Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Trabajo de grado realizado en la modalidad de Investigación-Innovación para optar por el título de Ingeniero Forestal

LAURA XIMENA GALINDO LIMAS
LAURA KATHERINE BÁEZ ARDILA

LIZ FARLEIDY VILLARRAGA FLÓREZ
Directora
LUIS FERNANDO ORTIZ QUINTERO
Evaluador

Universidad Distrital Francisco José de Caldas
Facultad del Medio ambiente y Recursos Naturales
Ingeniería forestal
Bogotá D.C.
2019
Agradecimientos

Agradecemos a la Universidad Distrital Francisco José de Caldas y a sus docentes que contribuyeron en nuestra formación como profesionales.

A nuestra directora, la docente Liz Villarraga por el acompañamiento y apoyo a lo largo de este proceso, al igual que a la docente Sandra Rodríguez Piñeros por su asesoría en la metodología del diagnóstico participativo.

A nuestro evaluador el docente Luis Fernando Ortiz por su disposición y asesoría en la construcción del presente documento.

A Parques Nacionales Naturales de Colombia y a los funcionarios del Parque Chingaza, especialmente a Alexandra Quintero Gómez por su gestión para que este trabajo fuera una realidad y por presentarnos a la maravillosa comunidad fomequeña.

A todos aquellos que contribuyeron en la participación de las encuestas realizadas, los expertos y sobre todo a la comunidad de Fómeque por su amable acogimiento y por brindarnos su tiempo, opiniones y enseñanzas.

Finalmente, a nuestras familias, ya que sin ellos este logro no sería posible.
Índice de Contenido

1. Resumen .. 8
2. Introducción ... 9
3. Descripción del Problema .. 13
4. Justificación .. 15
5. Objetivos ... 16
 5.1 Objetivo General ... 16
 5.2 Objetivos Específicos ... 16
6. Marco de Referencia ... 17
 6.1 Municipio de Fómeque .. 17
 6.1.1 Población en Fómeque ... 19
 6.1.2 Organización comunitaria del municipio de Fómeque .. 19
 6.2 Parque Nacional Natural Chingaza .. 20
 6.3 Cuenca Río Blanco - Negro - Guayuriba .. 22
7. Marco Conceptual ... 24
 7.1 Servicios Ecosistémicos ... 24
 7.1.1 Servicios ecosistémicos en áreas protegidas .. 29
 7.1.2 Servicios ecosistémicos del PNN Chingaza ... 30
 7.1.3 Servicios ecosistémicos asociados al recurso hídrico ... 31
 7.1.4 Servicios ecosistémicos asociados al páramo .. 32
7.1.5 Servicios ecosistémicos en Bosques Andinos .. 34
7.1.6 Valoración de los ecosistemas .. 35
7.1.7 Valoración participativa ... 37
7.1.8 Valoración de los servicios ecosistémicos y las políticas públicas 39

8. Metodología .. 41

8.1 Diagnóstico Participativo de los Servicios Ecosistémicos que Provee el PNN Chingaza a la Cuenca del Río Negro .. 42

8.1.1 Fase 1: Identificación de perspectivas ... 42
8.1.2 Fase 2: Organización de los datos anteriores .. 45

8.2 Diagnóstico Espacial de Servicios Ecosistémicos de la Cuenca del Río Negro ... 45

8.2.1 Habitat quality (Calidad de hábitat) .. 46
8.2.2 Forest carbon edge effect (Efecto borde del almacenamiento de Carbono) 47
8.2.3 Seasonal water yield (Rendimiento estacional del agua) 49
8.2.4 Recreation and tourism (Recreación y turismo) ... 51

9. Resultados .. 52

9.1 Diagnóstico Participativo de los Servicios Ecosistémicos que Provee el PNN Chingaza a la Cuenca del Río Negro .. 52

9.1.1 Selección de actores clave ... 52
9.1.2 Identificación de perspectivas sobre los servicios ecosistémicos 53

9.2 Diagnóstico Espacial de los Servicios Ecosistémicos de la Cuenca del Río Negro... 73
9.2.1 Habitat Quality (Calidad de habitat) ... 74
9.2.2 Forest Carbon Edge Effect (Efecto borde del almacenamiento de Carbono) 80
9.2.3 Seasonal Water Yield (Rendimiento estacional del agua) 83
9.2.4 Recreation and tourism (Recreación y turismo) ... 87
10. Análisis de resultados ... 89
11. Conclusiones ... 99
12. Recomendaciones ... 100
13. Anexos .. 102
 Anexo 1. .. 102
 Anexo 2. .. 104
 Anexo 3. .. 104
 Anexo 4. .. 108
14. Bibliografía .. 115
Índice de Tablas

Tabla 1. Clasificación de los servicios ecosistémicos según EEM 2005 .. 26
Tabla 2. Lista de los servicios ecosistémicos descritos por EEM y CICES. ... 27
Tabla 3. Servicios ecosistémicos asociados al recurso hídrico ... 32
Tabla 4. Lugar de residencia de encuestados .. 53
Tabla 5. Parámetros para identificar categorías ... 54
Tabla 6. Ideas identificadas por la comunidad de Fómeque como relevantes. .. 56
Tabla 7. Enunciados con mayor relevancia por su numerosidad ... 60
Tabla 8. Enunciados con mayor relevancia mencionados como primer comentario. 63
Tabla 9. Enunciados con mayor relevancia mencionados como Deliberada. ... 63
Tabla 10. Número de encuestados por género .. 64
Tabla 11. Número de enunciados por categoría y género ... 65
Tabla 12. Ideas representativas por género debido al número de enunciados 66
Tabla 13. Ideas relacionadas a cada categoría por rango etario .. 67
Tabla 14. Ideas representativas por rango etario debido al número de enunciados 68
Tabla 15. Matriz de Co-ocurrencias Software Atlas.ti. .. 72
Tabla 16. Sensibilidad de la cobertura de la tierra a cada una de las amenazas 78
Tabla 17. Características de las amenazas ... 78
Tabla 18. Tabla Biofísica del modelo Forest carbon edge effect .. 80
Índice de Figuras

Figura 1. Área de estudio... 17

Figura 2. Cuenca Hidrográfica del Río Negro... 24

Figura 3. Diagrama metodológico... 42

Figura 4. Red semántica del diagnóstico participativo. Software Atlas.ti... 70

Figura 5. Mapa de coberturas de la tierra 2017 para la cuenca del río Negro................................. 73

Figura 6. ACP sobre la sensibilidad de las coberturas de la tierra a las amenazas................. 75

Figura 7. ACP sobre el peso relativo de cada una de las amenazas/ experto................................. 76

Figura 8. ACP sobre la distancia de afectación de las amenazas/ experto.. 76

Figura 9. Calidad de hábitat de la cuenca del río Negro... 79

Figura 10. Efecto de borde en el carbono forestal de la Cuenca del Río Negro.......................... 81

Figura 11. Flujo base para la cuenca del río Negro.. 83

Figura 12. Numero de curva para la cuenca del río Negro... 85

Figura 13. Zonas de recarga hídrica disponible... 86

Figura 14. Escorrentía directa en la cuenca del río Negro.. 87
1. **Resumen**

El propósito de esta investigación fue realizar un diagnóstico espacial para evaluar el estado de los servicios ecosistémicos de la cuenca del Río Negro mediante el software InVEST de la universidad de Stanford a través de Natural Capital Project y sus herramientas *Habitat Quality, Forest Carbon Edge Effect, Seasonal Water Yield y Recreation and Tourism*; y un diagnóstico participativo, aplicando la fase (1) y (2) de la metodología Q para identificar los servicios ecosistémicos que reconocen los habitantes de la cuenca del Río Negro y así garantizar su conservación y protección. Se encontraron relaciones compatibles entre el diagnóstico participativo y el espacial, logrando un mayor reconocimiento por parte de la población en cuestión de los servicios ecosistémicos culturales, regulación, provisión, y soporte respectivamente; de igual manera, fue posible observar que, hacia las áreas más intervenidas, es decir, las más cercanas al casco urbano y alejadas del Parque Nacional Natural Chingaza hay cierto detrimento en la oferta de los Servicios Ecosistémicos en general.
2. **Introducción**

El Parque Nacional Natural Chingaza tiene orígenes diversos, este es un territorio que tiene escrito la acción de generaciones de pobladores como lo menciona María Clara Van Der Hammen de la Fundación Tropenbos Colombia (AAVV, 2015).

En sus inicios en el año 1968, mediante la resolución 259 del 1 de agosto se aprueba la resolución 54 del 24 junio por la que se declara Parque Nacional Natural al Páramo de Chingaza, con un área correspondiente a 20.000 Ha en el municipio de Fómeque, Cundinamarca, incluyendo los ríos la Playa, Frio y Chuza. Ese mismo año mediante la resolución 55, el Ministerio de Agricultura otorga la concesión de estas aguas a la Empresa de Acueducto, Alcantarillado y Aseo de Bogotá (EAB) para la construcción del embalse de Chuza, ubicado en el área correspondiente al municipio de Fómeque. Más adelante en 1971, debido a las alteraciones por la construcción del Sistema Chingaza, el entonces INDERENA cambia la categoría de Parque Nacional Natural a Zona Reserva Forestal Protectora de Interés General con el Acuerdo 024 del 13 de mayo. Finalmente en 1977 se crea de nuevo el Parque Nacional Natural Chingaza (PNN Chingaza) mediante la Resolución 154 del 6 de junio por parte del Ministerio de Agricultura y en el año 1978 se amplía el parque para completar las aproximadamente 76.600 Ha que hoy conocemos, comprendiendo los municipios de Fómeque, Medina, La Calera, Guasca, Choachí, Junín y Gachalá en el departamento de Cundinamarca, y los municipios El Calvario, San Juanito, Cumaral y Restrepo en el departamento del Meta, con el objeto de conservar la flora, la fauna, bellezas escénicas, los complejos geomorfológicos, las manifestaciones históricas o culturales, pero sobre todo y como logra verse en la historia de su establecimiento, el agua (Parques Nacionales Naturales de Colombia, 2016).
Estos objetos de conservación mencionados resultan en una serie de servicios ecosistémicos que benefician a los habitantes de los municipios que componen el Parque, la ciudad de Bogotá y a los municipios de la sabana gracias a la provisión del recurso hídrico. Esto último se logra mediante el Sistema Chingaza que da lugar al trasvase del agua de la Macrocuencan del Orinoco hacia la Macrocuencan del Magdalena y abastece el 80% del agua de la ciudad de Bogotá, todo a través de dos concesiones sobre el recurso hídrico: la del Río Chuza y la del Río Blanco (Araque, 2016).

Estos municipios y sobre todo Fómeque, tienen cierto protagonismo en el establecimiento y la evolución de esta área protegida, tanto al hablar de los recursos, como al hablar de su población, ya que al crearse esta área protegida se contempla todo un cambio de hábitos y actividades productivas, implicando un costó de oportunidad para las personas que hoy en día se dedican a la protección de estos territorios, pero que previamente desarrollaban allí un uso productivo; adicional a esto, con la declaración de la Reserva Forestal Protectora río Blanco y Negro se termina de consolidar el nuevo discurso en torno a la conservación de estas áreas y se reduce el espacio productivo de los pobladores afectando la dinámica económica de las familias y en general de las veredas involucradas, la creación de esta área protegida resultó para muchos de los pobladores locales en una fuerte ruptura con el territorio (AAVV, 2015; Gutiérrez, 2016).

Para el caso del municipio de Fómeque, prácticamente la mitad de su territorio se encuentra bajo figura de protección, del PNN Chingaza como de la RFP Río Blanco y Negro, esta última se encuentra ubicada en la cuenca del río Negro, la cual nace en las inmediaciones del PNN Chingaza y se abastece de un gran número de quebradas que de allí descienden, es de importancia por pertenecer al sistema Chingaza y por ser la principal fuente de abastecimiento de agua del municipio de Fómeque. El resultado de las actividades económicas que se desarrollan en el área
de la cuenca y la adjudicación de las concesiones para la captación del recurso hídrico, generan una presión constante sobre los servicios ecosistémicos dentro de esta área, de tal manera que el PNN Chingaza busca fomentar proyectos para la recuperación de la cobertura vegetal en los bosques de montaña con mayor influencia sobre los cauces y para restablecer la conectividad entre ecosistemas y hábitats (Vargas & Pedraza, 2003).

Es por esta razón que surge la necesidad de buscar herramientas que permitan mantener la buena salud de los ecosistemas como principales reguladores del recurso hídrico y demás servicios ecosistémicos, pero al mismo tiempo que permitan realizar actividades productivas sostenibles y así garantizar el bienestar de las comunidades que allí habitan.

La presente investigación pretende realizar un diagnóstico espacial para evaluar el estado de los servicios ecosistémicos de la cuenca del río Negro y un diagnóstico participativo para identificar los servicios ecosistémicos que reconocen los habitantes de la cuenca del río Negro para su conservación y protección, los cuales soportan la disponibilidad de agua y la realización de sus actividades productivas, con el objetivo de que la comunidad pueda seguir beneficiándose de estos servicios a largo plazo, lo anterior irá acompañado de un análisis en donde se identifica las similitudes y diferencias entre los diagnósticos elaborados.

Para ello el diagnóstico participativo se realizará aplicando la fase (1) y (2) de la metodología Q, en la primera fase se identificarán los actores involucrados y en la segunda fase se aplicará una encuesta en dos partes, en donde se le preguntará a la comunidad la percepción sobre los servicios ecosistémicos y luego se le mostrará una lista de los servicios ecosistémicos que pueden darse dentro de la cuenca del río Negro, gracias a la presencia del PNN Chingaza, con el fin de que puedan ser identificados a un mayor detalle. Por su parte el diagnóstico espacial será elaborado a partir de información secundaria y con la ayuda del software InVEST de la universidad de Stanford a través
del Natural Capital Project y sus herramientas *Habitat Quality, Forest Carbon Edge Effect*, *Seasonal Water Yield* y *Recreation and Tourism*.

Los resultados de esta investigación podrán ser utilizados por el PNN Chingaza, u otros organismos, o personas interesadas, para formular programas y proyectos relacionados con la conservación y manejo de los servicios ecosistémicos que presta el parque, tanto en su interior, como en el área de la cuenca del río Negro. Por otro lado, al reconocer la percepción de la comunidad sobre el PNN Chingaza, se permite involucrar a la comunidad en la toma de decisiones con respecto al manejo y conservación de los recursos, además de contribuir con el acercamiento de la comunidad de la Cuenca con las entidades administrativas del territorio.

El presente documento inicia con un marco de referencia donde se identifican ciertos aspectos del área de estudio como lo es la población y organización comunitaria del municipio de Fómeque, seguido se desglosa el marco conceptual sobre los servicios ecosistémicos y la valoración participativa de los ecosistemas en diferentes contextos, en tercer lugar, se describirá la metodología realizada para el diagnóstico participativo y el diagnostico espacial de los servicios ecosistémicos, en cuarto lugar se exponen los resultados para cada uno de los diagnósticos, seguido del análisis de resultados en donde se relacionan las similitudes y diferencias de cada diagnóstico, finalmente se puntualiza en la conclusiones y recomendaciones más relevantes para el estudio de los servicios ecosistémicos.
3. **Descripción del Problema**

Los ecosistemas producen una gran cantidad de servicios y bienes ambientales que juegan un papel importante en la vida cotidiana del ser humano, al suplir sus necesidades básicas y al contribuir con el desarrollo de la comunidad. El Parque Nacional Natural Chingaza (PNN Chingaza) es un área ubicada estratégicamente para la provisión de servicios ecosistémicos a la población de la capital del país y los municipios colindantes, un ejemplo de ello es que a través de la concesión que tiene la Empresa de Acueducto y Alcantarillado de Bogotá, se oferta agua potable a aproximadamente a 8 millones de habitantes, de los cuales el 80% de ellos, son beneficiados con el servicio del agua proveniente del sistema Chingaza, ubicado al interior del PNN Chingaza (Araque, 2016).

Adicionalmente, la conservación y protección de los ecosistemas de páramo y bosque andino por parte de las autoridades del parque, ha permitido que los pobladores se beneficien del paisaje, del uso de especies medicinales y del recurso hídrico para consumo, como para la realización de actividades productivas en las zonas aledañas al parque como ocurre en la cuenca del río Negro (Oviedo & Torres, 2017t).

La cuenca del río Negro cuenta con varias concesiones de agua de carácter privado y público, adjudicadas por la Corporación autónoma regional del Guavio (Corpoguavio); la adjudicación de estas concesiones de agua y las actividades productivas que se realizan sobre la cuenca generan una presión sobre los ecosistemas límites y por lo tanto sobre los servicios y bienes ambientales que éstos pueden generar, ya que las prácticas productivas y el uso de los recursos por parte de la comunidad, no son compatibles con los objetivos de conservación y protección del parque, por lo que se dificulta la realización de acciones enfocadas al manejo sostenible de los ecosistemas. Adicionalmente, la comunidad y las entidades administrativas desconocen a profundidad los
beneficios que otorgan esos esfuerzos de conservación del PNN Chingaza a la población aledaña, como la asentada en la cuenca del río Negro, por lo que el uso que se le da a la tierra no incluye parámetros de sostenibilidad asociados a la conservación del parque ni a la protección de estos servicios ecosistémicos.

De acuerdo con lo anterior, se evidencia la importancia de aplicar una metodología que incluya la participación de todos los actores involucrados, con el objetivo de reconocer las percepciones de la población de la cuenca del río Negro con respecto a los servicios que el PNN Chingaza otorga. Esto permitirá que en un futuro se formulen proyectos, estrategias, y acciones encaminadas al uso sostenible del recurso en las zonas aledañas al parque, como es la cuenca del río Negro, de tal manera que se contribuya a mejorar la calidad de vida de la comunidad, a una mejor comunicación entre los actores beneficiados y a las actividades realizadas por el parque para el cumplimiento de los objetivos de manejo del área protegida.
4. **Justificación**

Este trabajo pretende realizar un análisis de los servicios ecosistémicos que presta el Parque Nacional Natural Chingaza a la población residente en la cuenca del río Negro, para ello se identificaron en primer lugar las percepciones de la población de la cuenca del río Negro con respecto a los servicios ecosistémicos, a través de una herramienta de investigación participativa, conocida como encuesta, en esta se incluyen preguntas para conocer la opinión no deliberada de la comunidad y la opinión deliberada a partir de una lista de servicios ecosistémicos; adicionalmente, se busca reconocer el estado de cuatro servicios a través del uso del Software InVEST, lo que permitirá relacionar la opinión de los encuestados con la información espacial de los servicios ecosistémicos arrojada por el Software. Finalmente se realizó un análisis de similitudes y diferencias encontradas en los diagnósticos descritos, con el fin de determinar los aspectos más relevantes en cuanto a los servicios ecosistémicos dentro de la cuenca del río Negro.

La presente investigación surge del interés del PNN Chingaza en articular con la comunidad aledaña, y pretende contribuir en la elaboración de estrategias y acciones definidas en los próximos planes de manejo, a través de la integración de las perspectivas de la comunidad con respecto a la conservación y protección de los ecosistemas que el PNN Chingaza provee e la cuenca del río Negro. De esta manera, se contribuye a una mejor gestión del territorio y a un aumento en la apropiación y participación de la población en los proyectos realizados por el parque en las zonas aledañas o de amortiguación, para finalmente mejorar las relaciones entre la comunidad y las entidades administrativas.
5. Objetivos

5.1 Objetivo General

- Analizar los servicios ecosistémicos que provee el Parque Nacional Natural Chingaza a la cuenca del río Negro a través de un diagnóstico espacial y uno participativo.

5.2 Objetivos Específicos

- Identificar los servicios ecosistémicos que percibe la población de la cuenca del río Negro, ofertados por el Parque Nacional Natural Chingaza.
- Realizar un diagnóstico espacial de los servicios ecosistémicos con el software InVEST
- Analizar las coincidencias encontradas entre el diagnóstico participativo y el diagnóstico espacial respecto a los servicios ecosistémicos ofertados en la cuenca del río Negro
6. Marco de Referencia

El área de estudio comprende la cuenca del río Negro, que cubre una parte del municipio de Fómeque, Cundinamarca, y las veredas Cananea, Hato Viejo, Chinia, Cerezos, Quebrada Blanca, Coasavistá y Monte, Río Negro, Río Blanco, Resguardo, Coacha y Carrizal, en la siguiente figura (Figura 1), se puede observar el área de estudio.

A continuación, se describe el área y población en la que se centra la investigación.

6.1 Municipio de Fómeque

El municipio de Fómeque está ubicado en el departamento de Cundinamarca a 51 km de la ciudad de Bogotá, se reconoce porque la mitad de su territorio está declarado como Parque Nacional Natural, contribuyendo al suministro de agua de los habitantes del municipio y a los de
la capital del país. Cuenta con 2 plantas de tratamiento de agua potable, denominadas Paval y Mortiñal, de estas se benefician entre 2500 a 2600 usuarios, son administradas por la alcaldía de Fómeque y la secretaria de servicios públicos domiciliarios, además de contar con 11 acueductos veredales manejados de manera artesanal. Las anteriores concesiones se reglamentan en uso y aprovechamiento bajo la resolución No. 345 de 2011 de Corpoguavio. De acuerdo con sus habitantes, el municipio de Fómeque es reconocido como unos de los mayores productores agrícolas, su cabecera municipal se encuentra a dos horas y media del PNN Chingaza y cuenta con una vía de acceso al parque que cruza la vereda Quebrada Blanca, sin embargo, esta vía de acceso denota la poca participación de las autoridades ambientales y municipales sobre el municipio, debido a su mal estado. Las personas que viven al límite del parque, es decir en la zona de amortiguación, desarrollan actividades productivas como la ganadería de leche, producción de quesos y cultivos de autoconsumo (Oviedo & Torres, 2017t).

A pesar que el municipio destina su territorio para el beneficio de alrededor de 8 millones de habitantes, este servicio no se ve retribuido económicamente, por lo que, las percepciones de la comunidad Fomequeña sobre el parque tienden a ser negativas en términos administrativos (Forigua & Genoy, 2015). A lo anterior, se suma el problema del acceso al agua potable por parte de los habitantes del municipio de Fómeque, ya que solo el casco urbano cuenta con el agua tratada, mientras que la zona rural tiene una deficiente cobertura de acueductos, de esta manera los habitantes optan por hacer uso del agua a través de acueductos artesanales o comunitarios. Adicionalmente, las zonas límite del PNN Chingaza ubicadas dentro de la cuenca alta del río Negro y alejadas del centro poblado, no cuentan con los servicios básicos de electricidad, gas, acueducto y alcantarillado, lo que agrava el problema con los organismos institucionales (Oviedo & Torres, 2017t).
6.1.1 **Población en Fómeque.**

El municipio de Fómeque según el censo agropecuario del DANE (2014), cuenta con un total de 3865 personas residentes en el municipio de los cuales 1985 son hombres y 1880 son mujeres, el 32 % son personas menores de 24 años, el 31% personas entre los 25 y 49 y el 36% restante son personas mayores de 50 años. En el área rural se tiene un total de 1314 viviendas ocupadas por personas presentes, con 2.8 personas por hogar, 312 hogares unipersonales y 1042 hogares de más de una persona y menos del 1% son productores residentes en el área rural, es decir solo 357 personas.

En este mismo censo se identifica que la población del municipio de Fómeque dentro de las unidades agropecuarias tienen crianza de ganado Bovino, Porcino, Bufalino, Equinos, Asnal, Mular, Ovino y Caprino, avicultura, acuicultura, pesca, cultivos agroindustriales de (café, caña panelera y cacao), cultivos de plátano, papa, cosecha de frutales como cítricos, aguacate, papaya, de cereales como maíz amarillo y blanco, de hortalizas, verduras, legumbres, plantas aromáticas, condimentarias, medicinales y plantas forestales (DANE, 2014).

6.1.2 **Organización comunitaria del municipio de Fómeque.**

Las formas de organización dentro del municipio de Fómeque son muy limitadas, en el estudio realizado por Oviedo y Torres (2017t) se evidencia que la participación ciudadana se reduce a las elecciones nacionales y municipales, reuniones promovidas a través de proyectos de conservación y protección impulsados por fundaciones como la Fundación Wii para el Oso Andino, que buscan promover las actividades de conservación entre la comunidad limite y la entidad administrativa del parque; y la participación dentro de los proyectos socioambientales impulsados por el parque, en donde se muestra que la presencia de la comunidad es muy baja, hay poco interés de participación y la mayoría de los participantes son grupos de personas con niveles de educación
superior. Por esto se concluye que no hay una participación comunitaria estructurada de la población, sin embargo, se tienen organizaciones que permiten la participación social, como la corporación Asocaquinal que agrupa los acueductos de la quebrada Caquinal en donde se encuentra el río Blanco y el río Negro y administra los procesos de manejo del agua a través de acueductos comunitarios, y la Fundación Manantial la Laja que involucra a la comunidad de la zona de amortiguación en proyectos de conservación y protección del ecosistema con el fin de generar educación, promoción y participación (Oviedo & Torres, 2017). Por lo que se reconoce la importancia de que se desarrolle una buena comunicación entre el PNN Chingaza, las comunidades y sus gobernantes, la Empresa de Acueducto y Alcantarillado de Bogotá (EAAB), las Corporaciones Autónomas Regionales (Corpoguavio), las ONG, universidades, agremiaciones agrícolas y ganaderas, y operadores turísticos, para la aplicación de estrategias enfocadas en la conservación y protección de los valores culturales y sociales que el parque presta (Forigua & Genoy, 2015).

6.2 Parque Nacional Natural Chingaza

Esta localizado en la cordillera oriental, al nororiente de la ciudad de Bogotá, con un total de 76600 hectáreas pertenecientes a los departamentos de Cundinamarca (Municipios de La Calera, Choachí, Fómeque, Gachalá, Guasca, Junín y Medina) y el Meta (Municipios de El Calvario, Cumaral, Restrepo y San Juanito), presenta una pluviosidad variable, con mayores lluvias en los meses de mayo y agosto, valores que oscilan entre 1200-4500 mm de lluvia al año, temperaturas que oscilan entre los -2°C - 21°C a lo largo de todo el año, nubosidad más alta en los meses de junio y julio, siendo noviembre y febrero los meses más radiantes, una intensidad de vientos que oscila entre los 2 - 6 m/s y una humedad relativa entre los 85 - 90%. (Vargas & Pedraza, 2003)
Debido a las bajas temperaturas se presenta un alto contenido de materia orgánica, por su poca mineralización y alta retención de agua cuenta con una fertilidad de baja a media, lo que lleva a designarse como clase agrícola número V (suelos superficiales con pendientes muy altas y excesiva rocosidad), por lo que son suelos no aptos para cultivos (Vargas & Pedraza, 2003).

El parque protege las zonas de vida de Páramo propiamente dicho (3600-4100 msnm), Subpáramo (3200-3500 msnm), Franja Altoandina (3000-3200 msnm), Subandina (1000-2400 msnm) y Tropical (800-1000 msnm). Dentro de las especies vegetales más importantes de este parque están *Espeletia grandiflora* (Frailejón), *Chusquea tessellata* (Chusque), *Calamagostris effusa* (Pajonal), entre otras, y especies animales como *Odocoileus virginianus* (Venado de cola blanca), *Puma concolor* (Puma) y *Tremarctos ornatus* (Oso andino). La vegetación es de tipo cerrada dominada por especies del género *Weinmannia, Drimys, Brunellia, Clethra, Hedyosmum, Geissanthus*, entre otros, y abierta o de páramo en la que se puede ver: (Vargas & Pedraza, 2003).

- **Pajonales**: vegetación dominada por gramíneas del género *Calamagostris*.
- **Matorrales**: vegetación arbustiva de los géneros *Castilleja, Diplostephium, Hypericum* y *Pentacalia*.
- **Frailejonales**: formación vegetal dominada por especies del género *Espeletia*
- **Prados**: Vegetación de estrato rasante predominante de los géneros *Plantago, Xenophyllum* y *Distichia*.
- **Chuscales**: Vegetación dominada por la especie *Chusquea tessellata*
- **Bosques achaparrados**: vegetación mixta con especies como *Escallonia mytilloides* (Mortiño), *Hesperomeles obtusifolia* (encenillo) y especies del género *Weinmannia, y Polylepis*
• Vegetación de pantanos y turberas: vegetación de cubetas de glaciares y de suelos con un nivel freático superficial en donde abundan musgos como (*Sphagnum*).

6.3 Cuenca Río Blanco - Negro - Guayuriba

La cuenca hidrográfica del río Negro compone junto con la del río Blanco y la del río Guayuriba una cuenca de mayor orden denominada Blanco-Negro-Guayuriba; la primera proveniente del PNN Chingaza, la segunda del PNN Sumapaz y la última como resultado de la confluencia de los ríos Blanco y Negro. Las aguas del río Guayuriba alimentan la cuenca del río Orinoco mediante su desemboque en el río Metica y posteriormente en el Meta. Su ubicación estratégica determina así mismo una compleja Comisión Conjunta para su planificación y ordenamiento conformada por Parques Nacionales Naturales, Corporación Autónoma Regional del Guavio (CORPOGUAVIO), Corporación Autónoma Regional (CAR), Corporación Autónoma Regional de la Orinoquia (CORPORINOQUÍA) y Corporación para el Desarrollo Sostenible del Área de Manejo Especial la Macarena (CORMACARENA), todo esto como lo determina el Decreto 1729 de 2002 (Plan de Ordenación y Manejo de la Cuenca del Río Blanco-Negro-Guayuriba, 2012).

El río Negro nace en el páramo de Chamizales, jurisdicción del municipio de Fómeque y a la altura del corregimiento La Unión confluye con el río Blanco para posteriormente formar el río Guayuriba (Plan de Ordenación y Manejo de la Cuenca del Río Blanco-Negro-Guayuriba, 2012); en la cuenca del río Negro se presentan importantes quebradas que abastecen diferentes acueductos veredales del municipio de Fómeque, un ejemplo son las Quebradas Caquinal y Raudal, las cuales según CORPOGUAVIO (2013) presentan escasez de agua debido a la alta presencia de minifundios con cultivos que utilizan el agua para riego hasta agotar su fuente, esto puede resultar en una problemática importante al tener en cuenta que la quebrada Caquinal alimenta acueductos veredales del centro poblado de La Unión, las veredas Chínia, el Salitre y Cananea, y los distritos...
de riego de las veredas Río Negro, Río Blanco, El Salitre, Coacha y Ucuatoque según la Universidad Nacional de Colombia (2009), citado por Torres (2017).

Cinco son las principales problemáticas identificadas en el Plan de Ordenación y Manejo de la Cuenca del Río Blanco-Negro-Guayuriba (2012) por parte de CORPOGUAVIO en el municipio de Fómeque, cuenca Río Negro, siendo estas: 1. La Contaminación y escasez del recurso hídrico en zonas rurales como urbanas, 2. Los conflictos por uso del recurso hídrico, 3. La ausencia de cultura ambiental por parte de la comunidad que se encuentra asentada en las microcuencas, 4. Insuficiencia de organismos para la prevención y atención de desastres y 5. Turismo promovido únicamente por el PNN Chingaza. Por su parte en las problemáticas identificadas por el PNN Chingaza se tiene: 1. Las zonas de alta producción hídrica son aprovechadas por la EAAB-ESP, lo cual entra en conflicto con necesidades de agua para acueductos veredales, municipales y regionales, 2. Sedimentación de cauces, 3. Deslizamientos y erosión, 4. Prácticas insostenibles de producción y uso inadecuado de suelos, 5. Cacería ilegal, 6. La baja presencia estatal de los municipios, el Departamento y las CAR, 7. Ataques de fauna silvestre al ganado en los límites del parque, entre otros, evidenciando en esencia un conflicto predominante por el recurso hídrico y responsabilidades compartidas entre la comunidad del municipio de Fómeque y las Autoridades competentes respecto a dichas problemáticas, para lo cual son propuestos diferentes programas y proyectos en disposición de presentar soluciones.

A continuación, en la Figura 2, se observa la Cuenca del Río Negro junto con sus afluentes principales y las concesiones otorgadas por CORPOGUAVIO.
Figura 2. Cuenca Hidrográfica del Río Negro.

Fuente: (Galindo & Báez, 2019)

7. Marco Conceptual

7.1 Servicios Ecosistémicos

Según Camacho & Ruiz, (2011) para entender el concepto de los servicios ecosistémicos es importante hacer una distinción entre varios conceptos, el primero es la definición de servicio, este se reconoce como un proceso determinado por interacciones verticales y horizontales entre elementos; el segundo concepto corresponde al ecosistema y este se refiere a aquel espacio o sistema en donde se interrelacionan los elementos abióticos y bióticos; el tercer y último concepto corresponde a los beneficios, estos son incluidos dentro de los servicios ecosistémicos como componentes individuales que pueden ser medidos, por ejemplo las unidades de biomasa que se
pueden obtener en una determinada área o la producción en kilogramos de un cultivo, estos beneficios solo se obtendrán si se garantiza el mantenimiento de una cobertura vegetal a lo largo del tiempo, como también de todos aquellos elementos que hacen parte de un ecosistema como el agua o los polinizadores. Es por esto que los beneficios que las comunidades humanas más perciben están estrechamente ligados al ecosistema, por ello surge la importancia de conocer cómo se perciben estos servicios dentro de las comunidades y en áreas determinadas, debido a que pueden reconocerse desde dos ámbitos principales, el ámbito socio económico, en donde se identifican los beneficios tangibles como los mencionados anteriormente, y el ámbito ecológico, que se refiere a aquellos servicios intangibles, refiriéndonos a las funciones ecológicas como calidad de aire o el ciclo de los nutrientes (Camacho & Ruiz, 2011).

Los servicios ecosistémicos comprenden una fuente de recursos y beneficios directos e indirectos para el ser humano, a nivel económico, paisajístico, ambiental, entre otros, gracias a esto, históricamente han sido fuente de discusiones por parte de ambientalistas y de personajes de la industria, con respeto a cómo se deben manejar y usar los recursos, por ello se encuentran diferentes definiciones del concepto de servicios ecosistémicos, dentro de las más importantes y la que será usada como marco de referencia en este documento, está la desarrollada por la Evaluación de los ecosistemas del milenio (EEM) en el año 2005, la cual recomienda una serie de acciones a seguir para lograr integrar las perspectivas, ecológicas, económicas e institucionales dentro del manejo y uso de los recursos. En este sentido se define los servicios ecosistémicos como “los beneficios que la población obtiene de los ecosistemas”, así mismo la agencia de protección ambiental de los Estados Unidos (EPA por sus siglas en inglés) los define como “aquellas funciones o procesos ecológicos que directa o indirectamente contribuyen al bienestar humano o tienen potencial de hacerlo en el futuro” (Camacho & Ruiz, 2011).
La clasificación de los servicios ecosistémicos más aceptada y difundida es la establecida por la EEM del año 2005, allí se establecen cuatro grupos importantes, que se pueden observar en la Tabla 1:

<table>
<thead>
<tr>
<th>Servicios</th>
<th>Definición</th>
<th>Ejemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisión</td>
<td>Productos que se obtiene del ecosistema.</td>
<td>Alimentos, fibras, leña, madera, agua, suelos.</td>
</tr>
<tr>
<td></td>
<td>Aquellos beneficios que resultan de la regulación de los procesos ecosistémicos.</td>
<td>Calidad de aire, control de la erosión, purificación del agua.</td>
</tr>
<tr>
<td>Regulación</td>
<td>Beneficios no materiales que se obtienen de los ecosistemas.</td>
<td>Paisaje, la recreación, belleza escénica.</td>
</tr>
<tr>
<td>Culturales</td>
<td>Aquellos servicios y procesos ecológicos necesarios para que se den los demás servicios ecosistémicos.</td>
<td>Ciclo de nutrientes, ciclo del agua, fotosíntesis.</td>
</tr>
</tbody>
</table>

Fuente: Modificado de (Ruiz, et al., 2014).

Los servicios ecosistémicos son altamente utilizados para el estudio del medio ambiente y las políticas estatales ambientales, el marco de referencia de los servicios ecosistémicos plantea la idea de que el bienestar de los seres humanos depende de los ecosistemas y como los manejemos.
Según EEM (2005), más de 60% de los servicios ecosistémicos están siendo degradados a nivel mundial, de esta manera se han elaborado y diseñado varias definiciones, metodologías y aplicaciones para la evaluación de los servicios ecosistémicos, como la Valoración integral de los servicios ecosistémicos y compensaciones, InVEST (por sus siglas en inglés: Integrated valuation of ecosystem services and tradeoffs), o el sistema de clasificación final de los bienes y servicios ecosistémicos (El FEGS-CS por sus siglas en inglés), que abarca los beneficiarios y el sistema socioeconómico, mientras que la Clasificación internacional de servicios ecosistémicos comunes (CICES por sus siglas en inglés) se centra en el reconocimiento de servicios en el sistema ecológico (La-Notte, et al., 2017). Dentro de la evaluación de los servicios es propio recurrir a muestras o mapas sobre inventarios forestales o cobertura de tierra, con el fin de que puedan ser usados como marcos de referencia para su evaluación. A continuación, en la Tabla 2, se muestra una lista de los beneficios encontrados en la EEM y el CICES, que sirvieron como base para la realización del estudio.

Tabla 2.
Lista de los servicios ecosistémicos descritos por EEM y CICES.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Categoría</th>
<th>EEM</th>
<th>CICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicios culturales</td>
<td>Diversidad cultural</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Valores espirituales y religiosos</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Conocimientos del sistema</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores de educación</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Inspiración</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores estéticos</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Relaciones sociales</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentido del espacio</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valores culturales hereditarios</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Recreación y ecoturismo</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Uso experimental con plantas, animales y tierra</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>entretenimiento</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Científicos</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Simbólicos</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Existencia</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Tipo</td>
<td>Categoría</td>
<td>EEM</td>
<td>CICES</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Servicios de</td>
<td>Regulación de la calidad del aire</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>provisión</td>
<td>Regulación del clima/Global</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Regulación del clima/Regional y local</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Regulación de agua</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulación de la erosión</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Purificación del agua y tratamiento de desechos</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulación de enfermedades</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulación de plagas</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Polinización</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Regulación de los peligros naturales</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Servicios de</td>
<td>Biorremediación por microorganismos, algas, plantas y animales</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>regulación/soporte</td>
<td>Filtración, secuestro, almacenamiento y acumulación por ecosistemas</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Meditación de olores, ruidos o impactos visuales</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mantenimiento del flujo del agua</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protección de inundaciones</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protección de tormentas</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Tipo</td>
<td>Categoría</td>
<td>EEM</td>
<td>CICES</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Servicios de soporte</td>
<td>Filtración, secuestro, almacenamiento y acumulación de microorganismos, alargas, plantas y animales</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Formación del suelo</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fotosíntesis</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Producción primaria</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciclo de los nutrientes</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciclo del agua</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Fuente: Galindo & Báez, (2019). Modificado de EEM y CICES

7.1.1 **Servicios ecosistémicos en áreas protegidas.**

El conocimiento sobre los servicios ecosistémicos en las áreas protegidas ha sido de gran importancia para su manejo, pues identifican la relación entre el área protegida y la comunidad. Los servicios culturales por ejemplo pueden verse desde diferentes puntos de vista, tales como recursos paisajísticos, recursos geográficos, espacios de relajación, espacios para ejercitarse, espacios que mejoran la salud mental, espacios para la observación de animales y plantas, entre otros, de esta manera se evidencia que las percepciones culturales sobre estas áreas, están ligadas a la protección de la flora y la fauna del lugar y a la idea de que los ambientes naturales incrementan el sentido de placer, confort y liberan el estrés; en cuanto a los servicios de regulación, muchas de estas áreas son consideradas como el pulmón de las ciudades, lo que le da un valor integral por la importancia de garantizar la sobrevivencia de la especie humana, adicionalmente estas áreas garantizan los procesos cíclicos como las migraciones de aves, el ciclo de los nutrientes, el ciclo del agua, entre otros, así como también la provisión de recursos naturales para su sobrevivencia como agua, comida, y abrigo; finalmente Pike, et al. (2015) afirma que estas áreas proveen beneficios económicos a las comunidades por el turismo rural, lo que genera impactos positivos en el desarrollo de la economía local o regional, también puede generar oportunidades para aprender y apreciar la conservación y protección de los ecosistemas, hacer investigación sobre la
naturaleza para aprender de ella, sobre todo en las primeras etapas de la infancia donde oler, escuchar y tocar el ambiente natural es fundamental.

7.1.2 Servicios ecosistémicos del PNN Chingaza.

El área del Parque Nacional Natural Chingaza (PNN Chingaza) incluye un sistema lacustre de 20 lagunas y humedales, como la Laguna Negra, Siecha, Chingaza, entre otras. Este sistema fue declarado sitio RAMSAR, a partir de valores ecológicos, sociales y culturales los cuales se describen por Forigua y Genoy (2015) a través de un estudio sociológico en los municipios de Fómeque y Guasca; dentro de los valores culturales resultantes de las entrevistas con los sabedores locales, se destaca, un alto valor paisajístico definido a partir del espejo de agua de 88 Ha que se encuentra rodeado por la Serranía de Los órganos, en donde se relata, que habita el diablo que robó las campanas de la iglesia de Fómeque. Según el historiador Miguel Triana, las lagunas constituyeron un escenario de ritualidad para los pueblos aborígenes Muiscas que se centraron en el municipio de Guasca, quienes hacían sus ofrendas a la diosa del agua Sie y los trueques de sal y oro, es por lo que, para los campesinos el páramo y las lagunas han sido un lugar de encantos y tesoros escondidos. Otros valores incluidos son la protección que presta el parque a los mamíferos como Tremactus ornatus, Mazama rufina bricenni, Tapirus pinchaque y Tapirus terrestres, además del abastecimiento de agua a la capital del país, la contemplación y recreación al aire libre que se puede disfrutar dentro del parque y sus alrededores (Forigua & Genoy, 2015).

A partir de los relatos de los pobladores del municipio de Fómeque se reconoce a la laguna como un indicador de las cosechas y siembras de los cultivos que se dan en las zonas de amortiguación. Las actividades productivas dentro de estas zonas se reducen a cultivos de habichuela y tomate, pequeñas parcelas destinadas a la ganadería o porcicultura y granjas avícolas. Se cuenta que anterior a la declaratoria del parque se realizaba cacería y pesca de trucha, sin
embargo, se reconoce esta última como una especie introducida que llevó al desequilibrio de las funciones ecológicas de los cuerpos de agua en el municipio de Fómeque, y que a pesar de las múltiples historias que relatan los habitantes del municipio sobre de lagunas encantadas, no se evidencia una relación de los individuos con el tema ancestral o precolombino, como si lo tienen otros municipios como Guasca (Forigua & Genoy, 2015). Sin embargo, cabe destacar que algunos habitantes y visitantes del parque, encuentran en estos lugares un área para el esparcimiento, para la meditación, y la espiritualidad de la misma manera en que los antepasados veían el páramo y las lagunas como escenarios de importancia espiritual a través de los rituales a la diosa del agua.

En cuanto a la flora del páramo, a través de la tradición, la comunidad del municipio hace uso de diversas especies vegetales que sirven para aliviar dolores o molestias en la vida cotidiana, una de estas especies es la salvia, la cual es utilizada en infusiones como relajante; el árnica que se usa para desinfectar las heridas y el árbol de granizo que es utilizada para la tos en mezcla con moras silvestres (Oviedo & Torres, 2017t). Y por último dentro del Plan de manejo del PNN Chingaza al 2017 se reconocen los servicios ecosistémicos del parque como almacenamiento de carbono, ecoturismo y provisión de agua (Forigua & Genoy, 2015).

7.1.3 Servicios ecosistémicos asociados al recurso hídrico.

El PNN Chingaza conserva y protege el recurso hídrico a través de los programas y proyectos para la conservación de los páramos, que según Vargas y Pedraza (2003) son “biomas exclusivos de las montañas neotropicales, fuente de agua más importantes del país”; y a través de las cuencas altas de los ríos Guayuriba, Guatiquía, Humea y Guacavia, pertenecientes a la Orinoquia y los ríos Siecha, Tominé, Teusacá y Sopó pertenecientes a la vertiente del Magdalena. En este sentido se reconoce la importancia del recurso hídrico como un eje importante en la generación de servicios para las comunidades asociadas al parque (Vargas & Pedraza, 2003). En un estudio realizado por
Armatas et al., (2017) en Wyoming, se lista una serie de servicios ecosistémicos asociados al recurso hídrico; debido a que la zona de vida y latitudes del estudio dista de las evidenciadas en el Parque Nacional Natural Chingaza solo se enlistarán en la Tabla 3, las que se podrían acomodar a las necesidades del ecosistema y de la comunidad residente en el municipio de Fómeque.

Tabla 3.
Servicios ecosistémicos asociados al recurso hídrico

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soporte</td>
<td>Calidad de agua
Conservación de especie críticas o raras
Conservación de la biodiversidad</td>
</tr>
<tr>
<td>Aprovisionamiento</td>
<td>Control de alimento natural
Pesca
Agua para Stock
Irrigación personal y comercial
Hidroelectricidad
Agua municipal</td>
</tr>
<tr>
<td>Regulación</td>
<td>Flujo de la corriente puede mantener un canal para la regulación de la temperatura del agua
Descarga gradual de agua almacenada (ciclo hidrológico)
Ciclo de nutrientes y transporte de sedimentos</td>
</tr>
<tr>
<td>Cultural</td>
<td>Lucha contra los incendios
Educación, manejo y ciencia
Recreación en Ríos y Lagos
Recreación de actividades hechas cerca del agua
Valores culturales y espirituales de los nativos</td>
</tr>
</tbody>
</table>

Fuente: Modificado de (Armatas, Venn, & Watson, 2017)

7.1.4 Servicios ecosistémicos asociados al páramo.

Los páramos son conocidos por su valor de proveer servicios ecosistémicos asociados al recurso hídrico, sin embargo, no son los únicos servicios que la población reconoce. Dentro del páramo se tienen suelos que debido a la cantidad de materia orgánica acumulada, sirven para la realización de actividades productivas como la agricultura enfocada a papa, cubios, híbias, chuvuas, habas y actividades pecuarias como la ganadería de bovinos. En algún tiempo se realizaba la caza de animales silvestres como el oso andino y el venado de páramo con fines de consumo doméstico,
así mismo, en algunas zonas se realiza el consumo esporádico de alimentos silvestres como la uva de monte (*Macleania rupestris*) y mora silvestre (*Rubus floribundus*), o la utilización de algunas especies con determinadas características que sirven como combustible o para la construcciones de cercas vivas, dentro de este grupo de usos se han reportado especies como Colorado (*Polilepis quadrijuga*), el Palo Blanco (*Buddleja lindenii*), Raque (*Vallea stipularis*) y Cucharro paramero (*Myrsine dependens*).

Adicionalmente, los páramos se reconocen como fuente de provisión de recursos genéticos, asumiendo que de este ecosistema se pueden obtener gran variedad de semillas de especies nativas que pueden ser utilizadas para fines productivos o de restauración, así mismo se ha reconocido en algunas comunidades el servicio de provisión de medicinas naturales y productos farmacéuticos que derivan de las especies características de páramo, un ejemplo es la planta conocida como Lítamo real (*Draba* sp.) la cual es catalogada como una especie afrodisiaca, también se habla de especies como el Árnica (*Senecio formosus*) para el dolor por heridas, Frailejón (*Espeletia* sp.) para enfermedades pulmonares, Sanalotodo (*Baccharis latifolia*) medicina general, Guasgüín (*Diplostephiium rosmarinifolium*) para las inflamaciones y Apio de Monte (*Apium sp.*) para dolores estomacales (Laverde, 2008).

En cuanto a los servicios de regulación que son percibidos en el páramo, las comunidades han reconocido que gracias a este ecosistema se tiene una mejor calidad de aire, esto se debe a que la vegetación captura el carbono proveniente del proceso de fotosíntesis y libera el oxígeno; también se asocia con la regulación del clima a nivel local y regional, en este sentido las comunidades evidencian como la transformación del páramo ha generado variaciones en el clima o en el agua disponible para su consumo. Así mismo el páramo por sus bajas temperaturas promueve la acumulación de turba y materia orgánica sobre suelos, esto permite retener y liberar el agua
lentamente, por lo que hace de este ecosistema un regulador hídrico; al tener esta cobertura también contribuye a la disminución de la erosión en los suelos circundantes o del mismo ecosistema, esto se demuestra a través de un análisis de servicios ecosistémicos donde se incluye información cartográfica como mapas de cobertura de la tierra y purificación de agua (FEDESARROLLO, 2013) y (Laverde, 2008).

Los valores culturales que se reconocen son aquellos asociados a lo espiritual, religioso, valores estéticos, recreación y ecoturismo, esto se evidencia en el estudio realizado por FEDESARROLLO (2013) en el páramo de Santurbán, allí las comunidades han reconocido que dentro del páramo se identifican valores de recreación y belleza paisajística por la presencia de lagunas, de la fauna y de la flora propia del lugar, lo que permite la atracción de una gran cantidad de visitantes; también se mencionan los valores de existencia y legado, lo que se refiere a aquellos beneficios que se dan por el solo hecho de existir y que se relacionan con el sentido de pertenencia de los pobladores y su herencia cultural, como mitos, leyendas, o historias sobre sus antepasados y su relación con el páramo, un ejemplo de ellos son los rituales que se realizaban entorno a los dioses (Laverde, 2008).

7.1.5 **Servicios ecosistémicos en Bosques Andinos.**

Los bosques andinos son uno de los ecosistemas que están dentro del PNN Chingaza, estos se ubican a partir de los 1000 msnm y se caracterizan por una alta diversidad, endemismos y prestación de servicios ecosistémicos a las comunidades humanas que viven a su alrededor. Quintero, et al (2017) elaboraron un estudio sobre los bosques andinos en Antioquia, allí describen los servicios asociados al bosque tomando como referencia la política de gestión integral de la biodiversidad y los servicios ecosistémicos. En primer lugar, reconocen que dentro del bosque se mantiene la capacidad productiva del suelo como la formación del suelo y el ciclado de nutrientes,
gracias a esto se genera un microhábitat para los insectos a nivel de suelo, así mismo, provee de alimentos para la fauna, garantiza el control biológico, la polinización y la dispersión de germoplasma. Adicionalmente, se reconoce el bosque andino por la regulación climática derivada del almacenamiento de carbono en los suelos lo que genera un beneficio para la comunidad que vive próxima al ecosistema, finalmente también se asocia con la disminución del riesgo a la erosión y avalanchas por la presencia de cobertura vegetal. Estos servicios también han sido registrados por Burgos (2012), en este estudio se identifica que el bosque alto andino contribuye al mantenimiento de un clima favorable, el secuestro de carbono, la regulación de la cantidad y calidad de agua, la formación de suelos, los valores escénicos, los valores de recreación, el abastecimiento para ganado, la caza de subsistencia, la persistencia de banco de semillas y la fertilidad de suelos.

7.1.6 Valoración de los ecosistemas.

La valoración de los ecosistemas parte del concepto de valor, este tiene diferentes significados según el contexto en el que se hable, por ejemplo en el contexto ambiental se profundiza más en el valor de existencia, es decir, la importancia que le damos al ecosistema por el simple hecho de existir, esto se puede asociar con los Beneficios intangibles, mientras que en el aspecto económico se profundiza más en el valor de uso, es decir, qué beneficios económicos, productivos o personales un individuo puede sacar del ecosistema, estos son asociados hacia los Beneficios tangibles, así mismo, este valor puede ser intrínseco, es decir, que no deriva de su uso, o de tipo instrumento, es decir, que se toman beneficios tangibles que son usados como medio para otro fin (Londoño, 2012).

En este sentido el concepto del valor corresponde a un término subjetivo el cual se enmarca en una escala de importancia que los individuos establecen a juicio propio de acuerdo a su relación
con los objetos, de tal manera que la valoración se centra en la observación científica para establecer una relación entre un valor económico que pueda ser visible en el mercado y el valor del sujeto que tiende a ser intangible, (Penna & Crísteche, 2008), (Armatas et al, 2017) (Bicudo et al, 2017). Chavarría y González (2016) plantean que muchos de los servicios ecosistémicos no se están viendo reflejados en la economía mundial, lo que se deriva en la degradación y sobreexplotación de los recursos, por los que los impactos ambientales pueden verse subvalorados si se decide integrar dentro del análisis económico, es por esto que en las últimas décadas los economistas han planteado diferentes metodologías para la valoración de los ecosistemas, donde se incluye la valoración directa con valores de mercado, la valoración indirecta con preferencias reveladas y la valoración contingente con preferencias declaradas. Así mismo Ramírez y López (2016) plantean que existe una necesidad de asignar un valor a los servicios ecosistémicos debido a que de una u otra forma estos están inmiscuidos dentro del mercado, pero no se reconoce su aporte, esta valoración se puede dividir en tres métodos, el valor ecológico, el valor sociocultural, y valor económico, esto contribuye a la formulación de políticas públicas entorno al sector ambiental. De la misma manera Dagnino et al., (2011), plantean que los servicios ecosistémicos carecen de un valor en el mercado por lo que no son incluidos dentro de las políticas públicas, de ahí surge una necesidad de integrar los servicios dentro del mercado debido a su relevancia sobre los beneficios que le generan al ser humano, de esta manera la valoración económica permite estimar el valor social de estos servicios y bienes que generan los ecosistemas.

Dentro de las metodologías de valoración directa se encuentra los precios de mercado, estos se refieren a precios en el mercado que reflejan el valor del bien o el servicio que está otorgando el ecosistema y del cual se tiene poca información económica, para ello se pueden utilizar los precios directos del mercados o el costo de oportunidad que se refiere a lo que se deja de hacer para que
se dé un servicio ecosistémico u otro, la segunda forma de determinar es a través de la valoración de los gastos, ya sea mediante el coste efectividad, los gastos preventivos, los gastos de reubicación y los gastos de reposición (Chavarría & Gonzalez, 2016).

Las metodologías de valoración indirecta incluyen los costos de viaje a un parque natural o área protegida, también se puede realizar la valoración hedónica en la que se incluyen los precios en el mercado de los diferentes componentes que hacen posible que se dé un bien o servicio; y por último dentro de las metodologías de valoración indirecta están los bienes sustitutos, los cuales usan el valor de otro recurso que genere beneficios parecidos, y que esté en el mercado (Chavarría & Gonzalez, 2016). Finalmente, la valoración contingente abarca los métodos de disposición a pagar y disposición a recibir de cada persona con respecto a un servicio ecosistémico, donde se integra el método directo o hipotético; Chavarría y González (2016), citan en su estudio a la metodología propuesta por Gómez-Orea (1999), donde se realizan cuatro modelos para la identificación de su valor en el mercado, estos son el valor ecológico, el valor productivo, el valor socio cultural y el valor paisajístico.

7.1.7 Valoración participativa.

La valoración de los ecosistemas se enfoca muchas veces en la estimación del valor económico en ocasiones sin tener en cuenta las opiniones de los actores interesados en dichos ecosistemas, en este sentido es importante realizar una valoración que permita identificar las opiniones de la población a través de metodologías de carácter participativo y que mejoren el manejo de los recursos. Reconocer el valor que tienen los ecosistemas como los servicios y beneficios que estos generan sobre las personas, es importante para definir las acciones de manejo, sobre todo en las comunidades que se encuentran en las zonas de amortiguación, de esta manera, las estrategias que se lleguen a implementar tendrán una mejor incorporación dentro de las comunidades (Moreno &
Maldonado, 2011). Así mismo (Lhoest, et al., 2019) proponen que la valoración de los servicios ecosistémicos además de enfocarse en la parte social y en las percepciones individuales debe ir acompañada de un enfoque económico y ecológico del área de estudio con el fin de obtener un análisis más completo, sin embargo, la mayoría de las valoraciones poco tienen en cuenta el aspecto social, siendo este el más importante porque permite legitimar las decisiones tomadas y anteponerse a reacciones de los locales con respecto a nuevas decisiones de política. Existen varias metodologías enfocadas en la valoración participativa o social, dentro de estas están la evaluación preferencial, método del uso del tiempo, método narrativo, mapeo participativo, planeación de escenario y métodos de deliberación (Lhoest, et al., 2019).

La valoración participativa se enfoca en identificar lo que realmente se necesita o requiere en la sociedad, ya que a través de ésta se determina la importancia que le dan las comunidades a los bienes y servicios, ¿cuánto los valoran?, ¿qué beneficios traen? y ¿cómo son usados?, por lo que las políticas y decisiones ambientales se enfocarían en una mejor dirección, es decir que esta valoración permitiría orientar las políticas en ¿cómo se debe realizar o aplicar el manejo de los ecosistemas?; sin embargo, la mayoría de estas políticas actualmente están basadas en la valoración de tipo económica, la cual tiene dentro de sus objetivos agentes externos, por lo que no reflejan las necesidades de la población y no garantizan la sostenibilidad del ecosistema (Londoño, 2012).

Existen diferentes dificultades al momento de realizar una valoración de tipo participativa, una de ellas es que esta valoración incluya “valores escondidos”, es decir aquellos valores que no son reconocidos abiertamente pero que tienen importancia dentro de la comunidad; a pesar de que no son beneficios tangibles, es importante que el manejo de los ecosistemas incluya la participación de las comunidades, porque son ellas quienes están en contacto directo con la naturaleza y tienen
una poca probabilidad de sucumbir ante el manejo de los ecosistemas que privilegian la parte económica, ya que de ellas depende el mantenimiento de los ecosistemas en el tiempo y su disponibilidad para próximas generaciones. El desarrollo de la valoración participativa puede abordarse desde diferentes métodos dependiendo de los objetivos puntuales del estudio, por ejemplo, la metodología Q incluida en la valoración de los servicios ecosistémicos permite abordar la parte social y económica al mismo tiempo (Londoño, 2012).

La valoración participativa se basa en las percepciones sociales sobre el medio ambiente, estas incluyen la comprensión y la sensibilidad del individuo ante la naturaleza y los bienes o servicios que puede obtener de ella, por lo que dependerán intrínsecamente de las creencias, opiniones y de su misma historia con la naturaleza, para ello es importante conocer espacialmente cómo se puede llegar a percibir el medio de acuerdo a sus características físicas, bióticas, abióticas, productivas y culturales de la zona; y su relación con el bienestar individual, el cual puede verse desde diferentes enfoques, el primero de ellos es el material, en donde se incluyen aquellos servicios que provisionan algo para el ser humano; el intangible en donde se incluyen servicios que no se perciben tan fácilmente y van más relacionados con los aspectos culturales del ser y la sociedad a lo largo de la historia; y por último desde las relaciones, en donde se incluyen todos aquellos puentes comunicacionales entre las entidades administrativas y las comunidades que viven dentro de los ecosistemas para su manejo (Infante & Arce, 2013).

7.1.8 Valoración de los servicios ecosistémicos y las políticas públicas.

A través de la valoración e identificación de las perspectivas de los servicios ecosistémicos se tiene la posibilidad de obtener una vista más profunda del servicio en cuestión, lo que permitirá tomar decisiones con respecto a la gestión del territorio. Al involucrar desde el principio del proceso de gestión a todos los sectores interesados en la definición de las políticas, se garantizará
la apropiación, la validación por parte de las comunidades y la posibilidad de mejorar y actualizar la información del manejo del territorio, promoviendo el desarrollo y la conservación (Pacha, 2014).

Una perspectiva integral para la toma de decisiones debe tener tres dimensiones, la Dimensión política en la que se incluyen temas como la conservación, el desarrollo, el marco legal, el fomento de la voluntad política, los incentivos económicos y la institucionalidad y su articulación; la Dimensión técnica, en donde se debe obtener la información del área, de tal manera que sea confiable, barata, simple, y con posibilidades de compartirse para el mejor entendimiento sobre los servicios ecosistémicos; y por último la Dimensión social, la cual implica la validación de las decisiones por parte de los interesados y la garantía de una participación efectiva (Pacha, 2014). Así mismo, es importante considerar las ventajas de herramientas de mapeos para la caracterización del área de estudio en escenarios presentes y para el reconocimiento de los cambios en los servicios ecosistémicos en escenarios prospectivos que puedan ser incluidos como un capítulo adicional de diagnóstico a la valoración de los servicios ecosistémicos, como la propuesta por el proyecto Capital Natural, en donde se busca modelar los territorios en función de sus servicios ecosistémicos, para la toma de decisiones que lleven a un manejo y gestión efectiva (Pacha, 2014).

Es importante que la valoración de los servicios ecosistémicos garantice la integralidad del entorno de tal manera que se incluyan los atributos ecológicos y culturales, pues muchas veces solo se centra en la parte económica, de tal forma que las acciones que se desarrollen generen alguna funcionalidad para el ecosistema o el área de estudio, a través de esto se podría dar prioridad a la biodiversidad a través de estrategias con mayor apropiación social y que los resultados derivados de estudios de valoración fortalezcan la relación entre los actores y la capacidad de
respuesta y esto solo se dará si se incluye la participación de todos los actores involucrados, la Política Nacional para la Gestión Integral de la Biodiversidad y sus Servicios Ecosistémicos (PNGIBSE) plantea la necesidad de valorar integralmente los recursos no solo económicamente, sino para identificar la percepción del valor de los actores involucrados en la biodiversidad (Ruiz, et al., 2014). Así mismo (Lhoest, et al., 2019), enfatizan en la importancia de conocer la percepción que tienen las personas sobre los servicios ecosistémicos de una zona en particular, debido a que esta contribuye a que la implementación de las políticas sea sostenible para los ecosistemas, permitan eficiencia económica y justicia social.

8. Metodología

Este estudio abarca el diagnóstico de los servicios ecosistémicos que provee el parque nacional natural Chingaza en la población del casco urbano del municipio de Fómeque y circundante. Para la realización del diagnóstico, como se aprecia en la Figura 3, se abordaron dos enfoques, el primero correspondió a un diagnóstico de tipo participativo en donde se les preguntó a los habitantes su percepción sobre los servicios ecosistémicos y el segundo fue un diagnóstico espacial en la Cuenca del Río Negro, a través del mapeo de cuatro servicios ecosistémicos con ayuda del Software de libre uso desarrollado por la Universidad de Stanford a través del Natural Capital Project denominado InVEST.

Para identificar la percepción de las personas acerca de los servicios ecosistémicos otorgados por el PNN Chingaza, se toma como base la fase 1 y 2 de la Metodología Q, la primera fase consiste en la identificación de las diferentes perspectivas que se pueden tener sobre un tema específico, y la segunda consta de la organización de los datos obtenidos anteriormente (Pike et al., 2015). Se omite la fase 3 de la metodología Q debido a que está enfocada en un análisis de tipo cuantitativo
en función de los resultados cualitativos de la fase 1 y 2, y el presente estudio únicamente abarca el diagnostico participativo.

![Diagrama metodológico](image)

Figura 3. Diagrama metodológico

Fuente: (Galindo & Báez, 2019)

8.1 **Diagnóstico Participativo de los Servicios Ecosistémicos que Provee el PNN Chingaza a la Cuenca del Río Negro**

8.1.1 **Fase 1: Identificación de perspectivas.**

Las perspectivas a identificar pueden derivarse de artículos escolares, blogs, entrevistas, preguntas directas y opiniones personales, deben ser agrupadas según sus características en común con el fin de generar el primer grupo de datos o “Q set”, las percepciones pueden ser agrupadas
Para tener una vista general de los puntos de vista de los actores con respecto a los servicios ecosistémicos (Pike et al., 2015) & (Rodríguez, et al., 2018).

Para este caso en particular se decidió elaborar encuestas (ver Anexo 1.), las cuales serían respondidas a manera de entrevistas por cada participante, estas fueron elaboradas para responder en dos partes, la primera corresponde a una pregunta abierta sobre cuáles son los beneficios que se perciben del PNN Chingaza, esta se realizó con el fin de no emitir sesgo de ningún tipo sobre el encuestado, en este grupo de respuestas están probablemente aquellas que son más importantes o visibles para los actores; en la segunda parte, se les mostró a los participantes una tabla (Anexo 2.

Lista de Servicios Ecosistémicos Expuestos a la Comunidad para la Deliberación) con los cuatro tipos de servicios ecosistémicos *Provisión, Regulación, Cultural, y Soporte*, con el fin de obtener una respuesta deliberada, la cual pudiera ser contrastada con la primera percepción, estos son descritos más adelante en la sección “7.1 Servicios Ecosistémicos”.

8.1.1.1 Seleción de Actores.

Para la definición de la muestra y su validación, es importante que los participantes tengan diferentes puntos de vista, de tal manera que se abarque la mayor diversidad de perspectivas que se puedan tener con respecto a un tema, es por esta razón que es preferible que su selección no sea al azar, debe conocerse a la población de estudio para determinar la muestra apropiada (Zanoli et al., 2015).

Se procedió entonces a utilizar la metodología de “Muestreo de Bola de Nieve”, esta técnica, según Alloatti (2014) se emplea para contactar con poblaciones difícilmente accesibles “*hard-to-reach populations*” debido a su ubicación geográfica, posición económica o carencia de medios
institucionales para enlazarles; o a las “hidden populations” refiriéndose a aquella población que no desea ser contactada debido a alguna práctica o “definición” en particular de dicha población.

Básicamente se trata de un método no probabilístico en donde la dependencia se basa en referencias de sujetos iniciales conocidos para reclutar nuevos sujetos adicionales, se usa este método precisamente por la dificultad de encontrar la población y con el objetivo de seleccionar actores claves. Entonces, el candidato que ha sido presentado por otro sujeto será contactado e invitado a participar en el estudio y se le pedirá que presente a otras personas que también cumplan con los criterios de inclusión del estudio, la premisa básica de este muestreo es que existe un vínculo entre los sujetos iniciales conocidos y otros en la misma población objetivo, si la premisa se cumple, se creará una cadena de conocidos que se origine a partir de contactos primarios (Shaghaghi, Bhopal, & Sheikh, 2011).

Por lo tanto, siguiendo esta metodología, se procede a verificar la existencia de gremios u organizaciones en la población de Fómeque, se tienen: Juntas de acción veredales, organizaciones civiles, la Asociación para el Desarrollo Integral de la Mujer Fomequeña (ADIMF), funcionarios públicos, distritos de riego, todos identificados previamente. Cabe resaltar que, al momento de realizar las encuestas, se requiere para la investigación tener una amplia gama de opiniones respecto al tema en cuestión, de esta manera se logra que los datos tengan significancia en lugar de buscar la significancia por un número determinado de individuos encuestados. Una vez un actor ha sido encuestado, se consulta ¿Conoce a alguien que pueda responder esta misma encuesta, de algún gremio, activista, que tenga opiniones similares o contrarias a la suya respecto a este tema?, así se continúa construyendo una red de actores hasta llegar al punto de la saturación. En las investigaciones cualitativas se entiende por saturación al momento en donde se tiene ya cierta variedad en las ideas y en donde no aparece información o elementos nuevos con cada entrevista.
u observación adicional (Martínez-Salgado, 2012), se continua solicitando personas referidas a los encuestados, al momento en que las personas recomendadas son repetitivas, se sabe que se ha llegado al punto de saturación.

8.1.2 **Fase 2: Organización de los datos anteriores.**

Q set: Las entrevistas desarrolladas en la Fase 1, con autorización de los encuestados fueron grabadas para obtener fidelidad en las respuestas dadas, una vez son transcritas, con ayuda del - Software Atlas.ti 7- se procede a destacar enunciados y agruparlos según sus características en común con el fin de generar el primer grupo de datos, después de ello, se unifican enunciados que transmiten la misma idea y se agrupan en categorías que permitan identificar a primera vista las percepciones de la población de Fómeque sobre los servicios ecosistémicos. Lo anterior se hace con el fin de tener la base informativa para la realización de posteriores estudios de valoración de los servicios ecosistémicos a través de la metodología Q.

8.2 **Diagnóstico Espacial de Servicios Ecosistémicos de la Cuenca del Río Negro**

La universidad de Stanford a través de Natural Capital Project desarrolló el software de libre uso, InVEST, que permite realizar modelos sobre los servicios ecosistémicos a partir de tres características. “Supply” (suministro) definido como lo potencialmente disponible para el ecosistema, “Service” (servicio) lo que incorpora la demanda con el fin de conocer los beneficiarios de los servicios, y “Value” (valor) que incluye preferencias sociales y permite calcular las métricas económicas y sociales. Estos modelos incluyen servicios de soporte y servicios finales, facilitan el análisis de los servicios ecosistémicos y dan acceso a herramientas de soporte. Para el estudio se desarrolla el modelo de cuatro servicios, uno de soporte y 3 de servicios finales, esta decisión se toma principalmente por la accesibilidad a la información que se necesita para realizar los modelos (Sharp, et al., 2018).
8.2.1 **Habitat quality (Calidad de habitat).**

La calidad de hábitat se define como la habilidad del ecosistema de proveer condiciones apropiadas para la persistencia individual y de la población, esta dependerá de la proximidad de los ecosistemas al uso de la tierra adecuado y la intensidad de ese uso, de tal manera que su valor disminuye o tiende a cero a medida que aumenta la intervención humana, por lo que este modelo es diseñado a partir del impacto relativo de amenazas a los hábitats presentes en el área de estudio, la sensibilidad relativa de cada tipo de hábitat a cada amenaza, la distancia entre hábitat y las fuentes de las amenazas y el grado al cual la tierra es legalmente protegida (Sharp, et al., 2018). El modelo se diseña a partir de los mapas de cobertura y uso de la tierra, debido a que el programa está diseñado con la premisa de que la biodiversidad está íntimamente relacionada con la producción de servicios ecosistémicos, esta información es combinada con las amenazas a la biodiversidad para producir el mapa de calidad de hábitat.

Este modelo requiere de un ráster de cobertura y uso de la tierra el cual se obtuvo de los datos abiertos del IGAC a escala 1:25000, con esta información se define que cobertura puede proveer hábitat para la conservación, para ello se asignan valores en una escala de 0 a 1, donde cero corresponde a un hábitat que genera menos posibilidades para la sobrevivencia de las especies y 1 es la mejor calidad de hábitat para la sobrevivencia de las especies. Adicionalmente, el modelo requiere información sobre la sensibilidad de cada una de las coberturas a las amenazas que pueden ocurrir dentro del área de estudio y sobre las cuales se tenga información espacial; para la elección de las amenazas se tuvo en cuenta la lista de “Threats” (amenazas) sugerida por el modelo, de ellas se tomaron cuatro, las cuales fueron seleccionadas con base a lo observado en la información cartográfica y secundaria disponible, estas son infraestructura vial, urbanización, agricultura y ganadería doméstica, de la misma manera en que se le asignan a las amenazas un valor de 0 a 1,
donde cero corresponde a la menor sensibilidad o afectación de la amenaza y uno a la mayor afectación que puede generar la amenaza sobre el hábitat. Para asignar este tipo de valores el modelo asume que la degradación del hábitat se intensifica con un área cercana de alto porcentaje de uso antrópico y disminuye con la distancia. La obtención de los datos para alimentar el programa se hizo en base al estudio de Terrado et al., (2015), allí se plantea entregar a 10 expertos una encuesta que consiste en llenar cada uno de los parámetros descritos anteriormente (Anexo 3.), y estos tienen posibilidad de preguntar cualquier duda con respecto al ejercicio de asignación de valores, para la selección de los expertos se llevó a cabo la metodología de la bola de nieve descrita anteriormente y se tuvo en cuenta dos criterios fundamentales, que dicho experto conociera el contexto de la zona y que fueran profesionales relacionados con las ciencias de la biología, ecología, forestales, ambientales y afines (Sharp, et al., 2018). Para determinar la validez de los datos obtenidos por los expertos, se realiza un análisis de componentes principales en donde se identifica la correlación lineal y varianza de los datos, por lo tanto si se obtiene que las variables presentan una alta correlación en los primeros dos componentes, significa que representan una alta varianza y por lo tanto los valores asignados por los expertos son coincidenciales, cabe resaltar que los valores que se usaron dentro del modelo corresponden al promedio de los datos (Sharp, et al., 2018), (Avendaño et al., 2014).

8.2.2 Forest carbon edge effect (Efecto borde del almacenamiento de Carbono)

El modelo de efecto de borde de carbono de InVEST permite determinar un valor relativo de la degradación del almacenamiento de carbono de acuerdo a la distancia relativa con respecto al borde del bosque, para ello se toma como fuente principal los valores de almacenamiento de carbono para cada hábitat dentro del área de estudio a partir de bibliografía. Cabe resaltar que para el modelo pueden usarse cuatro tipos de fuente de almacenamiento de carbono *biomasa aérea*,
biomasa subterránea, suelo y materia orgánica muerta, sin embargo, el efecto de borde solo aplica para la biomasa aérea ya que no se han documentado efectos de borde para los demás depósitos de carbono, de igual manera, el modelo puede ejecutarse ya sea con los cuatro tipos de depósito o únicamente con biomasa aérea. Este modelo aplica relaciones conocidas entre el almacenamiento de carbono y la distancia desde el borde del bosque para calcular los efectos del borde en el almacenamiento de carbono para coberturas boscosas y combina estas estimaciones con datos de inventario de carbono conocidos para las zonas no boscosas para construir el mapa general de carbono. Para el caso del estudio, se extrajeron los valores en toneladas (t/ha) o mega-gramos (Mg/ha) por hectárea del estudio realizado por el IDEAM (Yepes, et al., 2011). Es importante tener en cuenta que este modelo asume que todo el hábitat tiene la misma capacidad de almacenamiento de carbono, a pesar de que existen variaciones de vegetación y suelos que pueden cambiar estos valores (Sharp, et al., 2018).

Para poder ejecutar este modelo se requiere en esencia la siguiente información (Sharp, et al., 2018):

- Uso del suelo/cobertura del suelo (requerido). Un dataset ráster SIG, con un código LULC entero para cada celda. Estos códigos LULC deben coincidir con los valores de lucode en la tabla Biofísica, este se obtuvo de los datos abiertos del IGAC a escala 1:25000 y para la elaboración del raster se usó el software Arcgis 10.4.

- Tabla biofísica (requerido, Tabla 18). Una tabla de CSV (valores separados por comas) que proporciona información sobre qué clases en el mapa de uso del suelo/cobertura de la tierra se consideran bosques y la densidad de carbono (Mg/ha) para las clases de cobertura de la tierra que son no bosque.
Las columnas de la tabla biofísica se deben nombrar de la siguiente manera:

1. lucode (Código de uso de la tierra) (requerido). Entero único para cada clase LULC. Cada valor en el ráster LULC debe tener un valor de lucode correspondiente en la tabla Biofísica.

2. is_tropical_forest (es bosque tropical) (requerido). Valor entero de 1 si la clase LULC es bosque tropical, 0 si no es bosque tropical.

3. c_above (superficial) (requerido para bosque no tropical). Valor de densidad de carbono para la reserva de carbono sobre el suelo. Unidades: Mega-gramos por hectárea (Mg/ha).

4, 5, y 6. c_below (Abajo), c_soil (Suelo) y c_dead (Muerta) (opcional). Valor de densidad de carbono para la reserva de carbono subterránea, del suelo y de materia orgánica respectivamente. Unidades: Mega-gramos por hectárea (Mg/ha), este ítem se puede omitir si solo se desea usar el carbono superficial.

7. Descripción (opcional). Descripción del texto de cada clase LULC.

Cabe resaltar que para la exploración de la información resultante de la ejecución del modelo se requiere de una herramienta SIG, para lo cual nuevamente se recurrió al software Arcgis 10.4.

8.2.3 Seasonal water yield (Rendimiento estacional del agua).

Este modelo simple se diseña a partir de la preocupación por entender el efecto que tiene el manejo de la tierra en el flujo de agua a lo largo del año, permitiendo tomar mejores decisiones para el manejo de las cuencas, para ello se determina el agua disponible y el flujo rápido de manera simple, sin incluir los complejos movimientos del agua a través del suelo, pero si la pendiente a través de un modelo digital de elevación y “curve number” (número de curva), que hace referencia al grupo hidrológico del suelo para cada uno de los tipos de suelo presentes en la cuenca (Sharp,
et al., 2018). El diseño del modelo busca proveer una guía acerca de la contribución de las coberturas de tierra a la generación de un flujo base y un flujo rápido.

El modelo requiere de diferentes tipos de información, el primero corresponde con información climática donde se incluyen valores de precipitación y evapotranspiración; para la obtención de este ítem se adquirió información de precipitación y temperatura de las estaciones meteorológicas cerca y al interior del municipio de Fómeque administradas por el IDEAM, estas fueron BOLSA LA [35025060], LLANO LARGO [35025050], FOMEQUE [35020290], CALOSTROS BAJOS [35025100] y EL CALVARIO [3503500062], más tarde se aplicó la fórmula de evapotranspiración de Thornthwaite, con los valores de temperatura media desde enero de 1968 hasta enero del 2019, donde \(ETP \) es la evapotranspiración en mm, \(I \) es el índice calórico, \(T \) temperatura media mensual en °C, y \(a \) es el exponente empírico (Montaner & Sánchez, 1988):

\[
ETP = 16 \times \left(\frac{10^T}{I}\right)^a
\]

\[
a = 6.75 \times 10^{-7} \times I^3 - 7.71 \times 10^{-5} \times I^3 + 1.79 \times 10^{-2} \times I + 0.49239
\]

A continuación, se tomaron los valores de precipitación y evapotranspiración obtenidos y con ayuda del software Arcgis 10.4 se generó una interpolación con la herramienta IDW de los datos de cada estación sobre la cuenca, esto con el fin de obtener el raster de cada uno de los meses que se deben ingresar al programa. El segundo corresponde a un modelo de elevación digital en formato raster, que se obtiene de un cruce entre las curvas de nivel y los drenajes disponibles con los datos abiertos del IGAC, en tercer lugar, se incluye un dataset raster que representa la cobertura de la tierra que tiene cada pixel de la cuenca, en cuarto lugar se genera un raster de los tipos de suelos con la información obtenida de los datos abiertos del IGAC en escala 1:100000, a partir de
las características de los suelos como la textura y el potencial de escorrentía se determina el grupo hidrológico del suelo al que pertenece (Díaz & Mercado, 2017), en quinto lugar se genera un tabla biofísica en donde se incluyen los valores de numero de curva y coeficiente de evapotranspiración del cultivo para cada una de las coberturas presentes en la cuenca, para la determinación del número de curva se tomaron los valores propuestos por el Servicio geológico colombiano y la Universidad Nacional de Colombia (UN & SGS, 1991) y para la determinación del coeficiente de cultivo se tomaron los datos adaptados por la FAO en el 2005 en el Balance hídrico integrado y dinámico de El Salvador, que son citados por Estepa y Talero (2016), finalmente se ingresa una tabla con el número de eventos de lluvia por mes en la Cuenca, para ello se utiliza la información cartográfica disponible por el IDEAM con respecto a los eventos de lluvia por cada mes.

8.2.4 Recreation and tourism (Recreación y turismo)

La economía local del municipio se centra en actividades agropecuarias, sin embargo, gracias a la presencia del parque, puede tener un potencial de recreación y turismo debido a los valores culturales y paisajísticos de la zona, para identificar dicho potencial, InVEST elaboró un modelo que determina el número de visitas que se realizan en el área de interés, a través del número de fotografías que se toman en promedio por día en un mes, esta información se obtiene del número de fotografías que son subidas al sitio web “Flickr”. Este servicio, permite que la comunidad pueda tener otras formas de ingreso económico para mejorar la calidad de vida. Para ello se ingresó el límite de la cuenca del río negro con el fin de obtener el número de fotografías promedio en el mes de la cuenca de río Negro entre el año 2005 y 2016, estas resultan del ingreso de la capa del límite de la cuenca y la selección de los años de interés en donde se quiere determinar el número de visitas, con estos insumos el software que está conectado al sitio web “Flickr” genera un cálculo del número de fotografías, y lo exporta como una tabla en formato Excel.
9. Resultados

9.1 Diagnóstico Participativo de los Servicios Ecosistémicos que Provee el PNN Chingaza a la Cuenca del Río Negro

9.1.1 Selección de actores clave.

Durante la visita al casco urbano del municipio de Fómeque, se llevó a cabo el acercamiento a 14 organizaciones establecidas en el municipio, la primera que se contactó es la unidad municipal de Asistencia Técnica Agropecuaria (UMATA), este organismo orienta estrategias de producción agropecuaria mediante la asistencia técnica al campesino; así mismo se realizó un acercamiento a la autoridad administrativa del municipio, el alcalde Jorge Edilberto Torres Acosta. También se hizo contacto con la cervecería de Fómeque, que produce la cerveza denominada bosque de zorros, Dorada y Azabache, inspirada en el PNN Chingaza, además esta es una empresa que viene adelantando actividades enfocadas en el turismo con la asociación Brújulas y Brujos, hacia el PNN Chingaza por la vereda Quebrada Blanca.

En el casco urbano del municipio se encuentra la Asociación de mujeres emprendedoras de Fómeque (AMEF), que está enfocada en generar empoderamiento en las mujeres a través de emprendimientos como la producción de artesanías o productos derivados de Sagú; también se hizo un acercamiento a la asociación Asocaquinal que es una entidad sin ánimo de lucro que agrupa acueductos y distritos de riego del municipio de Fómeque y desarrolla proyectos ambientales y sociales. Dentro del municipio se tienen otras organizaciones enfocadas en proyectos ambientales como lo es Biscalimento, que promueve la separación de basuras en la fuente, y el intercambio de alimentos por el desarrollo de estas actividades, y en segundo lugar se encuentra Asprocaf, o asociación de productores campesinos de Fómeque, los cuales buscan alternativas de producción
mediante el uso sostenible de la tierra promoviendo el menor impacto ambiental, y la reforestación con especies nativas. Lo anterior dista de lo dicho por Oviedo y Torres (2017), donde se describe que la participación en el municipio se reduce a las elecciones locales, regionales y nacionales.

El municipio de Fómeque hace parte de la Jurisdicción de Corpoguavio, por lo que el área que no hace parte del PNN Chingaza es administrada ambientalmente por la Corporación, por lo que se realizó un acercamiento a estas dos entidades, así mismo se realizó un acercamiento a entidades como la iglesia de la Inmaculada Concepción de Fómeque, la institución educativa departamental Monseñor Agustín Gutiérrez, E.S.E. hospital San Vicente De Paul Fómeque, y el Hotel Muscua.

9.1.2 Identificación de perspectivas sobre los servicios ecosistémicos.

Se encuestó un total de 58 actores, 42 de ellos nacidos en Fómeque y los 16 restantes nacidos en diferentes partes del país. 31 personas residen en el casco urbano, 15 en alguna de las veredas y 2 en municipios aledaños como se muestra en la Tabla 4. Esto puede explicarse por la cercanía de los diferentes municipios y de Fómeque con Bogotá, inclusive algunas de las personas residen en varios lugares debido a sus empleos, algunos días en Fómeque y otros en Bogotá, como es el caso de los funcionarios públicos, igualmente, varias de las personas que residen en las veredas, constantemente están desplazándose hacia el casco urbano debido a empleo o adquisición suministros, de tal manera que los encuestados resultan ser la población flotante del Casco Urbano del municipio.

Tabla 4.
Lugar de residencia de encuestados

<table>
<thead>
<tr>
<th>Lugar de Residencia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrizal</td>
<td>1</td>
</tr>
<tr>
<td>Casco Urbano</td>
<td>31</td>
</tr>
<tr>
<td>Chinía</td>
<td>4</td>
</tr>
</tbody>
</table>
Se obtuvieron 1597 enunciados destacados de las entrevistas realizadas, a los cuales se les asignó una categoría que los caracterizara. La Categorías fueron establecidas según los parámetros enunciados en la Tabla 5, con un total de 17 categorías evidenciadas en la misma tabla.

Tabla 5.
Parámetros para identificar categorías

<table>
<thead>
<tr>
<th>No.</th>
<th>Parámetros</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Observación. A criterio de las autoras, aquellas categorías que se identificaron en las encuestas por repetición o relevancia.</td>
<td>Aire/Ambiente</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belleza Paisajística</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chingaza 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fauna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitos/Leyendas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turismo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culturales</td>
</tr>
<tr>
<td>2</td>
<td>Teoría de Servicios ecosistémicos. 4 categorías establecidas en la literatura</td>
<td>Soporte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provisión</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regulación</td>
</tr>
<tr>
<td>3</td>
<td>Relación a los Servicios ecosistémicos. Relaciones importantes identificadas entre el parque, entidades administrativas y la comunidad</td>
<td>Acceso</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Educación ambiental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entidades administrativas/Comunidad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proyectos. Ideas que dan las personas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parque/ Comunidad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agua</td>
</tr>
<tr>
<td>4</td>
<td>Atlas.ti. Palabras que más se identificaron como repetitivas el software.</td>
<td>Bogotá</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)
Una vez los enunciados fueron agrupados en cada categoría, se procedió a identificar ideas que resumieran los enunciados destacados, cabe resaltar que por la complejidad con la que cuentan los datos de tipo cualitativo, para este caso varios enunciados eran congruentes con más de una categoría. Las ideas por categoría se resumen en la Tabla 6, estas fueron aquellas ideas que se identificaron como relevantes por parte de los encuestados y relacionadas con la provisión de servicios ecosistémicos. La columna “enunciados relacionados” se refiere al número total de enunciados de cada “idea central”, y las columnas “Primer comentario” y “Deliberada” hacen referencia a si dichos enunciados fueron mencionados como primer comentario al momento de hacer la encuesta (en donde simplemente se pregunta si identifican algún beneficio por parte del PNN Chingaza), o si fueron mencionados en la fase dos de la encuesta, cuando ya se realizan preguntas más detalladas.

Estas últimas dos columnas dan un indicio de cuáles pueden ser más importantes para las personas, aquellos mencionados como primer comentario son los que más reconocen, ya que no se les brindó ningún tipo de información al momento de dar dichas respuestas, por otro lado, aquellos en la columna deliberada, ya está respondiendo a una pregunta realizada, por ejemplo, “¿cree que se obtiene algún beneficio en cuanto a la educación ambiental relacionado con la existencia del PNN Chingaza?”, allí el individuo puede responder “Si claro, porque…”, de manera que se está reconociendo la existencia de ese servicio, pero no es tan relevante para este individuo porque no lo reconoce de primera mano.
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Idea Central</th>
<th>Enunciados relacionados</th>
<th>Primer comentario</th>
<th>Deliberada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceso</td>
<td>Se dificulta acceso por vías en malas condiciones</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Vía de acceso al PNN Chingaza por La Calera más que por Fómeque</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dificultades para el desarrollo del Turismo en Fómeque</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Restricciones y permisos para el acceso</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Agua</td>
<td>Inconformismo con el acceso al agua desde la Gestión publica</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No se tiene acceso al agua del Sistema Chingaza</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Consecuencias de la presencia del Acueducto de Bogotá</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bajos aportes al municipio derivados de prestar el servicio de agua a Bogotá</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Beneficios derivados del recurso hídrico</td>
<td>11</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Calidad de agua (Buena o mala)</td>
<td>17</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Conocimiento del funcionamiento del acueducto de Bogotá</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Escases de agua en Fómeque</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Investigación de temas hídricos</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Reconocimiento de Chingaza en la producción de agua</td>
<td>12</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Hay reconocimiento de los Fomequeños por tener a Chingaza</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>No hay consumo de agua proveniente del PNN Chingaza en Fómeque, es para Bogotá</td>
<td>29</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Si hay consumo de agua proveniente del PNN Chingaza en Fómeque</td>
<td>13</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Acueductos y quebradas de donde viene el agua que consume Fómeque</td>
<td>22</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Aire/Ambiente</td>
<td>Calidad de aire e importancia del parque para este</td>
<td>36</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Belleza Paisajística</td>
<td>Belleza visual</td>
<td>32</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Belleza de fauna</td>
<td>11</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Relación de la comunidad de Fómeque con la naturaleza</td>
<td>17</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Turismo</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Bogotá</td>
<td>Abastecimiento de agua para Bogotá</td>
<td>22</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Categoría</td>
<td>Idea Central</td>
<td>Enunciados relacionados</td>
<td>Primer comentario</td>
<td>Deliberada</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Beneficios económicos que deberían recibirse por la prestación del servicio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afectaciones del acueducto de Bogotá en Fómeque</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inconformismos de la población de Fómeque</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>La Investigación la hacen más desde Bogotá</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Chingaza 2</td>
<td>Conocimiento sobre la existencia del proyecto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preocupaciones de la comunidad</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Afectaciones si se desarrollara</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Belleza paisajística</td>
<td>37</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>Culturales</td>
<td>Cambio de Comportamiento</td>
<td>19</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Conocimiento sobre el parque</td>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Educación ambienta</td>
<td>41</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Espirituales</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Inspiración</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Investigación</td>
<td>25</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Mitos y leyendas</td>
<td>46</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Relación del Parque y la Comunidad</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Relación con la naturaleza</td>
<td>17</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Relaciones sociales</td>
<td>15</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sentido de pertenencia</td>
<td>39</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Simbólicos, se identifican con Chingaza y la producción de agua</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Recreación y turismo</td>
<td>82</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Valores culturales hereditarios</td>
<td>19</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Entrenamiento</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ciclo del agua</td>
<td>13</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ciclo de nutrientes</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Fotosíntesis</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Producción primaria</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mantenimiento del ecosistema</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Soporte</td>
<td>Si hay un beneficio de los servicios de soporte</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Importancia de conservar el parque para obtener los servicios de Soporte</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Influencia en hábitos productivos</td>
<td>15</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Educación ambiental</td>
<td>Educación en el colegio, niños y jóvenes</td>
<td>47</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Capacitaciones/Educación municipio en general</td>
<td>20</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Investigación</td>
<td>13</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Categoría</td>
<td>Idea Central</td>
<td>Enunciados relacionados</td>
<td>Primer comentario</td>
<td>Deliberada</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Entidades administrativas/Comunidad</td>
<td>Categoría</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restricciones y regulaciones</td>
<td>36</td>
<td>15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Problemas disponibilidad o calidad de agua</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Desarrollo, vulneración del territorio</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Estrategias de enlace que se han llevado a cabo</td>
<td>43</td>
<td>26</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Inconformidad con gestión de entidades</td>
<td>37</td>
<td>24</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Fauna</td>
<td>Protección de fauna y de su hábitat</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Agradar de avistar especies de fauna</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reconocimiento por existencia de fauna y flora</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Enfrentamientos con la fauna</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mitos/Leyendas</td>
<td>Reconocimiento de que los Mitos y Leyendas se relacionan con Chingaza</td>
<td>33</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Narrativa de mitos y leyendas</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>No hay o no se relacionan con Chingaza</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Provisión</td>
<td>Provisión financiera</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Chingaza contribuye a la provisión de agua</td>
<td>65</td>
<td>26</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Provisión para el ecosistema y sus animales</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Alimento</td>
<td>47</td>
<td>9</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Área protegida restringe provisión</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Recursos de origen vegetal</td>
<td>25</td>
<td>2</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>No se obtienen beneficios de provisión o se obtienen de otro lado</td>
<td>23</td>
<td>6</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Proyectos adecuados en tema financiero</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Conservación</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Turismo</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Regulación</td>
<td>Agua</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Regulación ecológica en general</td>
<td>25</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Polinización</td>
<td>20</td>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Regula, pero en el parque, afuera no es un beneficio</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Parque/Comunidad</td>
<td>Agua</td>
<td>33</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Prevenza de erosión</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Influye en el clima</td>
<td>36</td>
<td>2</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aire</td>
<td>51</td>
<td>17</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Enfermedades</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Secuestro de carbono</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Relación oso-comunidad</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Distanciamiento con Chingaza</td>
<td>12</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Se puede resaltar que la categoría de culturales fue de las categorías más numerosas, con 16 ideas principales y 384 enunciados, seguida de la categoría de regulación con 9 ideas principales y 188 enunciados, por otro lado, las categorías menos relevantes por número de enunciados mencionados son la de Acceso con 26 enunciados y Proyectos con 31 enunciados.

Cabe resaltar que teniendo en cuenta las cuatro categorías relacionadas directamente con la Teoría de los Servicios Ecosistémicos, en primer lugar tenemos la Cultural nuevamente (384 enunciados), seguida de Regulación (188 enunciados), Provisión (183 enunciados) y finalmente Soporte (37 enunciados), esta última significativamente menor que las demás, posiblemente relacionado con el aspecto tan técnico de esta categoría, de manera que los beneficios proporcionados en ella no son fácilmente perceptibles por la comunidad como los demás, de igual manera en esta categoría tan solo alrededor del 11% fue identificado como primer comentario, mientras que el 89% restante fue identificado en la parte Deliberada, esto reafirma esta idea al destacar que la mayoría de enunciados fueron obtenidos solo cuando se les preguntó a las personas directamente sobre ellos.

En la Tabla 7, se pueden ver las 10 primeras ideas que más enunciados relacionados presentan, por lo tanto se puede inferir que son aquellas más relevantes para las personas, cabe resaltar que

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Idea Central</th>
<th>Enunciados relacionados</th>
<th>Primer comentario</th>
<th>Deliberada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turismo</td>
<td>No se respetan límites de reserva por la comunidad</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Acercamientos de la comunidad y buenas prácticas</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Inconvenientes para el turismo</td>
<td>10</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Es importante que el turismo de Chingaza se dé por Fómeque</td>
<td>16</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Estrategias para promover turismo</td>
<td>24</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Chingaza es un atractivo turístico</td>
<td>40</td>
<td>19</td>
<td>21</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)
la Categoría cultural abarca aquellos servicios relacionados con la educación ambiental, el turismo, entre otros, por lo cual se presentan como idea central y también como categoría. Se observa una tendencia que se mantuvo con todos los entrevistados en general y es la importancia de los servicios culturales (en primer lugar) y la provisión del agua por parte del PNN Chingaza (en segundo lugar).

Tabla 7.
Enunciados con mayor relevancia por su numerosidad.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Idea Central</th>
<th>Enunciados relacionados</th>
<th>Primer comentario</th>
<th>Deliberada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culturales</td>
<td>Recreación y turismo</td>
<td>82</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de</td>
<td>65</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>Regulación</td>
<td>Aire</td>
<td>51</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>Educación ambiental</td>
<td>Educación en el colegio, niños y jóvenes</td>
<td>47</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>Provisión</td>
<td>Alimento</td>
<td>47</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>Culturales</td>
<td>Mitos y leyendas</td>
<td>46</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>Entidades administrativas/ Comunidad</td>
<td>Estrategias de enlace que se han llevado a cabo</td>
<td>43</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Culturales</td>
<td>Educación ambiental</td>
<td>41</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Turismo</td>
<td>Chingaza es un atractivo turístico</td>
<td>40</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Culturales</td>
<td>Sentido de pertenencia</td>
<td>39</td>
<td>24</td>
<td>15</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)

A continuación, una breve explicación de lo que quiere decir cada Idea central destacada en la Tabla 7:

- **Recreación y Turismo**: Se hace reconocimiento de que existe el turismo ya sea de naturaleza, para hacer deporte, avistamiento y demás o que, por el contrario, no es muy importante aún, pero tiene un gran potencial. Esta idea central es a su vez una categoría en sí misma como se observa en la Tabla 6 en la cual se desglosa un poco más en ideas más específicas.

- **Chingaza contribuye a la provisión de agua**: Se reconoce la importancia del parque al momento de acceder al agua en el municipio, a la calidad de dicha agua y el efecto que
tiene ello sobre sus actividades productivas o la obtención de alimentos, visto como un beneficio derivado de la provisión del agua.

- **Aire:** Se reconoce que la población goza de una buena calidad de aire y que Chingaza contribuye a ese beneficio, resaltan al páramo con calificativos como “pulmón”, “filtro” u “oxígeno”.

- **Educación en el colegio, niños y jóvenes:** Se menciona que el parque, los colegios, o la administración tienen estrategias para educar a los niños y jóvenes a conservar y a conocer el territorio y que esto es beneficioso para ellos.

- **Alimento:** En esta idea se reconoce el papel fundamental del agua para la obtención de alimentos, ya sea para la agricultura, la ganadería, o para el ejercicio de pesca que se hace al interior del PNN Chingaza.

- **Mitos y Leyendas:** Este ítem contiene más que todo la narración de los mitos y leyendas más reconocidos por la comunidad, se destaca el de “Las campanas del Diablo”. Mencionan además a José Antonio León Rey, Fomequeño, quien construyó toda una narrativa alrededor de los mitos de la región. Esta idea central, es a su vez una categoría por sí misma como puede observarse en la Tabla 6, en la cual se desglosa un poco más en ideas más específicas.

- **Estrategias de enlace que se han llevado a cabo:** En esta categoría se destacan todos esos proyectos, convenios, emprendimientos y demás que se han llevado a cabo por las diferentes entidades para hacer un acercamiento a la comunidad, sustituir actividades productivas incompatibles, mejorar la calidad de vida, e inculcar la cultura de visitar el PNN Chingaza por parte de esta población.
• Educación Ambiental: En esta idea, además de mencionar la educación que se recibe relacionada al colegio, se reconocen los proyectos y capacitaciones desarrollados por otras entidades u organizaciones, por la alcaldía, desde el hogar o por la misma sociedad civil para ser un municipio educado para conservar, se incluyen personas de cualquier rango de edad. Esta idea central es a su vez una categoría en sí misma como se observa en la Tabla 6 en la cual se desglosa un poco más en ideas más específicas.

• Chingaza es un atractivo turístico: Se reconoce la importancia del parque como atractivo turístico, destacan los paisajes, senderos, lagunas, y planes que hacen que puedan ser de agrado para los turistas y ellos mismos.

• Sentido de Pertenencia: Los enunciados contenidos en esta idea central hacen referencia al orgullo que sienten por ser dueños de Chingaza, por todas sus características, los animales, el agua y que para ellos resulta en un privilegio ser parte de él.

9.1.2.1 Primer comentario.

En la Tabla 8 se puede observar las 5 ideas centrales a las cuales se les dio más importancia por parte de los encuestados, la que más reconocen de primera mano es la existencia o potencial del turismo con 31 enunciados que fueron un Primer comentario, y nuevamente en segundo lugar, se registra la contribución a la provisión de agua por parte del PNN Chingaza con 26 enunciados que fueron primer comentario, ratificando la importancia que le dan las personas del municipio de Fómeque al recurso hídrico.
Tabla 8.
Enunciados con mayor relevancia mencionados como primer comentario.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Idea Central</th>
<th>Enunciados relacionados</th>
<th>Primer comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culturales</td>
<td>Recreación y turismo</td>
<td>82</td>
<td>31</td>
</tr>
<tr>
<td>Chingaza contribuye a la provisión de agua</td>
<td></td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>Entidades admin/ Comunidad</td>
<td>Estrategias de enlace que se han llevado a cabo</td>
<td>43</td>
<td>26</td>
</tr>
<tr>
<td>Culturales</td>
<td>Sentido de pertenencia</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td>Entidades admin/ Comunidad</td>
<td>Inconformidad con gestión de entidades</td>
<td>37</td>
<td>24</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)

9.1.2.2 Deliberadas.

Nuevamente, aparece “recreación y turismo” como la más importante con 51 enunciados presentados en la segunda parte de la entrevista o Deliberada, vemos en la Tabla 6, Tabla 7 y Tabla 8 que en total esta es la idea central que más enunciados presenta con 82, siendo esta la que más reconocen a nivel general como relevante los habitantes del municipio de Fómeque. En este caso (Tabla 9), se identificaron los Mitos y leyendas como de gran importancia con 44 enunciados respondidos en la parte deliberada y que nuevamente la categoría Cultural tiene un papel protagónico.

Tabla 9.
Enunciados con mayor relevancia mencionados como Deliberada.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Idea Central</th>
<th>Enunciados relacionados</th>
<th>Deliberada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culturales</td>
<td>Recreación y turismo</td>
<td>82</td>
<td>51</td>
</tr>
<tr>
<td>Culturales</td>
<td>Mitos y leyendas</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de agua</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>Provisión</td>
<td>Alimento</td>
<td>47</td>
<td>38</td>
</tr>
<tr>
<td>Regulación</td>
<td>Aire</td>
<td>51</td>
<td>34</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)
9.1.2.3 Análisis por género.

En la Tabla 10 se incluye el número total de personas encuestadas según su género, se observa que el género masculino dobla el género femenino, posiblemente son más los actores masculinos involucrados en este ámbito ya que al implementar la metodología de bola de nieve, son los mismos actores quienes recomiendan a los demás actores que reconocen se encuentran involucrados.

Tabla 10. Número de encuestados por género

<table>
<thead>
<tr>
<th>Género</th>
<th>No. De encuestados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femenino</td>
<td>19</td>
</tr>
<tr>
<td>Masculino</td>
<td>39</td>
</tr>
<tr>
<td>Total general</td>
<td>58</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)

En la Tabla 1, se encuentran discriminados los valores totales de enunciados mencionados por género y categoría, cabe resaltar que no es posible comparar la cantidad de enunciados entre géneros, ya que como se menciona previamente, el género masculino supera al femenino por numerosidad, sin embargo, a nivel interno de cada género se observa que para ambos casos las categorías de mayor relevancia son Cultural, Regulación, Provisión, Agua y Entidades Administrativas-comunidad, difiriendo únicamente en el orden de importancia del cuarto lugar, siendo que para las mujeres es “agua” y luego “Entidades administrativas-comunidad” y para los hombres al contrario, por lo cual no se encuentra una diferencia significativa entre géneros referente a las opciones brindadas.
La siguiente tabla (Tabla 12), contiene los 3 enunciados de mayor relevancia según género, nuevamente no hay una diferencia significativa entre las opiniones por género, ya que para ambos casos son de gran importancia las ideas relacionadas con “Recreación y turismo” y “Chingaza contribuye a la provisión de agua” lo que de igual manera concuerda con las ideas importantes para la totalidad de población evidenciadas en la Tabla 7.
Tabla 12.
Ideas representativas por género debido al número de enunciados

<table>
<thead>
<tr>
<th>Género</th>
<th>Categoría</th>
<th>Idea</th>
<th>No. De enunciados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femenino</td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Regulación</td>
<td>Aire</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de agua</td>
<td>21</td>
</tr>
<tr>
<td>Masculino</td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de agua</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Entidades administrativas - comunidad</td>
<td>Estrategias de enlace</td>
<td>35</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)

9.1.2.4 Análisis por rango etario.

En la Tabla 13 se encuentran los valores relacionados a cada categoría por rango de edad, coincidiendo con la información presentada anteriormente, la categoría cultural muestra nuevamente protagonismo con los valores más altos para cada uno de los rangos etarios, al igual que para el caso del análisis de género, no es posible realizar una comparación entre rangos etarios por la diferencia en la cantidad de encuestados para cada rango, sin embargo, es posible destacar que además de la categoría Cultural, las siguientes en representatividad son, para el rango de 18-20 la categoría de Turismo; para el rango de 21-30 la de Provisión al igual que el rango de 61-70, este último rango, además de la categoría Provisión también tiene a la categoría Regulación como segunda en relevancia; para el caso del rango entre 31-40 se muestra como relevante la categoría Entidades administrativas-comunidad; finalmente para los rangos 41-50 y 51-60, Regulación es la segunda categoría en orden de relevancia. Es importante resaltar que la relevancia se infiere de la cantidad de ideas relacionadas a cada categoría, con el supuesto de que las personas le dan mayor importancia a aquellos temas de los que más hablan, traduciéndose en una mayor
cantidad de ideas. Finalmente, a nivel general se observan las categorías Cultural, Provisión y Regulación como aquellas que presentan mayor cantidad de ideas.

Tabla 13.
Ideas relacionadas a cada categoría por rango etario

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Ideas relacionadas por rango de edad</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-20</td>
<td>21-30</td>
</tr>
<tr>
<td>Acceso</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Agua</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Aire/Ambiente</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Belleza paisajística</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bogotá</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Chingaza 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cultural</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Entidades admin - comunidad</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Fauna</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Mitos y leyendas</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Parque comunidad</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Provisión</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Proyectos</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Regulación</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Soporte</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Turismo</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Total general</td>
<td>75</td>
<td>108</td>
</tr>
</tbody>
</table>

Fuente (Galindo & Báez, 2019)

En la Tabla 14, se destacan las tres ideas más representativas (por número de enunciados relacionados a cada idea) para cada rango etario, la idea de “Recreación y turismo” aparece en cada rango excepto en el rango de 31-40 años, sin embargo, al verificar la totalidad de los datos, se evidencia que para este rango la idea de “Recreación y turismo” tiene 18 enunciados relacionados, es decir, se encuentra muy cercana a las que aparecen en la tabla, se observa que no hay discriminación en edad al hablar de esta idea. Otras ideas repetitivas que se observan en la tabla son “Chingaza contribuye a la provisión de agua” en los rangos de 21-30, 31-40 y 41-50, “Educación en el colegio, niños y jóvenes” para los rangos 18-20 y 31-40, una idea similar a la
anterior pero un poco más general “Educación ambiental” para los rangos 51-60 y 61-70 y la de “Aire” para el caso de los rangos de 21-30 y 51-60.

Tabla 14.
Ideas representativas por rango etario debido al número de enunciados

<table>
<thead>
<tr>
<th>Rango de edad</th>
<th>Categoría</th>
<th>Idea</th>
<th>No. De enunciados</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-20</td>
<td>Turismo</td>
<td>Es un atractivo turístico</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Educación Ambiental</td>
<td>Educación en el colegio, niños y jóvenes</td>
<td>4</td>
</tr>
<tr>
<td>21-30</td>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de agua</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Regulación</td>
<td>Aire</td>
<td>6</td>
</tr>
<tr>
<td>31-40</td>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de agua</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Entidades administrativas - comunidad</td>
<td>Estrategias de enlace</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Educación Ambiental</td>
<td>Educación en el colegio, niños y jóvenes</td>
<td>19</td>
</tr>
<tr>
<td>41-50</td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Provisión</td>
<td>Chingaza contribuye a la provisión de agua</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Regulación</td>
<td>Agua</td>
<td>14</td>
</tr>
<tr>
<td>51-60</td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Regulación</td>
<td>Aire</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Cultural</td>
<td>Educación ambiental</td>
<td>16</td>
</tr>
<tr>
<td>61-70</td>
<td>Cultural</td>
<td>Recreación y turismo</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Provisión</td>
<td>Educación ambiental</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Provisión</td>
<td>Alimento</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente (Galindo & Báez, 2019)

9.1.2.5 Red semántica.

Esta red describe aquellas relaciones que existen entre las categorías de acuerdo con el criterio del investigador, el cual se soporta con la fase de recolección de información en campo. Estas relaciones fueron definidas con la ayuda del software Atlas.ti. 7, el cual define relaciones como “is part of”, refiriéndose a que una categoría hace parte de otra; también se incluye el término “is
associated with”, que hace referencia a que una categoría se relaciona con otra, debido a que se menciona en esta de manera general; el tercer término utilizado fue “is cause of”, se refiere a que parte de la existencia de la categoría se debe a la presencia de la primera categoría, y finalmente se hace uso del término “Contradicts”, el cual establece que existe una contradicción entre los enunciados, adicionalmente, el software permite definir colores en función de la densidad y fundamentación de cada una de las categorías, por lo que las categorías con el mismo color, significa que fueron nombradas por los habitantes en la misma frecuencia.

En la primera relación denominada “is part of”, se encuentran las categorías de Mitos/leyendas, Educación ambiental, Turismo y Belleza paisajística siendo parte de la categoría de Culturales; y Aire/ ambiente siendo parte de la categoría de Regulación. En la segunda relación denominada “is associated with”, se identificó que la categoría de Fauna fue mencionada en repetidas ocasiones dentro de las categorías de Cultural, Regulación, Soporte y Provisión, por su parte las categorías de Acceso, Proyectos y Chingaza 2, se encuentran asociadas a la categoría de entidades administrativas/comunidad. En la tercera relación denominada Is cause of, se definió que las categorías de Culturales, Regulación, y Provisión, permiten que se establezcan los enunciados mencionados por la comunidad en la categoría de parque/comunidad, debido a que estos servicios determinan la percepción de la comunidad sobre el parque y, por último, la categoría de Bogotá se deriva de la categoría de Agua, ya que los habitantes presentaban una tendencia a mencionar la ciudad luego de mencionar la categoría de Agua. Y finalmente, en la relación contradicts, se determina que la categoría de Provisión y la categoría de Bogotá se contradicen, ya que muchas de las afirmaciones que se hacían con respecto a Bogotá, ponían en un segundo plano la provisión
de agua en la comunidad del municipio de Fómeque. A continuación, en la Figura 4, se muestra el esquema de la red semántica del diagnóstico participativo.

Figura 4. Red semántica del diagnóstico participativo. Software Atlas.ti.

Fuente: (Galindo & Báez, 2019)

9.1.2.6 Matriz de co-ocurrencias.

La matriz de co-ocurrencia generada en el software Atlas.ti, se establece a partir del número de enunciados compartidos por cada categoría, allí se muestra que la categoría de culturales “cu”, presenta más enunciados compartidos con otras categorías, mientras que las categorías de Chingaza 2 “Ch” y Soporte “So” presentaron menor número de enunciados con incidencias en otras categorías, esto se debe a que los servicios de soporte son poco conocidos por la comunidad local, a excepción de las personas expertas en este tipo de temas.

A continuación, se muestra la matriz de co-ocurrencia en la Tabla 15, en donde el valor de (0) corresponde a aquellas categorías que no presentaron ninguna coincidencia en sus
enunciados, mientras que las casillas donde los valores son mayores a (1), estos corresponden al número de enunciados coincidentes en esas categorías, por lo tanto los enunciados de la categoría de Acceso “Ac” coinciden con (1) de los enunciados de la categoría denominada Bogotá “Bo”; coincide con (2) enunciados de la categoría de culturales “Cu”, parque/comunidad “Pa” y Proyectos “Py”; además coincide con (7) enunciados de la categoría de Entidades administrativas y comunidad “En”, y con (9) enunciados en la categoría de turismo “Tu”. Por su parte la Categoría denominada Agua “Ag”, comparte (33) enunciados con la categoría de Bogotá “Bo”, (10) enunciados con la categoría de culturales “Cu”, (20) enunciados con la categoría de entidades administrativas/Comunidad “En”, (54) enunciados con la categoría de Proyectos “Py”, y con las demás categorías se presentó una coincidencia en menos de (7) enunciados. La categoría de aire/ambiente “Ai” presenta (36) enunciados coincidentes con la categoría de regulación, mientras que con el resto de las categorías los enunciados coincidentes oscilan entre (0) y (1).

La categoría de Belleza paisajística “Be” presenta un total de (54) enunciados coincidentes con la categoría de Culturales “Cu”, (9) enunciados coincidentes con la categoría de turismo “Tu” y (5) enunciados coincidentes con la categoría de Fauna “Fa”. La categoría de Educación “Ed” presenta las mayores coincidencias con la categoría de Culturales “Cu” con (74) enunciados y con la categoría de entidades administrativas/Comunidad “En” con (14) enunciados. La categoría de Mitos y Leyendas “Mi” presenta (42) enunciados coincidentes con la categoría de Culturales “Cu” y (2) con la categoría de educación. Finalmente, la categoría de Turismo “Tu” presenta un total de (52) enunciados coincidentes con la categoría de culturales “Cu”. Lo anterior describe que las categorías con enunciados coincidentes se
relacionan más que las categorías con las que se presenta un valor de (0), que representa cero coincidencias.

Tabla 15.
Matriz de Co-ocurrencias Software Atlas.ti.

| | Ac | Ag | Ai | Be | Bo | Ch | Cu | Ed | En | Fa | Mi | Pa | Pv | Py | Re | So | Tu |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ac | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 7 | 0 | 2 | 0 | 2 | 0 | 0 | 9 | |
| Ag | 1 | 0 | 0 | 1 | 33 | 1 | 10 | 1 | 20 | 1 | 0 | 0 | 54 | 0 | 7 | 1 | |
| Ai | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | |
| Be | 0 | 1 | 0 | 0 | 0 | 0 | 54 | 0 | 0 | 5 | 0 | 0 | 1 | 1 | 1 | 0 | 9 |
| Bo | 1 | 33 | 0 | 0 | 0 | 0 | 1 | 0 | 14 | 0 | 0 | 7 | 0 | 0 | 1 | |
| Ch | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
| Cu | 2 | 10 | 1 | 54 | 1 | 1 | 0 | 74 | 20 | 14 | 42 | 9 | 17 | 5 | 8 | 0 | 52 |
| Ed | 0 | 1 | 0 | 0 | 0 | 0 | 74 | 0 | 14 | 2 | 4 | 1 | 2 | 2 | 0 | 3 | |
| En | 7 | 20 | 0 | 0 | 14 | 1 | 20 | 14 | 0 | 2 | 1 | 8 | 12 | 7 | 2 | 0 | 7 |
| Fa | 0 | 1 | 1 | 5 | 0 | 0 | 14 | 1 | 2 | 0 | 1 | 1 | 0 | 3 | 1 | 2 | |
| Mi | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| Pa | 2 | 0 | 0 | 0 | 0 | 0 | 9 | 4 | 8 | 1 | 0 | 0 | 4 | 3 | 1 | 0 | 1 |
| Pv | 0 | 54 | 0 | 1 | 7 | 0 | 17 | 1 | 12 | 1 | 0 | 4 | 0 | 1 | 2 | 1 | |
| Py | 2 | 0 | 0 | 1 | 0 | 0 | 5 | 2 | 7 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | |
| Re | 0 | 7 | 36 | 1 | 0 | 1 | 8 | 2 | 2 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 1 |
| So | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 0 | |
| Tu | 9 | 1 | 0 | 9 | 1 | 0 | 52 | 3 | 7 | 2 | 0 | 1 | 1 | 1 | 1 | 0 | |

Fuente: (Galindo & Báez, 2019). Dónde: (Ac) Acceso; (Ag) Agua; (Ai) Aire/Ambiente; (Be) Belleza paisajística; (Bo) Bogotá; (Ch) Chingaza; (Cu) Culturales; (Ed) Educación ambiental; (En) Entidades administrativas/Comunidad; (Fa) Fauna; (Mi) Mitos/Leyendas; (Pa) Parque/Comunidad; (Pv) Provisión; (Py) Proyectos; (Re) Regulación; (So) Soporte; (Tu) Turismo.
9.2 Diagnóstico Espacial de los Servicios Ecosistémicos de la Cuenca del Río Negro

A partir de la herramienta desarrollada por la universidad de Stanford a través de Natural Capital Project InVEST, se desarrolló el modelo de cuatro servicios ecosistémicos “Habitat Quality”, “Seasonal Water Yield”, “Forest carbon Edge” y “Recreation and tourism”, este diagnóstico requirió de la capa de cobertura de la tierra para la cuenca del río Negro, que se encuentra disponible en los datos abiertos del IGAC 2017 (Sharp, et al., 2018). A continuación, se muestra las coberturas de la tierra que fueron insumo para los modelos (Figura 5).

Figura 5. Mapa de coberturas de la tierra 2017 para la cuenca del río Negro.

Fuente: Datos abiertos del IGAC 2017

Dentro de la cuenca del río Negro se identifica que la cobertura de pastos limpios representa la mayor área dentro de la cuenca con un porcentaje de 32,17%, seguido del bosque fragmentado con
19,37%, en tercer lugar se ubica la cobertura de mosaico de pastos con espacios naturales con 13,08%, en cuarto lugar se tiene la cobertura de mosaico de pastos y cultivos con 15,63%, en quinto lugar se ubica la cobertura de herbazal con un porcentaje del 7,58%, en sexto lugar se posiciona el arbustal con un porcentaje del 5,24%, en séptimo lugar se encuentra la cobertura denominada vegetación secundaria o en transición con 4,38%, y finalmente las cobertura de la tierra denominadas tejido urbano discontinuo, zonas industriales, mosaico de pastos, cultivos y espacios naturales, y los ríos, representan menos del 1% de territorio de la cuenca.

Es importante resaltar, que en cada uno de los modelos descritos a continuación se encuentran sus respectivas salidas gráficas o mapas, los cuales son ampliados en el Anexo 4.

9.2.1 Habitat Quality (Calidad de habitat).

El modelo diseñado para el servicio ecosistémico de Habitat Quality consistió en la aplicación de una encuesta estructurada para expertos en temas como ecología, biología y ambientales, dentro de la encuesta se incluyó el análisis de la afectación de la coberturas de la tierra presentes en la cuenca del río Negro en función de 4 amenazas, estas fueron seleccionadas a partir de dos argumentos, el primero consistió en que las amenazas se obtuvieron de una lista presentada en la guía para usuarios de InVEST diseñada por Sharp, et al, (2018) donde se relaciona un número de especies en peligro por amenaza y el segundo argumento se basó en si la amenaza presentaba información cartográfica disponible dentro la cuenca. Las amenazas seleccionadas fueron: la actividad agrícola, que para el caso del municipio, la mayoría del territorio de uso agrícola corresponde a cultivos bajo invernadero como Tomate, Habichuela y Otros, en segundo lugar se tomó la actividad pecuaria, donde además se incluyó la producción avícola muy característica del municipio de Fómeque, en tercer lugar se tuvo en cuenta la amenaza por urbanización que incluye el tejido urbano del municipio y la zonas industriales y finalmente se incluye una capa de vías.
Los datos para ingresar en el software fueron el promedio de los valores designados por los 10 expertos, como lo establece Terrado, et al (2015). Los expertos diligenciaron el cuestionario que aparece en el Anexo 3. Previamente, se hizo un análisis del comportamiento de los datos a través de un análisis de componentes principales (ACP), para ello se tomaron los datos resultantes de todas las encuestas y se agruparon en tres matrices, en la primera matriz las columnas correspondían a las amenazas descritas previamente y en las filas se relacionó el valor que le dio cada experto a la cobertura de la tierra por la afectación de la amenaza, una vez se definió la matriz se ingresó al Software R 3.5.1. con el uso de las librerías “Rcommander” y “FactoMineR” a continuación, en la Figura 6, se muestra que para el primer ACP la varianza acumulada para los primero dos componentes fue de 86,89%.

![Gráfico ACP](image)

Figura 6. ACP sobre la sensibilidad de las coberturas de la tierra a las amenazas

Fuente: (Galindo & Báez, 2019)

La segunda matriz relaciona el peso relativo dados por cada experto a cada una de las amenazas, de esta se obtuvo una varianza en los dos primeros componentes de 92.42%, como se observa en la Figura 7 en donde se muestran la distribución de cada uno de los encuestados, identificados con un número del 1 al 10.
Finalmente, la tercera matriz fue elaborada relacionando los valores de distancia de afectación de las amenazas identificadas por cada uno de los expertos. A continuación, se muestra la Figura 8, de ACP resultante donde los números del 1 al 10 corresponde a cada uno de los expertos, adicionalmente se identifica una varianza de 98,61%, donde el experto número (8) fue el que tuvo una menor correlación lineal con los otros expertos.
El análisis de componentes principales permitió definir que los datos están correlacionados linealmente, por lo que pueden ser representados en más del 85% en dos componentes, de esta manera se identifica que los expertos presentan coincidencias con respecto a las respuestas dadas, por esta razón se toman los datos para ser ingresados al software como se muestran en la Tabla 16 y Tabla 17.

En la Tabla 16, se muestra el promedio de la sensibilidad de la cobertura de la tierra para cada una de las amenazas de acuerdo con el criterio de cada uno de los expertos. Las filas corresponde a cada una de las coberturas de la tierra según la metodología CORINE Land Cover, y en las columnas se tiene las variables evaluadas por los expertos, la primera corresponde a hábitat, esto hace referencia a un valor de 0 a 1 en donde se califica que tan apropiada es la cobertura para la sobrevivencia de las especies de flora y fauna, la segunda “L_Crop” hace referencia a la actividad agrícola, la tercera “L_Cow”, hace referencia a la Actividad pecuaria, en la cuarta columna “L_Urb”, corresponde a la amenaza por urbanización y finalmente “L_vía”, corresponde a la amenaza por la presencia de una red vial. Las tres coberturas con mayor calidad de hábitat según los expertos fueron bosque denso con un valor de (0.94), seguido de la cobertura de arbustal con 0,69; y por último se encuentra la cobertura de bosque fragmentado con un valor de 0,63, mientras que las tres coberturas con menor calidad de hábitat fueron la zonas industriales con un valor de 0,12, el tejido urbano continuo con 0,17 y por último se encuentra la cobertura de pastos limpios con un valor de 0,28. Por su parte la amenazas con mayor afectación fue Urbanización, y la amenaza con menor afectación fue vías, mientras que las amenazas de actividad pecuaria y agrícola, tuvieron el mismo valor promedio de afectación.
Tabla 16.
Sensibilidad de la cobertura de la tierra a cada una de las amenazas

<table>
<thead>
<tr>
<th>Cobertura de la tierra</th>
<th>Habitat</th>
<th>L_crop</th>
<th>L_cow</th>
<th>L_urb</th>
<th>L_via</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbustal</td>
<td>0.69</td>
<td>0.73</td>
<td>0.72</td>
<td>0.69</td>
<td>0.59</td>
</tr>
<tr>
<td>Bosque denso</td>
<td>0.94</td>
<td>0.81</td>
<td>0.85</td>
<td>0.74</td>
<td>0.65</td>
</tr>
<tr>
<td>Bosque fragmentado</td>
<td>0.63</td>
<td>0.76</td>
<td>0.75</td>
<td>0.67</td>
<td>0.62</td>
</tr>
<tr>
<td>Herbazal</td>
<td>0.61</td>
<td>0.72</td>
<td>0.76</td>
<td>0.76</td>
<td>0.61</td>
</tr>
<tr>
<td>Mosaico de cultivos</td>
<td>0.32</td>
<td>0.41</td>
<td>0.47</td>
<td>0.59</td>
<td>0.5</td>
</tr>
<tr>
<td>Mosaico de pastos con espacios naturales</td>
<td>0.45</td>
<td>0.6</td>
<td>0.58</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Mosaico de pastos y cultivos</td>
<td>0.35</td>
<td>0.42</td>
<td>0.42</td>
<td>0.52</td>
<td>0.45</td>
</tr>
<tr>
<td>Pastos limpios</td>
<td>0.28</td>
<td>0.43</td>
<td>0.41</td>
<td>0.48</td>
<td>0.44</td>
</tr>
<tr>
<td>Ríos (50 m)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tejido urbano continuo</td>
<td>0.17</td>
<td>0.12</td>
<td>0.1</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>Vegetación secundaria o en transición</td>
<td>0.51</td>
<td>0.74</td>
<td>0.74</td>
<td>0.68</td>
<td>0.64</td>
</tr>
<tr>
<td>Zonas industriales o comerciales</td>
<td>0.12</td>
<td>0.1</td>
<td>0.1</td>
<td>0.49</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)

En la Tabla 17 se describen las características de las amenazas; la primera se denomina “MAX_DIST” y hace referencia a la distancia máxima a la cual la amenaza realiza la afectación, y se da en kilómetros, para el caso del estudio las distancias oscilaron entre 16,85 km en promedio de afectación por la amenaza de urbanización y 4,91 km para el caso de la afectación por la amenaza de red vial. La segunda característica denominada “WEIGHT” corresponde al peso que le asignó cada experto por la afectación de la amenaza, en ese sentido la amenaza que tiene mayor valor será la que genera mayor afectación, que para el caso del estudio fue la actividad pecuaria.

Tabla 17.
Características de las amenazas

<table>
<thead>
<tr>
<th>THREAT</th>
<th>MAX_DIST</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>crop</td>
<td>7.86</td>
<td>7.3</td>
</tr>
<tr>
<td>cow</td>
<td>10.05</td>
<td>7.6</td>
</tr>
<tr>
<td>urb</td>
<td>16.85</td>
<td>6.7</td>
</tr>
<tr>
<td>via</td>
<td>4.91</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)
Una vez ingresados los datos se obtiene una capa raster denominada \textit{quality_out_c}, que expresa el nivel relativo de calidad de hábitat en la cuenca del río Negro, los valores más altos, que corresponden a los tonos claros indican una mejor calidad de hábitat y por lo tanto los menores valores con tonalidades más oscuras tienen una peor calidad de hábitat. Para las coberturas que tienen un valor de cero, significa que no hay hábitat, en este caso se observa que estos valores se asocian con el casco urbano y las zonas industriales que se encuentran ubicadas hacia el sur de la cuenca, mientras que mayores valores de calidad de hábitat se asocian a las coberturas más cercanas al PNN Chingaza, la mejor calidad de hábitat se asocia a coberturas de bosque denso, presentes en la veredas de Quebrada Blanca y Coasavistá y monte (Figura 9).

\textbf{Figura 9.} Calidad de hábitat de la cuenca del río Negro.
Fuente: (Galindo & Báez, 2019)
9.2.2 Forest Carbon Edge Effect (Efecto borde del almacenamiento de Carbono).

A continuación, se presentan los valores de la tabla biofísica, la columna “c_above” incluye los valores recopilados de (Yepes, et al., 2011) para el caso de las coberturas que no son bosque. En la tabla biofísica se omitieron las columnas 4, 5 y 6, descritas en la metodología y que están relacionadas con los otros tipos de depósitos de carbono, ya que solo se realizó el cálculo con el carbono superficial, esto debido a que para la ejecución del modelo se hace usando datos obtenidos de fuentes secundarias y solo hay información disponible de carbono superficial.

En la Tabla 18 se observa la información biofísica que se ingresa al modelo, la columna “lucode” cuenta con valores únicos de 0 a 11, los cuales coinciden con los valores enteros LULC asignados a las cobertura en el dataset raster SIG de cobertura y uso del suelo. La columna “is_tropical_forest” tiene valores de 0 para aquellas coberturas que no son bosque tropical y 1 para las lo son, en la columna “c_above” están los valores de carbono almacenado superficialmente en Mg/ha para aquellas coberturas diferentes al bosque tropical, para aquellas que son bosque tropical, esta columna no aplica, finalmente en la última columna se tiene el nombre de cada cobertura.

Tabla 18.
Tabla Biofísica del modelo Forest carbon edge effect

<table>
<thead>
<tr>
<th>lucode</th>
<th>is_tropical_forest</th>
<th>c_above (Mg/Ha)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Tejido urbano continuo</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Zonas industriales o comerciales</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6.4</td>
<td>Pastos limpios</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5.8</td>
<td>Mosaico de pastos y cultivos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mosaico de cultivos pastos y espacios naturales</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5.8</td>
<td>Mosaico de pastos con espacios naturales</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>n/a</td>
<td>Bosque denso</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>n/a</td>
<td>Bosque fragmentado</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>14.1</td>
<td>Herbazal</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>23.8</td>
<td>Arbustal</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>n/a</td>
<td>Vegetación secundaria o en transición</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>Ríos</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)
Una vez ingresada la información biofísica al modelo (Tabla 18) y el raster del uso del suelo del área, se obtiene el Mapa de carbono que tiene valores de 0 hasta 33,59 Mg/pixel (Figura 10).

Se observa que el modelo asume las zonas boscosas como una sola unidad, a las cuales se les aplica el modelo de efecto de borde, estas zonas son de Bosque denso, Bosque Fragmentado y Vegetación secundaria. Al comparar la unidad más grande de bosque y la principal, junto con las demás áreas de bosque, se aprecia que el almacenamiento de carbono es considerablemente más alto con valores de 30 Mg/pixel o superiores, en su núcleo (áreas de tonalidad blanca), estos valores se observan únicamente en la unidad boscosa más grande ya que su núcleo se encuentra más alejado del borde, mientras que en las áreas cuyo borde se encuentra más cerca al núcleo se presentan valores de 25 Mg/pixel sin superar los 30 Mg/pixel en ningún caso. De igual manera se
logra ver una disminución paulatina de la capacidad de almacenamiento de carbono a medida que hay proximidad al borde del bosque, de la misma forma va disminuyendo la tonalidad, a medida que tenemos valores de almacenamiento de carbono más bajos; se tiene una disminución del 40-45% para el caso del área boscosa más grande y unas distancias de alrededor de 550-600 m entre núcleo y borde y una reducción de alrededor del 28-38% para las áreas de bosque más pequeñas (250 m de distancia aproximadamente); esto debido a que se tiene valores entre 20 y 24,9 Mg/pixel representando áreas cada vez más cercanas a los bordes del bosque, para tener finalmente las áreas con 18-19,9 Mg/pixel las cuales corresponden al borde de las áreas de bosque.

Adicionalmente, se estima que esta capacidad de almacenamiento va disminuyendo a medida que tenemos otros tipos de cobertura diferente a la forestal y a medida que se ve más acrecentada la intervención humana, por ejemplo, se tienen valores de 8,28 Mg/pixel de carbono en las coberturas asociadas a arbus tales, valores de 4,90 Mg/pixel asociados a Herbazales, 2,22 Mg/pixel a pastos, 2,01 Mg/pixel a las coberturas de Mosaico de pastos y cultivos, Pastos y espacios naturales y Mosaico de cultivos, pastos y espacios naturales, en general a áreas agrícolas heterogéneas, para terminar con los valores de 0 Mg/pixel en las zonas de tejido urbano continuo y las zonas industriales o comerciales cuyo color es el negro o el más oscuro.

Se logra ver que a medida que se tiene más cercanía con los asentamientos urbanos en general, los valores de capacidad de almacenamiento de carbono se reducen (mosaicos agrícolas, pastos y casco urbano), se obtienen unos valores medios en las coberturas de herbazales y arbus tales, que si bien son los más alejados a los asentamientos poblacionales densos, estos ya se encuentran en mayor cercanía con el Páramo de Chingaza por lo cual cuentan con condiciones de clima más restringidas, temperaturas considerablemente más bajas y con vegetación de otro porte, lo que se ve reflejado en su capacidad de almacenamiento, y que efectivamente, las zonas más conservadas
y de cobertura forestal son las que tienen mayor capacidad de almacenar carbono, inclusive en su borde donde se reduce la capacidad ampliamente.

9.2.3 Seasonal Water Yield (Rendimiento estacional del agua).

El software genera información de salida de tipo raster, en primer lugar, se muestra un mapa del flujo base que se puede presentar en la cuenca y la contribución que tiene cada pixel al flujo base, es decir, el agua que llega a la corriente, se calcula teniendo en cuenta la pendiente del terreno y el agua disponible por precipitación. En este sentido se observa en la Figura 11 que en la parte alta de la cuenca (veredas Quebrada blanca, Chinia y Hato Viejo) se tienen los valores relativos más altos de flujo base, sobre el cauce de las quebradas Caquinal, el Salitre, Blanca, y El Gaque.

Figura 11. Flujo base para la cuenca del río Negro.

Fuente: (Galindo & Báez, 2019)
En segundo lugar se obtiene el mapa de los valores de Número de curva (Figura 12), este parámetro hidrológico permite determinar el potencial de escorrentía dentro de la cuenca a partir de características como el grupo hidrológico y la cobertura de la tierra, para la cuenca del río Negro se observó, que los mayores valores se encuentran asociados a las coberturas de pastos y más artificializadas por lo que se tiene mayor escorrentía y menor potencial de retención (Sharp, et al., 2018), mientras que los valores más bajos se asocian con coberturas como bosque denso, bosque fragmentado y vegetación secundaria o en transición, que se ubican hacia la vereda Cananea y el sur de la vereda Quebrada blanca. A nivel general la cuenca presenta una tendencia a tener valores altos en escorrentía esto quiere decir que hay poca infiltración del agua que ingresa al sistema y puede ser causado por que gran parte del territorio de la cuenca pertenece a coberturas artificializadas que no permiten que se dé un correcto ciclo del agua dentro de la cuenca.

Fuente: (Galindo & Báez, 2019)

La tercera salida corresponde al raster de las zonas de recargas hídricas disponibles, las cuales contribuyen al flujo base de la cuenca, esta agua proviene de la precipitación que no se convierte en escorrentía directa y no se pierde por evapotranspiración, por lo que se puede infiltrar en el suelo y convertirse en zonas de recarga hídrica. Como se puede apreciar en la Figura 13, las mayores zonas de recargas se encuentran en los límites de las veredas Cananea, Hato viejo, Chinia y Quebrada blanca con el PNN Chingaza, sobre las quebradas Caquinal, Normandía, Chorroloco, Paramillo, Negra, Salitre y El Gaque, mientras que hacia el casco urbano del municipio de Fómeque existe un valor relativo muy bajo para las zonas de recarga.
Figura 13. Zonas de recarga hídrica disponible.

Fuente: (Galindo & Báez, 2019)

La última salida ráster corresponde a la escorrentía directa, ésta es calculada a partir del número de curva y el número de eventos de lluvia en el mes dentro de la cuenca, por lo que altos valores de número de curva tendrán altos valores en el potencial de escorrentía, y los valores más pequeños en la cuenca significa que en los suelos se tendrán más probabilidades de que se infiltre el agua precipitada, en este sentido se observa en la Figura 14 que los mayores valores de escorrentía directa se presentan sobre las quebradas Caquinal, El Salitre, Blanca, El Gaque y el Río Negro, seguido de las coberturas artificializadas como pastos y mosaicos de pastos y cultivos.
9.2.4 Recreation and tourism (Recreación y turismo).

La economía local del municipio se centra en actividades agropecuarias, sin embargo, gracias a encontrarse dentro del parque, puede tener un potencial de recreación y turismo debido a los valores culturales y paisajísticos de la zona, para ello InVEST elaboró un modelo que determina el número de visitas que se realizan en el área de interés, a través del número de fotografías que se toman en promedio por mes. Este servicio, permite que la comunidad pueda tener otras formas de ingreso económico para mejorar la calidad de vida. Para el caso de la cuenca de río Negro, en la Tabla 19 se muestra que aproximadamente 6 fotos son tomadas en promedio por mes durante los 10 años (Sharp, et al., 2018). Cabe aclarar que este modelo es una estimación del número de visitas.
que se pueden dan en un lugar determinado por mes durante diferentes años, sin embargo, esta información está sujeta a que los turistas suban las fotos a la red conectada con el programa por lo tanto la información presenta puede estar subestimando o sobreestimando el valor real.

En la Tabla 19, se muestra el promedio de fotos tomadas según el reporte del software InVEST en la cuenca del río Negro, en principio el software da como resultado una tabla denominada “Monthly_table” (tabla mensual), en este archivo se lista el número de fotos tomadas por mes desde el año 2005 hasta el 2016, con esta información se procede a realizar un promedio de fotos tomadas por mes como se muestra a continuación, en este sentido se identifica que el mes con mayor número de fotos tomadas fue febrero con un promedio de 10 fotos tomadas.

Tabla 19
Número de visitas registradas en la cuenca del río Negro (2006 y 2016).

<table>
<thead>
<tr>
<th>MES</th>
<th>PROMEDIO DE FOTOS TOMADAS AL MES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE</td>
<td>5.6</td>
</tr>
<tr>
<td>FEB</td>
<td>10.6</td>
</tr>
<tr>
<td>MAR</td>
<td>3.0</td>
</tr>
<tr>
<td>ABR</td>
<td>6.6</td>
</tr>
<tr>
<td>MAY</td>
<td>8.8</td>
</tr>
<tr>
<td>JUN</td>
<td>7.5</td>
</tr>
<tr>
<td>JUL</td>
<td>3.0</td>
</tr>
<tr>
<td>AGO</td>
<td>3.9</td>
</tr>
<tr>
<td>SEP</td>
<td>7.8</td>
</tr>
<tr>
<td>OCT</td>
<td>8.4</td>
</tr>
<tr>
<td>NOV</td>
<td>8.7</td>
</tr>
<tr>
<td>DIC</td>
<td>8.2</td>
</tr>
<tr>
<td>ANUAL</td>
<td>6.83</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019)
10. Análisis de resultados

La relación entre el diagnóstico espacial y participativo de los servicios ecosistémicos es abordada mediante un análisis de similitudes y diferencias, las similitudes están asociadas con las coincidencias que puedan darse entre los dos diagnósticos, y las diferencias como aquellas percepciones que no se asemejan a los resultados del diagnóstico espacial. Cabe aclarar que las afirmaciones que serán presentadas a continuación fueron expresadas por los entrevistados, pero se mantendrá el anonimato de los individuos.

La primera similitud se asocia con el modelo de Habitat Quality, en este se observa que la mayoría de las áreas con mayor calidad de hábitat se encuentran muy cercanas al PNN Chingaza, esto coincide con la siguiente afirmación proveniente del diagnóstico participativo: “Los osos no tienen suficiente tierra allá pues van a empezar a salir, hay superpoblación, perfecto el oso de anteojos lo protegemos está en vía de extinción, ¿y nosotros que le quitamos el monte? La vía de amortiguación es una franjita, la zona de amortiguación del parque debería ser todo el municipio, que podamos convivir con las especies, que seamos sostenibles” y “Esas comunidades, no solamente los alumnos sino las personas que viven en veredas como Chinia, Quebrada blanca, Hato viejo, Cananea y Paval, ellos tienen la capacitación suficiente para el momento en que puedan avistar un oso o una especie que venga del páramo de Chingaza, lo conservemos de tal forma que lo podamos conducir nuevamente hacia las partes altas donde ellos deben estar”, y es que últimamente la comunidad ha venido presenciando avistamiento del Oso en las zonas de amortiguación, que coinciden con las zonas de mayor calidad de hábitat, y con las zonas denominadas como amortiguadoras, con esto se podría afirmar que gracias a que estas zonas tienen una alta calidad de hábitat se puede presentar el avistamiento de fauna propia del lugar, lo que también coindice con lo dicho por este habitante: “Hablando por mi zona, que somos una zona
de amortiguación, ahí el beneficio es que a esta zona no le falta el agua casi que en ninguna época del año”, según el entrevistado, debido a la conservación de las coberturas vegetales aún se mantienen los servicios de regulación derivados de las funciones ecológicas de los bosques, por lo que se infiere que son zonas que permiten la sobrevivencia de especies de fauna y flora, así mismo se afirma que sobre estas zonas de amortiguación se evidencia la presencia de otras especies de fauna como las aves “Algo que también nos motiva, allá en la vereda es la gran cantidad de aves que se pueden observar, la paz que da, ya como beneficio personal y más como psicológico, ese es un beneficio grande”.

Adicionalmente, la comunidad del municipio reconoce que, en las zonas asociadas con las coberturas más intervenidas, la calidad del hábitat se ve comprometida como lo describe este habitante del municipio “Directamente del parque no se saca agua del parque, el ganado lo que si genera es erosión, y desplazamiento de las aves, pero no se capta agua directamente del parque”.

La segunda similitud se asocia con el modelo de Seasonal Water Yield., en la Figura 12 y Figura 14, se muestra que los mayores valores de escorrentía se presentan sobre las coberturas asociadas con poca o ninguna vegetación, las cuales tienden a ubicarse en cercanías a las quebradas, en especial se observa que sobre la quebrada Caquinal que está ubicada al Oeste de la cuenca en la Vereda Cananea y Hato Viejo, esta quebrada es particularmente conocida por que allí se encuentra el acueducto municipal, y con ayuda del modelo se identifica con los valores de escorrentía más altos, esto hace que haya una tendencia a generar erosión hídrica, y por lo tanto, transporte de sedimentos que usualmente causan problemas sobre las redes de acueductos como lo identifica los habitantes del municipio, pues a pesar de la disponibilidad de agua por la presencia del PNN
Chingaza, se presenta escasez debido a problemas con la red del acueducto municipal sobre todo en las épocas de lluvia.

A continuación, se muestran comentarios relacionados con el anterior planteamiento “puedes acercarte a la oficina de servicios públicos y aquí pasan 2 días sin servicio de agua que porque la bocatoma, que porque la quebrada se creció, que porque el río que estamos abasteciendo, pero en sí como tal agua de Chingaza es muy poca la que llega acá, e igual la topografía también porque el páramo queda clavado atrás de la cuesta, entonces es un poco dispendioso” y “en épocas de invierno se nos dificulta porque se nos colapsan las bocatomas, el agua baja con mucho barro, con mucha sedimentación y por supuesto hemos tenido hasta 4 o 5 días en que el municipio no tiene agua y siendo el mayor productor en Colombia de agua potable para grandes centros poblados como los 10 millones de habitantes que estamos atendiendo en este momento”.

La tercera similitud tiene que ver con la disponibilidad de agua; como se observa en la Figura 13, la disponibilidad de agua se presenta hacia las zonas de amortiguación del PNN Chingaza, esto se confirma con lo dicho por los pobladores como se muestra a continuación, “porque allá hay cualquier cantidad de nacederos, eso sí brota el agua allá bendita”, “Acá no se consume el agua de Chingaza, viene de más abajo, de otros nacederos o lagunas”, “El hecho es mejorar pasturas y lo que es loma dejarlo, o sea encerrar lo que uno dice nativos en solo reserva y los nacederos porque la finquita tiene 7 nacederos de agua pequeñitos entonces eso lo motiva mucho a uno a cuidarlo. Si es para conservarlo, para dejarles un día algo a los hijos que ya cayeron en cuenta que, si no hay agua, no hay vida”.

Las anteriores afirmaciones corresponden a personas que se localizan sobre la zona de amortiguación, en esta, como se dijo anteriormente se presenta la mayor disponibilidad de agua, sobre todo en las veredas de Quebrada Blanca, Chinia, Hato viejo y Coasavistá, este resultado
concorda en parte con lo descrito por Ramírez y Romero, (2019), pues en este estudio se identificó que la comunidad de la vereda Quebrada Blanca, Hato viejo y Chinia percibían que su cercanía al Parque influye sobre la cantidad y calidad de agua y por lo tanto se identifica una buena disponibilidad de agua en el territorio, sin embargo en la vereda de Coasavistá y montes muy pocas personas relacionaban la cercanía con la calidad y disponibilidad de agua.

La cuarta y última similitud se asocia con el turismo en el municipio de Fómeque, pues como se muestra en los resultados arrojados se registran muy pocas fotos al mes dentro del municipio, esto quiere decir que a pesar del potencial que tiene el municipio por la cercanía al PNN Chingaza, no se está generando este servicio, de la misma manera lo reconocen algunos habitantes del municipio, los cuales afirman que el turismo que podría generarse en el municipio se pierde por las malas vías de acceso al parque, “El turismo es muy complicado por la carretera”, “En ningún momento hay como una retribución del parque como por decir “No arreglamos la vía que hay hasta el parque para que haya acceso” y que permita de pronto llegada de turistas” y “Los beneficios no han sido así como muy notorios, pues como en el sector de Fómeque no hay vía en buenas condiciones para tener acceso allá, entonces la parte turística se ha perdido”.

Sin embargo, algunos habitantes reconocen que en los últimos años ha aumentado los visitantes en el municipio, y estos visitantes se dirigen hacia el PNN Chingaza con fines recreativos ya sea por ciclismo o senderismo. “Aunque se ha movido también desde el ciclismo, también una movida reciente en la que llevan a la gente, se hacen pues competencias hacían Chingaza y demás pero es muy poco, en realidad no es muy relevante” y “Si han hecho si ciclismo, aquí hay un grupo de ciclistas, ellos han ido al parque más o menos se reúnen 500 personas van hacen ciclismo hasta Chingaza y se devuelven hay veces que también vienen motos aunque hay días en los que no es permitido motos, ellos van hacen la travesía desde Bogotá, Choachí, Fómeque suben a Chingaza
pasan a san Juanito y ahí se van por el calvario o se devuelven”, sin embargo estas visitas no son reconocidas como un beneficio a nivel económico, ya que tienden a ser muy esporádicas.

En cuanto a las diferencias se identifica que en el mapa de la Figura 10, denominado efecto de borde en el carbono forestal, se muestra que las zonas con mayor captura de carbono, se encuentran asociadas a las coberturas más conservadas y en condición de bosque, las cuales a diferencia de los demás modelos, no se presentan sobre la zona de amortiguación, pues si bien estas zonas son de las más conservadas, también cuentan con coberturas de porte menor y temperaturas más bajas, por lo cual la captura de carbono se reduce igualmente; sin embargo, este es un servicio que pocas personas lo identifican o perciben, por lo que se recopilaron muy pocas afirmaciones con respecto a los beneficios del almacenamiento de carbono, además se percibió que la comunidad que respondió afirmativamente a este servicio mostraron algún tipo de duda al momento de responder, o no fue relacionada directamente con la cuenca sino con que es un servicio que solo sucede dentro del PNN Chingaza, como se muestra en las siguientes afirmaciones: “Cuando uno habla de un beneficio es porque hay un requerimiento ¿no?, o sea una necesidad, entonces pues no la hay, el campesino no es fuente tan grande productora de CO2, si le está generando una calidad de aire obviamente, pero tampoco es que esto sea Medellín o una ciudad así tan contaminante. Pero los árboles tienen que capturar y sobretodo porque son bosques primarios”, “Acumulación y secuestro de CO2 sí, los suelos, la vegetación hacen esa captura”, “Me imagino, no lo sé si lo habrán medido, y si se puede medir, pero la fijación de carbono y la generación de oxígeno debe ser una vaina impresionante y tremenda, no sé si alguien lo habrá medido o estimado, pero obviamente es un área, es una cobertura que debe presentar esa función igual que todos los ecosistemas vegetales” y “Seguros todos que el aporte de ese páramo al cambio climático eso efectivamente se da porque el páramo tiene una acumulación de materia orgánica impresionante
y hay mucho carbono ahí fijado”, lo anterior puede ocurrir porque los servicios ecosistémicos y sobre todo la acumulación y secuestro de carbono son temas muy reciente como lo expone Caro & Torres, (2015), debido a que hasta hace menos de 15 años se habla sobre esto, por lo que relacionar la presencia del parque a este tipo de servicios en la cuenca del río Negro, se reduce a habitantes expertos en temas ambientales; adicionalmente, en Colombia los decretos que hablan abiertamente sobre los servicios ecosistémicos reconocibles en el mercado datan de los años 2017 y 2018 (Decreto 870 de 2017 y Decreto 1007 del 2018), por lo que apenas se está abordando estos temas con comunidades locales como la residente en la cuenca del río Negro.

Concordando con Pinke et al (2015) los servicios ecosistémicos en las áreas protegidas identifican la relación entre la comunidad y el área protegida, el autor resalta los recursos paisajísticos y geográficos, los espacios de relajación y para ejercitarse, la mejora en la salud mental, los espacios para la observación de animales y plantas y demás, como servicios claves que pueden encontrarse en estos casos, ligados a la protección de la flora y la fauna del lugar y con la idea de que este tipo de espacios incrementan el sentido de placer, confort y liberan el estrés, lo que coincide totalmente con el diagnóstico participativo, donde de primera mano, son básicamente estos los servicios que más reconocen las personas, el ir a caminar, a cambiar de ambiente, relajarse, ver el paisaje y tener el parque como lugar de entretenimiento y ocio, son algunas de las ideas que más fueron mencionadas por las personas, de igual manera, se observa que este tipo de ideas tienen tendencia a ser nombradas en la parte no deliberada de la encuesta, las personas no necesitan información adicional para reconocer este tipo de beneficios.

Algunos de los beneficios de regulación también son destacados en la opinión de las personas, como son la regulación del agua y de la calidad de aire. En el caso de regulación del agua, inicialmente, no es uno de los más mencionados, las personas lo reconocen cuando se les pregunta
directamente por él, esto debido posiblemente a los problemas de disponibilidad y calidad de agua de los acueductos municipal y veredales y con el agua que toma la empresa de Acueducto y alcantarillado de Bogotá, en muchos casos se evidencia el sentimiento de preocupación o inconformismo con este aspecto pues los entrevistados perciben una mala calidad de agua.

Para el caso de la regulación del aire, se observa una respuesta similar para la entrevista deliberada y no deliberada, este es un beneficio que reconocen por igual, “El parque es un pulmón para nosotros” y lo relacionan con salud mental y física, coincidiendo con Pike, et al (2015) y Laverde (2008) quienes mencionan que estas áreas son consideradas como el pulmón de las ciudades, dándoles la capacidad de favorecer la sobrevivencia de la especie humana; cabe mencionar, una idea importante y es la “regulación del clima”, ya que según Laverde (2008) y FEDEDESARROLLO (2013) también se asocia al páramo con la regulación del clima a nivel local y regional, donde las comunidades evidencian como la transformación del páramo genera variaciones en el clima o en el agua disponible para su consumo, esta opinión también fue encontrada en el presente estudio, la mayoría de las personas reconocían que la trasformación realizada en Chingaza había cambiado el clima en Fómeque haciéndolo más frío, algunas personas lo reconocían como beneficio, relacionándolo a una mayor resiliencia al cambio climático y las sequías, mientras que otros lo reconocían como algo perjudicial debido a que reduce la productividad de sus actividades agropecuarias.

Respecto a los servicios de provisión, la Provisión de agua tiene protagonismo, aunque con diferentes opiniones, algunas personas reconocen que sí toman el agua del PNN Chingaza, otras que no, pero que gracias al parque si se ve este beneficio y otras pocas manifiestan que no, ya que toman el agua de quebradas como la Caquinal o del río Negro, pero no de Chingaza; el segundo beneficio de provisión que más se destacó fue el de Alimento, visualizado como la pesca de trucha
que se permite realizar en jurisdicción del PNN Chingaza a través de permisos, varias personas reconocen que lo practican o conocen a alguien que lo haga; sin embargo, destacan que no son muchas personas del municipio las que lo hacen, pero que éste puede ser un potencial importante para la promoción del turismo, mientras actúa como importante estrategia para reducir el desequilibrio de las funciones ecológicas ocasionado cuando se introdujo esta especie a los cuerpos de agua del municipio (Forigua & Genoy 2015).

Cabe resaltar que las personas tienen clara la categoría de protección del PNN Chingaza, pues a diferencia de lo mencionado por Laverde (2008), donde la comunidad de la cuenca alta del río Teusacá percibe dentro de los servicios de provisión, varias especies vegetales de uso comestible o medicinal, en Fómeque, las personas reconocen la restricción que hay para tomar frutos, leña, fibras o cualquier recurso similar, siendo éstos aprovechados solamente en épocas anteriores a la declaratoria de la reserva, o en zonas de páramo cercanas pero afuera del PNN Chingaza.

Adicionalmente, se habla sobre el papel de estas áreas para garantizar los procesos cíclicos como las migraciones de aves, el ciclo de los nutrientes, el ciclo del agua, entre otros (Pike et al., 2015); sin embargo, para este caso, si bien algunas personas los mencionaron, fue solamente al preguntar directamente por estos beneficios de soporte, que los reconocieron; a diferencia de otros casos, donde se muestra un poco más de manejo sobre el tema, en este caso, se mostraban respuestas más sencillas como: “Si, estos se dan”, o “Si claro”, sin dar mayor explicación sobre el tema, semejante a lo que se menciona previamente con la captura de CO2, donde fueron pocas las ideas relacionadas con este servicio y fueron dadas en su mayoría por personas afines a las ciencias biológicas, las personas reconocen que es normal que se den estos servicios en un ecosistema y por ende en Chingaza, pero no es un beneficio que se reconozca en primera instancia.
Finalmente Pike, et al (2015) afirma que estas áreas proveen beneficios económicos a las comunidades por el turismo rural, lo que genera impactos positivos en el desarrollo de la economía local o regional y que también pueden generar oportunidades para aprender y apreciar la conservación y protección de los ecosistemas y hacer investigación sobre la naturaleza para aprender de ella, sobre todo en las primeras etapas de la infancia donde oler, escuchar y tocar el ambiente natural es fundamental. La primera afirmación tiene cierto conflicto con las opiniones encontradas en el municipio porque, las personas no perciben una mejora en su economía ya que la mayor parte de la actividad turística a Chingaza se desarrolla desde el municipio de La Calera y no desde Fómeque, reconocen que últimamente ha ido incrementando un poco, por ejemplo, en ciclismo, que no representa un impacto fuerte.

De igual manera, se percibe por la comunidad un alto potencial para desarrollar turismo de naturaleza, pero todo esto como una opción de largo plazo; mientras que la segunda afirmación (educación), coincide totalmente con lo mencionado por el autor siendo que Fómeque es un municipio que se preocupa mucho por la educación ambiental, las personas destacan un buen desarrollo de este aspecto en los colegios y escuelas y además en diferentes capacitaciones que se ofertan en municipio: “El solo hecho de hacer parte de un territorio de tanta importancia de biodiversidad hace que el municipio se proyecte como un fortín ambiental importante, entonces eso que nos trae, una proyección a cultivos limpios, una protección de ambiente, una protección encaminada al turismo de naturaleza, eso es como lo que nos puede unir”.

La mayoría de personas destacan que Fómeque, es un municipio educado para la conservación, las personas evidencian cambios en hábitos productivos y conductas y manifiestan que a los niños desde el colegio se les involucra con el PNN Chingaza, finalmente, varios manifiestan el agrado de ser educados de esta manera y de poder tener este vínculo con la naturaleza; sin embargo,
desearían que así como ellos tienen compromiso con esta importante labor de conservar, tuvieran alguna retribución para mejorar condiciones de acueducto y las condiciones de las vías en general, tanto como la que ingresa de Choachi-Fómeque como la que lleva al PNN Chingaza y San Juanito.
11. Conclusiones

- Los Servicios Ecosistémicos que son mayormente percibidos por la comunidad de Fómeque son los servicios Culturales, en especial aquellos relacionados con la Educación Ambiental y con el goce o disfrute del Parque para actividades deportivas, de entretenimiento y de avistamiento; seguido por el servicio de Provisión de agua, en donde se reconoce el papel fundamental del parque como regulador del recurso y de su calidad, pero no siempre se reconoce que la procedencia de este recurso es a través de las redes hídricas provenientes de Chingaza, la comunidad también manifiesta su percepción de abandono de las entidades en este aspecto ya que si bien se obtiene agua de buena calidad por parte del ecosistema, no siempre se goza de este beneficio al momento de tomar el agua como servicio doméstico debido al mal estado del acueducto municipal.

- Los servicios de soporte son los menos percibidos por la comunidad de la cuenca del río Negro, gran parte se debe a la complejidad de este tema y a que este aspecto de los servicios ecosistémicos es muy reciente y en Colombia se ha abordado abiertamente hace un par de años con los decretos 870 del 2017 y 1007 del 2018.

- Los servicios de provisión más identificados por la comunidad ya sea porque se reconocían de forma negativa o positiva hacia el PNN Chingaza fueron el agua y la pesca.

- Para el caso de los servicios de regulación, la comunidad reconoce el papel del PNN Chingaza en la regulación del aire y el agua en el municipio de Fómeque, y como estos servicios se ven alterados por la intervención antrópica, a medida que se aleja del parque y de la zona de amortiguación.

- Los servicios culturales fueron los que más se reconocieron, sobre todo los enfocados en la belleza paisajística, Turismo, Educación ambiental y Mitos y leyendas, de este último
servicio se identificaron resultados similares con los de estudios previos enfocados en el aspecto cultural del municipio de Fómeque afirmaban.

- La herramienta InVEST utilizada para el diagnóstico espacial de los servicios ecosistémicos, permitió tener una aproximación sobre cuatro servicios ecosistémicos, con los cuales se logró identificar que en la zona de amortiguación donde se tienen las coberturas más conservadas, se presenta la mayor disponibilidad de agua, calidad de hábitat y almacenamiento de carbono, mientras que en las zonas más alejadas al PNN Chingaza, sobre las cuales se presenta la mayor intervención antrópica se tienen pocos valores sobre estos servicios, por lo tanto serán poco reconocidos por la comunidad de esta área.

- A nivel general se identificó que las personas que viven sobre la zona de amortiguación percibían más los servicios asociados con el diagnóstico espacial, que las personas que residían exclusivamente en el casco urbano, adicionalmente, se encontraron más similitudes entre el diagnóstico espacial y participativo, que diferencias.

12. **Recomendaciones**

- Se recomienda que en próximos estudios enfocados en el uso de la herramienta InVEST, se profunde en adquirir la información primaria para ser ingresada al software, de esta manera se tendrá una aproximación más real al estado de los servicios ecosistémicos, ya que para el caso del estudio se tuvieron inconvenientes al momento de adquirir información primaria sobre algunos datos requeridos.

- Se recomienda a las instituciones ambientales y educativas interesadas en la educación ambiental de los habitantes de la cuenca del río Negro, enfocarse en mantener el conocimiento cultural y ancestral de la comunidad ligada al PNN Chingaza ya que varias personas manifestaron que se está perdiendo este conocimiento en las nuevas generaciones,
adicionalmente profundizar en los beneficios ambientales que le trae la cercanía a un área protegida.

- Las entidades ambientales y administrativas deben enfocar sus esfuerzos en recuperar la confianza con la comunidad, la cual se perdió tras la declaratoria del parque, y se ha afianzado con los problemas sobre el acceso al recurso hídrico de calidad.

- Es importante realizar estudios sociales que involucren las diferentes generaciones de la población de Fómeque, fue posible percibir que las anteriores generaciones presentaban mayor tensión y opiniones más fuertes sobre el tema de la declaratoria del área protegida, algunas personas sienten que se dio cierta vulneración del territorio y una ruptura en la relación con Chingaza, mientras que las nuevas generaciones muestran opiniones más optimistas sobre lo que representa esta reserva para el municipio, por lo cual se hace fundamental reconciliar estas relaciones de las personas con el parque y con las entidades administrativas para la futura ejecución de proyectos que garanticen alternativas de manejo sostenible en la Cuenca del Río Negro.
13. Anexos

Anexo 1.

Formato de Encuesta del Diagnóstico Participativo

<table>
<thead>
<tr>
<th>Fecha:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre:</td>
</tr>
<tr>
<td>Género: M F</td>
</tr>
<tr>
<td>Edad: 18-20 20-30 30-40 40-50 50-60 60-70 80-90 90-100</td>
</tr>
<tr>
<td>Nacido en: Fómeque Otro, ¿Cuál?</td>
</tr>
<tr>
<td>Otro lugar</td>
</tr>
<tr>
<td>¿Conoce el Parque Nacional Natural Chingaza? Si No</td>
</tr>
<tr>
<td>Si la respondió "Otro", ¿En qué parte vive en Fómeque?</td>
</tr>
<tr>
<td>Si la respuesta anterior es "Sí", ¿Cuántos sitios ha visitado del parque?</td>
</tr>
<tr>
<td>Cónyuge Si No</td>
</tr>
<tr>
<td>Hijos Si No</td>
</tr>
<tr>
<td>Si, ¿Cuántos? 1 2 3 4 5 6</td>
</tr>
<tr>
<td>Grado de escolaridad</td>
</tr>
<tr>
<td>Preescolar</td>
</tr>
<tr>
<td>Primaria Incompleta</td>
</tr>
<tr>
<td>Primaria completa</td>
</tr>
<tr>
<td>Secundaria incompleta</td>
</tr>
<tr>
<td>Secundaria completa</td>
</tr>
<tr>
<td>Superior incompleta</td>
</tr>
<tr>
<td>Superior Completa</td>
</tr>
<tr>
<td>Edad: 18-20 20-30 30-40 40-50 50-60 60-70 80-90 90-100</td>
</tr>
<tr>
<td>Cónyuge</td>
</tr>
<tr>
<td>Hijo 1</td>
</tr>
<tr>
<td>Hijo 2</td>
</tr>
<tr>
<td>Hijo 3</td>
</tr>
<tr>
<td>Hijo 4</td>
</tr>
<tr>
<td>¿Conoce el Parque Nacional Natural Chingaza? Si No</td>
</tr>
<tr>
<td>Si la respuesta anterior es "Sí", ¿Cuántos sitios ha visitado del parque?</td>
</tr>
</tbody>
</table>

¿Qué conocimiento tiene sobre los beneficios que se obtienen del Parque Nacional Natural Chingaza?

Teniendo en cuenta que se pueden clasificar los Servicios Ecosistemáticos en cuatro categorías: Provisión, Regulación, Culturales y de Soporte, ¿Cuáles se obtienen debido a la cobertura del PNN Chingaza? (EEM, 2005; CICE en Noet et al, 2017)

<table>
<thead>
<tr>
<th>Número de encuesta</th>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimento/Cultivos</td>
<td></td>
</tr>
<tr>
<td>Alimento/Ganado</td>
<td></td>
</tr>
<tr>
<td>Alimento/Pesca artesanal</td>
<td></td>
</tr>
<tr>
<td>Alimento/Pesca de cultivo</td>
<td></td>
</tr>
<tr>
<td>Alimento/plantas silvestres y animales</td>
<td></td>
</tr>
<tr>
<td>Fibras/Leyva</td>
<td></td>
</tr>
<tr>
<td>Fibras/Algodón, Cañamo, Seda</td>
<td></td>
</tr>
<tr>
<td>Fibras/Madera</td>
<td></td>
</tr>
<tr>
<td>Materiales de plantas, algas y animales para el uso agrícola</td>
<td></td>
</tr>
<tr>
<td>Materiales de plantas, algas y animales para el uso agrícola</td>
<td></td>
</tr>
<tr>
<td>Agua subterránea para consumo</td>
<td></td>
</tr>
<tr>
<td>Agua superficial para consumo</td>
<td></td>
</tr>
<tr>
<td>Agua subterránea para no consumo</td>
<td></td>
</tr>
<tr>
<td>Agua superficial para no consumo</td>
<td></td>
</tr>
<tr>
<td>Recursos derivados de animales</td>
<td></td>
</tr>
</tbody>
</table>
Regulación: Beneficios obtenidos gracias a la regulación de procesos ecosistémicos (Calidad de aire, purificación del agua...)

| Número de encuesta | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|--------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| Regulación de la calidad del aire | | | | | | | | | | | | | | | | | |
| Regulación del clima/Global | | | | | | | | | | | | | | | | | |
| Regulación del clima/Regional y local | | | | | | | | | | | | | | | | | |
| Regulación de agua | | | | | | | | | | | | | | | | | |
| Regulación de la erosión | | | | | | | | | | | | | | | | | |
| Regulación de enfermedades | | | | | | | | | | | | | | | | | |
| Purificación del agua y tratamiento de desechos | | | | | | | | | | | | | | | | | |
| Regulación de plagas | | | | | | | | | | | | | | | | | |
| Polinización | | | | | | | | | | | | | | | | | |
| Regulación de los peligros naturales | | | | | | | | | | | | | | | | | |
| Biorremediación por microorganismos, algas, plantas y animales | | | | | | | | | | | | | | | | | |
| Filtración, secuestro, almacenamiento y acumulación por ecosistemas | | | | | | | | | | | | | | | | | |
| Meditación de olores, ruidos o | | | | | | | | | | | | | | | | | |
| Mantenimiento del flujo del agua | | | | | | | | | | | | | | | | | |
| Protección de inundaciones | | | | | | | | | | | | | | | | | |
| Protección de tormentas | | | | | | | | | | | | | | | | | |

Culturales: No materiales (recreación, paisaje, valores culturales hereditarios...)

<table>
<thead>
<tr>
<th>Número de encuesta</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversidad cultural</td>
<td></td>
</tr>
<tr>
<td>Valores espirituales y religiosos</td>
<td></td>
</tr>
<tr>
<td>Conocimientos del sistema</td>
<td></td>
</tr>
<tr>
<td>Valores de educación</td>
<td></td>
</tr>
<tr>
<td>Inspiración</td>
<td></td>
</tr>
<tr>
<td>Valores estéticos</td>
<td></td>
</tr>
<tr>
<td>Relaciones sociales</td>
<td></td>
</tr>
<tr>
<td>Sentido del espacio</td>
<td></td>
</tr>
<tr>
<td>Valores culturales hereditarios</td>
<td></td>
</tr>
<tr>
<td>Recreación y ecoturismo</td>
<td></td>
</tr>
<tr>
<td>Uso experimental con plantas, animales y tierra</td>
<td></td>
</tr>
<tr>
<td>Entretenimiento</td>
<td></td>
</tr>
<tr>
<td>Científicos</td>
<td></td>
</tr>
<tr>
<td>Simbólicos</td>
<td></td>
</tr>
<tr>
<td>Existencia</td>
<td></td>
</tr>
<tr>
<td>Valor de legado</td>
<td></td>
</tr>
</tbody>
</table>

Soporte: Aquellos procesos necesarios para que se den los demás servicios (ciclos de nutrientes y agua, fotosíntesis ...)

<table>
<thead>
<tr>
<th>Número de encuesta</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formación del suelo</td>
<td></td>
</tr>
<tr>
<td>Fotosíntesis</td>
<td></td>
</tr>
<tr>
<td>Producción primaria</td>
<td></td>
</tr>
<tr>
<td>Ciclo de los nutrientes</td>
<td></td>
</tr>
<tr>
<td>Ciclo del agua</td>
<td></td>
</tr>
</tbody>
</table>

Anotaciones:

Fuente: Galindo & Báez, 2019
Anexo 2.

Lista de Servicios Ecosistémicos Expuestos a la Comunidad para la Deliberación.

<table>
<thead>
<tr>
<th>Provision</th>
<th>Regulación</th>
<th>Cultural</th>
<th>Soporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimento y agua</td>
<td>Regulación de la calidad del agua</td>
<td>Diversidad cultural</td>
<td>Formación del suelo</td>
</tr>
<tr>
<td>Alimentos</td>
<td>Regulación del clima local</td>
<td>Valores espaciales y religiosos</td>
<td>Producción de bienes</td>
</tr>
<tr>
<td>Alimentos</td>
<td>Regulación del clima regional/local</td>
<td>Consecuencias del cambio climático</td>
<td>Producción de bienes</td>
</tr>
<tr>
<td>Alimentos</td>
<td>Regulación de agua</td>
<td>Valores de educación</td>
<td>Ciclo de los nutrientes</td>
</tr>
<tr>
<td>Alimentos</td>
<td>Regulación de la escasez</td>
<td>Inspección</td>
<td>Ciclo del agua</td>
</tr>
<tr>
<td>Fibra/nitrógeno</td>
<td>Regulación de la tierra</td>
<td>Valores económicos</td>
<td>Protección ambiental</td>
</tr>
<tr>
<td>Fibra/nitrógeno</td>
<td>Regulación de la escasez</td>
<td>Diversidad de especies</td>
<td>Protección ambiental</td>
</tr>
<tr>
<td>Procesos</td>
<td>Regulación de la tierra</td>
<td>Diversidad de especies</td>
<td>Producción de bienes</td>
</tr>
<tr>
<td>Recursos</td>
<td>Regulación de la escasez</td>
<td>Diversidad de especies</td>
<td>Producción de bienes</td>
</tr>
<tr>
<td>Procesos</td>
<td>Regulación de la tierra</td>
<td>Diversidad de especies</td>
<td>Producción de bienes</td>
</tr>
<tr>
<td>Procesos</td>
<td>Regulación de la escasez</td>
<td>Diversidad de especies</td>
<td>Producción de bienes</td>
</tr>
<tr>
<td>Procesos</td>
<td>Regulación de la escasez</td>
<td>Diversidad de especies</td>
<td>Producción de bienes</td>
</tr>
</tbody>
</table>

Fuente: (Galindo & Báez, 2019) Modificado de: (EEM, 2005 & CICES en La-Notte et al, 2017)

Anexo 3.

Encuesta sobre la calidad de hábitat en la cuenca del río Negro. Modelo Habitat Quality

Información previa.

1. **InVEST**

La universidad de Stanford a través de Natural Capital Project desarrolló un software libre (InVEST) que permite visualizar los servicios ecosistémicos. Uno de estos servicios es Habitat Quality.

2. **Habitat Quality – Calidad de hábitat**

Este modelo es diseñado a partir del impacto relativo de amenazas a los hábitats presentes en el área de estudio, la sensibilidad relativa de cada tipo de hábitat a cada amenaza, la distancia entre hábitat y fuentes de las amenazas y el grado al cual la tierra es legalmente protegida (Sharp, et al., 2018). Para ello se debe contar con un mapa de uso y cobertura de la tierra denominado por sus siglas en inglés (LU/LC), e información sobre amenazas presentes dentro del área de estudio con el fin de identificar el grado de sensibilidad de las coberturas hacia las amenazas y el grado de calidad de estas.
<table>
<thead>
<tr>
<th>Etiqueta</th>
<th>Nombre de la unidad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.</td>
<td>Tejido urbano continuo</td>
<td>Espacios conformados por edificaciones y aquellos continuos a la infraestructura. Las edificaciones, vías y superficies cubiertas artificialmente cubren más de 80% del terreno. La vegetación y el suelo desnudo representan una baja proporción. Zonas de Casco Urbano y zonas suburbanas</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Zonas industriales o comerciales</td>
<td>Áreas cubiertas por infraestructura artificial (terrenos cimentados, alquitranados, asfaltados o estabilizados), sin presencia de áreas verdes dominantes, las cuales se utilizan también para actividades comerciales o industriales. Asociados a viveros, granjas avícolas y todo tipo de construcciones relacionadas a la industria, desarrollo económico.</td>
</tr>
<tr>
<td>2.3.1.</td>
<td>Pastos limpios</td>
<td>Ocupados por pastos limpios con un porcentaje mayor a 70%; la realización de prácticas de manejo (limpieza, encalamiento y/o fertilización, etc.) y el nivel tecnológico utilizado impiden el desarrollo de otras coberturas. Relacionado a ganadería, en esta unidad la mayoría del paisaje es de pastos, pueden verse otro tipo de coberturas, pero muy reducidas</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Mosaico de pastos y cultivos</td>
<td>Tierras ocupadas por pastos y cultivos, con tamaños de parcelas muy pequeños (inferior a 1,6 ha) y el patrón de distribución de los lotes es demasiado intrincado para representarlos cartográficamente de manera individual. Para este caso, los cultivos y los pastos pueden estar mezclados, o por unidades pequeñas y continuas por lo que no vale la pena dividirlas cada una.</td>
</tr>
<tr>
<td>2.4.3.</td>
<td>Mosaico de pastos y cultivos y espacios naturales</td>
<td>Las áreas de cultivos y pastos ocupan entre 30% y 70% de la superficie total. Los espacios naturales están conformados por las áreas ocupadas por relictos de bosque natural, o bosque de galería y riparios. Muy similar a la anterior, solo que se relaciona también cobertura vegetal, pueden ser parches de bosque o el bosque que se encuentra junto a los ríos, de igual manera, son unidades no muy grandes por lo cual no se clasifican por separado.</td>
</tr>
<tr>
<td>2.4.4.</td>
<td>Mosaico de pastos con espacios naturales</td>
<td>Las coberturas de pastos representan entre 30% y 70% de la superficie total. Los espacios naturales están conformados por las áreas ocupadas por relictos de bosque natural, o bosque de galería y riparios. Se observan como parcelas pequeñas de pastos para ganadería, en combinación con pequeñas áreas de bosque alto andino o de galería</td>
</tr>
<tr>
<td>Etiqueta</td>
<td>Nombre de la unidad</td>
<td>Descripción</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Bosque denso</td>
<td>Corresponde a las áreas con vegetación de tipo arbóreo cuya área de representa más de 70% del área total de la unidad. Áreas de bosque andino, con poco a ninguna intervención de la comunidad, Se pueden ver especies como Arrayán, Garrocho, Mortiño, Robles, Nogales, Pino Romerón, Aliso, Cedros, Gaques, Palmas, Tomatillo, Borrachero</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Bosque fragmentado</td>
<td>Comprende los territorios cubiertos por bosques naturales y donde, aunque se ha presentado intervención humana, el bosque mantiene su estructura original. Áreas de bosque con pequeños parches al interior que están sin vegetación. Claros dentro del bosque</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Arbustal</td>
<td>Cobertura constituida por una comunidad vegetal, los cuales forman un dosel irregular, el cual representa más de 70% del área total de la unidad. La unidad puede contener elementos arbóreos dispersos. Vegetación con una altura menor a 5 metros, dentro de la zona andina se pueden ver especies como el mortiño, el romero, el tuno, la uva camarona, el cordoncillo, retamo entre otras</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Herbazal</td>
<td>Corresponde a una cobertura natural constituida por un herbazal, donde existe poca o ninguna presencia de elementos arbóreos. Se localizan principalmente en áreas con limitaciones de suelos y de clima, como la altillanura de la Orinoquía, y las zonas de páramo y subpáramo de la alta montaña. Vegetación con una altura menor a 1,5 metros, se conocen con pajonales, por la presencia de la especie Paja Blanca</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Vegetación secundaria</td>
<td>Son aquellas áreas cubiertas por vegetación principalmente arbustiva y herbácea con dosel irregular y presencia ocasional de árboles y enredaderas, que corresponde a los estadios iniciales de la sucesión vegetal después de presentarse un proceso de deforestación de los bosques. Se pueden observar especies de bajo porte como Aliso, Arboloco, uva de anís, Encenillo, Chupamieles entre otros</td>
</tr>
</tbody>
</table>

Fuente: (Corredor, et al., 2014)
Encuesta

Procedimiento:

Primera parte

En primer lugar, se debe identificar la calidad de hábitat de la cobertura en un rango de 0 a 10, de tal manera que valores de 10 indican coberturas que por su condición permiten albergar especies exitosamente, y 0 a las coberturas donde la sobrevivencia de las especies es muy baja.

En segundo lugar, se debe identificar la sensibilidad que tiene cada cobertura a las amenazas, en un rango de 0 a 10, donde diez es alta sensibilidad y cero bajas.

<table>
<thead>
<tr>
<th>Cobertura de tierra</th>
<th>Hábitat</th>
<th>Amenazas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cultivos</td>
<td>Ganadería</td>
</tr>
<tr>
<td>Arbustal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque denso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosque fragmentado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbazal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosaico de cultivos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosaico de pastos con espacios naturales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosaico de pastos y cultivos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastos limpios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tejido urbano continuo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetación secundaria o en transición</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonas industriales o comerciales</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Segunda parte

Ahora, identificar el peso que tiene cada amenaza con respecto a las demás amenazas en cualquier valor de 0 a 10. Ejemplo: Si desea asignar a “Urbanización” un valor de 10 y a “Vías” un valor de 5, quiere decir que usted considera que la amenaza Urbanización afecta el doble que la amenaza de vías.
<table>
<thead>
<tr>
<th>Amenazas</th>
<th>Peso de la amenaza con respecto a las otras amenazas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos</td>
<td></td>
</tr>
<tr>
<td>Ganadería</td>
<td></td>
</tr>
<tr>
<td>Urbanización</td>
<td></td>
</tr>
<tr>
<td>Vías</td>
<td></td>
</tr>
</tbody>
</table>

¿Cuánto puede afectar una amenaza? Teniendo en cuenta que, al aumentar la distancia desde la amenaza, su impacto se va reduciendo (hay una menor degradación ejercida por la amenaza sobre el hábitat) pero existe, cuál es la **máxima distancia** a la cual una amenaza genera afectación sobre los hábitats. (Distancia de influencia en Km)

<table>
<thead>
<tr>
<th>Amenazas</th>
<th>Máxima distancia de afectación (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos</td>
<td></td>
</tr>
<tr>
<td>Ganadería</td>
<td></td>
</tr>
<tr>
<td>Urbanización</td>
<td></td>
</tr>
<tr>
<td>Vías</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Galindo & Báez, 2019

Anexo 4.

Ampliación de mapas desarrollados en modelo InVEST

Fuente: Galindo & Báez, 2019
Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Mapa de Habitat Quality (InVEST)

Proyeccion: Transversal Mercator
DATUM: MAGNA SIRGAS
ORIGEN: Bogota
Coordenadas Planas: 1'000.000 Metros Este
1'000.000 Metros Norte
Coordenadas Geograficas: 4°35’46.3215’’ Lat Norte
74°04’39.0285’’ Lat Oeste

Fuente: Datos abiertos del IGAC 2017

Autor:
Laura Ximena Galindo Limas
Laura Katherine Baez Ardila

Convenciones
- Río Negro
- Casco urbano
- PNNChingaza
- Cuenca Río Negro

Leyenda
Calidad de habitat
Value

High : 1
Low : 0
Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Mapa de Forest Carbon Edge Effect (InVEST)

Proyección: Transversal Mercator
DATUM: MAGNA SIRGAS
ORIGEN: Bogota
Coordenadas Planas:
1'000.000 Metros Este
1'000.000 Metros Norte
Coordenadas Geográficas:
4°35’46.3215” Lat Norte
74°04’39.0285” Lat Oeste

Autor:
Laura Ximena Galindo Limas
Laura Katherine Baez Ardila

Convenciones
- Río_negro
- Casco_urbano
- PNNChingaza
- Cuenca Río Negro

Fuente: Datos abiertos del IGAC 2017
https://geoportal.igac.gov.co/es/

Leyenda
Mapa de carbono (Mg/pixel)
Value
- High : 33.5907
- Low : 0
Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Mapa de Seasonal Water Yield (InVEST)

Fuente: Datos abiertos del IGAC 2017
https://geoportal.igac.gov.co/es/

Autor:
Laura Ximena Galindo Limas
Laura Katherine Baez Ardila

Convenciones
- Drenaje_sencillo
- Casco_urbano
- PNNChingaza
- Cuenca Río Negro

Leyenda
Flujo base
Value
- High
- Low
Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Mapa de Seasonal Water Yield (InVEST)

Fuente: Datos abiertos del IGAC 2017
https://geoportal.igac.gov.co/es/

Autor:
Laura Ximena Galindo Limas
Laura Katherine Baez Ardila

Convenciones
- Drenaje sencillo
- Casco urbano
- PNNChingaza
- Cuenca Río Negro

Leyenda
Numero de curva
Value
- High : 86
- Low : 30
Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Mapa de Seasonal Water Yield (InVEST)

Proyección: Transversal Mercator
DATUM: MAGNA SIRGAS
ORIGEN: Bogotá
Coordenadas Planas:
1’000.000 Metros Este
1’000.000 Metros Norte
Coordenadas Geográficas:
4°35’46.3215” Lat Norte
74°04’39.0285” Lat Oeste

Autor:
Laura Ximena Galindo Limas
Laura Katherine Baez Ardila

Fuente: Datos abiertos del IGAC 2017
https://geoportal.igac.gov.co/es/

Convenciones
- Drenaje_sencillo
- Casco_urbano
- PNNChingaza
- Cuenca Río Negro

Leyenda
Zonas de recarga hídrica disponible
Value

- High
- Low
Diagnóstico de los Servicios Ecosistémicos que Provee el Parque Nacional Natural Chingaza en la Cuenca del Río Negro (Fómeque-Cundinamarca)

Mapa de Seasonal Water Yield (InVEST)

Proyeccion: Transversal Mercator
DATUM: MAGNA SIRGAS
ORIGEN: Bogota
Coordenadas Planas:
1’000.000 Metros Este
1’000.000 Metros Norte
Coordenadas Geográficas:
4°35’46.3215” Lat Norte
74°04’39.0285” Lat Oeste

Autor:
Laura Ximena Galindo Limas
Laura Katherine Baez Ardila

Fuente: Datos abiertos del IGAC 2017
https://geoportal.igac.gov.co/es/

Convenciones
- Drenaje sencillo
- Casco urbano
- PNNChingaza
- Cuenca Río Negro

Leyenda
Escorrentía directa

Value
- High : 1256
- Low : 0
14. Bibliografía

escala 1:25000 (Metodología Corine Land Cover adaptada para Colombia). Bogotá D.C.: IDEAM, IAVH.

conceptuales y metodológicos (151 pp ed.). Bogotá, D.C. Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Obtenido de http://repository.udistrital.edu.co/bitstream/11349/6183/12/TorresSuanchaJennifferSof%C3%ADa2017.pdf

