por pantalla de las expresiones, medio facilitador de la comunicación, dominio del teclado del ordenador y el dominio de periférico de acceso a la pantalla, además se precisan unas actitudes básicas como: habilidad manual, facilidad en el reconocimiento de caracteres braille, destreza lectora braille y orientación espacial en
la pantalla imaginada.

Capítulo 6: Un alumno ciego en el aula

Se centra la atención en la actitud del profesor y modos de actuación diferencial para optimizar su intervención didáctica y el apoyo esperable por parte del profesor especialista o de apoyo. La ONCE se ha venido haciendo responsable de la formación inicial y permanente de los profesores de secundaria aunque se carece de planes y medios para la formación de los profesores de aula que cuentan entre sus alumnos con ciegos o deficientes visuales.

6.1 **La actitud de profesor**

Al enfrentarse a tener a un alumno ciego el profesor solo puede tener tres actitudes posibles: pasividad veremos cómo se desarrollan los acontecimientos, reacción negativa cierto rechazo y marginación inconsciente o encubierta y reacción positiva con reto a la eficiencia de la metodología. Pero estas no son justificaciones profesionales de docentes como por ejemplo: aceptación del problema, evaluación inicial, información metodológica y didáctica e investigación didácticas.

6.2 **Adaptaciones curriculares**

El currículo tanto anual como de ciclo debe proyectarse de acuerdo con la necesidad del alumno, en este caso con el que presenta necesidades educativas especiales, por ello debe tener adaptaciones curriculares no exención, puesto que la carencia de visión en cualquier grado no impide el acceso al saber y al quehacer matemático por complejas que se muestren algunas de sus técnicas y actividades además no se modifican los aspectos matemáticos sino las adaptaciones exigidas alcanzan tan solo a los aspectos accidentales no propiamente matemáticos.

6.2.1 **Objetivos**

De acuerdo al objetivo propuesto por el profesor para cada una de las actividades se muestran algunas repercusiones de las actividades y los objetivos que se pueden variar de acuerdo a la actividad.

6.2.2 **Contenidos**

No es preciso una modificación de los contenidos matemáticos si de las actividades matemáticas prescritas y se presentan algunos ejemplo del contenido matemático que se va a trabajar y las condiciones para que el estudiante ciego pueda reconocer esta temática.
6.2.3 Temporización

La organización temporal de los contenidos y actividades es función esencial de cuatro variables principales:

- Niveles de destreza y conocimientos previos: pueden lugar a una ampliación de tiempo destinado a un determinado contenido.
- Homogeneidad/heterogeneidad del grupo: no solo respecto del nivel madurativo y escolar sino también del actitudinal y en lo homogeneidad de la educación.
- Acoplamiento comunicativo y metodológico grupo/profesor: alargamiento del tiempo en las fases iniciales.
- Tipos de actividades y materiales precisos en cada contenido

Es falso que una adaptación curricular en el tipo de actividad a programar aligerando sus dimensiones y complejidad y empleo instrumental.

6.3 Adaptaciones de actividades

Permanece aferrado a nuestro principio metodológico, en donde la adaptación de actividades es cuando un alumno ciego o deficiente visual puede participar satisfactoriamente en cualquier actividad de aula o fuera de ella, siempre que esta se adapte convenientemente a sus capacidades intactas y aquellas empleen los medios adecuados.

En una actividad matemática se puede distinguir aspectos como: objeto matemático, metodología, medios precisos, plasmación material y plazo de ejecución, según su objetivo de la actividad se tiene diferentes características: dificultad matemática, grado de interdisciplinariedad, dimensión, complejidad y nivel de definición.

6.4 Evaluación del trabajo del alumno ciego

La modalidad de evaluación adoptada por un sistema de formación tienesiempre una función de regulación, tiene como meta asegurar la articulación entre por una parte las características de la persona en formación y por otra las características del sistema de formación, pero se da un efecto de retroalimentación, por ello la evaluación ante todo debe ser formativa de acción pedagógica.

6.4.1 Autoevaluación

Se designa como un examen de autoanálisis o cualquier otro termino, esta debe ser continua, con actitud permanente y un estado de ánimo de alerta, con ello se busca que no
errores no sean motivos de fracaso sino de fuente aprovechable de experiencias.
El alumno ciego se ve forzado al ejercicio de autoevaluación puesto que: se ve disminuido es sus posibilidades de aprendizaje por imitación, sus técnicas de trabajo son diferentes a quienes les rodea y los momentos de información son ocasionales.

6.4.2 El “día a día”
El profesor puede controlar de forma habitual su nivel de aprovechamiento y dominio de las técnicas específicas, por ello han aparecido dos aspectos básicos a evaluar: nivel de aprovechamiento didáctico –matemático respecto del grupo y dominio de las técnicas específicas, las actividades se pueden evaluar dentro y fuera del aula y como se pueden ir corrigiendo los errores.

6.4.3 Pruebas y controles
No es mero afán de desdramatizar estos acontecimientos es la realidad que procuramos inculcar a nuestros estudiantes, por lo tanto es más cómoda la evaluación heteroevaluación, en tiempo, circunstancias y recuperación conocidas con la que sea medido y una prueba puede medir objetivamente es una utopía el nivel de cada alumno es un aspecto determinado.
En coherencia con el principio de adaptación se deben aplicar los siguientes aspectos: identificar pruebas que los compañeros del mismo nivel, iguales vías comunicativas que sus compañeros, plazos de ejecución análoga y corrección de las pruebas escritas en braille.

6.5 Coordinación con el “profesor especialista”
Es el profesor que integrado en el centro o ajeno a él como profesor itinerario o profesor asesor, entiende de aspectos didácticos específicos de la enseñanza de ciegos y deficientes visuales, su colaboración es inestimable en aspectos tales como: manejo del sistema braille su aprendizaje, textos y material de estudio o consulta, orientación sobre aspectos de exploración háptica con recursos, coordinación con los servicios de tiflotecnología de las necesidades, coordinación con los servicios de rehabilitación básica, coordinación con las unidades y centros de rehabilitación visual.
El profesor especialista informa y orienta acerca de técnicas específicas formas de atención diferencial, aporta sugerencias para la pertinente adaptación curricular y se puede entablar un dialogo cooperativo de atención al alumno ciego.
Conclusiones:
Se identifica diferentes aspectos del estudiante que se encuentra en condición de discapacidad en el aula de matemáticas, además evidencia la importancia de las posibles dificultades que presenta esta población con la comunicación de los tópicos matemáticos y de las vías de acceso con las que cuentan para recolectar la información de estos. Es importante que el docente tenga herramientas tanto clínicas como del concepto matemático para que pueda realizar las adaptaciones curriculares correspondientes, a las actividades, tener conocimiento de los diferentes recursos que se pueden implementar en el aula con sus ventajas y desventajas para así pensar y tomar decisiones frente a las actividades que se pueden proponer en el aula.

Observaciones sobre el documento:
Me parece pertinente este documento para identificar que los estudiantes que presentan discapacidad visual también pueden aprender matemáticas al mismo nivel que sus compañeros, además realiza una concientización a los docentes de que a pesar de que no sepan todas las variables que se presentan tener a un estudiantes ciego en el aula regular lo importantes es investigar qué es lo pertinente para los estudiantes y buscar ayuda tanto por los recursos tiflotecnologicos como de los profesores especialista o de apoyo.

Anexo 6

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS
PROYECTO CURRICULAR DE LICENCIATURA EN EDUCACIÓN BÁSICA
CON ÉNFASIS EN MATEMÁTICAS
FICHA DE RESUMEN ANALÍTICO DE INFORMACIÓN

Fecha: 18 de septiembre de 2014
Elaborado por: Aura Viviana Acero Solano
Título: MANUAL DE SIGNOGRAFÍA BRAILLE
ISSBN o IBN: ninguno Páginas: 36
Tipo de Documento: Manual
Autor: centro de recursos educativos “ALICANTE” José Luis García Rubio

Publicación: Madrid. España 1987

Lugar: Internet

Tabla de Contenido: no se esboza de manera explícita

Palabras Claves: Sistema Braille, signos, signo generador, signos matemáticos y operaciones

Descripción: es un manual que muestra la signografía básica Braille y la manera como debe usarse. En especial nos enfocamos en la signografía matemática

Fuentes: No tiene

Resumen:

Inicialmente muestra una breve historia del surgimiento del sistema Braille, mencionando principalmente los aportes del joven francés llamado Louis Braille en el año 1825, como se ha convertido en un sistema casi mundial para las personas incidentes.

En sus apartados se muestra el alfabeto Braille, sus signos de puntuación, la simbología matemática elemental, describe que hay un signo para indicar que se escriben números y se usan los primeros signos de las primeras 10 letras del alfabeto Braille para representar los números. Las operaciones matemáticas se pueden escribir tanto verticales como horizontalmente, no se deja ningún espacio entre símbolos.

Además de mostrar cómo se escriben los números y las operaciones básicas este documento nos muestra cómo escribir en Braille, signos básicos que también usamos en matemáticas como corchetes, paréntesis, llaves, etc., los números romanos, los números ordinales, las fracciones, potencias, raíces, como se transcriben las medidas de temperatura, tiempo, peso, angulares, la signografía griega, todas estas elementales en el trabajo en el aula de matemáticas.
Conclusiones:

El sistema Braille es un sistema muy rico en signografía, en especial la matemática maneja un nivel se significación bastante amplio, muchas de las maneras de escribir y representar simbología matemática es muy parecida a la usada por los videntes.

Observaciones sobre el documento:

Este documento nos dota de signografía matemática elemental, permitiendo reconocer las reglas y estructura para representar operaciones, cantidades y magnitudes.

Anexo 7

UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS
PROYECTO CURRICULAR DE LICENCIATURA EN EDUCACIÓN BÁSICA
CON ÉNFASIS EN MATEMÁTICAS
FICHA DE RESUMEN ANALÍTICO DE INFORMACIÓN

Fecha: 25 de febrero del 2015 N° 5

Elaborado por: Aura Viviana Acero Solano

Título: CÓMO ORIENTAR AL ESTUDIANTE CON LIMITACIÓN VISUAL EN SU CLASE DE MATEMÁTICAS

ISSBN o IBN: ninguno Páginas: 36

Tipo de Documento: Cartilla

Autor: Gladys Sánchez Cantor

Lugar: Internet

Dirección: http://www.inci.gov.co/
Tabla de Contenido:

- Presentación ... 5
- 1. Aspectos Generales .. 7
- 2. Materiales que Puede Utilizar en la clase: ... 10
 - Material Didáctico ... 10
 - Abaco Abierto ... 11
 - Abaco Japonés ... 12
 - Tablero de Dibujo Negativo ... 14
 - Tabla Positiva ... 15
 - Compas ... 16
 - Transportador ... 16
 - Regla ... 17
 - Juego de Escuadras ... 18
 - Metro .. 18
 - Calculadora Parlante ... 19
- 3. Representación de Gráficos ... 21
- 4. Textos de Consulta ... 23
- 5. Evaluación ... 27
- 6. Baja Visión ... 29
- 7. Avances Tecnológicos ... 32
- Bibliografía ... 36

Palabras Claves: orientar, materiales, evaluación, braille, simbología matemática

Descripción: este documento brinda una serie de aspectos generales que le permiten al docente, conocer algunas orientaciones básicas, material didáctico, para la enseñanza de las matemáticas a estudiantes con limitación visual.

Fuentes: cuenta con 10 referencias, las que más se relacionan con el tema planteado en el documento son:

Resumen:

Inicialmente plantean unos aspectos generales, resaltando que la enseñanza de la matemática tiene la tarea de permitir al estudiante comprender el mundo, debe ser interesante, respetuosa con la individualidad y los procesos personales, para ello el docente está llamado a reconocer saberes previos, para la construcción de situaciones problemas que motiven e involucren los sentidos y también la tecnología.

Para el caso de los estudiantes con limitaciones visuales, es indispensable reconocer que el desarrollo curricular es el mismo, que el docente debe familiarizarse con los implementos que ellos utilizan, para que reconozca su potencialidad y limitación. Tiene que involucrar en sus acciones y actividades diversos canales sensoriales, una actividad propia que se debe hacer al momento de plasmas algo en el tablero, es describir paso a paso todo lo que hace en voz alta, verificar que el alumno con limitación visual cuente con todos los materiales, fomentar la colaboración de los compañeros, desde una actitud de solidaridad y respeto.

En cuanto al material didáctico describen diferentes instrumentos que se pueden utilizar en el área de matemáticas como lo son: el Abaco abierto, el Abaco japonés, tablero de dibujo negativo, tablero positivo, compas, trasportador, regla, metro.

Las representaciones graficas son esenciales para la formación de imágenes mentales de los conceptos matemáticos, para ello se debe tener en cuenta materiales en relieve, materiales concretos, estos tienen que ser sencillo sin tatos detalles, con colores delineados para que también puedan ser utilizados por alumnos de baja visión o videntes, las ilustraciones deben tener los nombres en braille y macro-tipo, de ser necesario usar convenciones, tamaño proporcional que facilite la comprensión y manejo, no olvidar hacer una descripción detallada del objeto u material. Los textos de consulta deben estar transcritos en braille o macro-tipo al igual que sus diagramas y ejercicios, con la simbología
matemática adecuada.

El documento tiene un apartado que se enfoca en las orientaciones para estudiantes con baja visión, se recomienda dejar estos estudiantes cerca al tablero, trabajar con marcador negro, material adaptado teniendo en cuenta su limitación, fotocopias y textos aumento de letra, recomendar usar lápiz con mina gruesa.

En cuanto a los avances tecnológicos expone varios recursos que permiten el acceso a la información y a la computación a la población con déficit visual, como lo es los lectores de pantalla con voz, sistema de reconocimiento de textos en tinta, entre otros, que también les permiten acceder a los conocimientos matemáticos.

Conclusiones:

El documento muestra aspectos generales a tener en cuenta para la inclusión en el aula de matemáticas de estudiantes con déficit visual, los materiales didácticos más elementales y utilizados especialmente en la clase de matemáticas, algunos avances tecnológicos que facilitan su acceso y trabajo en los conceptos matemáticos.

Observaciones sobre el documento:

El documento se enfoca en mostrar los materiales didácticos, las orientaciones son muy generales, en cuanto a la representación de gráficos las recomendaciones se dirigen al uso de los materiales didácticos y conceptos de la matemática escolar de primaria.
Elaborado por: Aura Viviana Acero Solano

Título: CARTILLA ÁBACO primera parte

ISSBN o IBN: ninguno Páginas: 37

Tipo de Documento: Cartilla

Autor: Gladys Sánchez Cantor & Gloria Janneth Peña Castañeda

Lugar: Internet

Dirección: http://www.inci.gov.co/

Tabla de Contenido:

- Introducción ...5

- 1. Descripción del Ábaco..7

- 2. Estructura de Cantidades ..8

- 3. Lectura de cantidades ..14

- 4. Suma ..14

- 5. Resta ...18
 ✓ 5,1, Prueba de la Resta ..21

- 6. Multiplicación...21
 ✓ 6.1. Multiplicación por Varios Factores..............................27
 ✓ 6.2. Multiplicación Abreviada por 10, 100, 1000, etc.,.............28
Palabras Claves: Ábaco japonés, Operaciones básicas

Descripción: el documento muestra cómo se debe emplear el Ábaco japonés, para facilitar la enseñanza y resolución de situaciones que involucren las operaciones básicas de suma, resta, multiplicación y división.

Fuentes: cuentacon4 fuentes principalmente, las que más tienen relación con el texto son:

CADAVID ÁLVARES HÉCTOR. El Ábaco Japonés y sus Secretos. INCI. Bogotá. 1988

Resumen:

La cartilla ábaco muestra el instrumentó ábaco japonés como una herramienta para el cálculo muy perfeccionada. Inicialmente muestra cómo está formada y las facilidades que tienen los estudiantes ciegos para utilizarlo.

Muestra que se deben escribir los números de izquierda a derecha, teniendo en cuenta los puntos en alto relieve, la importancia de que anoten la cantidad en su cuadernos y el uso adecuado de las manos. Posteriormente explica cómo resolver cada una de las operaciones básicas en ábaco, teniendo en cuenta el número de cifras de las cantidades a operar, resaltado la importancia de manejo espacial de los estudiantes para distinguir las cantidades, el uso del cuaderno para registrar las operaciones y sus resultados, la incorporación de la simbología matemática.

Además muestra diversos ejemplos en cada uno de los apartados que se enfocan en una operación en específico con los métodos para probar sus resultados.
Conclusiones:

El ábaco japonés permite comprender de forma más dinámica y fácil los algoritmos de las operaciones básicas, requiere de un buen dominio espacial y de las manos, asíéndolo una herramienta potencial para el desarrollo del pensamiento numérico de los estudiantes incidentes.

Observaciones sobre el documento:

Es un documento que describe paso a paso como utilizar el ábaco para la resolución de las diferentes operaciones, los ejemplos que ilustra también son muy detallados.

Anexo9

<table>
<thead>
<tr>
<th>NOMBRE DE LOS PASANTES: Aura Acero y Claudia Acosta</th>
</tr>
</thead>
<tbody>
<tr>
<td>AULA: tiflología</td>
</tr>
<tr>
<td>APOYO EXTRAESCOLAR: primera sesión del apoyo</td>
</tr>
<tr>
<td>FECHA: miércoles 24 de septiembre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE DEL ESTUDIANTE</th>
<th>ACTIVIDAD QUE DESARROLLO</th>
<th>TAREAS PENDIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Salazar</td>
<td>Docente titular y profesionales del área de tiflogía, solicitan que con estas estudiantes se realice trabajo sobre la adquisición de la simbología matemática Braille, en esta sesión se realiza la identificación de la signografía matemática que manejan, pues se aclararon varias dudas en cuanto a la simbología aritmética, y se les pide consultar frente a la</td>
<td>Se les recomienda repasar la signografía matemática que manejan, pues se aclararon varias dudas en cuanto a la simbología aritmética, y se les pide consultar frente a la</td>
</tr>
</tbody>
</table>
simbología y lenguaje matemático que emplean las estudiantes en el área de matemáticas, reconociendo falencias en especial en la simbología algebraica.

Para el reconocimiento del manejo signográfico Braille además de preguntarles directamente sobre la signografía que manejaban, también se realizó una serie dictado de operaciones, donde surgieron diferentes discusiones frente a la representación y la forma en que se disponían las cantidades, que fueron solucionadas entre ellas en su mayoría y otras en las que intervenía el pasante guiado de lo planteado en manual Braille, en especial solo se trabaja la signografía aritmética de las operaciones básicas, tanto horizontal que era lo más conocido para ellas, y lo vertical que les causo gran asombro pues no habían tenido contacto con él y les permitió conocer los algoritmos de las personas videntes.

| Natalia Gonzales Sexto | Docente titular plantea que las temáticas que se trabajan en la asignatura de matemáticas son los fraccionarios, en ello se centran en la representación parte todo, | A la estudiante no se le propone tareas pendientes puesto que se identifica que tiene conocimiento de la signografía matemática. |
operaciones básicas con las fracciones.

Para el desarrollo del apoyo primero se le realizan dictado de algunas fracciones propias e impropias para identificar si la estudiante tiene conocimientos de la escritura en braille de las fracciones, en donde se evidencia que si la tiene pero la estudiante manifiesta confusión puesto que la comunicación se la docente plantea que el numerador arriba y denominador abajo pero como en braille es al contrario (Rosich, Núñez & Fernández, 1996), también se le dictó números mixtos y decimales en donde se evidencia un buen dominio de la escritura.

Posteriormente se le dicta las operaciones básicas con números fraccionarios donde se observa que la estudiante no tiene problemas en la signografía matemáticas aunque al dictarle muy rápido comete errores de escritura de números o simbología.

Karen Cano (baja visión)
Tercero

Docente titular plantea que en las temáticas que se desarrollan en el espacio de matemáticas es el algoritmo de la multiplicación y división por tanto se considera que

Como trabajo para la casa se le deja a la estudiante algunos números en los cuales se pretende que descomponga en unidades, decenas y
ya sabe sumar y restar.
Para la sesión primero se parte de la secuencia numérica donde se identifica que la estudiantes si tiene claro la secuencia numérica (sistema de numeración decimal), por otro lado reconoce que existen: unidades, decenas y centenas pero se le dificulta identificar en los numero la poción que ocupan, esto genera que tenga dificultades en el valor posicional.
Además se realizar algunos ejercicios de las operaciones básica para identificar si la estudiante presenta algún tipo de error o dificultad en los algoritmos de lápiz y papel, con ello se identifica que la suma de la puede realizar con unidades, decenas y centenas pero relacionando dos cantidades (números) al aumentar las cantidades es decir más de tres números le genera dificultad el valor posicional y no se identifica que se encuentre bien estructurado el concepto aditivo y multiplicativo puesto que solo se remite a los algoritmos y no los aplica en diferentes en los enunciado verbales.

centenas, por ejemplo:
Descomponer el 123, 456 y 798.
Se le propone a la estudiante traer un cuaderno de apoyo donde se puedan realizar apuntes o ejercicios en los siguientes apoyos pedagógicos.
NOMBRE DE LOS PASANTES: Aura Acero y Claudia Acosta

AULA: tiflología

APOYO EXTRAESCOLAR: segunda sesión del apoyo

FECHA: miércoles 1 de Octubre

<table>
<thead>
<tr>
<th>NOMBRE DEL ESTUDIANTE</th>
<th>ACTIVIDAD QUE DESARROLLO</th>
<th>TAREAS PENDIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Salazar</td>
<td>En esta sesión se retoma lo trabajado acerca de la signografía básica usada en aritmética, se solucionan algunas dudas se trabajan algunos ejemplos. posteriormente se realiza una identificación a partir de preguntas y transcripciones de sus cuadernos de Braille a simbología matemática de las operaciones algebraicas, identificando que no usan apropiadamente la signografía matemática, desconocen en gran medida mucha de esta signografía, hacen uso de lenguaje para describir operaciones algebraicas, aspecto que potencia la presencia las dificultades en este objeto matemático, pues no tenían los elementos para describir las operaciones adecuadamente y en cuanto a niveles se podría decir que estaban en un nivel retórico del aprendizaje del algebra desde lo expuesto por Kieran (1989). A partir de preguntas y basados en la guía de simbología Braille en especial algebraica, se introducen varios símbolos para expresar especialmente polinomios algebraicos de grado uno, dos, tres y cuatro, que son los más utilizados por el docente titular, se</td>
<td>Se les recomienda repasar la signografía matemática algebraica vista, pues se aclararon varias dudas en cuanto a esta simbología, y se les pide utilizarla y corregir en el área de matemáticas frente a la simbología empleada en algebra y otros objetos matemáticos que están manejando en las diferentes sesiones de clase.</td>
</tr>
<tr>
<td>Jessica Campos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Natalia Gonzales | Se realizan operaciones de suma con fraccionario y apoyo del ábaco, se escriben en el cuaderno, con procedimientos y el resultado para validar lo realizado por la estudiante y tener en cuenta la escritura de los números y de los símbolos, identificando que tiene dificultad en la operación al tener en cuenta la descomposición de factores primos para homogenizar las fracciones. | Se le deja realizar un ejercicio de suma de fracciones el cual es:
\[
\frac{2}{10} + \frac{5}{2} =
\] |
<p>| Sexto | | |
| Karen Cano (baja visión) | Se revisa la tarea la cual se dejó pendiente en el apoyo anterior pero la estudiante no la realizó puesto que no había traído la hoja en la que se dejó la tarea, así se orienta a la estudiante en la realización de la tarea y se aclaran algunos aspectos como la identificación de unidades, decenas y centenas, al terminar la tarea se proponen la descomposición de un número en donde hallan unidades de mil. | Se deja la descomposición en unidades, decenas, centenas y unidades de mil, los números son: 7593 y 3105 |</p>
<table>
<thead>
<tr>
<th>NOMBRE DEL ESTUDIANTE</th>
<th>ACTIVIDAD QUE DESARROLLO</th>
<th>TAREAS PENDIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Salazar</td>
<td>Esta sesión fue dada desde tifloología a un grupo de investigación del proyecto curricular LEBEM, donde las estudiantes trabajaron con las regletas.</td>
<td>Debido a el trabajo investigativo durante toda la sesión, no se asignan tareas.</td>
</tr>
<tr>
<td>Jessica Campos</td>
<td>Se pide la tarea propuesta en el apoyo anterior, para identificar si tiene alguno error en la escritura de las fracciones o el procedimiento e identificar si se le presenta alguna dificultad o si tiene alguna pregunta, al verificar que todo estaba correctamente se proponen más ejercicios de resta en donde tenga que utilizar la descomposición en factores primos.</td>
<td>No se le propone tarea puesto que en el desarrollo del apoyo se evidencia un buen dominio del algoritmo de la resta y se fortaleció la suma.</td>
</tr>
<tr>
<td>Natalia Gonzales</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Karen Cano (baja visión) | Se realiza la revisión de la tarea en donde se observa que todavía presenta la dificultad de descomponer los números para | Se deja para la casa dos enunciados verbales:
 1) 25 manzanas y 24 bananas ¿Cuántas |

135
identificar las unidades, decenas, centenas y unidades de mil por ello se realiza lo siguiente:
Si el número es 7593 lo descomponemos de la siguiente manera: 7000 + 500 + 90 + 3 = 7593 con ello se fortalece la suma y se identifica las unidades decenas, centenas y unidades de mil, esto se expresa en forma horizontal, para que la estudiante de una forma organizada logre identificar así las unidades, decenas, centenas y unidades de mil.

frutas hay?
2) Juan tiene 32 lápices negros y 55 lápices de colores. ¿Cuántos lápices tiene en total? Además que descomponga y sume la descomposición de 9758

Anexo 10

PASANTÍA
UNIVERSIDAD DISTRITAL- COLEGIO OEA IED
ACOMPAÑAMIENTO EN EL AULA

NOMBRE DE LOS PASANTES: Claudia Acosta y Aura Acero
GRUPO: octavo con Laura Salazar y Jessica Campos

OBJETIVOS
Potenciar la compresión de las operaciones algebraicas en especial la factorización.
Facilitar la adquisición un lenguaje matemático de la simbología algebraica.
Fomentar la utilización y reconocimiento de los elementos y atributos de algunos cuerpos geométricos.
| TEMÁTICAS | Casos de factorización
| | Volumen y área de algunos cuerpos geométricos. |
| ADAPTACIONES DE MATERIAL | Solidos geométricos y cuerpos redondos
| | Transcripción del saber matemático |
| DESARROLLO DE LAS ACTIVIDADES | Este curso tenía la particularidad que las sesiones de clase de matemáticas eran de una sola hora de clase todos los días de la semana, por lo tanto el docente realizaba actividades cortas.
| | 19 de agosto del 2014
| | El docente aplica un examen de lo trabajado en sesiones anteriores de geometría, con resto al volumen y el área de las pirámides, les da la medida de la arista lateral y el lado de la base de una pirámide cuadrangular, pide que determinen a partir de estos datos el área y el volumen de dicha pirámide. |
| | 21 de agosto del 2014
| | Se realiza la explicación del quinto caso de factorización desde lo expuesto por el álgebra de Baldor, trinomio cuadrado perfecto por adición y sustracción, para ellos explica de manera muy general y luego a manera de ejemplo realiza dicha factorización caso cinco, posteriormente deja un ejercicio. Mientras ellos lo desarrollan recógela solución de un taller. |
| | 25 de agosto del 2014
| | Se coloca un taller para desarrollar en clase que consiste en hallar el área total y el volumen de una pirámide octagonal, dando la medida de la arista lateral y el lado de la base. |
| | 28 de agosto del 2014
| | El docente realiza la explicación del sexto caso de factorización desde lo expuesto por el álgebra de Baldor, trinomio de la forma $x^2 + bx + c$, para ellos explica de manera muy general y luego a manera de ejemplo realiza dicha factorización caso seis, posteriormente deja unos ejercicios. |
| | 1 de septiembre 2014
<p>| | Se dispone esta sesión para sacar notas definitivas del tercer periodo |</p>
<table>
<thead>
<tr>
<th>Fecha</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 de septiembre 2014</td>
<td>Realiza la revisión del caso sexto de factorización, donde cada estudiante pasa con el docente explica uno de los ejercicios propuestos por el profesor. Además expone en un lenguaje verbal paso por paso de cómo factorizar según este caso.</td>
</tr>
<tr>
<td>9 de septiembre 2014</td>
<td>Se dispone esta sesión para sacar notas definitivas del tercer periodo algebra.</td>
</tr>
<tr>
<td>15 de septiembre 2014</td>
<td>Se realiza una caracterización del cuerpo redondo esfera, el docente expone la fórmula para hallar el área y el volumen de este cuerpo geométrico, realiza un ejemplo y coloca un ejercicio basado en este.</td>
</tr>
<tr>
<td>29 de septiembre 2014</td>
<td>El docente realiza una caracterización del cuerpo redondo cilindro, expone la fórmula para hallar el área y el volumen de este cuerpo geométrico, realiza un ejemplo y coloca un ejercicio basado en este.</td>
</tr>
<tr>
<td>30 de septiembre 2014</td>
<td>El docente hace revisión de algunos talleres dejados en sesiones anteriores.</td>
</tr>
<tr>
<td>20 de octubre 2014</td>
<td>El docente caracteriza el cuerpo redondo del cono, expone las fórmulas para hallar el área y el volumen, realiza un ejemplo y propone un ejercicio.</td>
</tr>
<tr>
<td>21 de octubre 2014</td>
<td>El docente pide a los estudiantes realicen una representación de los cuerpos redondos trabajados en sesiones anteriores, mientras esto sucede revisa ejercicios dejados.</td>
</tr>
<tr>
<td>27 de octubre 2014</td>
<td>Revisa la representación de los cuerpos redondos trabajados.</td>
</tr>
<tr>
<td>Noviembre 2014</td>
<td>Surgen diversas actividades por parte del colegio y otros eventos a los</td>
</tr>
</tbody>
</table>
cual es asisten estas estudiantes, que imposibilita el desarrollo normal de las clases. En las pocas sesiones el docente da el espacio para que presenten trabajos atrasados y realiza recuperaciones, estas basadas en la solución de páginas del saber matemático donde se abordaban las temáticas anteriormente mencionadas.

<table>
<thead>
<tr>
<th>RESULTADOS DE LAS ACTIVIDADES</th>
<th>19 de agosto 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura:</td>
<td>Aplica de manera adecuada las fórmulas para determinar el área y el volumen de una pirámide, pero tiene dificultades para solucionar algunos cálculos, a pesar de que hace uso del calculadora parlante. Se le dificultan las operaciones con raíces y potencias cuadradas.</td>
</tr>
<tr>
<td>Jessica:</td>
<td>No asiste a la clase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21 de agosto del 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las estudiantes prestan atención a la explicación brindada por el docente, pero no comprenden algunos de los pasos puesto que el docente realiza la explicación en el tablero y no describe de manera detallada lo que realiza, con ayuda del pasante logran comprender los pasos y solucionar el ejercicio de la clase. No presentan la solución del taller tarea que revisa el docente.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 de agosto del 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplican de manera adecuada las fórmulas para determinar el área y el volumen de una pirámide, pero tiene dificultades para solucionar algunos cálculos, ya que en algunos casos no anotan los resultados de las operaciones lo que hace que confundan valores, Laura comete errores al calcular potencias y raíces cuadradas, pero con la intervención del pasante y de su compañera Jessica corregir estos errores.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28 de agosto del 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Las estudiantes prestan atención a la explicación brindada por el docente, pero no comprenden algunos de los pasos puesto que el docente realiza la explicación en el tablero y no describe de manera detallada lo que realiza, con ayuda del pasante ellas logran comprender los pasos y solucionar los ejercicios de la clase.</td>
</tr>
</tbody>
</table>

| 1 de septiembre 2014 |
Presentan algunos trabajos reciben la nota del periodo.

4 de septiembre 2014

Laura: explica la solución de uno de los ejercicios dejados en el taller al docente, exitosamente.

Jessica: no asiste a esta sesión de clase.

9 de septiembre 2014

Presentan algunos trabajos reciben la nota del periodo en algebra.

15 de septiembre 2014

Las estudiantes prestan atención a lo expuesto por el docente, tienen dificultades inicialmente para comprender las fórmulas pues el docente las coloca en el tablero y no es específico en su descripción, con ayuda del pasante logran describirla y entenderla desarrollando adecuadamente el taller propuesto.

29 de septiembre 2014

Comprenden las fórmulas para hallar el volumen y el área del cuerpo geométrico cilindro, reconocen los elementos que intervienen y desarrollar adecuadamente lo dispuesto por el docente.

30 de septiembre 2014

Laura: presenta los talleres requeridos por el docente.

Jessica: no asiste a la sesión.

20 de octubre 2014

Reconocen los elementos que intervienen en las fórmulas, aplican las fórmulas adecuadamente y realizan el ejercicio que deja el docente.

21 de octubre 2014

Llevan su material para construir la representación de estos cuerpos redondos, el tiempo nos les da para terminar, también presentan los ejercicios de las clases anteriores.

27 de octubre 2014

Laura: muestra la representación tridimensional que desarrollo de sus cuerpos redondos.

Jessica: no asiste a la sesión.
<table>
<thead>
<tr>
<th>NOVIEMBRE 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desarrollo de planes de mejoramiento, realización de las páginas del saber matemático que abordaban los mismos temas trabajados.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PASANTÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVERSIDAD DISTRITAL- COLEGIO OEA IED</td>
</tr>
<tr>
<td>ACOMPANAMIENTO EN EL AULA</td>
</tr>
<tr>
<td>NOMBRE DE LOS PASANTES: Claudia Acosta y Aura Acero</td>
</tr>
<tr>
<td>GRUPO: octavo Cindy Cárdenas</td>
</tr>
</tbody>
</table>

| **OBJETIVOS** | Fomentar la utilización y reconocimiento de los elementos y atributos de algunos sólidos geométricos. |
|---------------| Facilitar la comprensión de algunos elementos estadísticos elementales, en especial las medidas de tendencia central. |

| **TEMÁTICAS** | Volumen y área de algunos sólidos geométricos. |
|--------------| Medidas de tendencia central |

| **ADAPTACIONES DE MATERIAL** | Solidos geométricos. |
|-----------------------------| Guías con ampliación de letra y gráficas. |

| **DESARROLLO DE LAS ACTIVIDADES** | **21 de agosto 2014** |
|-------------------------------| La docente propone la construcción representaciones tridimensionales de pirámides por grupos de trabajo. |

| | **1 de septiembre 2014** |
| | Revisión de la representación tridimensional de las pirámides, se trabaja a partir de una situación problema algunos elementos de las pirámides, como volumen, área y apotema. |

| | **15 de septiembre 2014** |
| | La docente les suministra las definiciones y los elementos teóricos para definir volumen y área, del cubo, el prisma |
rectangular, la pirámide cuadrangular y el prisma pentagonal.

22 de septiembre 2014
Se suministra la definición y teoría base de las medidas de tendencia centrán, seguido a esto la docente propone una situación problema para emplear dichas definiciones.

29 de septiembre 2014
Es entregado a cada grupo de trabajo una situación problema, donde tienen que hacer uso de las medidas de tendencia central.

20 de octubre 2014
La docente suministra otra situación problema cuya solución requiere del uso de las medidas de tendencia central, también es trabajada en grupos.

<table>
<thead>
<tr>
<th>RESULTADOS DE LAS ACTIVIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 de agosto 2014 Trabaja en la construcción de una representación tridimensional de una pirámide cuadrangular.</td>
</tr>
<tr>
<td>1 de septiembre 2014 No presenta la representación tridimensional de la pirámide. Trabaja con su grupo en la resolución de la situación, reconociendo como intervienen los elementos en las fórmulas de área y volumen de las pirámides.</td>
</tr>
<tr>
<td>15 de septiembre 2014 Anota en su cuaderno la teoría suministrada, lo esbozado en el tablero que no alcanza a distinguir es dictado o descrito por el pasante.</td>
</tr>
<tr>
<td>22 de septiembre 2014 La estudiante registra en su cuaderno la teoría suministrada sobre las medidas de tendencia central, lo esbozado en el tablero que no alcanza a distinguir es dictado o descrito por el pasante. Una vez termina se reúne en grupo para trabajar</td>
</tr>
</tbody>
</table>
sobre la situación. Aspectos que no quedan claros de la teoría como algunas notaciones son aclaradas por la pasante.

29 de septiembre 2014

Trabajo sobre una situación problema, comprende que elementos y como estos son utilizados en los algoritmos propuestos para hallar cada una de las medidas de tendencia central.

20 de octubre 2014

Al igual que con la situación anterior, comprende que elementos y como estos son utilizados en los algoritmos propuestos para hallar cada una de las medidas de tendencia central. El apoyo de la pasante se enfoca más en la ayuda a visualizar lo dispuesto en el tablero y ampliación de la letra y gráficos de las situaciones.

<table>
<thead>
<tr>
<th>OBJETIVOS</th>
<th>Potenciar la comprensión de los algoritmos de suma y resta de fracciones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMÁTICAS</td>
<td>Algoritmo de la suma y resta de fracciones.</td>
</tr>
<tr>
<td>ADAPTACIONES DE MATERIAL</td>
<td>Adaptación de guías y una descripción detallada de lo que ocurre en el tablero como del libro saber matemático.</td>
</tr>
<tr>
<td>DESARROLLO DE LAS ACTIVIDADES</td>
<td>16 de Septiembre del 2014</td>
</tr>
<tr>
<td></td>
<td>La docente realiza la explicación del algoritmo de lápiz y papel de la suma y resta de fracciones homogéneas y heterogéneas, finalizando con la</td>
</tr>
<tr>
<td>Fecha</td>
<td>Descripción</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>23 de Septiembre del 2014</td>
<td>No se realiza el acompañamiento puesto que la estudiante no fue al colegio.</td>
</tr>
<tr>
<td>30 de Septiembre del 2014</td>
<td>Se realizan dos páginas del libro saber matemático, en ellas se encuentran algunas proporciones de longitudes de figuras geométricas y las medidas de tendencias central.</td>
</tr>
<tr>
<td>28 de Octubre del 2014</td>
<td>No se realiza el acompañamiento porque la estudiante se encuentra en reunión en el aula de tiflología.</td>
</tr>
<tr>
<td>4 de Noviembre del 2014</td>
<td>No se realiza el acompañamiento porque la estudiante se encuentra en dirección de grupo.</td>
</tr>
<tr>
<td>16 de Septiembre del 2014</td>
<td>Se le dificulta el algoritmo de la suma y resta de fracciones heterogéneas y en ocasiones se confunde con el algoritmo de la suma y resta de fracciones homogéneas.</td>
</tr>
<tr>
<td>30 de Septiembre del 2014</td>
<td>Comete errores de cálculo al realizar las operaciones en las medidas de tendencia central, a pesar de ello se observa la comprensión de las medidas de tendencia central e identifica las proporciones y longitudes de figuras geométricas.</td>
</tr>
</tbody>
</table>
| **OBJETIVOS** | Fomentar la comprensión del plano cartesiano y la ubicación de coordenadas en los números enteros.
Facilitar la comprensión y formulación de las razones y proporciones en enunciados verbales. |
| **TEMÁTICAS** | Plano cartesiano
Números enteros
Razón y proporciones |
| **ADAPTACIONES DE MATERIAL** | Se implementa el plano cartesiano para invidentes para la ubicación de coordenadas y adaptación de guías. |
| **DESARROLLO DE LAS ACTIVIDADES** | **1 de Septiembre del 2014**
En el primer momento de la sesión de clase, el docente titular realiza una explicación de las características del plano cartesiano y como se representan las coordenadas en forma escrita y en el segundo momento se realizan ejemplos de la ubicación de algunas coordenadas. Para finalizar el docente plantea algunos ejercicios de ubicación en el plano cartesiano. |
| **** | **15 de Septiembre del 2014**
El docente realiza una guía en la cual se involucran los números enteros, por medio de la ubicación de coordenadas en el plano cartesiano. |
| **** | **29 de Septiembre del 2014**
Se realiza una explicación de los múltiplos y submúltiplos del metro con ejemplos para la comprensión del tema y finaliza dejando unos ejercicios para que los estudiantes practiquen la conversión de las unidades de longitud. |
| **** | **20 de Octubre del 2014**
Se realiza una explicación y se dan las definiciones de lo que es una razón y proporción dando ejemplos, posteriormente se expone la ley fundamental de las proporciones para encontrar alguna incógnita y finaliza dejando algunos ejercicios. |
<table>
<thead>
<tr>
<th>Fecha</th>
<th>Evento</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 de Octubre del 2014</td>
<td>El docente desarrolla en la clase los temas de la media proporcional, por medio de enunciados verbales y finaliza dejándoles dos enunciados para que los estudiantes los resuelvan.</td>
</tr>
<tr>
<td>10 de Noviembre del 2014</td>
<td>El docente dicta algunos enunciados sobre proporcionalidad, para que los estudiantes los resuelvan.</td>
</tr>
<tr>
<td>RESULTADOS DE LAS Actividades</td>
<td>1 de Septiembre del 2014</td>
</tr>
<tr>
<td></td>
<td>Reconoce los nombres de cada una de las coordenadas, además de cómo se representan en el plano cartesiano, identifica las características del plano cartesiano como los ejes y presenta dificultad en la ubicación de coordenadas a pesar de que se utiliza el plano cartesiano para invidentes puesto que se confundía con el eje x y el eje y o por el recurso mientras explora con él para fortalecer la ubicación de las coordenadas en el plano cartesiano se deja un taller adaptado.</td>
</tr>
<tr>
<td></td>
<td>15 de Septiembre del 2014</td>
</tr>
<tr>
<td></td>
<td>La estudiante reconoce los enteros y los identifica en la recta numérica, por otro lado se observa que ya ha comprendido la ubicación de coordenadas en el plano cartesiano aunque todavía falta fortalecerlo.</td>
</tr>
<tr>
<td></td>
<td>29 de Septiembre del 2014</td>
</tr>
<tr>
<td></td>
<td>La estudiante reconoce la definición de los múltiplos y submúltiplos del metro, se fortalece esta temática por medio de guías adaptadas y el trabajo cooperativo con sus compañeros puesto que el trabajo era en grupos.</td>
</tr>
<tr>
<td></td>
<td>20 de Octubre del 2014</td>
</tr>
<tr>
<td></td>
<td>Se evidencia que presenta dificultades para identificar la razón y las proporciones en un enunciado verbal, pero en el trascurso de la clase se va superando esta dificultad pero se recomienda seguir estudiando esta temática, del docente titular propone tarea para que los estudiantes superaran estas dificultades.</td>
</tr>
<tr>
<td></td>
<td>27 de Octubre del 2014</td>
</tr>
<tr>
<td></td>
<td>Se desarrolla en la clase los temas de proporción y la media proporcional,</td>
</tr>
</tbody>
</table>
donde se evidencia el fortalecimiento de la traducción del enunciado verbal a lo simbólico y no presenta dificultad en encontrar la incógnita para que la proporción se cumpla.

10 de Noviembre del 2014

Se fortalece la proporcionalidad por medio de enunciados verbales y los procedimientos de despeje para encontrar la incógnita.

<table>
<thead>
<tr>
<th>OBJETIVOS</th>
<th>Potenciar la comprensión de las características de los polígonos.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Facilitar la comprensión de las operaciones con fraccionarios</td>
</tr>
<tr>
<td>TEMÁTICAS</td>
<td>Caracterizar los polígonos</td>
</tr>
<tr>
<td></td>
<td>Operaciones con fraccionarios</td>
</tr>
<tr>
<td>ADAPTACIONES DE MATERIAL</td>
<td>Adaptación de guías, por medio del aumento de las figuras y el texto y la descripción específica de lo que se escribe en el tablero.</td>
</tr>
<tr>
<td>DESARROLLO DE LAS ACTIVIDADES</td>
<td>25 de agosto del 2014</td>
</tr>
<tr>
<td></td>
<td>La docente propone un juego matemático, mientras ella revisa la tarea que les había dejado, donde tenían que consultar que eran fracciones homogéneas y heterogéneas.</td>
</tr>
<tr>
<td></td>
<td>1 de Septiembre del 2014</td>
</tr>
<tr>
<td></td>
<td>En esta sesión se ejecuta una evaluación, donde los estudiantes tienen que clasificar y representar en la recta numérica y gráficamente algunas</td>
</tr>
<tr>
<td>14 de septiembre del 2014</td>
<td>Se les realiza una evaluación a los estudiantes sobre las características generales de los polígonos, por medio de una guía de trabajo.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>22 de septiembre del 2014</td>
<td>Trabajo de las páginas 15, 16 y 17 del saber matemático.</td>
</tr>
<tr>
<td>27 de octubre del 2014</td>
<td>La sesión es dedicada a la solución de las páginas 20, 21 y 22 del saber matemático, que involucra solución de algoritmos de operaciones aritméticas básicas.</td>
</tr>
<tr>
<td>11 de noviembre del 2014</td>
<td>La docente realiza una evaluación del algoritmo de suma y resta de fracciones.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTADOS DE LAS ACTIVIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 de agosto del 2014</td>
</tr>
<tr>
<td>1 de septiembre del 2014</td>
</tr>
<tr>
<td>2 de septiembre del 2014</td>
</tr>
<tr>
<td>22 de septiembre del 2014</td>
</tr>
<tr>
<td>27 de octubre del 2014</td>
</tr>
</tbody>
</table>
11 de Noviembre del 2014

Se identifica que la estudiante realiza algunos errores de cálculo al realizar los procedimientos, sin embargo reconoce el algoritmo de la suma y resta de fracciones.

PASANTÍA

UNIVERSIDAD DISTRITAL- COLEGIO OEA IED

ACOMPAÑAMIENTO EN EL AULA

NOMBRE DE LOS PASANTES: Claudia Acosta y Aura Acero

GRUPO: séptimo con Lian Castro

| OBJETIVOS | Potenciar la comprensión de la fracción en contexto continuo, específicamente la interpretación parte-todo.
Fomentar el reconocimiento de los números compuesto y primos para la descomposición de factores primos.
Facilitar la realización de las operaciones básicas con fracciones.
Facilitar la compresión del área de figuras por medio de las fracciones. |
| --- | --- |
| TEMÁTICAS | Representación de la fracción.
Simplificación y amplificación de las fracciones.
Números compuestos y primos.
Algoritmos básicos de lápiz y papel con las fracciones.
Áreas de figuras usando las fracciones como unidad medida. |
| ADAPTACIONES DE MATERIAL | Se adaptaron guías de trabajo para la representación de las fracciones y de las áreas de los cuadrados para determinar el área de la figura, por medio del relieve.
Utiliza las figuras de fomi donde se encuentran dividida la unidad en varias partes iguales y diferentes tamaños. |
<table>
<thead>
<tr>
<th>DESARROLLO DE LAS ACTIVIDADES</th>
<th>1 de Septiembre del 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 de Septiembre del 2014</td>
<td>La estudiante realiza una guía de trabajo, en ella hay varios enunciados verbales en los cuales la mayoría de los datos son en fracciones representándolas como parte-todo en contexto continuo.</td>
</tr>
<tr>
<td>8 de Septiembre del 2014</td>
<td>La docente realiza la explicación de la simplificación y amplificación de las fracciones por medio de la descomposición en factores primos y define cuando un número es compuesto o primo. Posteriormente se dejan algunos ejercicios y una tarea de identificar y comparar que número fraccionario es mayor o menor que otro.</td>
</tr>
<tr>
<td>22 de Septiembre del 2014</td>
<td>Se realiza la solución de las páginas 15, 16 y 17 del libro saber matemático donde la temática general es la descomposición de factores primos.</td>
</tr>
<tr>
<td>29 de Septiembre del 2014</td>
<td>Se realiza una guía adaptada sobre laberintos en los cuales tiene que encontrar una respuesta dada por la docente para ello debe utilizar el algoritmo de la suma y resta de fracciones homogéneas y heterogéneas.</td>
</tr>
<tr>
<td>20 de Octubre del 2014</td>
<td>Se realiza la explicación del algoritmo de multiplicación y división de fracciones y finaliza colocando algunos ejercicios para que los estudiantes practiquen lo explicado.</td>
</tr>
<tr>
<td>27 de Octubre del 2014</td>
<td>La docente explica como hallar el área de una figura geométrica por medio de la descomposición en cuadrados y rectángulos, las medidas para hallar el área se encuentran en fracciones.</td>
</tr>
<tr>
<td>10 de Noviembre del 2014</td>
<td>No se prestó el acompañamiento por realizarlo a otra estudiante de primaria que estaba recién operada y necesitaba un apoyo para adelantarse en las temáticas respectivas del curso.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTADOS</th>
<th>1 de Septiembre del 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
<td>Actividad</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>8 de Septiembre del 2014</td>
<td>Reconoce la definición de número primo y número compuesto, en donde realiza satisfactoriamente la descomposición en factores primos.</td>
</tr>
<tr>
<td>22 de Septiembre del 2014</td>
<td>La estudiante fortalece la descomposición en factores primos, en donde se evidencia la comprensión de la definición de número primo y compuesto, por medio del uso del ábaco en donde tiene presente cada uno de los factores.</td>
</tr>
<tr>
<td>29 de Septiembre del 2014</td>
<td>Se observa que la estudiante reconoce el algoritmo de suma y resta de fracciones homogéneas y heterogéneas implementando el uso del mínimo común múltiplo.</td>
</tr>
<tr>
<td>20 de Octubre del 2014</td>
<td>La estudiante reconoce el algoritmo de multiplicación y división con fracciones sin ningún inconveniente con el uso del ábaco, con los ejercicios que propone la docente solucionar.</td>
</tr>
<tr>
<td>27 de Octubre del 2014</td>
<td>Identifica el área de los cuadrados y rectángulos para hallar el área de la figura total con guías adaptadas en los cuales la unidad de medida son las fracciones, se evidencia que la estudiante tiene conocimiento del área y se fortalece la multiplicación de fracciones.</td>
</tr>
</tbody>
</table>