TRABAJO DE GRADO:

“Bio - Membranas: Una Aproximación Vía Simulaciones Computacionales”

Trabajo de grado presentado por Luis Alejandro Quemba Guavita y Walther Geovanny Gamba Cifuentes para obtener el título de licenciados en física de la Universidad Distrital Francisco José de Caldas

Director
Manuel Flórez
Co-Director
Alfonso Leyva

Bogotá 2015
Dedicado a nuestras familias, las cuales con mucha entrega y amor, nos acompañaron durante todos estos años brindándonos su fortaleza y apoyo incondicional en este camino tan gratificante de la docencia.
Agradecimientos

Este proyecto está profundamente agradecido a los profesores Alfonso Leyva Rojas y José Manuel Flórez. Los cuales fueron nuestros guías y tutores, en el camino de la búsqueda del conocimiento durante la mayor parte de nuestra carrera universitaria. Les agradecemos todo su tiempo y dedicación brindada a lo largo de la investigación realizada, su paciencia y su entrega al compartirnos todos sus conocimientos para poder llevar a cabo nuestro trabajo de grado. De igual manera, a la Pontificia Universidad Javeriana por abrirnos las puertas y permitirnos hacer uso de los equipos y maquinas del departamento de biofísica; dado que sin esta gran ayuda este trabajo no hubiese podido llevarse a cabo. ¡Muchas Gracias!
Contenido

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>V</td>
</tr>
<tr>
<td>1 Introducción</td>
<td>1</td>
</tr>
<tr>
<td>Introducción</td>
<td>1</td>
</tr>
<tr>
<td>2 Antecedentes</td>
<td>2</td>
</tr>
<tr>
<td>Antecedentes</td>
<td>2</td>
</tr>
<tr>
<td>3 Objetivos</td>
<td>3</td>
</tr>
<tr>
<td>Objetivos</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Objetivo general</td>
<td>3</td>
</tr>
<tr>
<td>Objetivo general</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Objetivos específicos</td>
<td>3</td>
</tr>
<tr>
<td>Objetivos específicos</td>
<td>3</td>
</tr>
<tr>
<td>4 Marco teórico y Conceptual</td>
<td>4</td>
</tr>
<tr>
<td>Marco teórico y Conceptual</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Dinámica molecular (MD)</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Electrostática</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Campo de Fuerza</td>
<td>9</td>
</tr>
<tr>
<td>4.4 Algoritmo de Verlet</td>
<td>11</td>
</tr>
<tr>
<td>4.5 Condiciones de frontera</td>
<td>12</td>
</tr>
<tr>
<td>4.6 MD a Temperatura Constante</td>
<td>15</td>
</tr>
<tr>
<td>4.6.1 Termostato de Berendsen</td>
<td>16</td>
</tr>
<tr>
<td>4.7 MD a Presión Constante</td>
<td>18</td>
</tr>
<tr>
<td>4.7.1 Acoplamiento de la presión</td>
<td>18</td>
</tr>
<tr>
<td>4.7.2 Barostato Parrinello - Rahman</td>
<td>21</td>
</tr>
<tr>
<td>4.8 Mecánica Estadística</td>
<td>21</td>
</tr>
</tbody>
</table>
4.9 Mecánica estadística clásica 22

5 Membranas ... 25
 5.1 Membrana Biológica .. 25
 5.1.1 Composición química 25
 5.1.2 Mezcla de lípidos en agua 26
 5.2 Proteínas de Membrana 27

6 Herramientas de Simulación 28
 6.1 Gromacs .. 28
 6.2 VMD (Visual Molecular Dynamics) 29
 6.3 VMD: Trabajando con una molécula 31
 6.4 Visualización de la molécula 32
 6.5 Representaciones gráficas 34
 6.5.1 Exploración de diferentes estilos de dibujo 34
 6.6 Explorando diferentes métodos al colorear 36
 6.6.1 Ejecutando diferentes selecciones 36
 6.6.2 Creando múltiples representaciones 38
 6.7 Extensión visor de secuencia 40
 6.8 Cómo guardar su trabajo 41
 6.9 Fundamentos de representación en VMD 42
 6.9.1 Ajuste del fondo de la pantalla 42
 6.9.2 El aumento de resolución 43
 6.9.3 Colores y materiales 44
 6.9.4 La percepción de profundidad 45
 6.9.5 Representación ... 46
 6.10 Trayectorias y creación de películas 47
 6.10.1 Carga de Trayectorias 48
 6.11 Principales herramientas de animación 50
 6.12 Visualización de la trayectoria 50
 6.12.1 Trayectorias de alisado 51
 6.12.2 Presentación a varios tramos 51
 6.12.3 Secciones de actualización 52
 6.13 Los fundamentos del movimiento en VMD 53
 6.13.1 Realización de películas de un solo cuadro 53
 6.13.2 Hacer películas de trayectoria 54
 6.14 Análisis de Datos en VMD 55
 6.14.1 Las etiquetas ... 55
 6.15 RMSD de los residuos individuales en VMD 58
 6.16 Distribución de temperatura 61

III
7 Metodología

7.1 MD: Simulación de Proteínas de Membrana .. 65
7.2 Construcción de Topologías ... 65
7.3 Parámetros de la simulación ... 66
7.4 Configuración y equilibrio de una bicapa ... 66
7.5 Solvatación del sistema ... 68
7.6 La adición del disolvente ... 69
7.7 Adición de iones ... 69
7.8 Energía Minimización ... 70
7.9 Ejecución ... 71
7.10 Detalles de la simulación ... 71
7.11 Calculo del potencial de fuerza media .. 72

8 Componente Pedagógico ... 73

9 Resultados y Conclusiones ... 77

9.1 Resultados ... 84
9.2 Conclusiones ... 85
Resumen

El estudio de las propiedades mecánicas de las biomembranas es un tema de gran interés en la actualidad, en muchas áreas científicas y tecnológicas, como la bionanotecnología y la biomedicina, entre otras. Los principales problemas se encuentran centrados en el transporte de moléculas a través de estos sistemas y el efecto que causa el movimiento de estas moléculas dentro del mismo. No obstante, abordar y determinar el funcionamiento dentro de la biomembrana, no es tarea fácil, dado que los parámetros establecidos para un sistema biomolecular físico podrían llegar a variar en una gran proporción, y más aún cuando esta propiedad es determinante en los procesos de transporte biológico.

Las herramientas de laboratorio permiten recrear sistemas observables que obedecen a una escala determinada (macroscópica) para una interpretación adecuada de la manifestación de la naturaleza, de tal forma, que se pueda interpretar y abstraer la información obtenida de dicho sistema. Sin embargo, cuando se desea experimentar bajo condiciones extremas, ya sea de temperatura, volumen o presión con un sistema biomolecular, el laboratorio se queda corto en el sentido de que el análisis que se pueda realizar prácticamente sería inservible, ya que la información arrojada por los instrumentos de medición no podría ser satisfecha para dichas condiciones. Es en este punto donde la dinámica molecular despliega su campo de acción, empleando elementos de computación avanzada, lenguaje de programación, programas de simulación de dinámica molecular diseñados exclusivamente para el uso de las ecuaciones newtonianas del movimiento, para sistemas de centenares a millones de partículas, que se rigen bajo dichas ecuaciones y visualizadores gráficos que exploran a la perfección una simulación computacional.
CHAPTER 1
INTRODUCCIÓN

El transporte a través de membranas celulares es uno de los problemas relevantes en los sistemas celulares, para el cual no existe una teoría formal basada en primeros principios. Este es un problema con un alto grado de dificultad, debido a que las células deben interactuar con su entorno a varios niveles. En estos fenómenos se involucran procesos de señalización y transporte de iones, de manera que un modelo basado en primeros principios debería involucrar toda esta fenomenología en sus correspondientes escalas espacio-temporales. No obstante, sería de gran interés disponer de modelos físicos y matemáticos que describan el comportamiento de transporte y recepción de agentes en ellas, los cuales a su vez permitirían la caracterización adecuada de los fenómenos de transporte de las membranas. De manera que el estudio de las propiedades mecánicas de las biomembranas, es un tema de gran importancia para la comprensión de estos fenómenos. Los principales problemas se encuentran centrados en el trasporte de moléculas a través de biosistemas. En este trabajo se abordará una propiedad macroscópica termodinámica, como lo es la tensión superficial. Esta propiedad es determinante en la caracterización de las propiedades mecánicas de la biomembrana en un sistema biológico de gran importancia como lo es el surfactante pulmonar.
Chapter 2
Antecedentes

Las células son fundamentales para la vida ya que es la base fundamental para todos los organismos vivos. La membrana celular se involucra de manera directa en el funcionamiento de la célula, ya que es uno de sus agentes principales en el transporte. Las biomembranas facilitan un gran número de funciones que se determinan principalmente por el tipo de proteína asociado a la bicapa. Estas proteínas de membrana son por lo general de gran importancia biológica, ya que son actores claves en los procesos cruciales como la conversión de energía, el transporte, el reconocimiento de la señal, y la transducción de factores biológicos. En comparación con las proteínas solubles, es particularmente difícil obtener datos de alta resolución experimentales sobre estructuras de las proteínas de membrana: hasta la fecha las estructuras de 3D de 97 proteínas de membrana divergente han sido resueltas, mientras que cerca de 13.0000 estructuras están disponibles para las proteínas solubles.

Obtener una visión más profunda de la arquitectura de las proteínas de membrana es claramente una meta importante en la biología estructural moderna. Además, de un mayor desarrollo y mejora de la estructura y la resolución de las técnicas experimentales, métodos teóricos y computacionales, que se han vuelto cada vez más importante. Estos van desde la bioinformática y procedimientos de modelado de homología para cálculos de mecánica cuántica y simulaciones moleculares (Kandt, C. Ash.2007)
Chapter 3

Objetivos

3.1 Objetivo general

- Estudiar las propiedades mecánicas de superficie de biomembranas a través de una simulación computacional, utilizando dinámica molecular.

3.2 Objetivos específicos

- Implementar en la plataforma GROMACS una simulación de dinámica molecular en una caja de simulación para biosistemas compuestos por lipídos tipo DPPC (Dipalmitoilfosfatidicolina).

- Aplicar los conceptos de ensambles termodinámicos a las simulaciones computacionales.

- Análizar el comportamiento de la tensión superficial en una biomembrana del tipo DPPC.

- Explicar de una forma adecuada el comportamiento de la tensión superficial en una membrana biológica, al insertar varios péptidos en una simulación computacional, generando una motivación a los estudiantes de licenciatura en proyectos interdisciplinarios en los que estén interesados.
4.1 Dinámica molecular (MD)

La simulaciones de dinámica molecular (MD) investigan los movimientos de un sistema de partículas discretas, bajo la influencia de fuerzas externas e interacciones entre ellas, en el caso de la dinámica molecular para biomoléculas, las fuerzas están descritas por una función de energía potencial, denominada campos de fuerza(FF: Force Field). Basándose en los campos de fuerza, es posible determinar el comportamiento dinámico de un sistema por medio de las leyes de la física, que en el caso particular están representadas en las leyes de Newton/Hamilton en el régimen clásico, o Schrödinger/Dirac en el régimen cuántico. Tipicamente se estudian sistemas biomoleculares en el modelo clásico, siempre y cuando la estructura electrónica no sea alterada, es decir no haya formación ni destrucción de enlaces químicos, en caso que la estructura electrónica sea cambiada, el sistema deberá ser estudiado desde el modelo cuántico. Para un sistema atómico, la función de energía potencial consiste en un conjunto de ecuaciones que describen empíricamente las interacciones entre los átomos. La dinámica molecular generalmente consta de dos componentes principales, la primera parte describen las interacciones entre los átomos conectados a través de enlaces covalentes, y la segunda describe las interacciones no enlazadas, es decir, las interacciones electrostáticas entre cada átomo, las cuales se analizan por medio de potenciales de Lennard-Jones y Van der Waals.

Cada molécula en la simulación se describe por su “Topología”, que es la combinación del conjunto de todos los átomos, con sus respectivos parámetros de interacción. Desde su introducción a finales de 1950(Gusteren, W. Berendsen.H.,J (1990)) y su primera aplicación a una proteína, las simulaciones
en MD se han convertido en una herramienta común para investigar la estructura de diferentes sistemas, actividad y relaciones en macromoléculas biológicas. El emplear la dinámica molecular a nivel atómico facilita la interpretación de la experimentación y la toma de datos; no obstante, una ventaja considerablemente importante es dar acceso a la información la cual no es directamente accesible por los experimentos en la vida real.

Durante las últimas décadas, se ha convertido en una forma viable y eficaz, emplear la dinámica de modelos moleculares en sistemas comunicacionales físicos, en condiciones casi más que imposibles en un laboratorio. El método de dinámica molecular resuelve las ecuaciones de movimiento de newton para un sistema molecular, en las cuales se trazan las trayectorias de todos los átomos que conforman el sistema. A partir de estas trayectorias atómicas se pueden calcular variables dinámicas como lo son: la posición, la velocidad y la temperatura principalmente.

El objetivo de las simulaciones computacionales para sistemas moleculares es determinar el comportamiento microscópico a partir de sus interacciones. Las principales contribuciones que puede ofrecer un sistema microscópico en observación, radica principalmente en el entendimiento e interpretación de los resultados, junto con la estimación semi-cuantitativa de ellos y la capacidad para interpolar o extrapolar los datos experimentales, en las regiones que son de difícil acceso en el laboratorio. Uno de los problemas básicos en el campo de la modelación y la simulación molecular, es cómo buscar de manera eficiente el espacio de configuración que se extiende por todas las conformaciones moleculares posibles, en las regiones de baja energía (partícula libre), la cual será rodeada por un sistema molecular en equilibrio térmico. El problema básico es la derivación de una función de interacción de energía lo suficientemente precisa para el sistema molecular de interés. Una parte importante de la simulación computacional es elegir las inevitables aproximaciones y simplificaciones del modelo molecular y procedimiento de cálculo de manera adecuada.

El método de la dinámica molecular ejecuta las trayectorias (configuraciones como una función del tiempo) de sistemas moleculares, generadas por integraciones simultáneas de las ecuaciones de movimiento de Newton para cada uno de los sistemas que conforman el sistema.

\[
\frac{d^2 r_i}{dt^2} = m_i^{-1} F_i \quad \text{(4.1.1)}
\]

\[
F_i = -\bigtriangledown V(r_i, ...r_n) \quad \text{(4.1.2)}
\]
La fuerza sobre un átomo es denotada por F_i y el parámetro temporal por t. Las simulaciones realizadas con dinámica molecular requieren el cálculo del gradiente de la energía potencial $V(r)$, el cual debe ser una función diferenciable de la coordenada atómica r_i. La integración de la segunda ley de Newton es realizada en pequeños pasos de tiempo δt para sistemas moleculares se utilizan pasos de 1 a 10 ps. Las cantidades de equilibrio estático pueden ser obtenidas si se promedia sobre las trayectorias una longitud considerable para formar un ensamble representativo del estado del sistema. Otro de los aportes que brinda las simulaciones de dinámica molecular, radica en que las propiedades de no equilibrio pueden ser eficientemente estudiadas al mantener el sistema en un estado de inestabilidad, dado que también es posible cambiar las ecuaciones de movimiento y las condiciones de contorno, de tal manera que el sistema se mantenga en un estado alterado. En tales simulaciones de dinámica molecular de no-equilibrio se requiere un muestreo del ensamble en estudio (NEMD non equilibrium molecular dynamics).

Vista como una técnica del espacio de configuración, el poder de la dinámica molecular yace en el hecho de que la energía cinética presente en el sistema permite superar las barreras de energía que son del orden de $K_B T$ por grado de libertad. A temperaturas elevadas la energía total y la energía potencial son monitoreadas por fluctuaciones grandes, las cuales pueden ser señal de cambios conformacionales significantes. Cuando ocurre el mínimo de la energía total, el sistema se equilibra a temperatura normal ($300K$). No obstante, la selección de elevadas temperaturas favorece considerablemente las conformaciones de energía (entropía elevada). La búsqueda de la conformación del espacio en la dinámica molecular permanece eficiente hasta un número superior a los 100 átomos. Para moléculas más largas, que se representan en pliegues característicos, los métodos de la dinámica molecular no están disponibles ya que no son capaces de generar principales re-ordenamientos topológicos. Incluso cuando las barreras que separan dos regiones de baja energía diferentes en el espacio de conformación son del orden $K_B T$, no es posible dado que el tiempo necesario para atravesar una barrera puede ser demasiado largo.

Las ecuaciones de Newton para movimientos transalacionales de una molécula son causadas por una fuerza externa F_i que cumple la segunda ley de Newton

$$F_i = ma_i$$

(4.1.3)

donde m es la masa de la molécula, se asume la posición, velocidad y tiempo como variables independientes. Para algunas funciones se puede tomar el
tiempo como constante y manejar la posición (r_{ij}) y la velocidad (v_i) como variables, estas son llamadas funciones hamiltonianas (H)

$$H(r^N, p^N) = Cte$$

(4.1.4)

donde el momento (p_i) de una partícula está definido en términos de la velocidad (v_i)

$$p_i = mv_i$$

(4.1.5)

cuando un sistema está aislado su energía se conserva, esta energía total se conoce como el hamiltoniano y se puede expresar como

$$H(r^N, p^N) = E_{cinética} + U_{potencial}$$

(4.1.6)

donde $E_{cinética}$ es la energía cinética del sistema y $U_{potencial}$ es la energía potencial entre las interacciones intermoleculares del sistema, entonces para una molécula N del sistema, se puede expresar el hamiltoniano como

$$H(r^N, p^N) = \frac{1}{2m} \sum_i p_i^2 + U(r^N) = E$$

(4.1.7)

y sus movimientos estarán descritos por las ecuaciones de Hamilton

$$\frac{\partial H}{\partial p_i} = \frac{p_i}{m} = v_i$$

(4.1.8)

$$\frac{\partial H}{\partial r_i} = -\dot{p}_i$$

(4.1.9)

4.2 Electrostática

Una cuestión crucial y de importancia en las simulaciones de dinámica molecular es el tratamiento de las interacciones electrostáticas. Esto afecta en particular a los sistemas de bicapa lipídica, debido a que los fosfolípidos tienen una alta densidad de carga interfacial y regiones de baja constante dieléctrica, donde las interacciones electrostáticas son muy bajas.

En las simulaciones biomoleculares, existen formas principales para calcular las interacciones electrostáticas: una de ellas es la técnica basada en el Cutoff, es decir considerar una pequeña zona de interacción para las partículas, la cual se considera como una esfera con radio de 10 a 15 Å, que se encuentra centrada en la partícula a estudiar. De manera que para la suma de las interacciones solo se consideren las partículas que se encuentren dentro de la
esfera del Cut Off.

La técnica de enrejamiento de partículas o más conocida como la malla Ewald (PME), es una técnica que utiliza una transformada rápida de Fourier para calcular la suma en el espacio recíproco, para lo cual hay que discretizar los valores. Para discretizar los valores, en lugar de trabajar con una densidad de cargas continua, se aproxima a un modelo de cargas distribuidas en una malla construida sobre el espacio cartesiano sobre el que se realiza la dinámica molecular. A partir de la distribución de cargas en la malla, se obtiene el potencial debido a las distribuciones gaussianas en los puntos de la malla, que vuelven a interpolarse para generar el potencial en las posiciones de las partículas. Una preocupación con este método es que, debido a su periodicidad, la PME puede inducir un ordenamiento artificial que mejora la estabilidad de los sistemas.

Enfoques de campo de reacción son otra técnica que considera el efecto de largo alcance en interacciones electrostáticas. Añaden un término de corrección al resultado de corte con base en una descripción electrostática continua del disolvente fuera de la esfera de corte. Este método fue desarrollado originalmente para el uso de sistemas no homogéneos, tales como simulaciones de líquidos.

El corte para las diferentes técnicas debe aproximarse a los efectos de Coulomb y las fuerzas electrostáticas a una distancia específica, que es típicamente entre 1,0 y 2,0 nm, dando un ahorro considerable en el costo computacional. Sin embargo, tales aproximaciones son bastante drásticas y tienen un significativo efecto sobre las propiedades del sistema. Como una mejora sobre los métodos de corte recto, las funciones cambiantes pueden aplicarse cuando se eliminan en parte los efectos de correlación artificiales, disminuyendo la energía de interacción a cero, ya sea dentro de la zona de desconexión completa o más de una región limitada (Kandt, C. Ash, W, L. Tieleman, P. (2007)).

Ninguno de estos métodos son perfectos para la simulación de sistemas interfaciales: métodos de corte inducen a ordenamientos artificiales. Sin embargo, en este contexto parece que hoy PME sería la opción recomendada teniendo los menos inconvenientes. La elección no es arbitraria; un campo de fuerza en particular realmente debe ser desarrollado para su uso con uno de estos métodos, como la exactitud del campo de fuerza no se mantiene al cambiar entre diferentes métodos para calcular las interacciones electrostáticas.
4.3 Campo de Fuerza

Los campos de fuerza deben ser considerados y tenidos en cuenta como la premisa y asunción a la hora de trabajar y ejecutar una simulación en dinámica molecular. El campo de fuerza GROMOS, realiza un trabajo para una cantidad de aminoácidos pero con biomoléculas de gran peso molecular y biomembranas. Cada uno de estos campos de fuerza posee una parametrización (Gusteren, W. Berendsen. H, J (1990)). La representación más generalizada del campo de fuerza molecular está dada por un potencial efectivo para un sistema de n-átomos (representación en coordenadas cartesianas) la cual se expone de la siguiente manera:

\[
V(r_1, r_2, ..., r_n) = \sum_{enlace} \frac{1}{2} K_b [b - b_0]^2 + \sum_{\text{ángulos}} \frac{1}{2} K_\theta [\theta - \theta_0]^2 + \sum_{\text{impropósitos}} \frac{1}{2} K_\xi [\xi - \xi_0]^2 + \sum_{\text{dihedros}} \frac{1}{2} K_\phi [1 + \cos(n\varphi - \delta)] + \sum_{\text{pares}(i,j)} \left[C_12(ij)/r_{ij}^{12} - C_6(ij)/r_{ij}^6 \right] + \frac{q_i q_j}{4\pi \varepsilon_0 \varepsilon r_{ij}}
\]

(4.3.1)

El primer término es una representación clásica de un resorte tipo Hooke, para un enlace covalente (figura 4.1(a)) \(k_b \) corresponde a la constante de elasticidad del resorte que a su vez emula la intensidad del enlace covalente mediante un potencial armónico, \(k_b \) varía dependiendo del tipo de enlace en cuestión. El segundo término representa el ángulo de flexión que forman tres átomos entre sí (figura 4.1(b)) en donde \(k_\theta \) varía de acuerdo a los movimientos que tendrán los tres átomos en cuestión.

El tercer y cuarto término (figura 4.1 (c) y (d)) están diseñados para las interacciones de cuatro átomos a través de los llamados ángulos dihedros. En la figura 4.1(d) representa un potencial armónico, el cual describe un subsistema de cuatro átomos de forma transicional, mientras que el potencial de la figura 4.1(c) es de la forma senosoidal y le permite al subsistema de cuatro átomos realizar giros hasta de 360 sexagesimal sobre algunos de sus ejes principales. Estos cuatro primeros términos están construidos de manera tal que permitan preservar las esteroquímica de las moléculas, en otras palabras
se está garantizando que la arquitectura fundamental de la biomolécula con ayuda de las restricciones de carácter espacial emule los movimientos de una molécula.

Desde el punto de vista de la mecánica clásica estas restricciones de carácter espacial se puedan ver como multiplicadores de Lagrange.

Los dos últimos términos (figura 4.1 (e) y (f)) corresponden a las interacciones de Van der Walls y Coulomb respectivamente entre pares de átomos.

En la literatura se suele hablar de interacciones enlazadas (bonded) y no enlazadas (no-bonded) haciendo referencia al potencial efectivo utilizado generalmente en las simulaciones biomoleculares esencialmente, el sector del potencial efectivo está pensado para preservar la arquitectura de las moléculas vía ligaduras, mientras que el término (no-bonded) representa las interacciones reales de carácter electrostático. Una de las características de las interacciones no enlazadas es tener un término de repulsión, un término de dispersión y un término de Coulomb. Los términos de repulsión y dispersión se combinan en el potencial de Lennard-Jones(figura 4.1e)
La parametrización de todos los átomos de un campo de fuerza para moléculas orgánicas y péptidos pueden ser descritos, debido a que la simulación de bajo costo computacional en función de la cantidad de lípidos y átomos pueden reproducir el comportamiento experimental dentro de la simulación. No obstante, puede ser deseable utilizar una combinación de lípidos, sobre el cual actúe una fuerza hacia la proteína y todos los átomos que se encuentren ligados (fuerza de ligadura).

Por ahora, el método más sencillo para simulaciones de proteínas de membrana implica la combinación matemáticamente compatible y fuerzas de ligadura en lípidos, y este enfoque ha dado una visión útil del comportamiento de proteínas de membrana. Una dificultad clave con las simulaciones clásicas de moléculas que se mueven entre dos ambientes muy diferente, es que los parámetros utilizados para describirlos tienen que ser exactos en ambos entornos, aunque la fuerza biomolecular típica de las fuerzas de ligadura se han desarrollado para la solución acuosa. Un enfoque directo para probar las energías libres de transferencia entre agua y ambientes hidrofóbicos ahora es posible computacionalmente, lo que permite una comparación directa con mediciones experimentales.

Mejoras Significativas en fuerzas de ligadura actuales pueden ser calculadas con base a la re-parametrización, tanto en la termodinámica de las proteínas de la membrana en el agua como en la interfaz de lípidos y en procesos tales como pequeñas moléculas y la unión a proteínas, que normalmente también implica un cambio del medio ambiente. Habrá un límite para el máximo de eficacia que se puede alcanzar mediante la simple re-parametrización debido a que se ignoran efectos de polarizabilidad electrónica entre los átomos.

4.4 Algoritmo de Verlet

El método más simple que ha sido ampliamente usado en la dinámica molecular es el algoritmo de tercer orden de Stormer. No obstante, existe un método de mucha utilidad para ser aplicado en las simulaciones de dinámica molecular; dicho algoritmo es el método de Verlet. El algoritmo es una combinación de expansiones de Taylor. Primero se escribe la serie de Taylor para la posición desde el tiempo t hacia un tiempo $t + \Delta t$:

$$x(t + \Delta t) = x(t) + \frac{dx(t)}{dt} \Delta t + \frac{1}{2} \frac{d^2x(t)}{dt^2} \Delta t^2 + \frac{1}{3!} \frac{d^3x(t)}{dt^3} \Delta t^3 + (\Delta t^4)$$ (4.4.1)

entonces la serie de Taylor desde el tiempo t hacia atrás $t - \Delta t$:

\[x(t - \Delta t) = x(t) - \frac{dx(t)}{dt} \Delta t + \frac{1}{2} \frac{d^2x(t)}{dt^2} \Delta t^2 - \frac{1}{3!} \frac{d^3x(t)}{dt^3} \Delta t^3 + (\Delta t^4) \] (4.4.2)

para las dos expansiones se eliminando todos los términos impares, por lo tanto se tiene que:

\[x(t - \Delta t) = 2x(t) - x(t - \Delta t) + \frac{d^2x(t)}{dt^2} \Delta t^2 + (\Delta t^4) \] (4.4.3)

La ecuación anterior es el algoritmo de Verlet para posiciones. Se ha colocado un error local de truncación que varía como \((\Delta t^4)\) y por lo tanto es de tercer orden, incluso se puede pensar en no tener derivadas de tercer orden para dicho algoritmo. De igual manera, el algoritmo permite obtener las velocidades y aceleraciones de las fuerzas intermoleculares a partir de la segunda ley de Newton. Para estimar las velocidades, se han ideado varios esquemas, uno de ellos ha sido la velocidad de medio paso:

\[v(t + \frac{1}{2} \Delta t) = \frac{x(t - \Delta t) - x(t)}{\Delta t} \] (4.4.4)

Así mismo Verlet utiliza el estimador de diferencia central de primer orden

\[v(t) = \frac{x(t + \Delta t) - x(t - \Delta t)}{2\Delta t} \] (4.4.5)

El algoritmo de Verlet es un método de doble paso porque estima \(x(t + \Delta t)\) desde la posición recurrente \(x(t)\) y la posición previa \(x(t - \Delta t)\). Por lo tanto, este no es un auto-arranque: las posiciones iniciales \(x(0)\) y las velocidades \(v(0)\) no son suficientes para iniciar un cálculo, y en algunos casos especiales se debe recurrir a que el tiempo sea igual a cero para obtener \(x(\Delta t)\). El algoritmo de Verlet ofrece la virtud de la simplicidad y una buena estabilidad para pasos de tiempo moderadamente largos. En esta forma original el tratamiento molecular de las velocidades es menos importante que las posiciones, con lo cual una vista desde el espacio de fase de la trayectoria depende igualmente tanto de las posiciones como de las velocidades.

4.5 Condiciones de frontera

Las simulaciones atómicas clásicas y, en particular en dinámica molecular (MD, hoy en día se han convertido en una herramienta común para investigar las propiedades de polímeros y biosistemas moleculares debido a su notable resolución en el espacio (átomos individuales), el tiempo (femtosegundos), y la energía, que representan un poderoso complemento de técnicas...
experimentales, proporcionando una visión mecanicista de los procesos experimentales. Sin embargo, la comparación directa con experimentos requiere que las condiciones de contorno impuestas en el sistema simulado estén en adecuación de las condiciones experimentales. La condición de frontera, es un término que se utiliza para denotar cualquier restricción geométrica o termodinámica forzada dentro de todo sistema durante una simulación. Uno puede distinguir entre límites fuertes y débiles, en términos de condiciones de frontera. Una condición de frontera fuerte representa una restricción en un instante observable dado, es decir, está satisfecha con exactitud en cualquier punto del tiempo durante la simulación. Una condición de frontera débil representa una restricción en el valor promedio de un observable, es decir, permite que el valor instantáneo correspondiente, fluctue alrededor del promedio especificado. La definición de una condición de frontera débil generalmente también requiere la especificación de un plazo de tiempo para el cual el promedio observable debe coincidir con el valor especificado. Existen cuatro tipos principales de condiciones de frontera en las simulaciones:

1. **Condiciones de frontera espaciales**, incluyen la definición de la forma simulada, el sistema y la naturaleza de sus alrededores. En las simulaciones moleculares, típicamente se utiliza para ya sea: (i) las condiciones de contorno de vacío (molécula de soluto rodeada por el vacío); (ii) las condiciones de contorno fijas (sistema de soluto disolvente rodeado por medio de vacío); (iii) las condiciones de contorno periódicas (sistema de soluto-disolvente en una caja de relleno del espacio, rodeado por un conjunto infinito de copias periódicas de sí misma, en los dos casos anteriores, el efecto de un circundante disolvente puede ser presentado de nuevo de una manera implícita por una modificación del sistema hamiltoniano. Las modificaciones típicas son la inclusión de: (i) fuerzas de solvatación que explican el efecto medio del disolvente, (ii) fuerzas estocásticas y de fricción que representan el efecto de las colisiones con moléculas del disolvente, (iii) fuerzas en la frontera del sistema de una interfaz de condiciones de contorno espaciales con condiciones de frontera fuertes, que se aplican estrictamente a todas las configuraciones durante una simulación.

2. **Condiciones de contorno termodinámicas**, incluyen la definición de las \(n + 2 \) cantidades termodinámicas a caracterizar en el estado macroscópico de un sistema -n (monoplástico): para sistemas bajo condiciones de contorno de vacío, sólo se requieren \(n + 1 \) cantidades ya que el volumen no está definido mientras que la presión es cero. Estas cantidades pueden ser seleccionadas formulando pares de cantidades extensivas e intensivas, incluyendo: (i) el número de partículas \((N \equiv N_i|i = 1...n) \), la caída de potenciales químicos
(µ ≡ μ; i = 1…n); (ii) el volumen V o la presión P; (iii) la energía E (o un amplio potencial termodinámico relacionado) y la temperatura T. El conjunto seleccionado de n + 2 cantidades, junto con sus valores de referencia (macroscópicos), definen el conjunto termodinámico que se muestra durante una simulación. Por defecto, los microestados en simulaciones MD se muestran en el conjunto microcanónico (NVE). Por la aplicación de modificaciones específicas para el hamiltoniano o ecuaciones de movimiento, es posible mantener en su lugar una temperatura constante, la presión o potencial químico para las diferentes especies (o cualquier combinación de estos cambios). Las condiciones de frontera termodinámicos que involucran cantidades extensas deben ser tratados como condiciones de frontera fuerte, mientras que aquellas que involucran cantidades intensivas debe ser condiciones de frontera débiles.

3. **Condiciones de frontera obtenidas experimentalmente**, se utilizan para hacer cumplir de manera explícita una simulación y algún resultado experimental. Estos pueden ser aplicados para hacer cumplir por ejemplo, la reproducción de mapas (promedio) de densidad de electrones de rayos X, cristalografía, o el promedio de distancias interatómicas y las constantes de acoplamiento J a partir de mediciones de RMN desde experimentos; siempre proporcionan un promedio de más de un momento dado y el número de moléculas. Experimentalmente las condiciones límite derivadas deben ser manejadas como condiciones de frontera débil.

4. **Restricciones geométricas**, también pueden ser consideradas como condiciones de frontera. Un ejemplo típico es el uso de restricciones de enlaces de larga duración en las simulaciones que representan una mejor aproximación al comportamiento de la mecánica cuántica de osciladores de alta frecuencia (ℏν ≫ K_B T) en comparación con el tratamiento clásico puesto que están satisfechos con exactitud en cada punto de tiempo durante una simulación, las restricciones geométricas representan condiciones de contorno duros.

Los parámetros anteriores también están restringidos a sistemas bajo vacío o condiciones de contorno periódicas, es decir, los sistemas aislados. Esto implica que el hamiltoniano es independiente del tiempo, e invariante en traslación o rotación de todo el sistema. Este hamiltoniano puede contener términos que representan el efecto medio del medio ambiente (por ejemplo, la solvatación), con tal de que siga reuniendo las condiciones anteriores. La única excepción que se considera es la posible inclusión de fuerzas estocásticas y de fricción tal como se aplica en la dinámica estocástica de simulaciones (SD), o de fuerzas de colisión tal como se aplican en el termostato de acoplamiento estocástico (Andersen). Por último, cabe destacar que la
inclución de las limitaciones geométricas durante una simulación afecta a la mecánica estadística de los microestados de la muestra, la energía cinética del sistema no se puede escribir en una forma de configuración independiente (salvo las limitaciones que participan exclusivamente en la rígidez de grupos de átomos, por ejemplo, moléculas rígidas). Sin embargo, se espera que los resultados sigan siendo aproximadamente válidos para sistemas que implican una pequeña proporción de grados de libertad, y no se intenta aquí obtener formas incluyendo explícitamente el efecto de las restricciones geométricas.

<table>
<thead>
<tr>
<th>Independiente</th>
<th>Dependiente</th>
<th>Ensamble</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVE</td>
<td>μPT</td>
<td>Microcanónico</td>
</tr>
<tr>
<td>NVT</td>
<td>μPE</td>
<td>Canónico</td>
</tr>
<tr>
<td>NPH</td>
<td>μVT</td>
<td>Isoentálpico - Isobárico</td>
</tr>
<tr>
<td>NPT</td>
<td>μVH</td>
<td>Isotérmico - Isobárico</td>
</tr>
<tr>
<td>μVL</td>
<td>NPT</td>
<td>Gran Microcanónico</td>
</tr>
<tr>
<td>μVT</td>
<td>NPL</td>
<td>Gran canónico</td>
</tr>
<tr>
<td>μPR</td>
<td>NVT</td>
<td>Gran Isotérmico - Isobárico</td>
</tr>
<tr>
<td>μPT</td>
<td>NVR</td>
<td>Generalizado</td>
</tr>
</tbody>
</table>

Tabla 4.1: Los ocho conjuntos termodinámicos, y las correspondientes variables independiente y dependientes. Las variables intensivas son el potencial químico para todas las especies n, la presión (P) y la temperatura (T). Las variables extensivas son el número de partículas para todas las especies, el volumen (V), la energía (E) y la entalpía. Tenga en cuenta que los conjuntos pueden ser abiertos con respecto a un subconjunto de las especies solamente (por ejemplo, el ensamble semigran canónico). El conjunto generalizado no es un conjunto físico, debido a su tamaño. Los conjuntos isotérmicos se discuten en muchos libros de texto estándar. Las referencias específicas se dan para los conjuntos adiabáticos menos comunes

4.6 MD a Temperatura Constante

Para realizar dinámica molecular a temperatura constante, existen varios métodos, para su funcionamiento algunos usan el escalamiento ad-hoc de velocidades atómicas, con el fin de ajustar la temperatura del sistema por medio formulaciones que modifiquen algunos términos de ecuaciones de lagrange de movimiento, que obligan a la dinámica del sistema a seguir la deseada restricción de temperatura. Para realizar una adecuada simulación, se empleara
el acoplamiento débil que consiste en las modificaciones del movimiento de los átomos, por lo tanto las ecuaciones de movimiento atómico son modificadas de tal manera que el resultado neto sobre el sistema, es una relación de primer orden de la temperatura hacia el valor de referencia \(T_0 \)

\[
\frac{dT(t)}{dt} = (\tau_T)\frac{1}{2}[T_0 - T(t)]
\]

(4.6.1)

la energía cinética puede ser modificada por \(\delta E_{kin} \) en pasos de tiempo, escalando todas las velocidades atómicas \(v_i \) con un factor \(\lambda \), obteniendo

\[
\Delta E_{kin} = (\lambda - 1)^2 \frac{1}{2} N_{df} K_T(t)
\]

(4.6.2)

si la capacidad calorífica por grado de libertad del sistema es denotada por \(C_{v}^{df} \) el cambio en la energía conlleva a un cambio en la temperatura

\[
\Delta T = [N_{df} C_{v}^{df}]^{-1} \Delta E_{kin}
\]

(4.6.3)

de acuerdo al factor \(\lambda \),

\[
\lambda = [1 + C_{v}^{df} \frac{1}{2} \Delta t T^{-1}(T_0/T(t)))]^\frac{1}{2}
\]

(4.6.4)

La capacidad calorífica por grado de libertad puede no ser apropiadamente conocida para el sistema. Esto no tiene consecuencia para la dinámica desde que la relación de temperatura – tiempo \(\tau_T \) sea un parámetro de ajuste. Este acoplamiento aperiodico al baño térmico a través de un proceso de primer orden tiene la ventaja sobre el sistema de métodos extendidos ya que la respuesta a la temperatura no es oscilatoria y que es bastante fácil implementarlo mediante el escalamiento de la velocidad con el factor \(\lambda \). El acoplamiento puede ser escogido lo suficientemente débil para evitar perturbaciones de el sistema y lo suficientemente fuerte para permitir el resultado deseado.

4.6.1 Termostato de Berendsen

Las simulaciones computacionales con dinámica molecular, permiten la ejecución de un sistema forzado a un ensamble microcanónico, al resolver las ecuaciones de movimiento de Newton para un sistema que se encuentre aislado completamente. En una situación real de dicho sistema llevaría a pensar que el conjunto de átomos del cual está compuesto el mismo, no es del todo aislado; si no que este se encuentra rodeado de otros átomos, con los que se encuentra en interacción. De tal manera, que si hay una interacción, habrá
intercambio energético y dentro de nuestro sistema aislado, la energía total del sistema es conservada con fluctuación nula, mientras que en nuestra situación real la fluctuación no sería nula. De tal manera que en realidad se va a trabajar en la aproximación termodinámica, lo cual implica que el sistema estaría en contacto térmico con determinado reservorio.

Para conseguir este efecto nulo y no nulo en una simulación computacional, se deben implementar restricciones al sistema. Es decir, las ecuaciones de movimiento de Newton deben ser modificadas para que las partículas del sistema estén sometidas bajo un parámetro de temperatura constante durante el intercambio energético. La modificación a las ecuaciones de movimiento de Newton consiste en la introducción de un término completamente nuevo, al cual se llamará termostato. Este termostato es una estructura matemática que produce fluctuación de la energía total para mantener la temperatura constante del sistema y también emular la interacción sistema-reservorio en el contexto termodinámico. De manera que las ecuaciones de movimiento presentan restricciones en particular dependiendo de sus grados de libertad. El termostato de Berendsen, fue introducido por primera vez en 1984, funciona escalando la velocidad de las partículas de acuerdo a la temperatura de referencia del baño termico T_o en un reservorio; el cual es un sistema termodinámico que cede energía en forma de calor o trabajo, o que simplemente proporciona partículas. El grado de acoplamiento del reservorio al sistema está dado por el parámetro de termostato, que en primera instancia obedece la dinámica del tipo Langevin haciendo referencia a una interacción análoga a la fricción.

En la práctica, la integración de las ecuaciones de Newton debe ser calculada y corregida con la denominada temperatura instantánea por el siguiente factor de escalamiento:

$$\lambda = \sqrt{1 + \frac{\Delta t}{\tau} \left(\frac{T_o}{T(t')} - 1 \right)}; \tau \geq \Delta t$$

(4.6.5)

se corregen las velocidades de acuerdo a:

$$v_i(t') = \lambda v_i(t')$$

(4.6.6)

el factor de escalamiento λ estará definido como función del tiempo, y adicionalmente el factor τ del termostato representa el acoplamiento del sistema con el reservorio, entendiéndose que, un valor muy pequeño de τ corresponde a un alto acoplamiento, mientras que un acoplamiento débil del termostato, en el caso límite ($\tau \to \infty$), correspondería al ensamble microcanónico. En
el formalismo de Langevin el acoplamiento del reservorio y el sistema queda definido por la ecuación:

\[m_i \frac{dv_i}{dt} = F_i - m_i \gamma v_i + R(t) \quad (4.6.7) \]

donde \(\gamma \) es un factor de la fricción que determina un fuerte acoplamiento del reservorio con el sistema, que a su vez es inversamente proporcional a la constante de tiempo \(\tau \). El parámetro \(R(t) \), se denomina ruido aleatorio e indica que el termostato es función de un subconjunto de las partículas del sistema. En el termostato de Berendsen se aplica el principio de perturbación de Gauss, con lo cual el ruido aleatorio es eliminado generando un termostato global (termostato en función de todas las partículas del sistema) adecuado para simulaciones en el no equilibrio. El escalamiento de las velocidades se obtiene de la ecuación (4.5.5) reemplazando \(\tau = \Delta t \), reduciendo el factor de escalamiento a la siguiente expresión:

\[\lambda = \sqrt{\frac{T_o}{T(t')}} \quad (4.6.8) \]

el cual corresponde al caso máximo de acoplamiento en el sistema.

4.7 MD a Presión Constante

4.7.1 Acoplamiento de la presión

Hay cuestiones teóricas significativas involucradas en el acoplamiento de la presión en los sistemas de interfaz. A grandes rasgos, existen tres diferentes métodos de acoplamiento de presión: isotrópico, semi-isotrópico y anisotrópico (ver Fig. 4.2).

Con la presión isotrópica el acoplamiento de las contribuciones individuales en \(x, y \) y \(z \) se acoplan, por lo tanto, sólo un escalado proporcional del sistema es posible (Fig. 4.2a). En general esto conduce a cambios muy pequeños en el tamaño de la caja debido a la incompresibilidad del agua. Estos cambios son a menudo insignificantes. Cuando se producen cambios más grandes, por lo general indica una solvatación insuficiente del sistema o errores durante el modelado. En lo que se refiere a las simulaciones de proteínas de membrana, es importante tener en cuenta que el acoplamiento de presión isotrópica no permite fluctuaciones en la superficie, lo cual es una característica clave de las bicapas lipídicas, y no especifica la tensión en la superficie. Un posible método para mejorar esto, es colocar una zona constante de la superficie...
calculada a partir de la superficie por valor de lípidos de interés particular, a volumen constante. Desafortunadamente el conocimiento de la zona a la derecha por lípidos es muy difícil de obtenerla y, de hecho, no es posible debido a que los sistemas son arbitrarios. Además, este enfoque no permitirá la reproducción de efectos tales como el aumento de la temperatura.

Acoplamiento de presión semi-isotrópico permite fluctuaciones de la zona. En este caso, sólo las contribuciones de presión en direcciones x, y son (isótropicas) acopladas, pero no en la dirección z (Fig. 4.2b). Es importante destacar que las contribuciones de presión acoplada en x, y no implica una superficie constante: si el tamaño de la caja de simulación necesita ser ajustada, afectará a ambas dimensiones igualmente para permitir que las fluctuaciones de la zona sin cambiar la relación en el aspecto de la caja. Semi-isotrópico es el tipo recomendado de acoplamiento de presión para las simulaciones de proteínas de membrana. Con los parámetros united-atom en GROMACS una presión de referencia de 1 bar en x, y, z es apropiado, y corresponde a una presión real. En algunas simulaciones se utilizan parámetros CHARMM a diferentes valores en x, y para imponer una tensión superficial de cero (W, L. Tieleman, P. (2007)).

Aunque el acoplamiento anisotrópico también permite las fluctuaciones de la superficie de la membrana, se debe utilizar con cuidado: ya que no hay acoplamiento entre las direcciones de presión que contribuyen, esto puede generar grandes deformaciones en el sistema de la simulación (Fig. 4.2c).

Para un sistema isotrópico la presión es un escalar definido, donde V denota el volumen de la caja computacional y Ξ el viral, el cual se define como se ve a continuación

$$ P = \frac{2}{3V}[E_{\text{kin}} - \Xi] \quad (4.7.1) $$

$$ \Xi = -\frac{1}{2} \sum_{\text{pairs}(i,j)} r_{ij} \cdot F_{ij} \quad (4.7.2) $$

donde $r_{ij} = r_i - r_j$ y F_{ij} es la fuerza que actuó sobre un átomo i debido a un átomo j. Para sistemas moleculares, las fuerzas dentro de una molécula pueden ser omitidas junto con las contribuciones de la energía cinética de grados de libertad intramolecular. Un cambio de presión puede ser alcanzado escalando el volumen de la caja y cambiando el virial por medio de variaciones de las distancias interatómicas. Para realizar de manera adecuada la simulación y alcanzar el objetivo en cuestión, se empleará el método de
acoplamiento débil. En este método las ecuaciones de movimiento atómico son modificadas de tal manera que el resultado neto sobre el sistema es una relación de primer orden de la presión hacia el valor de referencia P_o

$$
\frac{dP(t)}{dt} = (\tau_p)^{-1}[P_o - P(t)] \quad (4.7.3)
$$

escalando las coordenadas atómicas r_i y los bordes de la caja computacional por un factor μ que conduce al cambio de volumen de nuestra caja:

$$
\Delta V = (\mu^3 - 1) \quad (4.7.4)
$$

la presión cambia ΔP debido al cambio en el volumen, y en donde la compresibilidad isotérmica del sistema está denotada por βT.

$$
\Delta P = -(\beta T)^{-1}\Delta V \quad (4.7.5)
$$

solucionando las ecuaciones anteriores para μ, obtenemos

$$
\mu = [1 - \beta T \Delta t \tau_p^{-1}(P_o - P(t))]^{\frac{1}{3}} \quad (4.7.6)
$$

La relación de presión–tiempo, en la cual τ_p sea un parámetro ajustable, un valor aproximado de compresibilidad en el sistema no es requerido. El método de acople de primer orden para la presión tiene ventajas considerables para el método de acople de temperaturas débiles.
4.7.2 Barostato Parrinello - Rahman

La predicción de estructuras en equilibrio a presión y temperatura establecida es un problema de vital importancia en la física del estado sólido, polímeros y ciencia de materiales. A menudo, la estructura final no es conocida por completo y en este punto la simulación computacional puede ser muy útil en la identificación de la estructura a estudiar. Esta tarea representa un reto para la física computacional, un gran avance en dicha tarea se logró con la introducción de la dinámica molecular a presión constante y, en particular, el método Parrinello-Rahman; donde se permite que la caja que contiene la simulación cambie su forma con el fin de cumplir con una nueva estructura. El método Parrinello-Rahman contempla la caja de simulación en sus bordes como variables dinámicas \(\vec{a}, \vec{b}, \vec{c} \). Estas variables dinámicas conforman una matriz \(\mathbf{h} = (\vec{a}, \vec{b}, \vec{c}) \) e introduce un Lagrangiano que acople los grados de libertad de \(\mathbf{h} \) con el movimiento de los átomos a presión constante, sin embargo, para dicho algoritmo el tiempo de escala es un problema cuando la presión se acerca a la presión de transición crítica al cruzar las barreras de alta presión. En este punto el objetivo entonces se centra en la transición de fase a presión \(P \) y temperatura \(T \) considerando el potencial de Gibbs como una función de \(\mathbf{h} \) donde

\[
\mathcal{F}(\mathbf{h})
\]

es la energía libre de Helmholtz de una caja fija con un volumen determinado.

\[
\mathcal{G}(\mathbf{h}) = \mathcal{F}(\mathbf{h}) + PV \tag{4.7.7}
\]

en donde el volumen está sometido a ser el determinante de la matriz \(\mathbf{h} \).

\[
V = \text{det}(\mathbf{h}) \tag{4.7.8}
\]

4.8 Mecánica Estadística

Las simulaciones computacionales permiten el estudio de propiedades de sistemas de muchas partículas. Sin embargo, no todas las propiedades pueden ser directamente medidas en la simulación. Por lo contrario, la mayoría de cantidades son medidas en el experimento real. Para dar un ejemplo específico: en la simulación de Dinámica Molecular de un líquido como agua, se puede calcular de manera instantánea las posiciones y velocidades de todas las moléculas del líquido, sin embargo, este tipo de información no puede ser comparado con los datos experimentales, porque ningún experimento real nos proporciona dicha información detallada. Más bien, un experimento típico mide una propiedad promedio sobre un gran número de partículas y, por lo
general, también el promedio en el momento de la medición. Si queremos utilizar la simulaciones computacionales como la contraparte numérica de experimentos, tenemos que saber que tipo de medias deberíamos calcular. Con el fin de explicar esto, es necesario introducir el lenguaje de la mecánica estadística (Frenkel, D.(2002).

4.9 Mecánica estadística clásica

La entropía está relacionada con la densidad de estados de un sistema con energía E, volumen V y el número de partículas N. De igual forma la energía libre de Helmholtz está relacionada con la función de partición Q, una suma sobre todos los estados i en el factor de Boltzman $e^{(-E_i/K_BT)}$. Considerando los valores medios de algún observable A. En donde la probabilidad que un sistema a temperatura T se encuentre en un estado propio de energía E_i se puede determinar por medio de la media térmica de A como

$$<A> = \frac{\sum_i e^{(-E_i/K_BT)} <i|A|i>}{\sum_i e^{(-E_i/K_BT)}} \quad (4.9.1)$$

donde $<i|A|i>$ denota el valor esperado del operador A en un estado i. Con esta ecuación se calcula los promedios térmicos: primero se soliciona la ecuación de Schrödinger para el sistema a trabajar, luego se calcula el valor esperado del operador A para todos los estados cuánticos con peso estadístico no despreciables. Desafortunadamente la aproximación esta en el dominio de todos los sistemas simples. En segundo lugar, incluso si pudiéramos, el número de estados cuánticos que contribuyen a la medida de la anterior ecuación, pero sería tan astronómicamente grande que una evaluación numérica de todos los valores esperados sería difíciles de obtener. La ecuación anterior puede ser simplificada a una expresión en el límite clásico. Para realizar esto, la ecuación anterior se debe reescribir en una forma que es independiente a el conjunto de la base específica. En donde $e^{(-E_i/K_BT)} = <i|e^{(-H/K_BT)}|i>$, donde H es el Hamiltoniano del sistema. Usando la anterior relación, se puede reescribir como:

$$<A> = \frac{\sum_i <i|e^{(-H/K_BT)}A|i>}{\sum_i <i|e^{(-H/K_BT)}|i>} \quad (4.9.2)$$

donde Tr denota la traza del operador. Como el valor de la traza de un operador no depende del conjunto de la base escogido, podemos calcular la
media térmica utilizando cualquier conjunto base. Preferiblemente, se utiliza un conjunto base, el cual sea un conjunto de funciones propias de la posición o del operador momentum. Luego, se utiliza el factor del Hamiltoniano H en la suma de la parte de la energía cinética K, y la energía potencial U. El operador de la energía cinética es una función cuadrática del el momentum de todas las partículas. Como consecuencia, los estados propios de momento son también funciones propias del operador de la energía cinética. De igual forma, el operador de la energía potencial es una función de las coordenadas de las partículas. Los elementos de la la matriz U son un conjunto base de las funciones propias de la posición. Sin embargo, como $H = k + U$ no es diagonal el conjunto base no sera $e^{-\beta(K+U)}$. Por lo tanto si se remplaza la expresión $e^{-\beta H}$ por $e^{-\beta k})e^{-\beta U}$, entonces podríamos simplificar la ecuación anterior considerablemente. En general, podemos remplazar la ecuación de la forma

$$e^{-\beta k})e^{-\beta U} = e^{(-\beta[K+U]+O([K,U]))}$$

donde, $[K,U]$ es el conmutador de la energía cinética y potencial mientras $O([K,U]$ representa los términos que contienen los conmutadores de orden superior de K y U. El conmutador $[K,U]$ es del orden $\hbar(h = h/(2\Pi)$, donde h es la constante de Planck). Por lo tanto cuando $\lim h \to 0$, se pueden ignorar los términos del orden $O([K,U]$. En este caso, se puede reescribir de la forma

$$Tr e^{(-\beta H)} \approx Tr e^{(-\beta U)}e^{(-\beta k)}$$

utilizando la notación $|r >$ para los vectores propios del operador posición y $|k >$ para los vectores propios del operador momentum, se puede expresar la ecuación como

$$Tr e^{(-\beta H)} = \sum <r|e^{-\beta U}|r > < r|k > < k|e^{-\beta K}|k > < k|r >$$

todos elementos de la matriz pueden evaluarse directamente:

$$< r|e^{-\beta U}|r > = e^{(-\beta U(r^N)}$$

donde $U(r^N)$ en el lado derecho ya no es un operador, sino una función de las coordenadas de todas las N partículas

$$< k|e^{-\beta K}|k > = e^{(-\beta \sum_{i=1}^N p_i^2/2m_i)}$$

donde $p_i = \hbar k_i$, y $< r|k > < k|r > = 1/V^N$. Donde V es el volumen del sistema y N es el numero de partículas, Finalmente, al remplazar la suma
sobre los estados por la integración sobre toda las coordenadas y momentos. El resultado final es

\[T r e^{-\beta H} \approx \frac{1}{\hbar^{dN} N!} \int dp^N dr^N e^{-\beta \sum_i \frac{p_i^2}{2m_i} + U(r^N)} \equiv Q_{\text{clásica}} \] (4.9.2)

donde \(d \) es la dimensionalidad del sistema y la última parte define la función de partición clásica. El factor \(1/N! \) se agrega para la indistinción de partículas idénticas. Cada estado cuántico de \(N \)-partículas corresponde a un volumen \(h^{dN} \) en el espacio de fase clásico, pero no todos corresponden a estados cuánticos distintos. En particular, todos los puntos en el espacio de fases que sólo difieren en el etiquetado de la partícula, corresponden con el mismo estado cuántico.

Del mismo modo, se puede derivar el límite clásico por \(Tr \ e^{(-\beta H)A} \); y finalmente, se puede escribir la expresión en términos clásicos para el promedio térmico del observable \(A \) como

\[< A > = \frac{\int dp^N dr^N e^{-\beta \sum_i \frac{p_i^2}{2m_i} + U(r^N)} A(p^N, q^N)}{\int dp^N dr^N e^{-\beta \sum_i \frac{p_i^2}{2m_i} + U(r^N)}} \] (4.9.2)
Chapter 5

Membranas

5.1 Membrana Biológica

La membranas eucarioticas como procarioticas tienen los mismos compo-
nentes químicos, sus estructuras y propiedades son casi similares, sus prin-
cipales diferencias se encuentran en el tipo particular de lípidos y proteínas, en
sus interacciones fisicoquímicas se comportan de igual manera. Por lo gen-
eral el grosor de las membranas de los mamíferos se encuentra entre 7 y 10
nanómetros, pero algunas de ellas pueden ser mas delgadas. Las membranas
son estructuras muy dinámicas y son consideradas como un mar de lípidos
dentro de un fluido, en el cual las proteínas pueden moverse e interactuar
libremente.

Las membranas celulares controlan la composición del espacio que las rodea,
también es un sistema de transporte selectivo que permite el movimiento de
moléculas en su entorno. Los principales transportadores son las proteínas,
las cuales mueven los iones, sustratos y cofactores en su entorno, de igual
forma ayuda a modular las diferentes concentraciones de sustancias en las
diferentes partes de las células.

5.1.1 Composición química

Los dos principales componentes de las membranas son los lípidos y las pro-
teínas, su proporción cambiara dependiendo de su tipo de función, por lo
general entre el 20% de proteínas las cuales son responsables de las funciones
dinámicas de la membrana, y el 70% de lípidos que son las responsables de
dar la forma estructural a la membrana y por ende a la célula.
Las membranas intracelulares tienen un alto porcentaje de proteínas debido al elevado número enzimático, también tienen un pequeño porcentaje de diversos polisacáridos en forma de glucoproteína y glucolípido.

Los tres componentes mayoritarios de las membranas eucarióticas son los glicero fosfolipidos, esfingolipidos y el colesterol.

Las distintas membranas de cada tejido tienen una composición de lípidos característica. Entre especies puede variar su composición lipídica y su estructura en las colas o cabezas de los lípidos.

Las estructuras de los lípidos por lo general están compuestas por una cadena de residuos superior (cabeza) esta parte del lípido es hidrófila polar, y su (cola) hidrófoba por lo general es una cadena hidrocarbonada. (Mathews, V. H. 2002)

Figure 5.1: Composición molecular de la membrana plasmática

5.1.2 Mezcla de lípidos en agua

Para lípidos simples hay más de una clase de estructura organizada cuando estos se hidratan. La forma particular y la cual predomina depende de los parámetros de la concentración del lípido, la temperatura, la presión, la fuerza iónica y el PH. La técnica de difracción de rayos X ha sido particularmente empleada en toda clase de estructuras de sistemas agua-lípido, dado que esta ofrece un mejor análisis y estudio como una función de la temperatura y la concentración del lípido. Si los datos obtenidos con esta técnica, se puede presentar un diagrama de fase indicando la estructura en varios regiones de la gráfica temperatura vs concentración. Con el método de difracción de rayos X, se definen las fases de frontera de los diagramas de
fase en una concentración agua-lípido. Estos estudios son representados por altas concentraciones de lípidos (cerca de un 40%); sin embargo muchas de estas estructuras se caracterizan también por la dispersión lipídica en exceso de agua o altas concentraciones de la misma.

En los lípidos, especialmente en la cabezas polares de grupo, tal como se aprecia en la DPPC, las cadenas acilo están inclinadas con respecto a la bicapa normal; asemejándose más a la fase cristalina. Es interesante notar que la dispersión en la DPPC en solventes posee algunos alcoholes o gliceroles como una forma inusual en la fase de gel, de tal manera que las cadenas de acilo se oponen a la integración completa de la bicapa.

5.2 Proteínas de Membrana

Una condición previa fundamental para la vida es la compartimentación de las células y orgánulos de su entorno; este es proporcionado por las membranas biológicas. Más allá de este papel de actuar como una frontera, las biomembranas facilitan un número de otras funciones que se determinan principalmente por el tipo de proteínas asociadas con la bicapa. Las proteínas de membrana son por lo tanto de gran importancia biológica, ya que son los principales actores en los procesos cruciales como la conversión de la energía, el transporte, el reconocimiento de señales y la transducción.
Chapter 6

Herramientas de Simulación

6.1 Gromacs

GROMACS es un motor para realizar simulaciones de dinámica molecular y minimización de energía. Estas son dos de las muchas técnicas que pertenecen al ámbito de la química computacional y modelado molecular. La química computacional es sólo un nombre para indicar el uso de la computación técnica de la química, que van desde la mecánica cuántica de las moléculas a la dinámica de gran agregados moleculares complejas. El modelado molecular indica el proceso general de describir sistemas químicos complejos en términos de un modelo atómico realista, con el objetivo de predecir las propiedades macroscópicas basadas en el conocimiento detallado en una escala atómica. A menudo, el modelado molecular se utiliza para diseñar nuevos materiales, en los cuales la predicción precisa de sus propiedades físicas de los sistemas son requeridas.

Las mencionadas propiedades físicas macroscópicas del párrafo anterior se pueden distinguir por (a) propiedades de equilibrio estático, tales como la constante de unión de un inhibidor a una enzima, la energía potencial promedio de un sistema, o la función de distribución radial de un líquido. (b) propiedades dinámicas o de no equilibrio, tales como la viscosidad de un líquido, procesos de difusión en las membranas, la dinámica de los cambios de fase, energía cinética de la reacción, o la dinámica de defectos en los cristales. La elección de la técnica depende de la pregunta y sobre la viabilidad del método para producir resultados confiables en el estado actual de la técnica. Idealmente, en función del tiempo de la ecuación Schrödinger (relativista) describe las propiedades de sistemas moleculares con alta precisión, pero algo más complejo que el estado de equilibrio de unos pocos átomos
no pueden ser manejados en este nivel. Por lo tanto, las aproximaciones son necesarias; cuanto mayor la complejidad de un sistema y más largo es el período de tiempo de los procesos de interés, más severas deben ser las aproximaciones requeridas. En un momento determinado y desde el principio el enfoque debe ser aumentado o sustituido por parametrizaciones empíricas del modelo utilizado; en donde las simulaciones basadas en principios físicos de las interacciones atómicas fijas han fallado debido a la complejidad del sistema. El modelado molecular se basa totalmente en una similitud de análisis de los datos estructurales y químicos conocidos. Los métodos QSAR (Quantitative Structure-Activity Relations) y muchas predicciones de estructura de proteínas.

Para la generación de un conjunto de equilibrio representativo dos métodos están disponibles: (a) método Monte Carlo y (b) Simulaciones en dinámica molecular. Para la generación de ensambles de no equilibrio y el análisis de eventos dinámicos, sólo el segundo método es apropiado; mientras que las simulaciones de Monte Carlo son más simples que las de MD (que no requieren el cálculo de fuerzas), porque no producen significativamente mejores estadísticas que MD en una determinada cantidad de tiempo en la computadora. En primer plano, MD es la técnica más universal. Si una configuración de arranque está muy lejos del equilibrio, las fuerzas pueden ser excesivamente grandes y la simulación MD pueden fallar. En esos casos, una minimización de energía se requiere. Otra razón para realizar una minimización de la energía es la eliminación de toda la energía cinética del sistema.

6.2 VMD (Visual Molecular Dynamics)

VMD es un programador visual que está diseñado para el modelado, la visualización y el análisis de sistemas biológicos tales como proteínas, ácidos nucleicos, conjuntos de bicapa de lípidos, entre otros; que permite ser utilizado para ver moléculas, y leer la información de Proteína estándar Data Bank (PDB) junto con su estructura contenida. VMD proporciona una amplia variedad de métodos para la representación y configuración gráfica de coloreado de una molécula y una amplia gama de representaciones moleculares, estilos de coloración, la transparencia y las propiedades del material: simples puntos y líneas, esferas y cilindros de CPK, bonos de regaliz, tubos de red troncal y cintas, dibujos animados, y otros.

No obstante, la herramienta más importante de VMD, es que puede ser
utiliza para animar y analizar la trayectoria de una de simulación de dinámica molecular (MD). En particular, VMD puede actuar como una interfaz gráfica para un programa de MD externo, mostrando y animando una simulación de una molécula desde un equipo remoto. Algunas de las características, que incluye VMD son:

- No hay límite en el número de moléculas, atomos, residuos o número de trayectorias, simplemente se debe contar con una memoria disponible.

- Muchos métodos de representación moleculares y volumétricas.

- Amplias interfaces gráficas y de texto a Tcl, Tk y Python, que proporcionan potentes capacidades de scripting y análisis.

- Alta calidad de representación en pantalla utilizando el sombreado programable OpenGL en aceleradores de gráficos avanzados.

- Pantalla estereoscópica con gafas de obturación, paneles planos autoestereoscópicos y visión estereoscópica de lado a lado.

- Control interactivo 3D a través de la utilización de palancas de mando, Spaceballs, dispositivos hápticos y otros dispositivos de entrada avanzada, con soporte para Realidad virtual y Red periférica (VRPN).

- Un sistema de archivos de carga basada en complementos extensible con soporte para formatos populares como AMBER, CHARMM, Gromacs, NAMD, PDB, X-PLOR, y muchos otros, así como la conversión automática a través de Babel de los programas de simulaciones MD.

- Exportación visual de escena para formatos de representación externas incluyendo POV-Ray, Raster3D, RenderMan, Gelato, Tachyon, Wavefront, así como STL o archivos VRML2 para la impresión en 3D.

- Integración de la alineación de secuencias múltiples y evolutivas de herramientas de análisis, en forma de plugin Multiseq y su conjunto de herramientas relacionadas.

- Realización de la dinámica molecular interactiva (IMD) y simulaciones utilizando NAMD, Protomol, u otros programas de simulación como back-ends.

- Integración con el programa NAMD, un rápido, paralelo y escalable de la dinámica molecular; programa desarrollado en conjunto con VMD.
6.3 VMD: Trabajando con una molécula

En esta sección se aprenderá las funciones básicas de VMD. Vamos a comenzar con la carga de una molécula, mostrando la molécula y colocando calidad en las imágenes de las mismas. En esta sección se utiliza la proteína ubiquitina como una molécula de ejemplo. La ubiquitina es una proteína pequeña responsable del etiquetado de proteínas para la degradación, y se encuentra en todas las células eucariotas con secuencias y estructuras casi idénticas.

El primer paso es cargar la molécula. Un archivo pdb, como lo es por ejemplo 1ubq.pdb, contiene las coordenadas atómicas de la ubiquitina.

1. Inicie una sesión de VMD. En la ventana principal VMD, seleccione Archivo → Nueva Molécula ... (Fig. 6.1 (a)). En otra ventana, la molécula explorador de archivos (Fig. 6.1 (b)), aparecerá en la pantalla.

2. Utilice el botón examinar ... (Fig. 6.1 (c)) para encontrar el archivo 1ubq.pdb en el directorio de VMD-tutorial-files. Tenga en cuenta que cuando se selecciona el archivo, estará de vuelta la ventana Explorador de archivos molécula. Con el fin de cargar en realidad el archivo se tiene que presionar Load (Fig. 6.1 (d)).

Figure 6.1: Cargando una molécula
Ahora, la ubiquitina se muestra en la ventana de visualización OpenGL. Se puede cerrar la Ventana Explorador de archivos de la molécula en cualquier momento.

6.4 Visualización de la molécula

Para ver la estructura 3D de nuestra proteína, vamos a utilizar el ratón en múltiples modos para cambiar el punto de vista. VMD permite a los usuarios rotar, escalar y traducir el punto de vista de la molécula.

1. En la pantalla de OpenGL, pulse el botón izquierdo del ratón y mueva el ratón. Explore lo que sucede. Esta es la rotación en el modo del ratón y permite rotar la molécula alrededor de un eje paralelo a la pantalla (Fig. 6.2 (a)).

2. Si mantiene presionado el botón derecho del ratón y repite el paso anterior, la rotación será perpendicular alrededor de un eje a la pantalla. (Fig. 6.2 (b)).

![Figure 6.2: Modos de rotación (A) Rotación de ejes cuando mantiene pulsado el botón izquierdo del ratón. (b) El eje de rotación al sostener pulsada la tecla derecha del ratón.]

3 En la ventana VMD principal, se puede mirar el menú del ratón (Fig. 6.3). Aquí, será capaz de cambiar el modo de ratón de rotación a la traducción o modos de escala.

4. Seleccione el modo de traducción y vuelva a la pantalla OpenGL. Ahora puede mover la molécula alrededor, cuando se mantiene el botón izquierdo
del ratón.

5. Vuelva al menú del ratón y elija el modo de escala esta vez. Esto le permitirá acercar o alejar, moviendo el ratón horizontalmente mientras mantiene el botón izquierdo del ratón.

![Imagen de VMD](image.png)

Figure 6.3: Modos de ratón y cursores característicos

Cabe señalar que estas acciones se realizan con el ratón y sólo cambian su punto de vista y no cambian las coordenadas reales de los átomos de la molécula. Otra opción útil es el elemento de menú Ratón → Centro. Le permite especificar el punto alrededor del cual se realizan las rotaciones.

6. Seleccione la opción de menú Centro y recoga un átomo en uno de los extremos de la proteína; El cursor debe mostrar una cruz.

7. Ahora, pulse r, gire la molécula con el ratón y vea cómo la molécula se mueve alrededor del punto que ha seleccionado.

8. En la ventana VMD principal, seleccione la opción Display → Reset view. Restablezca y vea el elemento de menú para volver a la vista por defecto. También puede restablecer la vista pulsando el comando "=" cuando se está en la ventana de visualización OpenGL.
6.5 Representaciones gráficas

VMD puede mostrar la molécula de diversas maneras por las representaciones gráficas que se muestran en la Fig. 7. Cada representación se define por cuatro parámetros principales: la selección de átomos incluido en la representación, el estilo de dibujo, el color de método y el material. La selección determina qué parte de la molécula se dibuja, el método de dibujo define qué se utiliza la representación gráfica; el método de coloración da el color de cada parte de la representación, y el material determina los efectos de la iluminación, sombreado, y la transparencia en la representación.

6.5.1 Exploración de diferentes estilos de dibujo

1. En la ventana principal VMD, elija la opción imágenes Representaciones del menú ... Una ventana llamada representaciones gráficas aparecerá y usted la vera resaltada en amarillo (Fig. 6.4 (a)) la representación predeterminada actual mostrará la molécula.

2. En la ficha estilo Draw (Fig. 6.4 (b)), podemos cambiar el estilo (Fig. 6.4 (d)) y el color (Fig. 6.4 (c)) de la representación. En este apartado nos centraremos en el estilo del dibujo (el valor predeterminado es líneas).

3. Cada método de dibujo tiene sus propios parámetros. Por ejemplo, cambiar el grosor de las líneas mediante el uso de los controles en la esquina del lado inferior derecho (Fig. 6.4 (c)) de la ventana representaciones gráficas.

4. Haga clic en el botón método de dibujo (Fig. 6.4 (d)), y verá una lista de opciones. Elija VDW (van der Waals). Cada átomo ahora está representado por una esfera, que le permite ver más fácilmente la distribución volumétrica de la proteína.

5. Cuando eliges VDW para la elaboración de métodos, dos nuevos controles se mostrarán en la esquina inferior del lado derecho (Fig. 6.4 (c)). Utilice estos controles para cambiar la escala de la esfera de 0.5 y la resolución de la esfera a 13. Sea consciente de que cuanto mayor sea la resolución, mÁs lenta será la pantalla de movimiento de la molécula.

6. Pulse el botón predeterminado. Esto le permite volver a la configuración predeterminada y las propiedades por defecto en el método de dibujo.

Las representaciones anteriores permite ver los detalles micromoleculares
de la proteína, mostrando todos los átomos individuales. Las propiedades estructurales más generales se pueden demostrar mejor al utilizar métodos de dibujo más abstractos.

7. Elija el estilo del tubo bajo el método de dibujo y observar la columna vertebral de la proteína. Ajuste el radio en el 0,8. Usted debe obtener algo similar a la Fig. 6.5.

8. Al observar la proteína en el método de dibujo del tubo, se pueden distinguir las hélices, \(\beta \)-hojas y bobinas presentes en la proteína.

El último método de dibujo que vamos a explorar es NewCartoon. Este comando da una simplificada representación de una proteína basada en su estructura secundaria. Las \(\beta \)-Hélices se dibujan como cintas en espiral, la \(\beta \)-hojas son a su vez flechas sólidas y todas las demás estructuras como un tubo. Este es probablemente el método de dibujo más popular para ver la arquitectura general de una proteína.

9. En la ventana representaciones gráficas, elija Drawwing Method \(\rightarrow\) NewCartoon. Ahora puede identificar fácilmente el número de hélices, \(\beta \)-hojas y bobinas que están presentes en la proteína.
Explorando diferentes métodos al colorear

1. En la ventana representaciones gráficas, se puede ver que el valor por defecto de método de coloración es el Drawing Method → Name. En este método de coloración, si usted elige un método de dibujo se muestran los átomos de forma individual, además se puede ver que tienen diferentes colores, es decir: O es el color rojo, N es azul, C es el cian y el S es amarillo.

2. Elija Coloring Method → ResType . Esto le permite distinguir residuos no polares (blanco), residuos básicos (azul), residuos ácidos (rojo) y residuos polares (verde).

3. Seleccione Coloring Method → Structure y confirme que la opción New-Cartoon muestra colores consistentes con la estructura secundaria.

Ejecutando diferentes selecciones

También puede observar sólo partes de la visualización de la molécula que sean de interés, solo se debe especificar la selección en la ventana gráfica de representaciones.

1. En la ventana de representaciones gráficas, hay un selección de los átomos de entrada de texto (Fig. 6.6 (f)). Al pulsar eliminar todo, inclusive borrará el tipo de hélice; luego pulse el botón Aplicar o pulse la tecla Enter / Return en su teclado (recuerde hacer esto cada vez que cambie una selección). VMD mostrará sólo las hélices presentes en nuestra molécula.
2. En la ventana de representaciones gráficas, seleccione las pestañas de selección (Fig. 6.6 (a)). En la sección Singlewords (Fig. 6.6 (b)), encontrará una lista de posibles selecciones que puede escribir. Por ejemplo, trabaje las \(\beta \) -hojas para mostrar en lugar de hélice la palabra adecuada en los átomos seleccionando la entrada de texto.

Las combinaciones de operadores también puede ser utilizadas al escribir una selección.

3. Para ver la molécula sin hélices y \(\beta \)-hojas, escriba lo siguiente en los átomos seleccionados: (no hélice) y (no betasheet). Recuerde presionar el botón Aplicar o pulse la tecla Enter / Return en su teclado.

4. En la sección de palabras clave (Fig. 6.6 (c)) de la ficha selecciones, se puede ver las propiedades que se puede utilizar para seleccionar partes de una proteína con sus valores posibles.

Mire los posibles valores con el comando resname (Fig. 6.6 (d)). Verá todas a las lisinas y glicinas presentes en la proteína escribiendo (resname LYS) o (resname GLY) en los átomos seleccionados. Las lisinas desempeñan
un papel fundamental en la configuración de las cadenas de poliubiquitina.

5. Ahora, cambie el método de dibujo de la representación actual de CPK y el método para colorear para resName en la ficha de estilo Draw. En la pantalla si se requiere podrá ver las distintas lisinas y glicinas.

6. En los átomos seleccionados de entrada de texto de tipo agua, elija el método Coloring Method → Name. Usted debe ver las 58 moléculas de agua (de hecho sólo los oxígenos) presentes en nuestro sistema.

7. Con el fin de ver qué moléculas de agua están más cerca de la proteína se puede utilizar el comando within. Escriba water and within 3 protein para los átomos seleccionados. Esto selecciona todas las moléculas de agua que se encuentran dentro de un distancia de 3 angstroms de la proteína.

8. Por último, pruebe a escribir las siguientes selecciones en átomos seleccionados:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>protein</td>
<td>Shows the Protein</td>
</tr>
<tr>
<td>resid 1</td>
<td>The first residue</td>
</tr>
<tr>
<td>(resid 1 76) and (not water)</td>
<td>The first and last residues</td>
</tr>
<tr>
<td>(resid 23 to 34) and (protein)</td>
<td>The α-helix</td>
</tr>
</tbody>
</table>

Figure 6.7: Ejemplo de átomos seleccionados.

6.6.2 Creando múltiples representaciones

El botón Create Rep (Fig. 10 (a)) en la ventana gráfica de representaciones le permite crear múltiples representaciones. Por lo tanto, usted puede tener una mezcla de diferentes selecciones con diferentes estilos y colores, todas se muestran al mismo tiempo.

1. Para la representación actual, en átomos seleccionados de tipo protein, establezca la opción Drawing Method a NewCartoon y la opción Coloring Method a Secondary Structure.

2. Pulse el botón Create Rep (Fig. 10 (a)). Usted deberá ver que una nueva representación se crea. Modifique la nueva representación para con-
3. Repitiendo el procedimiento anterior, cree las siguientes dos nuevas representaciones:

<table>
<thead>
<tr>
<th>Seleccion</th>
<th>Método para colorar</th>
<th>Método para dibujar</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>Name</td>
<td>CPK</td>
</tr>
<tr>
<td>resid 1-76 and name CA</td>
<td>ColorID = 1</td>
<td>VDW</td>
</tr>
</tbody>
</table>

Figure 6.8: Ejemplo de representaciones.

4. Crear la última representación al pulsar de nuevo el botón Create Rep; luego seleccione Drawing Method → Surf, molecule for coloring method y type protein en la entrada de selección de átomos. Para esta última representación elegir Transparent en el material desplegable del menú (Fig. 6.9 (c)). Esta representación muestra de forma volumétrica las proteínas en una superficie transparente.

5. Tenga en cuenta que puede seleccionar y modificar diferentes representaciones que ha creado haciendo click en una representación para resaltarla.
en amarillo. También puede cambiar cada representación encendido / apagado, haciendo doble click sobre la misma. De igual forma puede eliminar una representación resaltándola al hacer click en el botón Eliminar Rep(Fig. 6.9 (b)). Al final de esta sección, la ventana gráfica de representaciones debería tener un aspecto similar a la Fig. 6.9.

6.7 Extensión visor de secuencia

Cuando se trata de una proteína por primera vez, es muy útil para encontrar y mostrar diferentes aminoácidos rápidamente. La extensión de secuencia espectador le permite ver la secuencia de proteínas, así como recoger y mostrar uno o más residuos de su elección fácilmente.

1. En la ventana principal de VMD, elegir las extensions Analysis Sequence Viewer en el menú de opciones. Una ventana (Fig. 6.10 (a)) con una lista de los aminoácidos (Fig. 6.10 (e)) y sus propiedades(Fig. 6.10 (b) y (c)) aparecerá en su pantalla.

2. Con el ratón, intente hacer click en diferentes residuos en la lista (Fig. 6.10 (e)) y vea cómo se destacan. En adición, aparecerá el residuo destacado en su ventana OpenGL Display en amarillo y el método de dibujo enlace, para que pueda visualizar su ubicación dentro del proteína fácilmente.

Figure 6.10: VMD ventana de secuencia.
3. Usando los controles de zoom (Fig. 6.10 (f)) puede visualizar toda la lista de los residuos en la ventana. Esta opción es especialmente útil para las proteínas más grandes.

4. Para recoger residuos múltiples, mantenga la tecla de mayúsculas y haga click en el botón del mouse. Trate de destacar los residuos 11, 48, 63 y 29 (Fig. 6.10 (e)).

5. Observe la ventana gráfica de representaciones, usted debe encontrar un nuevo representación con los residuos que ha seleccionado utilizando la extensión visor de secuencia. Puede modificar, ocultar o eliminar esta representación similar a lo que ha hecho antes. La información sobre residuos es un código de colores (Fig. 6.10 (d)) en las columnas que obtuvo de paso. La columna B-value (Fig. 6.10 (b)) muestra el campo B-value (temperatura los factores). La columna struct muestra la estructura secundaria (Fig. 6.10 (d)), donde cada letra significa:

<table>
<thead>
<tr>
<th>T</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Extended conformation (β-sheets)</td>
</tr>
<tr>
<td>B</td>
<td>Isolated bridge</td>
</tr>
<tr>
<td>H</td>
<td>Alpha helix</td>
</tr>
<tr>
<td>G</td>
<td>3-10 helix</td>
</tr>
<tr>
<td>I</td>
<td>β-helix</td>
</tr>
<tr>
<td>C</td>
<td>Coil</td>
</tr>
</tbody>
</table>

Figure 6.11: Códigos de estructura secundaria utilizados por paso.

6.8 Cómo guardar su trabajo

Los puntos de vista y las representaciones que se han creado utilizando VMD pueden guardarse como un estado VMD. Este estado VMD contiene toda la información necesaria para reproducir la misma sesión de VMD sin perder lo que ha hecho.

1. Vaya a la ventana OpenGL y utilice el ratón para encontrar una bonita vista de la proteína. Vamos a salvar a este punto de vista usando VMD View-Master.
2. En la ventana VMD principal, seleccione Extension → Visualization → ViewMaster. Esto abrirá la ventana VMD ViewMaster.

3. En la ventana VMD ViewMaster, haga click en el botón Crear nuevo. Ahora ha guardado su punto de vista en la pantalla OpenGL.

4. Vuelva a la ventana de visualización OpenGL, utilice el ratón para encontrar otra bonita vista. Si lo desea, también puede agregar / borrar / modificar una representación en la ventana gráfica de representaciones. Cuando usted ha encontrado una buena vista, se puede volver a guardar lo realizado y crear algo nuevo en la ventana VMD ViewMastery haciendo click en el botón Creat New.

5. Cree tantos puntos de vista como desee repitiendo el paso anterior. usted puede ver que en la ventana VMD ViewMaster, todos sus puntos de vista se muestran como miniaturas. Usted puede ir a un punto de vista previamente guardado por al hacer click en su miniatura.

6. Ahora vamos a guardar toda la sesión VMD. En la ventana VMD principal, elegir el File → Save Visualization State. Escriba un adecuado nombre (por ejemplo, myfirststate.vmd) y guárdelo. El archivo de estado VMD myfirststate.vmd contiene toda la información que necesita para restaurar su sesión de VMD, incluyendo los puntos de vista y las representaciones. Para cargar un estado VMD salvado, iniciar una nueva sesión de VMD y en la ventana principal de VMD, seleccione File → Load State.

7. Salga de VMD.

6.9 Fundamentos de representación en VMD

Uno de los muchos puntos fuertes de VMD es su capacidad para hacer de alta calidad la resolución de la molécula. En esta sección vamos a introducir algunos conceptos básicos de la figura de representación en VMD.

6.9.1 Ajuste del fondo de la pantalla

Antes de renderizar una figura, usted quiere asegurarse de configurar el fondo de pantalla OpenGL de la manera deseada. Casi todos los aspectos de la pantalla OpenGL son ajustables por el usuario, incluyendo el color de fondo.
1. Inicie una nueva sesión de VMD. Cargue el archivo 1ubq.pdb en el directorio VMD-tutorial-files.

2. En la ventana VMD principal, seleccione Graphics → Colors... Los controles de color deben aparecer. Mire a través de la lista Categories. Por ejemplo, los colores de los diferentes átomos cuando se nombran se establecen aquí.

3. Ahora vamos a cambiar el color de fondo. En Categories, seleccione Display. En Names, seleccione Background. Por último, elija 8 blanco en colores. Su OpenGL Display ahora debería tener un fondo blanco.

4. Al hacer una figura, a menudo no queremos incluir los ejes. Para girar los ejes, seleccione Display → Axes → Off en la ventana VMD principal.

6.9.2 El aumento de resolución

Todos los objetos de VMD se dibujan con una resolución ajustable, permitiendo a los usuarios equilibrar precisión de detalle con la velocidad de dibujo.

1. Abra la ventana de representación gráfica a través de Graphics → Representations... en el menú principal de VMD. Modifique la representación predeterminada para mostrar sólo la proteína, y lo mostrará mediante el método de dibujo VDW.

2. El zoom en uno o dos de los átomos, ya sea mediante el uso de la rueda de desplazamiento del puntero del ratón, o mediante el uso del Mouse → Scale Mode (atajo s).

3. Tenga en cuenta que con la configuración de resolución predeterminada, los átomos esféricos no están mirando muy esféricamente. En la ventana gráfica de representaciones, haga click en la representación que configura la proteína para resaltarla en amarillo. Intente ajustar la resolución de esfera a algo más alto, y vea la diferencia que puede hacer. (Ver Fig. 6.12.) Muchos de los métodos de dibujo tienen un ajuste de resolución. Pruebe algunos de los diferentes métodos de dibujo y vea cómo se puede aumentar fácilmente sus resoluciones. Cuando las imágenes se producen, se plantea la resolución hasta que esta se detenga haciendo una visible diferencia.
6.9.3 Colores y materiales

1. Usted puede haber notado el menú de materiales en las representaciones gráficas que por defecto se dibuja con un material opaco. Eliga la representación de proteínas que haya hecho antes, y experimente con los diferentes materiales en el menú de materiales.

2. Además de los materiales predefinidos en el menú de materiales, VMD también permite a los usuarios crear sus propios materiales. Para hacer un nuevo material, en la ventana principal de VMD seleccione Graphics → Materials. En la ventana de materiales que aparece, verá una lista de los materiales que usted acaba de intentar, y sus configuraciones ajustables. Haga click en el botón Create New. Se creará un nuevo material, (material 12). En el menú de materiales, se puede ver que material 12 está ahora en la lista. Trate de usar el material 12 para una representación y ver lo que aparece.

![Figure 6.12: El efecto de la configuración de resolución. (a) Baja resolución: Resolución de esfera establecida en 8 (b) Alta resolución: Resolución de esfera establecida en 28.](image)

3. Si su ordenador es compatible con GLSL Modo Render, puede tratar de reproducir la Fig. 6.13 (b). Por primera vez en el modo de representación GLSL seleccione Display → Render Mode GLSL en la ventana VMD principal.
6.9.4 La percepción de profundidad

Dado que los sistemas que estamos tratando son tridimensionales, VMD tiene múltiples formas de representar la tercera dimensión. En esta sección, exploraremos cómo utilizar VMD para mejorar o ocultar la percepción de profundidad.

1. Lo primero a considerar es el modo de proyección. En la ventana principal VMD, haga clic en Display menu. Aquí podemos elegir entre perspectiva o ortográfico en el menú desplegable. Intente cambiar entre perspectiva y los modos y proyección ortográfica para ver la diferencia (Fig. 6.14). En el modo de punto de vista, las cosas más cercanas a la cámara parecerán más grandes. Aunque la perspectiva de proyección proporciona fuertes señales de profundidad visual de tamaño de base, la imagen mostrada no preserva las relaciones de escala o el paralelismo de las líneas, y los objetos muy cerca a la cámara pueden aparecer distorsionados. La proyección ortográfica conserva la escala y las relaciones de paralelismo entre los objetos en la imagen que aparece, pero en gran medida reduce la percepción de profundidad. Otra forma VMD puede representar profundidad es a través de la así llamada "indicación de profundidad". Indicación de profundidad se utiliza para mejorar la percepción tridimensional de molecular estructuras, en particular con las proyecciones ortográficas.

2. Elija Display → Depth Cueing en la ventana VMD principal. Cuando
la profundidad cueing está habilitada, los objetos adicionales de la cámara se mezclan en el fondo. Los ajustes de indicación de profundidad se encuentran en Display → Display Settings. Aquí se puede elegir la dependencia funcional de la sombra de la distancia, así como algunos parámetros para esta función.

3. Por último, VMD también puede producir imágenes estéreo. En la ventana VMD principal, en el menú seleccione Display → Stereo!, mostrando muchas opciones diferentes. Escoga SideBySide (recuerde que debe volver al modo de perspectiva para un mejor resultado). Usted debe obtener algo como la figura 6.15

6.9.5 Representación

Ahora que hemos visto algunas técnicas para la producción de bonitas vistas y representaciones de la molécula cargada en VMD; vamos a explorar el uso de la orden interna VMD de programas que cuentan con instantáneas y representación externa para producir alta calidad en imágenes de la molécula. El procesador de "instantánea" guarda la imagen en pantalla en la ventana de OpenGL y es adecuado para su uso en presentaciones, películas y pequeñas figuras. Cuando uno desea imágenes de mayor calidad, como la extracción de grasas o en particular, Tachyon y POV-Ray son las mejores opciones.
1. La representación es muy simple en VMD. Una vez que tenga la escena a establecer en el camino abra la ventana OpenGL y simplemente seleccione File \rightarrow Render... en la ventana VMD principal. Aparecerá la ventana de archivos Render y controles en la pantalla.

2. El Archivo Render le permite elegir qué procesador desea utilizar y el nombre del archivo para su imagen. Para nuestro primer intento, vamos a seleccionar la instantánea para el método de representación, escriba un nombre de archivo de su elección y haga click en Strat Rendering.

3. Si está usando un Mac o una máquina Linux, una aplicación de procesamiento de imágenes podría abrir automáticamente que muestra la molécula que acaba de usar. Si este no es el caso, utilice cualquier procesamiento de imágenes de aplicación y de un vistazo a el archivo de imagen. Cierre la aplicación cuando le hacen seguir utilizando VMD.

4. Trate de hacer de nuevo utilizando un método diferente la representación, sobre todo TachyonInternal y POV3. Compare la calidad de las imágenes creadas por diferentes prestadores.

5. Hemos aprendido los conceptos básicos de VMD. Salga de VMD.

6.10 Trayectorias y creación de películas

Las coordenadas tiempo-evolución de un sistema son llamados trayectorias. Estas son más comúnmente obtenidas en simulaciones de sistemas molecula-
lares, pero también pueden ser generadas por otros medios y para diferentes propósitos. Al cargar una trayectoria en VMD, se puede ver una película de cómo el sistema evoluciona con el tiempo y analizar diversas características a lo largo de la trayectoria. Esta sección introducirá los conceptos básicos de trabajar con los datos de trayectoria en VMD. También aprenderá el análisis de datos de trayectoria.

6.10.1 Carga de Trayectorias

Los archivos de trayectoria son archivos binarios que contienen normalmente varios conjuntos de coordenadas para el sistema. Cada conjunto de coordenadas corresponde a un fotograma en el tiempo. Un ejemplo de un archivo de trayectoria es un archivo de DCD. Los archivos de trayectoria no contienen información del sistema contenida en los archivos de estructura de proteínas (PSF). Por Consiguiente, primero tenemos que cargar el archivo de estructura, y luego añadimos los datos de trayectoria a este archivo.

1. Inicie una nueva sesión de VMD. En la ventana VMD principal, seleccione File → New Molecule.... La ventana Explorador de archivos debe aparecer en su pantalla.

2. Utilice el botón Browse ... para encontrar el archivo ubiquitin.psf en VMD-tutorial-files en el directorio tutorial. Cuando se selecciona el archivo, se le da vuelta en la ventana Explorador de archivos de la molécula. Pulse el botón Cargar para cargar la molécula.

3. En la ventana Explorador de archivos Molecule, asegúrese de que es ubiquitin.psf la seleccionada en los archivos de carga en el menú desplegable.
en la parte superior, y haga click en el botón Browse. Busque pulling.dcd. Tenga en cuenta las opciones disponibles en la ventana del explorador de archivos de la molécula: se puede cargar trayectorias a partir y terminando en los marcos elegidos, y ajustar el paso entre los marcos. Deje la configuración predeterminada para que se cargue toda la trayectoria.

4. Haga click en el botón Load en la ventana explorador de archivos de la molécula. Va a ser capaz de ver los cuadros a medida que se cargan en la molécula. Después de que la trayectoria termina de cargarse, se le busca en el último fotograma de la trayectoria. Para ir al inicio, utilice las herramientas de animación de más bajo del menú VMD principal (ver Fig. 17). Puede cerrar la molécula en la ventana explorador de archivos.

5. Para una visualización conveniente de la proteína, elija Graphics → Representations en el menú principal de VMD. En el campo de átomos seleccionados, tome la proteína y pulse Intro en el teclado; en el método de dibujo, seleccione NewCartoon; en el método para colorear, seleccione Structure.

![Figure 6.17: Herramientas de animación en el menú principal de VMD. Las herramientas permiten repasar los marcos de la trayectoria (por ejemplo, mediante el control deslizante) y reproducir una película del trayectoria en diversos modos (Once, Loop, o Rock) ya una velocidad ajustable.](image)

La trayectoria que acaba de cargar es una simulación de un AFM (Microscopía de Fuerza Atómica) experimentando en una sola molécula de ubiquitina, realizado mediante el Método de Dinámica Molecular (SMD) (Isralewitz et al., Curr. Opin. Struct Biol., 11: 224, 2001). Estamos estudiando el comportamiento de la proteína ya que se desarrolla mientras se tira de
un extremo, con el otro extremo puede verse limitado a su estado original. Cada paso corresponde a 10 ps. La ubiquitina tiene muchas funciones en la célula, y se cree actualmente que algunas de estas funciones dependen de la propiedades elásticas de proteínas. Tales propiedades elásticas son por lo general debido al hidrógeno y la unión entre los residuos en hebras de las moléculas de proteína.

6.11 Principales herramientas de animación

Ahora puede reproducir la película de la trayectoria cargada de ida y vuelta, utilizando la herramienta de animación en la Fig. 6.17.

1. Al arrastrar el deslizador se navega a través de la trayectoria. Los botones hacia la izquierda y hacia la derecha desde el panel de control deslizante permite saltar al el final de la trayectoria o ir de nuevo al principio.

2. Por ejemplo, cree otra representación para el agua en la ventana gráfica de representaciones: haga click en el botón Create Rep; allí en Atom Field, tipo de agua y pulse enter; en el método de dibujo, elija Lines; en el método para colorear, seleccione Name. Esto muestra la gota de agua presente en la simulación para imitar el ambiente natural para la proteína. Usando el regulador, observe el comportamiento del agua alrededor de la proteína. La forma de los cambios de gotas de agua en toda la simulación es porque en las moléculas de agua se sigue la proteína ya que se desarrolla debido a las interacciones con la superficie de la proteína.

3. Durante la reproducción de animaciones, se puede elegir entre tres estilos de bucle: Once, Loop y Rock. También puede saltar a un fotograma de la trayectoria introduciendo el número de marcos en la ventana de la izquierda del panel de control deslizante.

6.12 Visualización de la trayectoria

Ahora vamos a aprender algunos trucos de visualización básicos que son útiles para el trabajo con trayectorias.
6.12.1 Trayectorias de alisado

1. Para mayor claridad, apague la representación del agua haciendo doble click sobre esta en la ventana gráfica de representaciones. Como se habrá dado cuenta, cuando jugamos con la animación, los movimientos de proteínas no son muy suaves debido a las fluctuaciones térmicas (como la simulación se realiza en las condiciones que imitan un baño termal).

2. VMD puede suavizar la animación promediando un número de fotogramas. En la ventana gráfica de representaciones, seleccione su representación de la proteína y haga click en la pestaña trayectoria. En la parte inferior, se ve Trayectoria Smoothing y tamaño de la ventana fijado en cero. A medida que su animación se está reproduciendo, aumentará este valor. Observe que el movimiento se pone más suave y más suave como el ajuste de arriba.

6.12.2 Presentación a varios tramos

Vamos a aprender ahora cómo mostrar muchos cuadros de la misma trayectoria a la vez.

1. En la ventana gráfica de representaciones, resalte su representación proteína haciendo click sobre ella y pulse el botón Create Rep. Esto crea una representación idéntica, pero tenga en cuenta que el suavizado se establece en cero.

2. Resalte la nueva representación de proteínas y haga click en la pestaña Trayectoria. Sobre el control de suavizado, observe el sorteo de control de varios fotogramas. Se encuentra ahora por defecto, que es simplemente el marco actual. Ingrese 0:10:99, que selecciona cada décima marco de la gama de 0 a 99.

3. Vuelva a la ficha de estilo Draw, y cambiar el método para colorear por Timestep. Para ello se utilizará el inicio de la trayectoria en rojo, la media en blanco, y el final en azul.

4. También podemos utilizar el suavizado para hacer el movimiento a gran escala de la proteína más evidente. Vuelva a la pestaña trayectoria, y configure la ventana de suavizado a 20. El resultado debe ser similar a la Fig. 6.18.
6.12.3 Selecciones de actualización

Ahora vamos a ver cómo hace VMD para actualizar la selección de cada fotograma.

1. Oculte la representación actual, mostrando todos los marcos, y mostrar sólo la representación del agua haciendo doble click sobre él. Cambie el texto en los átomos seleccionados del agua; a menos de 3 proteínas. Esto mostrará todos los átomos de agua a menos de 3 Å de la proteína.

2. Reproducir la trayectoria. Aunque los átomos de agua que se muestran pueden estar cerca a la proteína por un rato, alejarse y aun mostrarse a pesar de no cumplir con los criterios de selección. La actualización de selección en cada opción se encuentra en la pestaña Trayectoria de la ventana gráfica de representaciones. Si la casilla de opción está marcada, la selección se actualiza para cada fotograma. Ver Fig. 6.19.

3. Salga de VMD.
6.13 Los fundamentos del movimiento en VMD

Ahora vamos a aprender a hacer una película básica.

1. Inicie una nueva sesión de VMD. Cargue la trayectoria de la ubiquitina en VMD junto con la proteína en una estructura de la representación.

2. Para hacer películas, vamos a utilizar el hacedor plugin de VMD. En la ventana principal de VMS, vaya a Extensiones elemento de menú y visualización cineasta. La ventana VMD de película generador aparecerá (Fig. 6.20).

6.13.1 Realización de películas de un solo cuadro

1. En primer lugar, echemos un vistazo a algunas de las opciones para hacer una película. Haga click en el menú de ajustes de la película en la ventana VMD de Film Generator. Puede ver que además de una película de trayectoria, Movie Maker también puede hacer una película girando el punto de vista de un solo cuadro. En el menú procesador, uno puede elegir el tipo de procesador para hacer la película. Usaremos la opción por defecto, de instantáneas. También se puede elegir el formato de archivo de salida para
la película en el ítem del menú del formato.

2. Vamos a primero hacer una película de un solo fotograma de la trayectoria. Para eso propósit0, seleccionar la opción del Rock and Roll en el menú ajustes de la película en la ventana VMD Film Generator. Establezca el directorio de trabajo a cualquier práctica de su elección. Dele a su película un nombre y haga click en Crear Película.

3. Una vez finalizada la representación, observe su película. Este ajuste de película es buena para mostrar un lado de su sistema principalmente.

6.13.2 Hacer películas de trayectoria

1. Ahora vamos a hacer una película de la trayectoria. En la ventana VMD Film Generator, seleccione configuración de película y Trayectoria, dar a éste un nombre diferente, y haga click en Crear película. Tenga en cuenta que la longitud de la película es automáticamente ajustada a 24 fotogramas por segundo. Para una trayectoria, la duración de la película puede ser disminuido, pero no puede ser aumentado.

2. Pruebe diferentes opciones en la ventana VMD Film Generator.

Figure 6.20: La ventana VMD Movie Film Generator.
6.14 Análisis de Datos en VMD

VMD es una herramienta poderosa para el análisis de las estructuras y las trayectorias. Numerosas herramientas para el análisis están disponibles en las extensiones de elemento del menú de VMD. Además de estas herramientas integradas, los usuarios suelen utilizar VMD customwritten en secuencias de comandos para analizar las propiedades deseadas de los sistemas simulados. VMD scripting Tcl es una opción buena pero muy extensa que proporciona oportunidades ilimitadas para el análisis. En este apartado, vamos a aprender cómo utilizar una función de VMD característica para el análisis estándar, así como considerar un simple ejemplo de scripting.

6.14.1 Las etiquetas

Las etiquetas se pueden colocar en VMD para obtener información sobre una selección particular, se utilizará durante la visualización y el análisis cuantitativo. Las etiquetas se seleccionan con el ratón y se puede acceder en Imágenes y menú de etiquetas. Cubriremos etiquetas que se pueden colocar en átomos y enlaces, diedros y etiquetas en ángulos estarán también disponibles. En este contexto, las etiquetas de bonos o "ángulos" en realidad significan distancias entre dos átomos o ángulos entre tres átomos; los átomos no lo hacen tienen que estar físicamente conectados por enlaces en la molécula.

1. Inicie una nueva sesión de VMD. Cargue la trayectoria de la ubiquitina en VMD (usando ubiquitin.psf y pulling.dcd). Para la representación gráfica, una única proteína estará en pantalla, use la nueva historieta para el método de dibujo y estructura para el método de coloración.

2. Elija mouse → Labels → item atom del menú Principal Vmd. El ratón está ajustado en el modo para la visualización de las etiquetas atómicas. Usted puede hacer click en cualquier átomo de su molécula y una etiqueta será colocada para este átomo. Al hacer click de nuevo en él, se borrará la etiqueta.

3. Ahora vamos a intentar lo mismo para los bonos. Elija mouse → Labels → Bonds. Esto selecciona la opción "mostrar Label para el modo de Bond ".

Tendremos en cuenta la distancia entre el α carbono de la lisina 48 y de la terminal C. En la simulación de tracción, la antigua se considera como base, y el segundo se tira con una fuerza constante de 500 pN. En realidad, las ca-
denas pueden ser de poliubiquitina unida por una conexión entre la terminal C de una molécula de ubiquitina y la lisina 48 de la siguiente proteína. La simulación luego imita el efecto de tirar de el extremo de la terminal C con este tipo de vinculación.

4. Haremos una representación VDW para el α carbono de la lisina 48 y de la terminal C. Para saber el índice de estos átomos y hacer una selección incluyendo estos dos átomos, escribiendo en la ventana Tk Console (para abrir la ventana Tk Console, seleccione Extensiones y Consola Tk en el menú principal de VMD):

\[\text{set sel [top atomselect "resid 48 76 y el nombre de CA"].} \]

5. Obtenga los índices escribiendo la siguiente línea en la ventana Tk console:

\[\$ \text{indice sel get} \]

Este comando debe dar los índices 770 1242.

6. En la ventana gráfica de representaciones, cree una representación para el índice de selección 770 1242, con la VDW como método de dibujo.

7. Ahora que se puede ver a los dos α carbonos, seleccione la etiqueta de mouse → Bonds en el menú principal de VMD. Haga click en cada átomo de una proteína después de la otra. Usted debe obtener una línea que conecta los dos átomos (Fig. 6.21). Los números que aparecen junto a la línea es la distancia entre los dos átomos en Angstroms. Tenga en cuenta que la apariencia de la línea (su color), así como la apariencia de prácticamente todos los otros objetos en VMD, se puede cambiar en Grapichs → Colors en el menú principal de VMD

8. El valor de la distancia visualizada corresponde a la trama actual. pruebe cada trayectoria, verá que la etiqueta se modifica automáticamente como la distancia entre los átomos.

9. Las etiquetas se pueden utilizar no sólo para la visualización, sino también para la obtención cuantitativa de la información. En el menú VMD , seleccione Graphics → Labels. En la parte superior izquierda de la ventana,
hay un menú desplegable en el que puede elegir el tipo de etiqueta (átomos, enlaces, Angles, diedros). Por ahora, mantenerlo en átomos. Usted puede ver la lista de los átomos para el que ha hecho una etiqueta.

10. Haga click en uno de los átomos. Puedes ver toda la información del átomo que aparece en la mitad inferior de la ventana de Etiquetas. Esta información es útil para hacer selecciones; corresponde a la trama actual, y es actualizado cuando se cambia el marco.

11. También puede eliminar, ocultar o mostrar la etiqueta del átomo haciendo click en el correspondiente botón de la parte superior de la ventana de Etiquetas.

12. Ahora, en la ventana de etiquetas, elija los bonos de tipo de etiqueta, y seleccione la opción ”Bond” (distancia) (Fig. 6.21). La información dada sólo corresponde a el primer átomo en el vínculo, pero el número en el valor de campo correspondiente a la longitud de la unión en Angstroms.

13. Haga click en la ficha Gráfico. Seleccione el vínculo que etiqueta los átomos 770 y 1242. Haga click en el botón Gráfico. Esto creará un gráfico de la distancia entre estos dos átomos en el tiempo (Fig. 6.21). También

Figure 6.21: Las etiquetas en VMD. Control Label está disponible en Graphics → Labels, con el que se puede, por ejemplo, trazar la distancia marcada en función de la hora.
puede guardar estos datos a un archivo haciendo click en el botón Guardar y, a continuación, utilizar un programa externo para visualizar los datos.

14. Salga de VMD.

6.15 RMSD de los residuos individuales en VMD

Las herramientas integradas de análisis en VMD están disponibles en las extensiones de elemento de menú → Analysis. Estas herramientas cuenta cada una con una ventana de interfaz gráfica de usuario que permite entrar a los parámetros y personalizar las cantidades analizadas. Además, todas las herramientas se pueden invocar en un modo de secuencias de comandos, utilizando la ventana TkConsole. Vamos a aprender cómo trabajar con una de las herramientas más utilizadas, La herramienta trayectoria RMSD. La desviación Root Mean Squared (RMSD) se define como:

$$RMSD = \sqrt{\frac{\sum_{i=1}^{N}(r_i(t_1) - r_i(t_2))^2}{N_{atoms}}}$$

Donde N_{atoms} es el número de átomos cuyas posiciones están siendo comparadas y $r_i(t)$ es la posición del átomo i en el tiempo t.

A continuación desarrollaremos unos pequeños pasos para ejecutar el cálculo en VMD de la herramienta RMSD.

1. Vaya al directorio 2-1-rmsd Va a utilizar un script dentro de VMD que le permitirá calcular el RMSD promedio de cada residuo en su proteína, y asignar este valor a la columna B del archivo pdb, que normalmente se reserva para el factor de temperatura de cada residuo. En la unidad anterior, tenía VMD abierto con la trayectoria de equilibrio del sistema de la ubiquitina.

2. Ejecute Launch VMD

3. Ahora va a cargar el archivo de estructura. En primer lugar, abra el explorador de archivos de la molécula en File→ New Molecule. Busque y Cargue el archivo

 ubq_wb.psf

4. En la parte superior del menú la ventana debe mostrar ahora:
ubq_wb.psf

Esto asegura que el siguiente archivo que se carga se añadirá a esa molécula (molécula ID:0). Ahora, busque el archivo ubq_wb_eq.dcd

en el directorio 1-3-box / y haga click en Cargar de nuevo.

5. Abra la consola TkCon eligiendo Extensions → tkcon en el menú de VMD.

6. El script que va a utilizar se llama residue_rmsd.tcl En la ventana TkCon, escriba: residue_rmsd.tcl Este comando no lleva a cabo en realidad ningún cálculo. En su lugar, se ejecuta la secuencia de comandos residue_rmsd.tcl que contiene un procedimiento llamado rmsd_residue_over_time. Al llamar a este procedimiento se calculará el RMSD promedio para cada residuo que se selecciona sobre todos los fotogramas de una trayectoria. El procedimiento se llama como: rmsd_residue_over_time molsel_resid donde mol es la molécula en VMD que seleccione (normalmente, la molécula de la parte superior), y sel_resid es una lista de los números de residuos en esa selección.

7. Para este ejemplo, deber seleccionar todos los residuos en la proteína. La lista de los números de residuos se puede obtener escribiendo en el TkCon: establecer sel_resid ["protein y alpha"] get resid

El comando anterior obtiene los números de residuos de todos los α-carbonos en la proteína (ya que no es sólo una y sólo un α-electrodo por residuo, es una buena opción). El comando creará una lista de números de residuos en los sel_resid

8. Llame al procedimiento para calcular los valores de RMSD de todos los átomos en la selección de nueva creación: rmsd_residue_over_time

Usted debe ver en la molécula como cada marco se ajusta a la estructura inicial. Al final del cálculo, obtendrá una lista de la RMSD promedio por residuo. Estos datos también se imprime a la residue_rmsd.dat archivo.

El procedimiento también establece el valor de la columna B de todos los átomos de los residuos en la selección para el valor RMSD computarizado. Ahora podrá colorear la proteína de acuerdo con este valor. Usted será capaz de reconocer que los residuos son libres de moverse más y cuáles se mueven menos durante el equilibrado. Para poder utilizar estos nuevos valores para
aprender sobre la movilidad de los residuos, creará una representación de la proteína coloreada por valor de B.

10. En la ventana Selección de Atom, escriba proteína. Elija tubo como método de dibujo, y en el menú desplegable Método para colorear, elija Beta. Ahora, haga clic en la pestaña Trayectoria, y en el rango de datos de escala de color, escriba 0,40 y 1,00. Haga click en el botón Set. Ahora debería ver la proteína de color de acuerdo a los valores promedio RMSD. Los residuos que aparecen en azul son más móviles, mientras que los que están en movimiento rojo menos. Esto es contrario a la intuición, por lo que va a cambiar la escala de colores.

Figure 6.22: Residuo de ubiquitina coloreado por el RMSD promedio. El color rojo denota residuos más móviles, y los residuos azules los menos móviles.

12. Mire el valor RMSD por residuo escribiendo en una ventana de terminal Linux (asegúrese de que está en el directorio 2.1-rmsd /): xmgrace residue_rmsd.dat De un vistazo a la distribución RMSD. Usted puede ver las regiones donde un conjunto de residuos muestra menos movilidad. Com-
pare esto con la característica estructural de su proteína. Va a encontrar una correlación entre la ubicación de estas regiones y las características de estructura secundaria como \(\alpha \) hélices o \(\beta \) cortes.

6.16 Distribución de temperatura

Ahora que se han analizado los parámetros establecidos por la simulación con el motor gráfico VMD; podemos en este punto implementar el estudio de la distribución de temperatura en nuestra simulación. La temperatura de un ensamblle n está definida como:

\[
T = \frac{2}{3Nk_B} \sum_{j=1}^{N} \frac{1}{2} m_j \vec{v}_j^2
\]
(6.16.0)

Este expresión yace del teorema de la equipartición de la mecánica estadística aplicada a la energía cinética.

\[
(\sum_{j=1}^{N} \frac{1}{2} m_j \vec{v}_j^2) = \frac{2}{3Nk_B} T
\]
(6.16.0)

Donde \(N \) es el número de átomos en el sistema.

1. Vaya al directorio 2-4-temp /

Para este ejercicio, usted necesita una simulación que tenga el tiempo suficiente para el muestreo de interés, para reaizar mediciones de las fluctuaciones en la energía cinética y en la temperatura. En vez de hacer una simulación por sí mismo, le recomendamos que utilice el archivo UBQ-nve.log Sin embargo, si decide ejecutar su propia simulación, usted puede encontrar todos los archivos necesarios y las instrucciones en la terminal. Le recomendamos que lea toda la sección incluso si no realiza la simulación.

La simulación se lleva a cabo en el conjunto microcanónico (NVE, es decir, constante \(N \), \(V \) y \(E \)). El archivo de configuración proporcionado para empezar la carrera NAMD se llama UBQ-nve.conf. Las principales características de este archivo de configuración son:

A. La simulación tiene los archivos de reinicio de la simulación esfera de equilibrio realizado. Los archivos se encuentran en el directorio 1-2 sphere / y se nombran ubq_ws, es decir, ubq_ws.restart.vel, etc.
B. La temperatura inicial se determina por el archivo de reinicio velocidad como se muestra en la ecuación anterior. Esta temperatura inicial corresponde a $T = 300$ K

C. El paso de tiempo es de 2 fs; con rigidBonds encendido, este paso de tiempo es aceptable.

D. La simulación tendrá una duración de 1 ns.

2. Es necesario para obtener los datos de la temperatura el archivo de registro. Para ello se va a utilizar un script llamado namddat. Para ello, escriba: namddat TEMP UBQ-nve.log

Sus datos se encuentra ahora en data.dat. Con el fin de representar los datos, puede utilizar xmgrace. Es necesario eliminar la línea con el título, así como la primera línea de datos, que corresponde con la temperatura inicial $T = 0$.

4. Abra xmgrace.

5. Seleccione los Data → Import → ASCII. Seleccione el archivo Temp.dat. Usted debe ver un rastro negro. Este es un gráfico de la temperatura contra el tiempo.

6. Para dar un vistazo a la distribución de los puntos, usted hará un histograma con estos datos. Elija los Data → Transformations → histograms. En la ventana escoja Source → Set Window, haga click en la primera línea, con el fin de hacer un histograma de los datos que acaba de cargar.

8. Ha creado una trama, pero usted no puede verlo todavía. Utilice el botón derecho del ratón para hacer click en el primer set (en la ventana de la Fuente Source → Set). Haga click en Hide. Ahora, vaya a la ventana principal y haga click en el botón Label AS, que cambia el tamaño de la parcela para ajustarse a los valores existentes. Esta es su
distribución de temperaturas. ¿Esta distribución le es familiar? Su distribución debería ser similar a una distribución de Gauss.

La fluctuación de la temperatura. La distribución de Maxwell para energías cinéticas individuales ϵ_n en su forma diferencial es:

$$dP(\epsilon_n) = \frac{1}{(\pi T_0 \epsilon_n)^{1/2}} \exp \frac{\epsilon_n}{k_B T_0} d\epsilon_n$$ \hspace{1cm} (6.16.0)

Derivando:

$$\langle \epsilon_n \rangle = \frac{1}{2} T_0 k_B$$ \hspace{1cm} (6.16.0)

$$\langle \epsilon_n^2 \rangle = \frac{3}{4} (T_0 k_B)^2$$ \hspace{1cm} (6.16.0)

$$\langle \epsilon_n^2 \rangle - \langle \epsilon_n \rangle^2 = \frac{1}{2} (T_0 k_B)^2$$ \hspace{1cm} (6.16.0)

La distribución de la energía cinética total $E_k = \sum_j \frac{1}{2} m_j v_j^2$ de acuerdo al teorema del límite central, es aproximadamente Gaussiano:

$$P(E_k) = c e^{-\frac{(E_k - \langle E_k \rangle)^2}{3 k_B^2 T_0^2}}$$ \hspace{1cm} (6.16.0)

La función distribución para las fluctuaciones de temperatura $T = 2E_k/3k_B$ en $\Delta T = T - T_0$ es entonces:

$$P(\Delta T) = c e^{-\frac{(\Delta T)^2}{2\sigma^2}, \sigma^2 = 2T^2/3N}$$ \hspace{1cm} (6.16.0)

Note que para $N \to \infty$ la distribución es muy fuerte, pero para un sistema finito siempre es amplia. Para $T = 300K$ y $N = 1000$ se tiene que $\sigma \sim 8K$.

9. Ahora ajustaremos su distribución a una distribución normal. Para ello, utilizará la función de curva no lineal de ajuste de xmgrace.

10. Elija Data \rightarrow Transformations \rightarrow Non linear curve fitting. En la ventana Source \rightarrow Set, haga click en la última línea, que corresponde con el histograma que ha creado.

11. En la ficha Principal, escriba en la ventana de fórmula:

$$y = a0 * exp(-(x - a1) \land 2 / a2)$$
12. En el menú desplegable parámetros, seleccione 3. Fill-in fotogramas aparecerá a continuación. Dar A0 al valor inicial de 1, A1 al valor inicial de 235 (se puede ver que el centro de la campana gaussiana es alrededor de ese valor), y A2 al valor de 2. Haga click varias veces en Apply, para conseguir un mejor ajuste. Esto se ajusta a la curva y valores para los parámetros a0, a1 y a2, donde a0 es una constante de normalización, a1 la temperatura media, y a2 es σ^2.

![Figure 6.23: Fluctuaciones de Temperatura.](image)

La ventana que apareció contiene el nuevo valor de los parámetros, así como algunas medidas estadísticas, incluyendo el coeficiente de correlación, que es una medida del ajuste.

13. Compare el valor medio de la temperatura obtenida por este método con el que se obtendrá utilizando namdstats escribiendo en una ventana de terminal Linux: namdstats UBQ-nve.log

14. Ahora, mire la desviación $\sigma^2 = 2T^2/3N$ que se puede calcular a partir de sus datos. Tenga en cuenta la forma en que es dependiente del tamaño del sistema.

En el ejemplo anterior se puede observar las proteínas individuales, por una parte, se comportan como conjuntos infinitos termodinámicos, reproduciendo la temperatura media respectiva; y, por otro lado, muestran signos de su finitud, es decir, las fluctuaciones de temperatura. En general, es interesante observar que las velocidades de los átomos y la energía cinética de la proteína sirven como termómetro.
Chapter 7

Metodología

7.1 MD: Simulación de Proteínas de Membrana

Desde la primera simulación de una proteína de membrana incrustada en 1994 y una proteína de membrana integral en 1995; las simulaciones de dinámica molecular de proteínas de membrana han recorrido un largo camino. Hasta la fecha, los sistemas investigados con éxito incluyen péptidos de la interfaz asociada, proteínas de fusión, proteínas de los canales y poros, transportadores, bombas de iones, ATP y receptores acoplados a proteína. En este trabajo se utilizara uno de los métodos más comúnmente utilizados para establecer simulaciones de dinámica molecular de las proteínas de membrana y sugerimos un enfoque práctico para la creación y funcionamiento de este tipo de simulaciones. usaremos la plataforma GROMACS, de libre acceso y relativamente fácil de usar.

7.2 Construcción de Topologias

Las proteínas de membrana se asocian a menudo con cofactores específicos, ligados a otras moléculas biológicas, para las cuales el paquete de simulación no tiene topologías. En muchos casos, tales descripciones pueden ya existir en otros campos de fuerza y podría ser convertidos al archivo que se ha creado, o deberán ser construidos de nuevo. Sin embargo, se debe tener cuidado para asegurar su exactitud y la compatibilidad con los modelos de proteínas y lipidos. Un enfoque útil y de uso común en la generación de una nueva topología, es convertir la molécula en partes más manejables. Por ejemplo, sustratos y cofactores complejos a menudo contienen fragmentos de
aminoácidos en los que los campos de fuerza ya se encuentran disponible en algunos paquetes, por lo tanto requieren sólo pequeños ajustes. Datos de rayos X de alta resolución se pueden utilizar como referencia de la parametrización, longitud de enlace y ángulos definidos. Constantes de fuerza para enlaces y ángulos, en principio, pueden ser obtenidos a partir de cálculos de mecánica cuántica de manera precisa, pero en la práctica los enlaces se toman a menudo como un campo constante.

Un factor importante a considerar en la evaluación de un modelo para un cofactor es su distribución de carga parcial. Cargas puntuales y las interacciones de Lennard-Jones que dan el comportamiento correcto para una molécula en agua puede no ser adecuada para describir el comportamiento en el interior de una bicapa hidrófoba en una proteína. La distribución de carga deberá ser compatible con el campo de fuerza de proteínas. Una técnica de partición que sobreestima los cargas en un cofactor en relación con una proteína puede afectar artificialmente y de manera adversa el balance de fuerzas que controlan las interacciones del cofactor-proteína. Topologías de moléculas complejas presentan un problema práctico significativo. Software de MD típicamente genera topologías para polímeros como las proteínas y polinucleótidos automáticamente a partir de las coordenadas 3D, pero esto se basa en una descripción existente de la topología exacta de aminoácidos y nucleótidos individuales. Es un problema difícil de generar topologías precisas de moléculas arbitrarias. Aunque hay una gran cantidad de servidores web y los programas de ordenador que intentarán generar topologías basadas en estructuras químicas o coordenadas en 3D, en la práctica esto requiere la comprobación experimental cuidadosa y en ocasiones ajustes.

7.3 Parámetros de la simulación

Entre los numerosos parámetros de ejecución las más cruciales para simulaciones de proteínas de membrana incluyen el tipo de acoplamiento de presión, la forma electrostática se tratan y la longitud real de la simulación.

7.4 Configuración y equilibrio de una bicapa

La configuración inicial de la monocapa fue obtenida replicando una sola molécula DPPC 45 veces como una monocapa de una caja del tamaño de 5x5x20 nm. Mas abajo en la región de la cabeza de grupo, 2750 moléculas de agua fueron añadidas y las condiciones periódicas de frontera fueron aplicadas.
en toda las tres direcciones. El modelo TIP3P fue usado para las moléculas de agua. El segundo proceso fue obtenido girando 180 grados del primer sistema. La longitud de la caja de simulación en la dirección z fue ajustada a 20,0 nm para asegurarse que la interacción entre el sistema y su imagen periódica fuera mínima. Las configuración de doble proceso para la simulación han sido utilizadas en el pasado. Estudios recientes han demostrado que los sistemas de monocapa de varios nanómetros pueden producir la mayoría de las estructuras observadas experimentalmente.

Un corte de 1.2 nm fue usado para la interacción de van der waals y la suma de partícula de mesh edwals fue empleada con k = 0.34A⁻¹ para interacciones electrostáticas. La temperatura fue mantenida a 325K, el sistema de acoplamiento fue el termostato de Noose Hoover y el método de pistón de Langeving fue usado para el control de la presión. El sistema fue equilibrado para 5 ns.

La configuración inicial de la bicapa se obtiene mediante la replicación de un lipido tipo DPPC en una caja de tamaño 5.0 X 5.0 X 20 nm. Por debajo de la región de grupo de cabeza de la monocapa, para nuestro estudio se toma una bicapa lipídica la cual ya se encuentra estandarizada en la página web "http://wcm.ucalgary.ca/tieleman/downloads". En esta página se descargan los siguientes archivos:

1. dppc128.pdb - Es la estructura de una bicapa de 128 lípidos tipo DPPC la cual se puede ver con el programa vmd.
2. dppc.itp - Se describe el tipo moléculas DPPC y su estructura física y geometría de cada lipido.
3. lipid.itp - parámetros lipídicos de Berger.

Luego de tener los archivos de la bicapa lipídica se procesa el archivo PDB y se elige el campo de fuerza que se desea al igual que otros parámetros usando el siguiente comando:

A). pdb2gmx -f dppc128.pdb -o ppc128.gro -ignh -ter -water spc

donde

-ignh - Hace referencia a no ejecutar los atomeos de Hidrogeno del archivo PDB.
-ter - Hace referencia asigna interactivamente estados de carga de N y C.
-water - Elige un modelo para la solvatación del sistema en este caso agua (SPC / SPCE/ TIP3P etc. En nuestro caso se elije (SPC)

Cuando se le indique de forma interactiva para elegir el campo de fuerza deseada. Elige 9 (ff43a1 GROMOS96). La elección del campo de fuerza depende del sistema que está simulando. Se ha encontrado que ff43a1 conserva la química y caracteres estructurales de la proteína y los lípidos más largos en tiempos de simulación (en el rango de 1 microsegundo).

Luego se retira la periodicidad de la bicapa con los siguientes comandos:

B). editconf -f popc128a.pdb -o popc128a.gro

el comando editconfig genera estructura en formatos GROMOS87 los cuales son utilizados para trayectorias sencillas

C). grompp -f EM.mdp -c popc128a.gro -p topol-popc.top -o EM.tpr

El comando grompp lee archivos de la topología, el cual tiene información de la estructura de las moléculas (átomos y enlaces). El archivo .mdp describe las velocidades y posiciones de los átomos, número de pasos para la simulación. Este comando genera un archivo .tpr el cual sirve de entrada para las trayectorias de GROMACS.

D). trjconv -s EM.tpr -f popc128a.pdb -o popc128-whole.gro
-pbc mol -ur compact

El comando trjconv sirve para muchos propósitos. Es más comúnmente usado como una herramienta de post-procesamiento, para corregir una trayectoria de periodicidad, o para extraer los marcos específicos de una trayectoria para el análisis.

7.5 Solvatación del sistema

Para la frontera de agua y de lípidos generalmente se equilibran rápidamente, en una escala de tiempo de 100 ps, se puede añadir agua con relativa facilidad. Las cuestiones claves son cómo tratar con agua en el interior de una membrana hidrofóbica y la forma de solvato de cavidades en las proteínas que no intercambian fácilmente moléculas de agua con la solución. Técnicas de solvatación utilizan una geométrica en lugar de un enfoque termodinámico.
para agregar agua. El objetivo es una estructura de partida suficientemente solvatada sin moléculas de agua en la sección hidrófoba. Aunque el agua se difundirá fuera de esta sección de la membrana, debido al suficiente tiempo de equilibrio este método es más factible y computacionalmente más eficiente para quitar las moléculas de agua de la estructura de partida.

Para la solvatación del sistema TIP3P se utilizó para las moléculas de agua. La caja de simulación longitud se fija a 20,0 nm en la dirección z para asegurarse de que la interacción entre el sistema y su imagen periódica sea mínima. Estudios anteriores han demostrado que los sistemas de monocapa de varios nanómetros de tamaño pueden reproducir la mayoría de las propiedades estructurales observadas experimentalmente. Un punto de corte de 1,2 nm se utiliza para las interacciones de van der Waals y la partícula Ewald $\kappa = 0.34\text{Å}^{-1}$ para interacciones electrostáticas. La temperatura se mantiene a 325 K, el acoplamiento del sistema emplea un termostato Nose-Hoover, y el método de pistón Langevin se utiliza para el control de la presión.

7.6 La adición del disolvente

Después de que se alcanza el valor deseado para el área por lípidos, solvato todo el sistema usando los comandos a continuación se indica:

7.7 Adición de iones

El proceso de adición de iones se ejecutara con las siguientes lineas de comandos:

B). genion -s ions.tpr -o B2AR_POPC_sol_ions.gro -p topol.top -pname NA -nname CL -nn 3
7.8 Energía Minimización

A continuación, la energía minimiza todo el sistema, usando los siguientes comandos:

topol.top -o EM.tpr

B). mdrun -v -deffnm EM

La equilibración se lleva a cabo en dos etapas, una simulación NVT seguido por una NPT. Esto por lo general aumenta la precisión de los cálculos. Con el fin de eliminar el centro de masa (COM) movimiento relativo a la bicapa y el disolvente, vamos a crear dos grupos especiales de la siguiente manera:

A). make_ ndx -f EM.gro -o index.ndx

Cuando se le solicite por make_ ndx, introduzca "16 — 14" para fusionar el SOL y CL hacer uno grupos. Vamos a correr las simulaciones a una temperatura de 300 K, que es superior a la temperatura de transición de fase de DPPC. El archivo NVT.mdp se puede encontrar en la página(https://sites.google.com/site/anirbanzz/gpcr-gromacs-tutorial)

A). grompp -f NVT.mdp -c EM.gro -p topol.top
 -n index.ndx -o NVT.tpr

B). mdrun -deffnm NVT

A continuación, vamos a llevar a cabo el equilibrado TNP bajo condición de presión constante de 1 ns utilizando:

A). grompp -f NPT.mdp -c NVT.gro -t NVT.cpt -p topol.top
 -n index.ndx -o NPT.tpr

B). mpirun -np X mdrun_ mpi -deffnm NPT

C). mdrun -nt X -deffnm NPT

D). mdrun -deffnm NPT
7.9 Ejecución

Una vez que el sistema ha alcanzado la temperatura y la presión deseada, podemos liberar las restricciones de posición en la proteína y llevar a cabo la campaña de producción hasta la fecha de ejecución: (El archivo MD.mdp se puede encontrar en https://sites.google.com/site/anirbanzz/gpcr-gromacs-tutorial)

A). grompp -f MD.mdp -c NPT.gro -t NPT.cpt -p topol.top -n index.ndx -o B2AR_POPC_1ns.tpr

B). grompp -f MD.mdp -c NPT.gro -t NPT.cpt -p topol.top -n index.ndx -o B2AR_POPC_1ns.tpr

7.10 Detalles de la simulación

Para la simulación asociada al ensamble $NLZ\gamma T$. La tensión superficial del sistema se mantuvo $\gamma = 20\text{dyn/cm}$. La tensión superficial normal para el agua es de 70 dyn/cm mientras que en los pulmones es de 25 dyn/cm. Sin embargo al final de la expiración, las moléculas surfactantes fosfolípidas se contraen disminuyendo la tensión superficial considerablemente hasta niveles cercanos a cero. El surfactante pulmonar reduce la tensión superficial, aumentando la conformidad, lo cual permite a los pulmones inflarse de manera más fácil, eliminando el trabajo del suspiro. La reducción en la tensión superficial también reduce la acumulación de los fluidos en los alveolos especialmente en las paredes alveolares. Una razón adicional para escoger una tensión de 20.0 dyn/cm es la de comparar los resultados computacionales con los valores experimentales registrados. El tamaño de la caja en la Mientras está allí, descargue los siguientes archivos:

A). dppc128.pdb - la estructura de una bicapa de lípidos DPPC 128-dppc.itp - la definición moleculetype de DPPC

B). lipid.itp - parámetros lipídicos Berger dirección z es fijo, mientras que el sistema puede fluctuar en las dirección x e y. Dado que la altura L_z es constreñida, el ensamble actual de hecho es NL_xP_tT, donde P_t es la presión tangencial.

El ensamble $NL_z\gamma T$ fue usado con el termostato Noose Hoover y el pistón Langevin de masa 500 amu con una frecuencia de colisión de $20P_s^{-1}$. A
lo cual se ajusta pmxx= pmyy=500 amu y pmzz=0; donde pmxx, pmyy, pmzz son masas de pistones aplicadas a las direcciones x,y,z. La simulación fue ejecutada a 325K. El algoritmo SHAKE fue utilizado para mantener los enlaces de hidrógeno fijos. La simulación corre a 7ns con pasos de tiempo de 1 fs. Las coordenadas fueron salvadas cada 1ps para producir una salida de 7000 marcos empleados para el análisis.

El efecto de tamaño finito no es significativo en este sistema desde que los ajustes laterales de la monocapa sean 3 veces mas grandes que el tamaño de la partícula. En consecuencia, ha sido demostrado que una distancia apropiada entre una proteína soluta y una caja de simulación correspondiente a 4-5 monocapas hacen posible ser negligeible el efecto del tamaño.

7.11 Calculo del potencial de fuerza media

El potencial de fuerza media asociado a la partícula a través de la monocapa ha sido calculado con la técnica de muestreo de sombrilla y el método de análisis de histograma. La coordenada de reacción de el PFM fue calculado separadamente para cada nanopartícula par. Específicamente están caracterizadas la distancia normal entre la partícula y el centro de masa a la monocapa mas cercana por medio de:

\[\xi_{1,2} = \pm (Z_{1,2}^{NP} - Z_{1,2}^{M}) \]

(7.11.0)

donde \(Z_{1,2}^{NP} \) es la coordenada z del centro de masa de la partícula 1 y 2, y \(Z_{1,2}^{M} \) es el número de monocapas. El signo más menos de la ecuación obedece a los subíndices 1 y 2. Desde que las dos monocapas estén bien separadas por la fase acuosa \(\xi_1 \) y \(\xi_2 \) representan dos nanopartículas independientes. De acuerdo a esta definición las nanopartículas localizadas en el vacío de la monocapa \(\xi \approx 21A \) comienzan a mostrarse a la fase acuosa -5A.
Las simulaciones en dinámica molecular, no obstante, enmarcan una pedagogía no abarcada dentro o fuera del aula. Sencillamente está es vista como un herramienta que no enlaza el aprendizaje del laboratorio con nuestro caso la practica docente debido a que el tiempo de simulación y el lenguaje informático, se consideran engorrosos y de intrepretación compleja desde una línea de comandos frente a una terminal de ejecución, junto con un trabajo intelectual individual de la persona que desee aprender a programar. La configuración del campo informático, que tiende a comprender lo que ella aporta para establecer el sentido y el alcance tanto de la informática educativa como de la pedagogía computacional, se puede rastrear desde dos tradiciones fundamentales:

1. El estudio de los procesos de aprendizaje de los sujetos y de las posibilidades de educar el pensamiento en los mismos. Del lado del aprendizaje, como preocupación investigativa central se encuentran la preocupación centrada en la relación entre ambiente y organismo. Es decir, el espacio de adecuación entre el usuario y la máquina. Se trata de establecer cómo reacciona éste en su proceso de acomodación con el entorno. Esta primera tendencia tiene una vertiente que, hasta cierto punto, se puede ver como opuesta; y por ese camino, específicamente en el mundo de la computación.

2. Los modelos de aprendizaje desde la psicología educativa que parte de modelos cognitivos; desde esta vertiente es de relevancia las variables intraorganismicas, por los sujetos que piensan y se acomodan al medio; para ello toman el conocimiento o la inteligencia como instrumento de adaptación al contexto cultural en que estos sujetos realizan su experiencia.

En nuestro caso como estudiantes en proceso de aprendizaje continuo
como licenciados integrales, consideramos las herramientas computacionales como un ejercicio individual de aprendizaje constructivista, en el cual la construcción de conocimiento se plantea como un ejercicio desde la singularidad en pro de una construcción colectiva de programadores en la universidad, que garantiza un espacio de pensamiento como ejercicio pedagógico continuo. Con respecto a la primera de las tendencias aludidas interesa en este estudio reconocer la motivación por llegar a crear máquinas de enseñanza. Es decir, en nuestro caso, la programación se reproduce mecánicamente como un proceso de estímulo en cuyo caso producir una respuesta, se alcanza cuando la simulación es de manera adecuada. La versión más popularizada de esta vertiente fue lo que dio en llamarse educación programada o tecnología educativa. Aunque se han hecho esfuerzos para que este tipo de enseñanza no se convierta únicamente en la transmisión de conocimientos, sino también para lograr productos elaborados por el pensamiento, haciendo referencia a lo que sucede cuando se resuelven problemas en la relación de lo externo con la conciencia.

Por lo tanto, establecer que el uso adecuado de las herramientas de dinámica molecular y de simulación pueden llegar a aportar de manera relevante, siempre y cuando el aprendizaje sea fruto de la relación <organismo-medio>; este supuesto es aceptado por la segunda de las tendencias señaladas, pues ya el individuo que es enseñado posee conceptos espontáneos y para el desarrollo de los noespontáneos se requiere que éste sea afectado energéticamente por condiciones externas e internas. En este orden de ideas la instrucción es la principal fuente para modificar de una manera completa la mente del aprendiz. Las investigaciones de esta escuela demuestran que el desarrollo de las funciones psicológicas no sean pre-requisitos para poder administrar la programación básicas, pero explica una interacción continua con las contribuciones de la instrucción e igualmente de la influencia social y cultural y su dependencia de la llamada pedagogía computacional.

En las instalaciones de informática de la universidad disrital, en la sede macarena B; se llevó a cabo el componente de acción por parte de nosotros como tesistas del docente Alfonso Leyva, la aplicabilidad y viabilidad de nuestro proyecto de grado. El tiempo de ejecución del plan de acción fue de 2 meses, en el espacio académico electivo Biosistemas computacionales, los días lunes, miércoles y viernes en el horario de 4 a 6 de la tarde. El plan de acción se menciona a continuación:

- **Objetivo:** Utilizar el espacio académico biosistemas computacionales como prueba piloto para establecer parámetros de trabajo de grado
y dar a conocer a los compañeros del proyecto la implementación de dinámica molecular como herramienta de enseñanza con el tutorial de lisosoma en agua de Gromacs.

- **Etapa 1.** Solicitar al encargado de la sala de informática la instalación en los equipos de la universidad el lenguaje de programación y a los compañeros llevar sus portátiles para realizar una partición en el disco duro con la aplicación magic partición. El sistema operativo a utilizar es Centos 5.5 y las versiones de fedora 16 y 17. El tiempo de ejecución de instalación tardo 2 semanas.

- **Etapa 2.** Cátedra por parte del docente y los tesistas de la utilización de la línea de comandos, aplicaciones, lenguaje de programación, instalación de paquetes básicos y necesarios para llevar a cabo una simulación computacional. en este punto se realizó un paso a paso de como utilizar la línea de comandos desde la terminal para acceder al sistema y el lenguaje de comandos para operar en linux. El tiempo de ejecución tardó 2 semanas.

- **Etapa 3.** Documentación. En este punto antes de empezar a trabajar directamente la simulación se determinó la lectura de los siguientes papers para poder interpretar, analizar y discutir el trabajo realizado por una máquina durante una simulación computacional: Understanding Molecular Simulation. From Algorithms to Applications, Molecular Dynamics of Hoover, Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry, Computational Methods for Protein Structure Prediction and Modeling Volume 1: Basic Characterization. El tiempo destinado fue de 2 semanas.

- **Etapa 4.** Realización de la simulación. una vez esclarecidos los aspectos relevantes de la un simulacion en dinamica molecular, se llevo a cabo la realizacion de la misma tomando como base el tutorial de lisosoma en agua de Gromacs: http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/lysozyme/. Tiempo destinado 1 semana.

Análisis. Una vez realizado el proceso de la prueba piloto, concluimos que fueron dos meses de aprendizaje y enseñanza muy satisfactorios. Sobre la marcha se produjeron muchos errores en el momento de compilar, en las librerías, en la instalación, la interpretación de los documentos, entre otros. Consideramos a su vez que, el aprendizaje como proceso humano, no es exclusivo a la programación. La investigación realizada, puede considerarse desde la informática educativa ya su vez orientarse al incremento de la construcción
del conocimiento, mediante métodos estructurados de guía y evaluación de los procesos de apropiación conceptual de los mismos.

Así mismo la pedagogía computacional procura explicar la encarnación de la competencia cognitiva utilizando la dinámica molecular a la informática educativa, en todos los casos, de manera más o menos explícita. Por lo cual creemos que si se desarrollan y realizan proyectos de formación en los cuales la pedagogía computacional fomente espacios de construcción asociados a la física como alternativa inusual al laboratorio, esta pueda llegar a tomar fuerza en el ámbito académico de universidades y grupos de estudio dentro del país y porque no articulando programas de TIC.
Chapter 9

Resultados y Conclusiones

Figure 9.1: Densidad de la membrana en función del tiempo

Figure 9.2: Histograma de la densidad
Figure 9.3: Energía Cinética en función del tiempo

Figure 9.4: Histograma Energía Cinética

Figure 9.5: Energía Potencial en función del tiempo

Figure 9.6: Histograma Energía Potencial
Figure 9.7: PV en función del tiempo

Figure 9.8: Histograma PV

Figure 9.9: Tensión Superficial función del tiempo

Figure 9.10: Histograma Tensión Superficial
Figure 9.11: Energía Total en función del tiempo

Figure 9.12: Histograma Energía Total

Figure 9.13: Volumen en función del tiempo

Figure 9.14: Histograma Volumen
Figure 9.15: Temperatura en función del tiempo

Figure 9.16: Histograma Temperatura

Figure 9.17: Presión en X

Figure 9.18: Presión en Y
Figure 9.19: Presión en dirección X-Y
Figure 9.20: Acoplamiento de presión en X
Figure 9.21: Acoplamiento de presión en Y
Figure 9.22: Acoplamiento de presión en Z
Figure 9.23: Constante total de Acomplamiento al barostato en Y

Figure 9.24: Constante total de Acomplamiento al barostato en X

Figure 9.25: Constante total de Acomplamiento al barostato en Z

Figure 9.26: Longitud de la caja en X
9.1 Resultados

De acuerdo a los parámetros de simulación establecidos y mencionados en los capítulos anteriores, los resultados obtenidos para la DPPC son interpretados por las gráficas obtenidas en el programa xmgrace. El uso de esta herramienta gráfica, radica en que la información arrojada y requerida esclarece el comportamiento de las variables termodinámicas involucradas en la simulación y el comportamiento de variables aleatorias como el tamaño de la caja de simulación, entre otras.

Los parámetros a controlar durante la simulación para verificar que las condiciones requeridas para la validación desde la termodinámica son los asociados a los ensambles mecánico estadísticos de la simulación, i.e., los ensambles NVT / NPT. Para lo cual se requieren monitorear las variables asociadas al Volumen, Temperatura y Presión; la variable asociada al número de partículas N debido al setup de la simulación no es necesaria, pues no el número de partículas está fijo.

En las gráficas se muestran los 50 ns de simulación, lo cuales incluyen tanto el periodo de equilibraación como el de producción. Los análisis indican que de los 50 ns los primeros 20 deberían ser descartados para la validación de resultados.
9.2 Conclusiones

1. En las figuras de series de tiempo correspondientes a V, T, PV, Ep observamos que el sistema (biomembrana) respeta el comportamiento. Por tal motivo podemos validar los resultados de esta simulación en un contexto termodinámico y biofísico.

2. La figura de densidad evidencia un comportamiento de homogeneidad e isotropía.

3. La tensión superficial de la membrana evidencia un comportamiento estable y uniforme a lo largo de la simulación.

4. El muestreo correspondiente a las 30 ns es suficiente para estudiar las propiedades dinámicas y termodinámicas en una primera aproximación con el sistema utilizado en este trabajo.

5. Como muestra a este trabajo podemos estudiar la tensión superficial en condiciones realistas de manera que a través de esta investigación podemos analizar sus cambios, típicamente son debidos en condiciones fisiológicas a moléculas de la familia del surfactante pulmonar.

6. El trabajo interdisciplinario es fundamental para el enriquecimiento de los docentes a futuro, en los cuales tenga integralidad en áreas como la informática, la física y la biología.
Referencias

