PLANTEAMIENTO DE LAS OBRAS DE RENOVACIÓN DE LOS JARILLONES QUE SE ENCUENTRAN EN ESTADO CRÍTICO EN LOS CUERPOS DE AGUA DE LA CIUDAD DE BOGOTÁ D.C.

Autores
Sarin Merary Díaz Pulido - Cod: 20182197097
Carlos Alberto Español Mariño - Cod: 20182197087

Tutor
José Anselmo Quintero Ávila

Universidad Distrital Francisco José De Caldas
Especialización en Gestión de Proyectos de Ingeniería
Facultad de Ingeniería
Bogotá, Colombia
julio de 2019
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLA DE ILUSTRACIONES</td>
<td>5</td>
</tr>
<tr>
<td>CONTENIDO DE TABLAS</td>
<td>6</td>
</tr>
<tr>
<td>Resumen</td>
<td>7</td>
</tr>
<tr>
<td>Palabras Clave</td>
<td>7</td>
</tr>
<tr>
<td>Introducción</td>
<td>8</td>
</tr>
<tr>
<td>1. CONTEXTO e identificación DEL PROYECTO</td>
<td>9</td>
</tr>
<tr>
<td>1.1. Identificación de la Situación Problémica</td>
<td>9</td>
</tr>
<tr>
<td>1.1.1. Justificación</td>
<td>9</td>
</tr>
<tr>
<td>1.1.2. Diagnóstico del sector</td>
<td>9</td>
</tr>
<tr>
<td>1.1.3. Metodología del Marco Lógico</td>
<td>10</td>
</tr>
<tr>
<td>1.1.4. Diagnostico sectorial Nacional</td>
<td>11</td>
</tr>
<tr>
<td>1.1.5. Diagnostico sectorial Internacional</td>
<td>15</td>
</tr>
<tr>
<td>1.2. Objetivos</td>
<td>16</td>
</tr>
<tr>
<td>1.2.1. Objetivo Principal</td>
<td>16</td>
</tr>
<tr>
<td>1.2.2. Objetivos Específicos</td>
<td>16</td>
</tr>
<tr>
<td>2. ANÁLISIS DEL MERCADO</td>
<td>16</td>
</tr>
<tr>
<td>2.1. Análisis de encuestas</td>
<td>16</td>
</tr>
<tr>
<td>▪ Demanda</td>
<td>17</td>
</tr>
<tr>
<td>- Demanda cualitativa</td>
<td>17</td>
</tr>
<tr>
<td>- Demanda cuantitativa</td>
<td>19</td>
</tr>
<tr>
<td>▪ Oferta</td>
<td>21</td>
</tr>
<tr>
<td>- Oferta cualitativa</td>
<td>21</td>
</tr>
<tr>
<td>- Oferta cuantitativa</td>
<td>22</td>
</tr>
<tr>
<td>▪ Demanda Potencial Cualitiva</td>
<td>24</td>
</tr>
</tbody>
</table>
Demanda Potencial Cuantitativa ... 25
Canales de comercio .. 29
Estrategias de Mercado ... 31
2.2. Ciclo de vida del producto .. 32
3. PLANIFICACIÓN DEL PROYECTO .. 33
3.1 Alcance ... 33
3.2 Elementos de entrada PARA LA PLANIFICACIÓN DEL PROYECTO 33
3.3 Objetivos de la calidad .. 34
3.4 EVALUACIÓN DE RIESGOS ... 34
3.5 Plan de acción .. 35
3.6 Política De Calidad .. 44
4. INGENIERIA DEL PROYECTO ... 45
4.1 DISEÑO DEL PRODUCTO ... 47
4.2 DISEÑO DEL PROCESO ... 48
 4.2.1 Plan de desarrollo por áreas ... 49
4.3 PROCESO CONTRACTIVO .. 51
 4.3.1 Proceso constructivo Jarillones – Uso de suelo natural 52
4.4 DIMENSIONAMIENTO DEL SISTEMA OPERATIVO 55
 4.4.1 Análisis de capacidades ... 55
 4.4.2 Plan de operación .. 58
 4.4.3 Análisis de Impacto Ambiental .. 58
5. ESTUDIO ADMINISTRATIVO ... 60
5.1 Nombre de la Empresa .. 60
5.2 Misión .. 60
5.3 Visión ... 60
5.4 Organigrama .. 60
5.5 Perfiles de los cargos .. 61
5.6 Cálculo de recursos para trabajar por proyectos 66
TABLA DE ILUSTRACIONES

Ilustración 1. Identificación de la situación problema .. 10
Ilustración 2. Árbol del Problema. Marco Lógico ... 10
Ilustración 3. Árbol de objetivos. Marco lógico .. 10
Ilustración 4. Estructura analítica del proyecto. Marco lógico ... 11
Ilustración 8. Cuerpos de agua, Zona 5 de la EAAB-ESP ... 26
Ilustración 9. Cuerpos de agua de la ciudad de Bogotá D.C ... 27
Ilustración 11. Pronostico Contratación (2019-2023) .. 29
Ilustración 12. Ciclo de vida del producto .. 32
Ilustración 13. Análisis de variables para el diseño del producto .. 46
Ilustración 14. Diseño del proceso de prestación del servicio .. 49
Ilustración 15. Preparación del terreno .. 52
Ilustración 16. Pilotes de madera .. 52
Ilustración 17. Trincheras de anclaje .. 53
Ilustración 18. Extensión de la Geocelda .. 53
Ilustración 19. Grapas de anclaje ... 53
Ilustración 20. Llenado de trincheras .. 54
Ilustración 21. Riego permanente ... 55
Ilustración 22. Dimensionamiento del sistema operativo (Para un contrato promedio). Duración: 6 meses ... 57
Ilustración 23. Organigrama Empresarial .. 61
Ilustración 24. Distribución espacial oficina requerida ... 68
Ilustración 25. Proyección IPC 2007-2023 ... 72
Ilustración 26. Comportamiento de los precios a 5 años ... 73
<table>
<thead>
<tr>
<th>Tabla 1. Datos históricos de inundaciones en las principales ciudades de Colombia, Periodo 1980-2010.</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 2. Estrategias y cantidades de Kilómetros intervenidos en los diferentes cuerpos de agua de Bogotá.</td>
<td>15</td>
</tr>
<tr>
<td>Tabla 3. Partes interesadas del proyecto para la Demanda</td>
<td>17</td>
</tr>
<tr>
<td>Tabla 4. Análisis respuestas encuestas para la Demanda</td>
<td>18</td>
</tr>
<tr>
<td>Tabla 5. Clasificación según criterio de confiabilidad: Bueno: 3, Medio: 2, Malo: 1</td>
<td>18</td>
</tr>
<tr>
<td>Tabla 6. Análisis respuestas encuestas para la Demanda Cualitativa</td>
<td>19</td>
</tr>
<tr>
<td>Tabla 7. Tabulación histórico últimos 20 años de contratación y precipitación</td>
<td>20</td>
</tr>
<tr>
<td>Tabla 8. Análisis respuestas encuestas para la Oferta Cualitativa</td>
<td>22</td>
</tr>
<tr>
<td>Tabla 9. Análisis respuestas encuestas para la Oferta Cuantitativa</td>
<td>23</td>
</tr>
<tr>
<td>Tabla 10. Análisis respuestas encuestas para la Demanda Potencial Cualitativa</td>
<td>24</td>
</tr>
<tr>
<td>Tabla 12. Proyección Licitaciones EAAB-ESP y licitaciones ganadas</td>
<td>28</td>
</tr>
<tr>
<td>Tabla 13. Análisis respuestas encuestas para los Canales de Comercio</td>
<td>30</td>
</tr>
<tr>
<td>Tabla 14. Análisis respuestas encuestas para las Estrategias de Mercado</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 15. Análisis de variables (Empresa VS Competencia)</td>
<td>45</td>
</tr>
<tr>
<td>Tabla 16. Ficha técnica del servicio</td>
<td>48</td>
</tr>
<tr>
<td>Tabla 17. Plan de Desarrollo por Áreas (Análisis de variables)</td>
<td>51</td>
</tr>
<tr>
<td>Tabla 18. Distribución de anclajes</td>
<td>54</td>
</tr>
<tr>
<td>Tabla 19. Cantidad personal por cargos para 5 años</td>
<td>56</td>
</tr>
<tr>
<td>Tabla 20. Análisis Impacto Ambiental</td>
<td>59</td>
</tr>
<tr>
<td>Tabla 21. Roles y funciones de los cargos requeridos</td>
<td>65</td>
</tr>
<tr>
<td>Tabla 22. Cálculo de recursos (S. Administrativo)</td>
<td>66</td>
</tr>
<tr>
<td>Tabla 23. Área física por departamento</td>
<td>67</td>
</tr>
<tr>
<td>Tabla 24. Precios por actividades del proyecto</td>
<td>69</td>
</tr>
<tr>
<td>Tabla 25. Costos Indirectos Personal</td>
<td>70</td>
</tr>
<tr>
<td>Tabla 26. Costos Indirectos administrativos</td>
<td>70</td>
</tr>
<tr>
<td>Tabla 27. Costos de Inversión</td>
<td>71</td>
</tr>
<tr>
<td>Tabla 28. Proyección valores de contratos a ejecutar</td>
<td>73</td>
</tr>
<tr>
<td>Tabla 29. Flujo de Fondos a 5 años</td>
<td>74</td>
</tr>
<tr>
<td>Tabla 30. Indicadores económicos</td>
<td>75</td>
</tr>
<tr>
<td>Tabla 31. Punto de Equilibrio Ventas</td>
<td>75</td>
</tr>
</tbody>
</table>
RESUMEN

Debido a las alteraciones de los últimos fenómenos hidrológicos derivados del calentamiento global (fenómenos de La Niña y de El Niño), se ha evidenciado temporadas inviernales con altas precipitaciones recurrentes, generando lluvias con intensidades y duraciones cada vez mayores, las cuales posteriormente alteran las condiciones normales del suelo, produciendo al cabo del tiempo la socavación de los mismos.

Actualmente las comunidades que habitan en las zonas de ronda hidráulica de los cuerpos de agua de la ciudad de Bogotá, se encuentran en un alto riesgo por inundación, en términos de afectación a sus bienes materiales, la salud y la vida, como consecuencia del mal estado o deterioro en el cual se encuentran las estructuras de contención, o debido a una eventualidad hidrológica que pueda ocurrir durante el corto, mediano o largo plazo, que pueda generar un rompimiento parcial o total en estas estructuras, afectando de esta manera la calidad de vida de la comunidad.

Por este motivo, este trabajo plantea el proceso constructivo más viable para la renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá, desde el punto de vista técnico, operativo, ambiental y económico.

PALABRAS CLAVE

Jarillón, Cuerpo de agua, Renovación, Riesgo, Ronda hidráulica
INTRODUCCIÓN

Actualmente, la unión de múltiples factores climáticos, ambientales y socioculturales genera una situación problemática, toda vez que los jarillones de los ríos o canales no puedan contener el volumen de agua transportado, causando desbordamientos e inundaciones en la población que habita en las zonas aledañas a los cuerpos de agua. Por ello, es necesario plantear una solución que cumpla con los requerimientos técnicos, ambientales, sociales y financieros a fin de tomar medidas frente a la problemática expuesta, lo cual consiste en la renovación de los jarillones existentes, teniendo en cuenta el análisis técnico de su cimentación, desempeño, eficacia y eficiencia para la contención del cuerpo de agua.

Los impactos analizados se ven reflejados en hechos como los ocurridos en junio del año 2018, en donde gran parte de la población del barrio José Antonio Galán de la Localidad de Bosa en la ciudad de Bogotá D.C., sufrió graves afectaciones sociales y económicas, producto del desbordamiento del Río Tunjuelo a causa de las grandes precipitaciones presentadas en esa época. Por esta razón, es necesario plantear las obras civiles que permitan la ampliación y renovación de los jarillones existentes, lo cual se realizará por medio de una evaluación previa del estado de estas estructuras, un estudio técnico de las alternativas, y la definición y planeamiento de los métodos constructivos a emplear.

Para lograr este propósito se realizará un estudio de mercado que permita definir la demanda y el valor agregado buscado por el grupo meta beneficiario de la renovación de los jarillones intervenidos; posteriormente se tendrán en cuenta las variables técnicas y se ejecutará el estudio, planteamiento del método y características constructivas de las obras civiles requeridas. De igual manera también se presentará el estudio económico de dichas actividades teniendo en cuenta las características financieras del sector de la construcción. Consecutivamente se dará lugar a la estructura administrativa que todo lo anteriormente descrito requiere, para finalmente cumplir con el objetivo del proyecto planteado.
1. CONTEXTO E IDENTIFICACIÓN DEL PROYECTO

A Continuación, se presenta la justificación del proyecto seleccionado, y el marco histórico Nacional e Internacional del mismo.

1.1. Identificación de la Situación Probémica

Para identificar la situación problemática se optó por seleccionar la Metodología del Marco Lógico, la cual se visualiza en el ítem 1.1.3. Metodología del Marco Lógico.

1.1.1. Justificación

Evitar riesgos a la comunidad, en términos de afectación a los bienes materiales, la salud y la vida, como consecuencia del mal estado o deterioro en el cual se encuentran este tipo de infraestructuras, o debido a una eventualidad hidrológica que se pueda presentar durante el corto, mediano o largo plazo.

1.1.2. Diagnóstico del sector

Debido a las alteraciones de los últimos fenómenos hidrológicos derivados del calentamiento global (fenómenos de La Niña y de El Niño), se ha evidenciado temporadas invernales con altas precipitaciones recurrentes, generando lluvias con intensidades y duraciones cada vez mayores, las cuales posteriormente alteran las condiciones normales del suelo, produciendo al cabo del tiempo la socavación de los mismos.

Simultáneamente, los coeficientes de escorrentía de las cuencas hidrológicas cada vez se incrementan, como consecuencia de la alta y descontrolada deforestación de zonas verdes y de cobertura vegetal, en donde se transforman grandes extensiones de bosques en zonas urbanas o “ciudades de concreto”. Este tipo de alteraciones antrópicas producen finalmente que los caudales transportados por medio de las redes de alcantarillado se incrementen, generando un aumento en el volumen de agua transportada por los cuerpos de agua que se disponen para tal fin.

Además de esto, la construcción de cualquier tipo de obra civil que interfiera con el flujo normal del agua también afecta sus condiciones hidráulicas, como lo puede ser la construcción de los jarillones, los cuales reducen la sección natural del río, generando incrementos en los niveles del agua. Generando una situación problemática, toda vez que
los Jarillones no puedan contener el volumen de agua transportado, causando desbordamientos e inundaciones.

1.1.3. Metodología del Marco Lógico

Árbol del problema:

Árbol de objetivos:
1.1.4. Diagnostico sectorial Nacional

En Colombia existen cinco áreas hidrográficas asociadas a las principales vertientes del país: Caribe, Magdalena-Cauca, Orinoco, Pacífico y Amazonia, las cuales contienen 40 zonas hidrográficas y en estas a su vez identifican 316 subzonas hidrográficas. (IDIGER, 2018)

El Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, debido a la frecuencia de inundaciones presentadas en gran parte del territorio nacional, definió las áreas que periódicamente sufren este tipo de afectación, así mismo, identifico que uno de los principales factores que afecta este fenómeno natural es la variabilidad del cambio climático, el cual se intensifica con el paso del tiempo. (IDIGER, 2018)

Según el Panel Intergubernamental de Cambio Climático (IPCC), la principal causa del cambio climático observado desde la mitad del siglo XX es el calentamiento global, atribuido a la acumulación de Gases Efecto Invernadero (GEI), proveniente de las actividades humanas. Para el caso colombiano, se espera que con el aumento de temperatura por fenómenos asociados a la variabilidad climática que presenta el planeta, la precipitación disminuya o aumente de acuerdo con las regiones específicas del país.

El invierno en Colombia ha encontrado un país histórico e institucionalmente débil, ineficaz para la atención de emergencias relacionadas con este fenómeno natural, sin planes de contingencia y con una enorme deficiencia en la coordinación interinstitucional. Esto se ha visto reflejado a través de la historia por varios sucesos de diferentes índoles y de gran impacto sobre la población colombiana, entre los cuales se destacan los siguientes: la
inundación generada por la ruptura del Canal del Dique (1983, 1984 y 2010), las emergencias invernales en la zona del Caribe (1988 y 1995), la creciente del río Combeima (1987), las emergencias invernales en la cuenca Magdalena – Cauca (1971), año en donde se emprendieron estudios importantes por parte del Gobierno Nacional para enfrentar en el futuro las consecuencias del desastroso invierno que asoló ese año la cuenca Magdalena – Cauca, sin embargo, tan pronto cesaron las lluvias las recomendaciones y estudios no fueron puestos en práctica. Posteriormente se presentó durante el periodo comprendido entre el año 2010 y 2011 el fenómeno de la Niña, el cual trajo consigo un alto régimen de lluvias y, por ende, un aumento en los niveles de los ríos sin precedentes en los registros históricos que posee el país, en donde se contempló uno de los más grandes impactos relacionados con eventos de inundación, el cual afectó a gran parte de la población que habita en el centro, occidente y norte del país. A partir de esto, se generaron grandes cambios institucionales en donde se comprendió la importancia de implementar medidas de prevención ante futuros desastres naturales. (Velandia, 2014)

Debido a la magnitud de este suceso que marco la historia del país, se implementaron acciones importantes desde el Gobierno de la Nación, creando entidades nuevas con misiones de atención de emergencias y reconstrucción, junto con la modificación de la antigua Dirección General del Riesgo, lo que hoy se conoce como la Unidad Nacional para la Gestión del Riesgo de Desastres, la cual coordina las entidades que componen el Sistema Nacional de Gestión del Riesgo, adoptando la Política Nacional de Gestión del Riesgo de Desastres establecida en la Ley 1523 de 2012. (Velandia, 2014)

Con base en la anterior información, se procede a presentar el histórico general de inundaciones lentas y rápidas (avalanchas) durante el período 1998 – 2012. (Velandia, 2014)
Como se observa en las anteriores gráficas, es primordial considerar la importancia que tienen este tipo de estructuras de contención (Jarillones), debido a que estamos en un país que es altamente susceptible de sufrir este tipo de amenazas. En Colombia se presentan dos periodos de lluvias al año, el primero en los meses de abril, mayo y junio, y el segundo en los meses de octubre, noviembre y diciembre. Sin embargo, estos periodos de lluvias pueden variar, así como su intensidad, frecuencia y duración, este tipo de comportamientos se deben a ciertos fenómenos que pueden producirse al mismo tiempo en el que transcurre un determinado clima, un ejemplo de esto es el fenómeno del Niño o la Niña, los cuales se dan en el océano pacífico, pero afectan directamente el clima del país. (Jose Estevez & Paula Rodríguez, 2013)

Los eventos de inundación que se han venido presentando en Colombia, junto con el aumento en las precipitaciones pueden ocasionar que las estructuras de contención fallen, afectando los bienes materiales, la salud y la vida de las personas que habitan en las zonas adyacentes a estos cuerpos de agua. Entre las principales consecuencias producidas por este tipo de fenómenos naturales se encuentran: (IDIGER, 2018)

- Posible morbilidad y mortalidad de seres humanos
- Daños en cubiertas, enseres, perdida de la habitabilidad
- Daños en el equipamiento del espacio público
- Daño en la infraestructura y suspensión de servicios públicos
- Perdida de movilidad vehicular, transito lento y choques automovilísticos
- Parqueaderos y sótanos de edificios inundados

Debido a esto se hace necesario definir criterios técnicos, de carácter hidráulico e hidrológico, así como del comportamiento geotécnico del suelo, que establezcan la estructura idónea de los jarillones, y las especificaciones de los materiales a utilizar.
Haciendo énfasis en este punto en particular, es importante mencionar que se han realizado diferentes investigaciones que determinan los procesos constructivos que se deben implementar en la intervención de este tipo de estructuras, muchos de estos encabezados por las principales instituciones de educación superior de Colombia, así como de diferentes actores estratégicos en los escenarios de riesgos por inundación: Empresa de Acueducto y Alcantarillado de Bogotá, Corporación Autónoma Regional de Cundinamarca, Secretaría Distrital de Ambiente, etc. (IDIGER, 2018)

A continuación, se muestran las principales ciudades de Colombia que presentan el mayor número de registros históricos de eventos relacionados con desastres naturales (inundaciones): (IDEAM, 2014)

<table>
<thead>
<tr>
<th>MUNICIPIO</th>
<th>DESLIZAMIENTO</th>
<th>INUNDACIÓN</th>
<th>INCENDIO FORESTAL</th>
<th>VENDAVAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOGOTA</td>
<td>69</td>
<td>85</td>
<td>11</td>
<td>9</td>
<td>174</td>
</tr>
<tr>
<td>PUERTO SALGAR</td>
<td>2</td>
<td>42</td>
<td>3</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>GIRARDOT</td>
<td>9</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>SOACHA</td>
<td>26</td>
<td>34</td>
<td>34</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>TOCAIMA</td>
<td>10</td>
<td>25</td>
<td>6</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>RICAURTE</td>
<td>2</td>
<td>22</td>
<td>4</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>GUADUAS</td>
<td>20</td>
<td>19</td>
<td>1</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>CHIA</td>
<td>5</td>
<td>19</td>
<td>9</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>UTICA</td>
<td>10</td>
<td>18</td>
<td>0</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>CAPARRAPI</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>31</td>
</tr>
</tbody>
</table>

Tabla 1. Datos históricos de inundaciones en las principales ciudades de Colombia, Periodo 1980-2010.

Fuente: IDEAM. Tomado de: (IDEAM, 2014)

Como se observa, Bogotá ocupa el primer lugar de la lista, así como los municipios de la ribera del río Bogotá, en segunda instancia se encuentran los municipios riverenños del río Magdalena, es decir, de las provincias del alto, medio y bajo Magdalena.

A partir de esta información se presentan algunas de las estrategias realizadas en la ciudad de Bogotá, debido a que como ya se mencionó, es la ciudad que presenta el mayor número de casos relacionados con este fenómeno natural. Se realizan mantenimientos preventivos en los cuerpos de agua, con acciones que contemplan desde el retiro de residuos sólidos, hasta la intervención parcial o total de los jarillones, a través de convenios y contratos suscritos por las diferentes entidades competentes. (IDIGER, 2018)
Por otro lado, dentro del Plan Nacional de Gestión del Riesgo de Desastres de Colombia, se contemplan los objetivos, programas, acciones, responsables y presupuestos, mediante los cuales se ejecutan los procesos de conocimiento del riesgo, reducción del riesgo y manejo de desastres en el marco de la planificación del desarrollo nacional. Lo cual contribuye con la seguridad, la calidad de vida y al desarrollo sostenible. Por este motivo, este Plan permite identificar necesidades similares a la anteriormente planteada, dando lugar a una demanda a nivel Nacional de este tipo de infraestructuras.

1.1.5. Diagnostico sectorial Internacional

A nivel Internacional no se identificó claramente la información relacionada con este tipo de obras, sin embargo, si se encontraron diferentes problemas relacionados con inundaciones provocadas por el desbordamiento de ríos, por lo cual, se hace necesario la construcción de obras hidráulicas que mitiguen y controlen este tipo de problemas naturales.

En relación con la Normatividad, se debe cumplir con obligatoriedad las prescripciones de la Norma Colombiana de Construcciones Sismo Resistentes NSR-10, de la Empresa de Acueducto y Alcantarillado de Bogotá EAAS-ESP: SISTEC, y de las entidades que se mencionan a continuación:

- ICONTEC – Instituto Colombiano de Normas Técnicas.
1.2. Objetivos

1.2.1. Objetivo Principal

Plantear los parámetros para recuperar las condiciones óptimas de la infraestructura de protección de orillas y taludes, mediante la ejecución de obras de prevención, mantenimiento o rehabilitación de los Jarillones que se encuentran en estado crítico ubicados sobre los ríos de la ciudad de Bogotá.

1.2.2. Objetivos Específicos

• Plantear la metodología de construcción de la infraestructura necesaria para prevenir, mitigar o renovar el estado actual de los jarillones, dependiendo del diagnóstico previo realizado por la consultoría o entidad contratante.

• Establecer el análisis de mercado requerido para identificar las variables que caracterizan el comportamiento del sector.

• Formular la estructura administrativa necesaria para la implementación del proyecto.

• Analizar las variables financieras que permitan determinar la viabilidad económica del proyecto.

2. ANÁLISIS DEL MERCADO

Se realiza con el propósito de conocer el estado actual del mercado Nacional e Internacional de la construcción, relacionado específicamente con las obras de renovación de estructuras de contención que se encuentran en estado crítico, ubicados en los cuerpos de agua de la ciudad de Bogotá.

Por este motivo, se ha recolectado y analizado la siguiente información, de carácter primario y secundario:

2.1. Análisis de encuestas

Para realizar el estudio socioeconómico se realizaron 20 encuestas con un total de 52 preguntas, las cuales iban dirigidas a tres actores diferentes, entre los que se encontraban:
Consumidores o beneficiarios (10 encuestas)
- Funcionarios Públicos de la EAAB-ESP (5 encuestas)
- Contratistas del sector Público (5 encuestas)

Esto con el propósito de identificar claramente las necesidades e intereses de cada una de las partes involucradas, tal como se observa a continuación:

<table>
<thead>
<tr>
<th>PARTES INTERESADAS</th>
<th>INTERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUPO META (Directo):</td>
<td>Mantener una calidad de vida plena, teniendo la seguridad que no se verán afectados por un posible desbordamiento</td>
</tr>
<tr>
<td>Habitantes que residen en la Roda Hidráulica de algún cuerpo de agua de la ciudad de Bogotá</td>
<td></td>
</tr>
<tr>
<td>GRUPO META (Indirecto):</td>
<td></td>
</tr>
<tr>
<td>Habitantes de Bogotá</td>
<td></td>
</tr>
<tr>
<td>EJECUTORES DEL PROYECTO:</td>
<td></td>
</tr>
<tr>
<td>Contratista Constructor</td>
<td></td>
</tr>
<tr>
<td>Contratista Interventor</td>
<td></td>
</tr>
<tr>
<td>Tomar una utilidad económica</td>
<td></td>
</tr>
<tr>
<td>Conservar las condiciones de vida actuales del grupo meta</td>
<td></td>
</tr>
<tr>
<td>Preservar las condiciones naturales del río</td>
<td></td>
</tr>
<tr>
<td>TOMA DE DECISIONES:</td>
<td></td>
</tr>
<tr>
<td>Empresa de Acueducto y Alcantarillado de Bogotá</td>
<td></td>
</tr>
<tr>
<td>Cumplimiento de sus obligaciones al conservar las condiciones de vida actuales del grupo meta</td>
<td></td>
</tr>
<tr>
<td>Preservar las condiciones naturales del río</td>
<td></td>
</tr>
<tr>
<td>FINANCIAMIENTO:</td>
<td></td>
</tr>
<tr>
<td>Empresa de Acueducto y Alcantarillado de Bogotá</td>
<td></td>
</tr>
<tr>
<td>Dar cumplimiento al Plan de Desarrollo de Bogotá, beneficiando al grupo meta</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3 Partes interesadas del proyecto

A partir de la información recolectada y de su correspondiente análisis (remitirse al Anexo No. 1. Análisis específico de las Encuestas), se procedió a determinar cada uno de los factores del Mercado, como se muestra a continuación:

- Demanda
 - Demanda cualitativa

Para determinar la demanda cualitativa se tuvieron en cuenta las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas), con el propósito de determinar las condiciones particulares del producto requerido por los beneficiarios, contratistas y funcionarios:

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Respuesta Predominante Comunidad</th>
<th>Respuesta Predominante Funcionarios/Contratistas</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Está de acuerdo con que el mantenimiento en los Jarillones del río Tunjuelo se continúe realizando mediante el uso de suelo natural?</td>
<td>No (60%)</td>
<td>No (50%) Si (50%)</td>
</tr>
</tbody>
</table>
¿Se sentiría más seguro si se cambia el uso del suelo natural por materiales sustitutos como el concreto?

- Si (60%)
- N/A

¿Cuál es su preferencia frente al método constructivo para la rehabilitación de los jarillones?

- Revestido en concreto (60%)
- Revestido en concreto (50%)
- Box Culvert (50%)

Tabla 4. Análisis respuestas encuestas para la Demanda

Como se puede observar, la comunidad no está de acuerdo en que el mantenimiento de los Jarillones del Río Tunjuelo se siga realizando mediante el uso de suelo Natural, en lo cual coincide con el 50% de las respuestas emitidas por los Funcionarios/Contratistas, además de esto, desde el punto de vista de vulnerabilidad, los beneficiarios optan porque no se sienten del todo satisfechos con la seguridad que brindan las características de realizar este tipo de obras a través del uso de suelo natural. Sin embargo, hay otros factores determinantes que viabilizan o no el punto de vista y la percepción que tiene la comunidad afectada por la ejecución de estas obras, entre las cuales tenemos:

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>Técnico</th>
<th>Operativo (Mantenimiento)</th>
<th>Social</th>
<th>Ambiental</th>
<th>Económico</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo Natural</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1,8</td>
</tr>
<tr>
<td>Concreto</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2,0</td>
</tr>
<tr>
<td>Box Culvert</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Lo cual nos da como resultado que el método constructivo más viable es el Box Culvert, sin embargo, a partir de la investigación realizada a los funcionarios de la EAAB-ESP, se determinó que el factor predominante para determinar el proceso constructivo de las obras es el económico, ya que como se observa en el Anexo No. 1, los funcionarios coinciden en que no se destinan los recursos suficientes para este tipo de contratos.

Además de esto, se confirmó que en la gran mayoría de Licitaciones de la EAAB-ESP se especifica en las “Condicion y Términos de Referencia del Contrato” que el método constructivo a emplear por los contratistas se debe limitar al uso del suelo natural, especificaciones que se piensan seguir conservando en los próximos contratos que se ejecuten en el corto y mediano plazo.

Sin embargo, se aclara por parte de los funcionarios que eventualmente la Empresa piensa ir modificando el método constructivo tradicional, por tecnología Box Culvert, debido a los beneficios que este proceso constructivo le generaría a la Empresa, entre las cuales se destaca la reducción del mantenimiento de estas estructuras, lo cual implica la disminución de costos y de mano de obra, que pueden ser destinados para otras actividades.
Por ende, a pesar de los resultados obtenidos en las encuestas de los beneficiarios, establecemos que el producto ofrecido por nuestra Empresa debe seguir manteniendo el proceso constructivo tradicional (uso de suelo natural), ya que corresponde a la mejor opción desde el punto de vista económico, y que además ha venido funcionado hasta la fecha, no solamente en la ciudad de Bogotá, sino en gran parte del territorio Nacional e Internacional.

- Demanda cuantitativa

Para determinar la demanda cuantitativa se recurrió a realizar el análisis de las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas).

<table>
<thead>
<tr>
<th>PREGUNTA</th>
<th>RESPUESTA PREDOMINANTE COMUNIDAD</th>
<th>RESPUESTA PREDOMINANTE FUNCIONARIOS/CONTRATISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Con que frecuencia ha sufrido inundaciones?</td>
<td>• Mayor a 1 año (100%)</td>
<td>• N/A</td>
</tr>
<tr>
<td>¿Con que frecuencia cree que es necesario realizar este tipo de labores?</td>
<td>• Semestral (50%)</td>
<td>• N/A</td>
</tr>
<tr>
<td>¿Se han ejecutado labores de mantenimiento durante los últimos 5 años?</td>
<td>• N/A</td>
<td>• Si (70%)</td>
</tr>
<tr>
<td>¿Cuántas veces al año realizan obras de rehabilitación y/o mantenimiento de jarillones?</td>
<td>• N/A</td>
<td>• 2-3 (62,50%)</td>
</tr>
<tr>
<td>¿Cuántas empresas ofertantes se postulan aproximadamente para este tipo de contratos?</td>
<td>• N/A</td>
<td>• 5-6 (60%)</td>
</tr>
</tbody>
</table>

Como se observa, los habitantes encuestados que confirmaron haber sufrido de inundaciones a causa del desbordamiento del algún cuerpo de agua, además aseguran que las frecuencias de estas inundaciones superan el año, lo cual es coherente, puesto que la EAAB-ESP ejecuta acciones de manteniendo periodo con el propósito de prevenir dichas afectaciones a los usuarios. Tal como lo perciben los beneficiarios, se realizan actividades de mantenimiento entre una y tres veces al año, dependiendo de la intensidad y duración de las precipitaciones presentadas en el correspondiente año, actividades que van desde el dragado de ríos y canales, hasta la reconstrucción parcial o completa del jarillon.

Por otro lado, se informa que para cada proceso licitatorio se presentan alrededor de 5 y 6 Empresas, lo cual radica en que este sector de la construcción tiene una alta competencia, debido a que la probabilidad de ganar un contrato oscilaría entre el 16% y el 20%, aproximadamente.
Sin embargo, para poder establecer la demanda cuantitativa real, o por lo menos tener una aproximación cercana a la realidad, se procedió a consultar la información de los contratos ejecutados por la EAAB-ESP durante los últimos 21 años, la cual se muestra a continuación:

Ilustración 7 Histórico últimos 20 años de contratación y precipitación

<table>
<thead>
<tr>
<th>AÑO</th>
<th>PRECIPITACION ANUAL PA (mm) BOGOTA D.C.</th>
<th>CONTRATOS EAAB-ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>1997</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>771,0</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>731,0</td>
<td>2</td>
</tr>
<tr>
<td>2002</td>
<td>699,0</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>423,8</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>615,4</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>740,4</td>
<td>6</td>
</tr>
<tr>
<td>2007</td>
<td>647,3</td>
<td>5</td>
</tr>
<tr>
<td>2008</td>
<td>740,2</td>
<td>6</td>
</tr>
<tr>
<td>2009</td>
<td>591,0</td>
<td>7</td>
</tr>
<tr>
<td>2011</td>
<td>948,3</td>
<td>7</td>
</tr>
<tr>
<td>2012</td>
<td>688,2</td>
<td>1</td>
</tr>
<tr>
<td>2013</td>
<td>791,0</td>
<td>3</td>
</tr>
<tr>
<td>2015</td>
<td>506,5</td>
<td>3</td>
</tr>
<tr>
<td>2016</td>
<td>807,9</td>
<td>3</td>
</tr>
<tr>
<td>2017</td>
<td>1082,0</td>
<td>4</td>
</tr>
</tbody>
</table>

Fuente:
• Datos de precipitaciones anual en Bogotá D.C., Observatorio Ambiental de Bogotá. Link: http://oab.ambientebogota.gov.co/esm/indicadores?id=156&v=l
• Contratos EAAB-ESP, Información primaria, consulta directa en los archivos electrónicos de la Empresa.

Como se observa, partimos del hecho de encontrar una relación entre la cantidad de contratos que ejecuta la Empresa y los datos históricos de precipitaciones para la ciudad de Bogotá D.C., la cual es directamente proporcional, puesto que en los años en donde más se ejecutaron contratos relacionados con la intervención de este tipo de obras coincide con los años en donde se presentaron las precipitaciones más altas en la ciudad objeto de estudio.

Por este motivo, la demanda cuantitativa la relacionamos con el número de contratos que se han ejecutado a la fecha, la cual es variable; debido a que como ya se mencionó anteriormente, la cantidad de licitaciones y/o contratos ejecutados por la Empresa se encuentran en función de las condiciones particulares del clima, debido a que uno de los factores predominantes en el deterioro de la infraestructura de los jarillones (construidos principalmente mediante suelo natural) es el volumen de agua transportada. Sin embargo, se puede establecer que en promedio el número de contratos a los cuales nos podríamos postular oscila entre 2 y 3 contratos por año, información encontrada mediante el promedio de los datos históricos para el periodo 1996-2017.

• Oferta
 - Oferta cualitativa

Para determinar la oferta cualitativa se recurrió a realizar el análisis de las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas).

<table>
<thead>
<tr>
<th>PREGUNTA</th>
<th>RESPUESTA PREDOMINANTE FUNCIONARIOS/CONTRATISTAS</th>
</tr>
</thead>
</table>
| ¿El tipo de obras a ejecutar en el Río Tunjuelo es aplicable a otros cuerpos de agua en la ciudad de Bogotá? | • Si (80%)
• No (20%) |
| ¿En qué periodo del año se acostumbra a realizar estos trabajos de rehabilitación? | • Jul-Sep (70%)
• Ene-Mar (39%) |
| ¿Cuál es la Empresa que tiene más reconocimiento por haber ejecutado este tipo de obras? | • Sainge S.A.S. (60%)
• Rex Ingeniería S.A. (30%) |
| ¿Cuál ha sido el porcentaje de satisfacción de acuerdo a la calidad del servicio prestado por las empresas que han ejecutado anteriormente este tipo de contratos? | • Sainge S.A.S. (90%)
• Rex Ingeniería S.A. (90%) |
¿Cuál es la tecnología o método constructivo más avanzado que está al alcance de la implementación por parte de los Contratistas?

- Sainge S.A.S. (Box Culvert: 50%)
- Rex Ingeniería S.A. (Box Culvert: 70%)

¿Cuántos años de experiencia mínima debe certificar el oferente para poder entrar a participar en la licitación?

- 3-5 años: (70%)

De acuerdo a licitaciones anteriores, ¿Cuántos años de experiencia reúne en promedio el licitante ganador?

- 5-8 años: (70%)

| Tabla 8 Análisis respuestas encuestas para la Oferta Cuantitativa |

Como se observa, funcionarios y contratistas coinciden en su mayoría en que este tipo de obras se pueden realizar en diferentes cuerpos de agua, lo cual es conveniente para nuestra Empresa, debido a la gran cantidad y extensión de ríos y canales de la ciudad de Bogotá, además de esto, también están de acuerdo en que los períodos en donde normalmente se realizan este tipo de trabajos es entre los meses de julio y septiembre, y entre enero y marzo, períodos en donde se presentan las precipitaciones más bajas durante el año, por ende, sin importar la metodología escogida, debemos tener en cuenta que una de las variables primordiales en nuestro producto debe ser el clima, puesto que la competencia seguramente adapta su tecnología en función de este parámetro.

Otro de los aspectos importantes a analizar, es cuál es nuestra competencia directa y que tecnologías utiliza en sus productos para poder establecerse en la cima del mercado, por este motivo es primordial identificar que nuestra competencia principal está representada por las empresas Sainge SAS y Rex Ingeniería SA, las cuales tienen a su alcance las tres tecnologías propuestas en nuestro estudio de mercado, desde la más básica (suelo natural), la mediana (revestido en concreto) y la más avanzada (box culvert). Por ende, si queremos entrar a competir y a sobresalir por encima de las empresas más reconocidas por brindar este tipo de servicio, debemos tener en cuenta que nuestro producto no solamente se puede basar en utilizar el suelo natural como tecnología única a implementar, sino que a medida del tiempo y a medida en que crezca nuestra empresa, debemos optar por incorporar nuevos métodos constructivos. Sin embargo, como ya se explicó antes, la tecnología principal que debemos establecer por el momento se basa en enfocarnos en la utilización del suelo natural, como principal herramienta de trabajo, dadas las políticas establecidas en las Condiciones y Términos de los Contratos que ejecuta actualmente la EAAB-ESP.

- Oferta cuantitativa

Para determinar la oferta cuantitativa se recurrió a realizar el análisis de las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas).
<table>
<thead>
<tr>
<th>PREGUNTA</th>
<th>RESPUESTA PREDOMINANTE FUNCIONARIOS/CONTRATISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se han ejecutado labores de mantenimiento durante los últimos 5 años?</td>
<td>▪ Si (70%)</td>
</tr>
<tr>
<td>¿Cuántas veces al año realizan obras de rehabilitación y/o mantenimiento de jarillones?</td>
<td>▪ 2-3 (62.50%)</td>
</tr>
<tr>
<td>¿Cuántas empresas ofertantes se postulan aproximadamente para este tipo de contratos?</td>
<td>▪ 5-6 (60%)</td>
</tr>
<tr>
<td>¿Cuál es la Empresa que tiene más reconocimiento por haber ejecutado este tipo de obras?</td>
<td>▪ Sainge S.A.S. (60%)</td>
</tr>
<tr>
<td>▪ Rex Ingeniería S.A. (30%)</td>
<td></td>
</tr>
<tr>
<td>¿Cuál ha sido el porcentaje de participación de las empresas que se han postulado anteriormente en este tipo de contratos?</td>
<td>▪ Sainge S.A.S. (40%)</td>
</tr>
<tr>
<td>NOTA: % de contratos ganados VERSUS % de licitaciones presentadas</td>
<td>▪ Rex Ingeniería S.A. (60%)</td>
</tr>
<tr>
<td>De acuerdo a licitaciones anteriores, ¿Cuál ha sido el porcentaje de cumplimiento de acuerdo a las metas físicas propuestas iniciales en cada uno de los contratos ejecutados por estas Empresas?</td>
<td>▪ Sainge S.A.S. (100%)</td>
</tr>
<tr>
<td>▪ Rex Ingeniería S.A. (100%)</td>
<td></td>
</tr>
<tr>
<td>De acuerdo a licitaciones anteriores, ¿Cuál es la cantidad de personal profesional mínimo requerido para la ejecución de este tipo de obras?</td>
<td>▪ 8-11 (60%)</td>
</tr>
</tbody>
</table>

Tabla 9 Análisis respuestas encuestas para la Oferta Cuantitativa

Como se observa, este tipo de contratos en los cuales queremos incursionar tiene un campo de acción alto, como ya es sabido, al año se realizan en promedio 2 a 3 obras de rehabilitación y/o mantenimiento de este tipo de estructuras, en donde es determinante identificar cuantas empresas en promedio se postulan para este tipo de licitaciones, en donde contratistas y funcionarios coinciden en su mayoría en que se presentan entre 5 y 6 empresas por contrato, como ya se mencionó antes, radica en que este sector de la construcción tiene una alta competencia, debido a que la probabilidad de ganar un contrato oscilaría entre el 16% y el 20%, aproximadamente.

Además, las empresas que tienen más reconocimiento por ejecutar este tipo de obras tienen un porcentaje de participación (ganancia de contratos) en promedio del 50%, por este motivo; podríamos establecer que nuestra empresa podría entrar a competir en el mercado con una participación del 50% de los contratos que ejecute la EAAB-ESP. También es importante mencionar que el cumplimiento de las metas físicas contractuales que ofrece la competencia ha sido del 100%, información de gran importancia, pues a la fecha no se ha generado ningún incumplimiento por parte de estas empresas. Otra característica a resaltar, es que en promedio la ejecución de un contrato que contempla la
intervención de un cuerpo de agua, está necesitando entre 8 y 11 profesionales para su óptima ejecución, información relevante que utilizaremos posteriormente para calcular el dimensionamiento del sistema productivo.

Como conclusión, la oferta cuantitativa se basa en establecer que tendremos que entrar a competir en un mercado en donde en promedio, se presentan entre 5 y 6 empresas por licitación, las cumplen con unos estándares altos de calidad, y de ejecución en sus obras.

- Demanda Potencial Cualitativa

Para determinar la demanda potencial cuantitativa y cualitativa se recurrió a realizar el análisis de las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas).

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Respuesta Predominante Comunidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Cuál es su preferencia frente al método constructivo para la rehabilitación de los jarillones? Teniendo en cuenta que según el método seleccionado variarán los materiales a utilizar y por ende, se modificaría el valor total del contrato.</td>
<td>▪ Revestido en concreto (60%)</td>
</tr>
<tr>
<td>¿Considera usted que se pueden embellecer los espacios aledaños al río, o es irrelevante?</td>
<td>▪ Si (80%)</td>
</tr>
<tr>
<td>¿Qué tipo de acciones considera usted que se deben tomar para hacer estos espacios más seguros? Respuestas: A. Presencia policiaca, B. Cámaras de seguridad, C. Pedagogía, D. Mejorar y aumentar el alumbrado público, E. Todas las anteriores.</td>
<td>▪ Todas las anteriores (70%)</td>
</tr>
<tr>
<td>¿Considera que se pueden aprovechar estos espacios para el beneficio de la comunidad?</td>
<td>▪ Si (90%)</td>
</tr>
<tr>
<td>¿Qué tipo de proyectos de infraestructura le gustaría ver en estos espacios? Respuestas: A. Ciclorutas, B. Parques lineales, C. Gimnasios, D. Todas las anteriores.</td>
<td>▪ Todas las anteriores (50%)</td>
</tr>
<tr>
<td>¿Le gustaría que en estos espacios se brindara la posibilidad de implementar tiendas y/o negocios autorizados por la Alcaldía de Bosa? Entienda por "tiendas" la implementación de casetas</td>
<td>▪ Si (60%)</td>
</tr>
<tr>
<td>¿Estaría dispuesto a trabajar en estos establecimientos?</td>
<td>▪ Si (71,43%)</td>
</tr>
</tbody>
</table>

Como se observa, la comunidad en su mayoría está de acuerdo con que se debe cambiar el estado actual de los jarillones, pasando de suelo natural a concreto, tecnología que es fácilmente aplicable en canales, cuerpos de agua que manejan caudales relativamente menores. Sin embargo, la opinión de los funcionarios públicos contradice la respuesta emitida por la comunidad del sector, debido a los altos costos que esto representaría, y por otro lado, a que la Secretaría Distrital de Ambiente no permitiría que se generara un impacto ambiental de esta magnitud a un cuerpo de agua de origen natural. Por este motivo, se
descarta esta tecnología como una posible alternativa, y se viabiliza la intervención de los jarillones mediante el uso de suelo natural.

Sin embargo, tal y como lo percibe la comunidad si se pueden embellecer los jarillones, además de poder aprovechar estos lugares con otros propósitos que hasta la fecha se desconocen, como lo puede ser la construcción de ciclorutas, parques lineales y gimnasios, adecuando y estabilizando la infraestructura de los jarillones, toda vez que se garantice por parte de la EAAB-ESP que se van a tomar acciones para mejorar la seguridad de estos espacios, mediante la presencia policiaca, instalación de cámaras de seguridad y aumentó del alumbrado público. Así mismo, también se percibe una opinión positiva a la alternativa que planteamos sobre la implementación de tiendas y/o negocios en donde la misma comunidad tenga la posibilidad de trabajar.

Todo esto es fundamental para determinar la demanda potencial cualitativa, puesto que le estamos dando un valor agregado a nuestro producto, sin la necesidad de cambiar el método constructivo tradicional (uso de suelo natural), sin embargo, nuestra empresa plantearía realizar estas obras con unos mayores costos a los tradicionales, con la finalidad de mejorar los jarillones desde el punto de vista técnico, aumentando de esta manera la capacidad máxima de carga que poseen actualmente este tipo de estructuras, para que puedan construirse este tipo de alternativas (ciclorutas, gimnasios, etc.) en la parte superior del jarillon, llamada normalmente “cresta” o “corona”. Además de esto, se podría pensar en que se adjudique al mismo contrato de rehabilitación y/o mantenimiento de los jarillones, las nuevas actividades planteadas, o por el contrario, que este tipo de obras civiles se otorguen a través de nuevos contratos, sin embargo, sin importar cuál de los casos se dé; lo estaría aumentando las posibilidades de ganaros la licitación, otorgando un plus adicional en comparación con lo tradicional que ofrece la competencia. Por otro lado, desde el punto de vista cultural y social, implementar estos espacios de recreación y oportunidades laborales, ayudarían a mejorar las condiciones socioculturales del sector.

- Demanda Potencial Cuantitativa

Se basa en determinar los cuerpos de agua que actualmente sufren este tipo de problemas debido a las condiciones climáticas del sector, debido a que como ya se ha explicado anteriormente, este tipo de contratos se realizan en función de las condiciones físicas en las cuales se encuentren los jarillones, y el fenómeno natural que con mayor incidencia es la frecuencia e intensidad de las precipitaciones.
El planteamiento que actualmente le estamos dando a la empresa se basa en desarrollar este tipo de obras mediante el uso de suelo natural, debido a que es el método más solicitado por la EAAB-ESP, lo cual nos restringe a intervenir el sector específico de ríos y cuerpos de agua naturales. Sin embargo, pensando a futuro se optaría por implementar en nuestra empresa otro tipo de alternativas que nos permitan intervenir cuerpos de agua artificiales, por ejemplo: canales revestidos en concreto y Box Culvert. Bajo este supuesto, se presentan dos mapas en donde se pueden visualizar los cuerpos de agua que podrían determinar la demanda potencial cuantitativa, sin dejar a un lado que uno de los parámetros fundamentales del incremento significativo de este tipo de contratos radica en el comportamiento del clima.

Mapa 1. Cuerpos de agua, Zona 5 de la EAAB-ESP (Bosa, Kennedy y Soacha): Se selecciona inicialmente la Zona 5 de la EAAB-ESP, debido a su gran extensión y a la gran cantidad de cuerpos de agua que tiene, entre los cuales se destaca el Rio Tunjuelo, con una longitud de 14,6 Km, y 15 canales naturales y artificiales (algunos revestidos en concreto y otros construidos mediante suelo natural), para un total de 27,1 Km. Datos que solamente contemplan los ríos y canales principales, sin embargo, se podría llegar a tener un campo de acción más grande, si se contaran los cuerpos de agua secundarios.

Mapa 2. Cuerpos de agua de la ciudad de Bogotá D.C. Los cuerpos de agua que se exponen a continuación, sería con el propósito de buscar un campo de acción mucho mayor, a corto plazo.
A partir de esto, y con los datos de precipitaciones expuestos anteriormente, se procede a calcular una aproximación del comportamiento del clima, así como de la cantidad de contratos que probablemente se podrían ofertar:
Datos proyectados para los años 2018 – 2028: Es importante tener en cuenta que los datos expuestos a continuación, se rigen bajo el comportamiento de la proyección realizada mediante el cálculo de las líneas de tendencia. Sin embargo, como se observa en la gráfica, los datos históricos muestran una tendencia oscilatoria en el comportamiento de esta información, comportamiento que no puede ser evaluado mediante la proyección realizada con las líneas de tendencia, por este motivo, se infiere que el comportamiento de los contratos para el periodo 2018 a 2022 tendrá un comportamiento creciente, en función del cambio climático drástico que actualmente se vive, y que con el paso del tiempo se espera incremente, es decir:

<table>
<thead>
<tr>
<th>AÑO</th>
<th>PRECIPITACION ANUAL PA (mm) BOGOTA D.C.</th>
<th>CONTRATOS EAAB-ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>949,0</td>
<td>5</td>
</tr>
<tr>
<td>2020</td>
<td>980,9</td>
<td>6</td>
</tr>
<tr>
<td>2021</td>
<td>1012,2</td>
<td>8</td>
</tr>
<tr>
<td>2022</td>
<td>1042,3</td>
<td>10</td>
</tr>
<tr>
<td>2023</td>
<td>1071,1</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 11 Tabulación Precipitación y Cantidad de Contratos (2018-2028)

Con la anterior información, se procede a calcular el pronóstico que podría tener la ejecución de este tipo de contratos, una vez nuestra empresa incursione en este sector de la construcción, para los primeros cinco años.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>PRECIPITACION ANUAL PA (mm) BOGOTA D.C.</th>
<th>LICITACIONES EAAB-ESP</th>
<th>LICITACIONES GANADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>949,0</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2020</td>
<td>980,9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2021</td>
<td>1012,2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>2022</td>
<td>1042,3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2023</td>
<td>1071,1</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabla 12 Proyección Licitaciones EAAB-ESP y licitaciones ganadas

Se estima que nuestra empresa gane el 50% de las licitaciones, debido a que tal y como se explicó antes, las empresas que tienen más reconocimiento por ejecutar este tipo de obras tienen un porcentaje de participación (ganancia de contratos) en promedio del 50%, por este motivo; podríamos establecer que nuestra empresa podría entrar a competir en el mercado con una participación del 50% de los contratos que ejecute la EAAB-ESP.

En promedio, la duración de estos contratos varía entre 6 y 9 meses, contando el tiempo que se demora adjudicar y ganar dicha licitación, es decir; que con estos tiempos promedio
de duración de los contratos y con la cantidad de licitaciones que se pronosticaron, se puede calcular la demanda potencial cuantitativa, de la siguiente manera:

Ilustración 11 Pronostico Contratación (2019-2023)
- Canales de comercio

Para determinar los canales de comercio se recurrió a realizar el análisis de las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas).

<table>
<thead>
<tr>
<th>PREGUNTA</th>
<th>RESPUESTA PREDOMINANTE FUNCIONARIOS/CONTRATISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Se puede realizar la compra de materiales directamente al fabricante?</td>
<td>- Si (50%)</td>
</tr>
<tr>
<td>PREGUNTA</td>
<td>RESPUESTA PREDOMINANTE FUNCIONARIOS/CONTRATISTAS</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>En llegado caso de requerirse la adquisición de materiales que no se encuentren en Bogotá, ¿se cuenta con los medios necesarios para obtenerlos?</td>
<td>- Si (60%)</td>
</tr>
<tr>
<td>¿Se cuenta con la infraestructura vial adecuada que permita el ingreso de la maquinaria necesaria para la intervención de las obras?, Entienda por maquinaria: volquetas, piloteadoras, equipos de presión/succión, minicargador, etc.</td>
<td>- Si (50%)</td>
</tr>
<tr>
<td>¿Se cuenta con la infraestructura vial adecuada que permita el ingreso de la maquinaria necesaria para la intervención de las obras?, Entienda por maquinaria: volquetas, piloteadoras, equipos de presión/succión, minicargador, etc.</td>
<td>- Si (50%)</td>
</tr>
</tbody>
</table>

Tabla 13 Análisis respuestas encuestas para los Canales de Comercio

De acuerdo a las respuestas emitidas por los funcionarios y contratistas, coinciden en que el 50% de los materiales requeridos para la ejecución de este tipo de infraestructuras se pueden obtener directamente del fabricante, además, existe un gran número de proveedores que tienen la posibilidad de adquirir y transportar los materiales de difícil acceso hasta Bogotá, sin embargo, las vías de acceso para el transporte de materiales perjudica los tiempos de ejecución de las actividades, y su infraestructura es crítica, lo cual dificulta el paso del algunos vehículos de transporte.

De acuerdo a esto, se exponen los dos canales de comercialización predominantes para este tipo de proyectos de infraestructura:

<table>
<thead>
<tr>
<th>Canal de Distribución 1:</th>
<th>Canal de Distribución 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiales del proceso constructivo que se rigen bajo el canal de distribución 1:</td>
<td>Materiales del proceso constructivo que se rigen bajo el canal de distribución 2:</td>
</tr>
<tr>
<td>▪ Recebo</td>
<td>▪ Pilotes</td>
</tr>
<tr>
<td>▪ Piedra partida</td>
<td>▪ Geomembranas</td>
</tr>
<tr>
<td>▪ Gravilla</td>
<td>▪ Bolsacretos</td>
</tr>
<tr>
<td>▪ Gaviones</td>
<td>▪ Colchacreto articulado</td>
</tr>
<tr>
<td>▪ Empradización con Cespedón</td>
<td>▪ Malla tipo gallinero</td>
</tr>
</tbody>
</table>

Ilustración 12 Canales de Distribución
Estrategias de Mercado

Para determinar las estrategias de mercado se recurrió a realizar el análisis de las siguientes preguntas específicas (sin dejar a un lado las demás preguntas analizadas).

<table>
<thead>
<tr>
<th>PREGUNTA</th>
<th>RESPUESTA PREDOMINANTE FUNCTIONARIOS/CONTRATISTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Los precios de los materiales ofertados para el uso en el proyecto coinciden o están cercanos a los precios del mercado nacional?</td>
<td>- Si (90%)</td>
</tr>
<tr>
<td>¿Cuál es el tiempo de garantía de los materiales usados en el proyecto?</td>
<td>- 1-3 años (60%)</td>
</tr>
<tr>
<td>¿Qué tiempos de entrega manejan?</td>
<td>- 1 semana (50%)</td>
</tr>
<tr>
<td>En caso de requerirse algún material de manera urgente, ¿se cuenta con la posibilidad de tener transporte preferencial? (Teniendo en cuenta los costos adicionales que esto implica)</td>
<td>- Si (80%)</td>
</tr>
<tr>
<td>¿Los puntos de despacho de los materiales se encuentran cerca del área de intervención del proyecto?</td>
<td>- No (90%)</td>
</tr>
<tr>
<td>¿Los materiales empleados en el proyecto son innovadores?</td>
<td>- Si (80%)</td>
</tr>
<tr>
<td>¿Los materiales empleados en el proyecto son ambientalmente sostenibles?</td>
<td>- Si (90%)</td>
</tr>
</tbody>
</table>

Tabla 14 Análisis respuestas encuestas para las Estrategias de Mercado

Como bien es sabido, el principal objetivo de las estrategias de mercado es poder generar acciones o tácticas que conlleven al incremento de ventas, logrando una ventaja competitiva. Para nuestro caso particular, el incremento de ventas se refleja en la ganancia de licitaciones anuales, por este motivo, es primordial identificar e implementar las estrategias de mercado que me ayuden a sobresalir por encima de la competencia.

Como se observa en las preguntas anteriores, nuestra empresa debe mantener y/o mejorar los precios de los materiales ofertados, además deben ser innovadores y ambientalmente sostenibles, debido a que estos parámetros están altamente optimizados por la competencia. Sin embargo, se puede observar que podemos darle valor agregado a nuestra empresa a través del mejoramiento de las características que actualmente la competencia no domina en su totalidad, como lo puede ser la implementación de materiales que nos permitan dar una garantía por encima de los 3 años, y que no conlleven a generar unos sobrecostos desmesurados. Por otro lado, se observa que el 50% de los materiales solicitados para la construcción de este tipo de infraestructuras manejan unos tiempos de entrega de aproximadamente 1 semana, por este motivo sería primordial establecer
relaciones con proveedores que estén al alcance de facilitarnos estos materiales en unos tiempos inferiores. De la misma manera, se tendría que optimizar al máximo las otras variables en donde la competencia aparentemente tiene unos niveles altos de exigencia, sin embargo, no se descarta la posibilidad de crear alianzas estratégicas que nos permitan sobresalir mancomunadamente con otras empresas que actualmente estén bien posicionadas en este sector de la construcción, como lo puede ser consorciarse o unirse temporalmente en pro de tener unas mayores posibilidades de ganar la licitación.

2.2. Ciclo de vida del producto

Como se observa, con los datos históricos conocidos con los cuales se realizó el cálculo la demanda potencial cuantitativa, y con las proyecciones de los contratos realizadas para el periodo pronosticado (2019-2023), se procedió a determinar cada una de las etapas que componen el ciclo de vida del producto, encontrando que durante los próximos cinco años, este sector de la construcción se encontraría en la etapa de crecimiento, debido a las proyecciones de precipitación realizadas con los datos históricos de los últimos 18 años (1999-2017) como consecuencia del cambio climático. Sin embargo, debido a la consulta realizada, los expertos en el tema pronostican que las precipitaciones van a tener a disminuir drásticamente a largo plazo, por lo cual, se proyectaría que para dichas fechas en donde se intensifiquen los cambios climáticos radicales, se produzca las etapas faltantes del ciclo de vida (madurez y decadencia).
3. PLANIFICACIÓN DEL PROYECTO

3.1 ALCANCE

La planificación del proyecto aplica exclusivamente al proyecto en mención, cuyo objeto es “Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.”, durante el tiempo que dure su ejecución (cinco años). El plan se puede actualizar de acuerdo a los requerimientos específicos de cada uno de los contratos proyectados, en función de las exigencias contractuales de la ENTIDAD CONTRATANTE, y durante su ejecución; de las decisiones que crea conveniente el interventor y la supervisión designada a esta interventoría.

3.2 ELEMENTOS DE ENTRADA PARA LA PLANIFICACIÓN DEL PROYECTO

Las entradas de los documentos para la planificación del proyecto, cuyo objeto es “Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.”, serán las que se describen a continuación:

- Minuta del contrato.
- Términos de referencia del contrato
- Georreferenciación del Proyecto
- Normatividad aplicable.
- Diseños y cálculos, entregados como producto del contrato de consultoría el cual dio origen al presente contrato de obra.
- Política de gestión.

NOTA: Estos documentos de entrada son los requeridos normalmente para la ejecución de este tipo de proyectos, los cuales son entregados directamente por la ENTIDAD CONTRATANTE, una vez se adjudica el contrato.
3.3 OBJETIVOS DE LA CALIDAD

Para dar cumplimiento a los requisitos contractuales definidos por la ENTIDAD CONTRATANTE, se definen los siguientes objetivos de calidad:

✓ Alcanzar el crecimiento organizacional mediante la prestación de servicios de ingeniería civil.
✓ Cumplir con los plazos contractuales de los contratos, garantizando los más altos estándares de calidad.
✓ Aumentar el grado de satisfacción de los clientes.
✓ Contar con personal competente y comprometido con su trabajo, de manera que se cumpla con los requisitos especificados para la ejecución correcta de los contratos, velando que el personal involucrado en el proceso esté debidamente calificado para desarrollar las labores y conozca sus responsabilidades.
✓ Contar con los especialistas y personal idóneo que cumplan con los requisitos especificados por la ENTIDAD CONTRATANTE y cumplir con el Objeto del contrato.
✓ Evaluar durante y después de la ejecución del contrato, la satisfacción de la comunidad y el cliente respecto al proyecto ejecutado.
✓ Asegurar el cumplimiento total de los requisitos exigidos por la ENTIDAD CONTRATANTE de acuerdo con la descripción, especificaciones y demás condiciones establecidas, velando porque se cumplan las exigencias de los documentos contractuales referentes a los requisitos de calidad aplicables al proyecto.

3.4 EVALUACIÓN DE RIESGOS

Para nuestro proyecto en particular, se debe definir la Matriz de Riesgos a implementar en cada uno de los diferentes contratos que se ejecuten, de acuerdo a las Condiciones y Términos exigidas en la etapa precontractual por la ENTIDAD CONTRATANTE, para que sea verificada, evaluada y aceptada. Sin embargo, a continuación se detallan los principales riesgos asociados a este tipo de proyecto, los cuales sirven como eje referente:

- Contingencias Ocasionadas por Sismos
- Accidentes de tránsito
- Incendio
- Derrames
- Disturbio Civil
- Inundación de excavaciones
- Corte de suministro del servicio de agua
- Afectación a la salud e integridad física de los trabajadores

NOTA: Al considerarse un ejercicio académico, solamente se menciona la matriz de riesgos, ya que esta se construye en función de las condiciones particulares del contrato que se planea realizar.

Se plantea un plan de acción para mitigar los riesgos “asociados en la matriz de riesgos antes mencionada”.

3.5 PLAN DE ACCIÓN

A continuación, se presentan para cada uno de los riesgos identificados y sus posibles medidas a implementar.

A. Contingencias Ocasionadas por Sismos

Se clasifica como contingencia grado 3, su amenaza se encuentra localizada en todos los frentes de obra y en la zona de campamento.

Acciones preventivas - antes del temblor

- Tener asegurados elementos que puedan causar daños por caídas repentina.
- Mantener el botiquín bien dotado y reemplazar los elementos que se han utilizado.
- La lista de los teléfonos y direcciones de entidades que presten ayuda deberá mantenese pegada en el campamento en un lugar visible y todo el personal que labora en la obra debe conocerla.

Acciones de respuesta - durante el temblor

- Conservar la calma.
• Evitar gritar.

En Oficinas o Campamento

• Si se encuentran dentro del lugar de trabajo, se debe ubicar en el sitio más seguro, el dintel de una puerta o debajo de un escritorio o mesa resistente.
• Se debe alejar de los objetos que puedan caer encima: vidrios, chimeneas, armarios altos, bibliotecas, adornos, etc.
• Se debe recordar que el temblor no dura más de unos instantes y se evaluará la conveniencia de salir del sitio donde se encuentra. Es probable que afuera se presenten más riesgos.
• Se debe permanecer alejado de las ventanas.

En el Frente de Obra

• Alejar inmediatamente de las edificaciones, buscando el centro de una calle amplia, evitando la cercanía de árboles cuyas ramas pueden desgajarse y golpear. También se debe distanciar de postes, torres o maquinaria.
• Tener una escalera en cada uno de los frentes de obra como posible ruta de evacuación.
• Salir inmediatamente del sector objeto de intervención por la ruta de evacuación.
• Se debe tener cuidado con el tránsito: los conductores son los últimos en sentir el temblor.

Rehabilitación - finalizado el sismo

• Tenga presente que puede haber replicas.
• Todos los trabajadores se deben reunir en un solo sitio.
• Auxiliar a las personas heridas y si la lesión es severa trasladarlos inmediatamente al sitios de atención más cercano.
• Se debe observar si hay focos de incendio. En tal caso, se debe seguir las indicaciones de este programa en Incendios.
• En el campamento se debe abandonar la oficina si se detectan riesgos de derrumbe, ya que las réplicas de temblores pueden acabar de derruir las construcciones averiadas.
• Los vidrios y otros objetos rotos pueden causar heridas, así que se deben utilizar zapatos gruesos (botas) y casco o algo similar para cubrir la cabeza y proteger los ojos.
• En caso de rotura de tubería seguir las acciones del programa de inundación de excavaciones.
• No se debe salir a curiosear. Se dejarán las calles libres para el paso de vehículos, de bomberos, policía, ambulancias y equipos de auxilio.
• Utilizar el programa de derrames de líquidos inflamables.
• Solicitar al residente de obra la reanudación de labores.

B. Accidentes de Tránsito

Clasificación Grado 1. Se presenta en todos los frentes de obra y en las rutas de acceso de materiales y evacuación de escombros.

Acciones preventivas

• Verificar que los frentes de obra estén debidamente señalizados.
• Colocar el personal con las paletas indicadoras de pare y siga en los sitios de mayor riesgo, donde se presenten cruces peligrosos para los peatones y si es necesario cuando las volquetas estén cargando escombros o depositando los materiales de construcción.
• Los trabajadores deberán contar con los elementos de seguridad adecuados.
• Colocar las barreras de aislamiento para proteger a los trabajadores.

Rehabilitación – después del accidente

• Auxiliar a las personas heridas.
• Dar aviso a las autoridades de tránsito.
• Remitir a las personas afectadas al centro de salud más cercano

C. Incendio

Se clasifica como contingencia de grado 2, se localiza principalmente en la zona de campamento y en los frentes de obra por incendio de alguno de los equipos. Pueden ser de origen químico, físico, mecánico o eléctrico. Las condiciones que pueden generar este tipo de riesgo en el desarrollo del proyecto son: instalaciones eléctricas deficientes o sin...
conexión a tierra, construcciones sin pararrayos, acumulación, almacenamiento y manejo inadecuado de material combustible.

Acciones preventivas – incendios

- Revisión periódica y mantenimiento de todas las instalaciones eléctricas.
- Evitar sobrecargas eléctricas.
- Al finalizar las labores se deben revisar todos los aparatos eléctricos para verificar que se encuentran apagados para evitar peligro de incendio.
- No arrojar colillas ni fósforos encendidos al piso.
- Evitar vertimientos de aceites o combustibles al suelo y atender en forma eficaz los derrames de combustibles y/o productos químicos.
- Evitar la acumulación de papeles en sitios donde se pueda propagar el fuego.
- Lubricar las máquinas para evitar sobre calentamientos.
- No realizar abastecimiento de combustibles cuando los vehículos estén funcionando.

Acciones de respuesta – durante el incendio

- La primera persona que observe el fuego deberá dar la voz de alarma.
- Combatir el fuego con los extintores más cercanos.
- Suspender el suministro de la energía en el frente de obra y campamento.
- Evacuar personas del frente de obra y del campamento.
- Si el área de campamento u oficinas se llena de humo, procure salir arrastrándose, para evitar morir asfixiado.
- Debe permanecer tan bajo como pueda, para evitar la inhalación de gases tóxicos, evadir el calor y aprovechar la mejor visibilidad.
- Si usted no puede salir rápidamente, protéjase la cara y vías respiratorias con pedazos de tela mojada y también moje su ropa.
- Suspender de inmediato el suministro de combustibles.
- Llamar a los bomberos.

Rehabilitación – después del incendio

- Una vez apagado el incendio verifique que éste no ha debilitado la resistencia del lugar.
• Se debe revisar que no hay ningún foco para provocar nuevos incendios.
• En caso de quemadura preste los primeros auxilios: Lave con agua fría y limpia y no desprenda trozos de ropa pegados a las quemaduras.

D. Derrames

Se clasifica como de grado 1. Se presenta principalmente en el campamento y en los frentes de obra, donde se desarrollen actividades de abastecimiento de combustibles.

Acciones preventivas – derrames

• En lo posible el abastecimiento de combustibles debe realizarlo personal idóneo.
• Solo se permitirá el abastecimiento de combustible a vehículos de difícil desplazamiento.
• El tanqueo debe realizarse en áreas despejadas.
• Las zonas donde sea necesario almacenar combustible tendrá pisos duros y una adecuada ventilación.
• Los productos químicos como aditivos de concreto deben almacenarse siguiendo la ficha técnica del fabricante.

Respuesta – durante el derrame

• La primera persona que observe el derrame deberá dar la voz de alarma.
• Ordene suspender inmediatamente el flujo del producto.
• Mientras persista el derrame, elimine las fuentes de ignición en el área.
• No permita fumar en el área.
• No permita el actuar de interruptores eléctricos.
• No permita la desconexión de las tomas de corriente.
• Haga que la electricidad sea cortada en el área.
• Interrumpa el flujo de vehículos en el área.
• No permita encender los motores de los vehículos localizados en el área bajo control.

Rehabilitación – después del derrame

• Determine hasta donde ha llegado el producto (líquido o vapor), tanto en superficie como de forma subterránea: Se necesita como mínimo un indicador de gas para esto.
- Evacue el área. Mantenga el personal no autorizado fuera del área.
- Coloque los extintores de polvo químico seco alrededor del área del derrame. No se debe aplicar agua sobre el producto derramado.
- Trate de que el producto derramado quede confinado dentro del área en la que se presentó el derrame, construyendo diques de arena, tierra o absorbentes sintéticos, para evitar que el producto derramado fluya hacia otras zonas o penetre en las alcantarillas o ductos de servicios públicos.
- En caso de grandes volúmenes de derrames, recoja el producto derramado con baldes de aluminio o plástico o material absorbente. Use guantes de Nitrilo-Látex.
- Si el volumen derramado es pequeño, seque él combustible restante con arena, trapos, aserrín, esponjas o absorbentes sintéticos.
- Llame a los bomberos y a la policía si no puede controlar la emergencia.
- Alerta a los vecinos sobre el peligro, especialmente si existen sótanos donde se puedan acumular gases.
- Sólo reanude la operación normal en el frente de obra, cuando el área esté libre de vapores combustibles. Los olores de gasolina son muy notorios aún por debajo de la concentración inflamable (en la cual pueden explotar o incendiarse si es encendida). Unas cuantas partes por millón pueden ser detectadas a través del olor por la mayoría de las personas; cualquier olor es una señal de peligro.

E. Disturbio Civil

Se clasifica como grado 1, se presenta en todos los frentes de obra.

Medidas preventivas – disturbio civil

- Equiparse con medios de comunicación apropiados.
- Si es necesario solicitar la colaboración de patrullaje de la policía en el sector de la obra.

Respuesta – durante el disturbio civil

- El factor más importante a tener en cuenta es informar a las autoridades de policía en forma inmediata, asegurando las entradas mientras se recibe el apoyo requerido.
• Debemos tener en cuenta si la situación amerita, suspender las actividades en la obra, si es necesario llevar el personal a una determinada área de reunión o punto de evacuación y considerar la posibilidad de reforzar el personal de vigilancia

• La decisión de evacuación debe ser tomada por el director de obra y el esfuerzo prioritario se debe encauzar hacia la protección del personal.

Rehabilitación – después del disturbio civil

• Si hay heridos bríndele los primeros auxilios.
• Espere y siga las indicaciones de los grupos operativos de emergencias y las autoridades.
• Evalúe las condiciones de salida y salga con su grupo.
• Abandone el lugar y notifique el hecho desde otra área, a través de medios disponibles.
• Vaya al sitio de reunión y espere instrucciones del director de obra.

F. Inundación de excavaciones

Se clasifica como grado 3, se presenta en todos los frentes de obra.

Acciones preventivas - inundación

• Solicitar el cierre a la EAAB, con suficiente anticipación y de acuerdo con las normas establecidas.
• Dar aviso a la comunidad del cierre por diferentes medios de comunicación.
• Verificar el día del cierre que el carro de la EAAB realice la actividad.
• Solicitar la confirmación del cierre por parte de la Interventoría.
• Verificar el cierre por medio de un hidrante cerca de la zona o por medio de la comunidad del área.

Respuesta – durante la inundación

• Llamar inmediatamente a la EAAB para notificar y verificar si el cierre se hizo correctamente.
• La EAAB interrumpirá inmediatamente el flujo de agua.
• En caso de grandes volúmenes de agua avise a las autoridades si es necesario.
• Alertar a la comunidad del sector con el fin de tomar acciones inmediatas.
• Impedir flujo peatonal y vehicular en la zona.

Rehabilitación – después de la inundación

• Determine hasta donde ha llegado la inundación.
• Mantenga el personal no autorizado fuera del área.
• Bombee total el agua hacia los sumideros de la zona.
• Llame a los bomberos y a la policía si no puede controlar la emergencia.
• Alerta a los vecinos sobre el peligro, especialmente si existen sótanos donde se puedan acumular el agua.
• Sólo reanude la operación normal en el frente de obra, cuando la emergencia este controlada.

G. Corte de suministro del servicio de agua

Se clasifica como grado 1, se presenta en los frentes de obra cuando hay empate de tubería.

Acciones preventivas – corte de agua.

• Solicitar el cierre a la EAAB, con suficiente anticipación y de acuerdo a las normas establecidas.
• Dar aviso a la comunidad del cierre por diferentes medios de comunicación.
• Tener y ejecutar el cronograma detallado sobre las obras a realizar.
• Tener en el frente de obra los equipos necesarios y personal para la realización de las actividades.
• Cumplir con el horario establecido del cierre.

Respuesta – Corte de agua después de las 24 horas.

• Solicitar inmediatamente a la empresa particular el suministro de agua potable.
• En primer lugar, suministrar a: Hospitales y colegios e instituciones aferentes a la obra.
• En segundo lugar: a la comunidad aferente a la obra.
• El suministro se realiza hasta que se establezca el servicio.

Rehabilitación – después de la inundación

• Verificar con la comunidad que el servicio esté establecido

H. Afectación a la salud e integridad física de los trabajadores

Se clasifica como grado 1, se presenta en los frentes de obras

Causas:

• Desconocimiento de las normas de seguridad Industrial
• Ausencia o no implementación del Programa de Higiene y Seguridad Industrial.

Medidas a implementar:

• Implementación del programa de higiene y seguridad industrial con el apoyo de la A.R.L. del proyecto.
• Implementación del Comité Paritario de Seguridad y Salud en el Trabajo
3.6 Política De Calidad

3.6.1. Política de Calidad:
Construcción de obras civiles, ofreciendo servicios de calidad basados en el valor de nuestro recurso humano tanto técnico como profesional, que garantice el aprovechamiento eficiente y creativo de los recursos disponibles para entregar productos y servicios ajustados a las exigencias de nuestros clientes, que contribuyan al desarrollo de la economía y competitividad de nuestro país, generando empleo a nuestra sociedad, brindando calidad en nuestros servicios, así como la conservación del medio ambiente, la salud integral de nuestros empleados, a través de un equipo humano comprometido, innovador y ético.

3.6.2. Política Ambiental:
Gestionar los aspectos ambientales de las actividades relacionadas con la construcción de obras civiles ejecutadas, teniendo en cuenta la necesidad de proteger el medioambiente y prevenir la contaminación, adhiriendo de esta manera los principios básicos del desarrollo sostenible.

Cumpliendo con los requisitos legales aplicables, la búsqueda de herramientas y tecnología que favorezca la prevención de la contaminación, el fomento de las buenas prácticas ambientales y la mejora continua de las operaciones y procesos constructivos, que permitan buscar las alternativas más viables para obtener resultados más eficientes, promoviendo la conservación de los recursos naturales, el reciclaje y el manejo de los Residuos de Construcción y Demolición RCD.

3.6.3. Política de seguridad y salud en el trabajo:
Se debe cumplir con las normas de higiene y seguridad industrial, por lo tanto se tendrán en cuenta como referencia las NORMAS NS-040 y NS-141 de la Empresa de Acueducto y Alcantarillado de Bogotá EAAB-ESP, debido a que es la Entidad Contratante primordial para este tipo de proyectos en la ciudad objeto de estudio: NS-040: “Panorama de Factores de Riesgo - Requisitos mínimos para su elaboración” y la NS-141 “Requisitos de seguridad industrial y salud ocupacional para contratistas”

Además de cumplir con los requisitos anteriores se debe realizar mínimo una vez al mes una inspección planeada, esta actividad se debe desarrollar conjuntamente con el Director de obra o su residente SST, ya que con esta revisión se pueden detectar falencias en el
desarrollo del contrato y se pueden minimizar los riesgos de accidentalidad tanto de trabajadores como de la comunidad que se encuentra a los alrededores del sitio de ejecución de la obra o proyecto, se debe dejar registro de estas inspecciones en las fechas establecidas y hacer el seguimiento correspondiente.

3.6.4. Política de responsabilidad Empresarial:
Cumplir con los objetivos estratégicos definidos en cada uno de los contratos que contempla nuestro proyecto, que permita contribuir con el desarrollo humano sostenible a través de la generación de valor social, económico y ambiental. En función de esto, se definen los siguientes objetivos: Ejercer la actividad de la construcción de la forma más responsable, colocando al recurso humano como el factor principal a tener en cuenta. Aumentar la creación de valor sostenible, generando alianzas estratégicas que permitan maximizar el valor de la compañía en el mercado. Prevenir y mitigar los posibles impactos negativos derivados de los procesos constructivos. Mejorar la reputación de la Empresa, adquiriendo más experiencia y prestigio en este sector específico de la construcción.

4. INGENIERIA DEL PROYECTO

De acuerdo a la información obtenida del estudio de mercado, se procedió a identificar las características del producto ofrecido por nuestra empresa, en comparación con el producto ofrecido actualmente por la competencia, además de esto; se tuvo en cuenta la percepción y la opinión de la comunidad, de los funcionarios y de los contratistas, para garantizar de esta manera la mejor experiencia en la comunidad durante la etapa constructiva, teniendo en cuenta los aspectos técnicos y económicos como las principales variables durante el diseño del producto, las cuales viabilizan o no la opinión de la comunidad.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>COMPANÍA</th>
<th>COMPETENCIA</th>
<th>OPTIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO</td>
<td>75</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>CALIDAD</td>
<td>95</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>VIDA UTIL</td>
<td>90</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>TECNOLOGIA</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>AMBIENTALMENTE SOSTENIBLE</td>
<td>80</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>INDICE DE SEGURIDAD (COMUNIDAD)</td>
<td>60</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>ESTADO PAISAJISTICO</td>
<td>60</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>INDICE DE SATISFACCION (COMUNIDAD)</td>
<td>80</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>CUMPLIMIENTO</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>AFECTACIÓN A LA COMUNIDAD PROCESO CONSTRUCTIVO</td>
<td>80</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 15. Análisis de variables (Empresa VS Competencia)
De la información obtenida en la anterior gráfica, se procede a determinar los aspectos de mejora que podemos implementar en nuestra empresa, para sobresalir por encima de la competencia, y de esta manera darle un valor agregado a nuestro producto.

- **Características que se deben mejorar**: costo, tecnología a implementar y el estado paisajístico.

- **Características en las cuales nuestra empresa sobresale**, y por ende se deben mantener o mejorar: la vida útil del producto, el impacto ambiental generado, el índice de seguridad, el índice de satisfacción y la afectación a la comunidad debido a las etapas del proceso constructivo.

- **Características neutras**, o características en las cuales nuestra empresa coincide con el promedio de la industria: calidad y cumplimiento.

A partir de esta información, es primordial para nuestra compañía establecer estrategias que permitan subsanar las características que actualmente se encuentran por debajo del promedio de la industria, como lo puede ser la implementación de nuevos procesos constructivos que estén a la vanguardia del mercado, lo cual se refleja en la incorporación a mediano plazo de las tecnologías que contemplan rehabilitar los jarillones mediante el uso de concreto, y en un caso más extremo convertir canales abiertos a canales cerrados, mediante box culvert. Por otro lado, el estado paisajístico de estas estructuras las pensamos mejorar y potenciar a corto plazo mediante estrategias de reforestación de
rondas hidráulicas de ríos y canales, y a largo plazo mediante la construcción de parques lineales, ciclorutas y gimnasios.

Por otro lado, es de vital importancia identificar las necesidades y expectativas de nuestro cliente, a partir de la relación entre los requerimientos técnicos para planear, diseñar y procesar el servicio que se piensa brindar. Para identificar estos parámetros, recurrimos a la implementación del sistema QFD, en el cual interrelacionamos las características y atributos que posee nuestro producto, en comparación con lo solicitado y/o requerido por la Empresa de Acueducto y Alcantarillo de Bogotá ESP (Cliente). Además, se establecen las ventajas y desventajas de nuestra compañía a partir de la información suministrada por las encuestas, y de la consulta específica a contratistas y funcionarios que conocen el sector.

4.1 DISEÑO DEL PRODUCTO

A partir de los requerimientos del cliente y de los beneficiarios, se presentan las principales características o atributos de nuestro producto, relacionados a través de la siguiente ficha técnica:

<table>
<thead>
<tr>
<th>ATRIBUTO</th>
<th>FUNCIONALIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIDAD</td>
<td>La calidad del servicio está determinada por los materiales a utilizar, por lo que se tenderá en cuenta materiales con altas especificaciones durante la etapa constructiva, que nos permitan garantizar una durabilidad de las obras de 4 años (valor que se encuentra por encima de la garantía que ofrece la competencia, en general).</td>
</tr>
<tr>
<td>APARIENCIA</td>
<td>El producto final se caracterizará inicialmente por tener una apariencia natural, debido a que el método constructivo se basará primordialmente por la implementación del uso de suelo natural. Posteriormente y en función del alcance del proyecto y de lo estipulado en las Condiciones y Términos de la Licitación, se pensará en implementar tecnologías que relacionen el concreto, como lo puede ser el revestimiento en concreto, o box culvert.</td>
</tr>
<tr>
<td>TECNOLOGIA</td>
<td>El proceso constructivo para llegar al producto final se caracteriza por implementar procesos constructivos ampliamente estudiados, en donde se combinan conocimientos de mecánica de suelos, fluidos, sólidos y geotecnia, los cuales determinan y especifican el paso a paso del proceso.</td>
</tr>
<tr>
<td>ECOLOGIA</td>
<td>De acuerdo al proceso constructivo, se considera realizar excavaciones y rellenos, así como la instalación de geomallas, bolsacretos y colchacretos, los cuales efectivamente alteran las condiciones naturales del sector.</td>
</tr>
<tr>
<td>ERGONOMIA</td>
<td>Las dimensiones del río Tunjuelo en promedio son: 8 m de ancho por 5 m de profundidad, dimensiones que varían de acuerdo al tramo o sector analizado del río. Además de esto, es importante mencionar que estas características solamente aplican para este cuerpo de agua.</td>
</tr>
<tr>
<td>ATRIBUTO</td>
<td>FUNCIONALIDAD</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>NORMATIVIDAD</td>
<td>2. Tapones para obturación, manejo de aguas y verificación de estanqueidad en redes de alcantarillado. Bogotá: EAB-ESP. (NP-106)</td>
</tr>
<tr>
<td></td>
<td>5. Panorama de Factores de Riesgo, Requisitos mínimos para su elaboración. Bogotá: EAB-ESP. (NS-040)</td>
</tr>
<tr>
<td></td>
<td>6. Programación y control de proyectos. Bogotá: EAB-ESP. (NS-048)</td>
</tr>
<tr>
<td></td>
<td>7. Aspectos Técnicos para inspección de redes y estructuras de alcantarillado. Bogotá: EAB-ESP. (NS-058)</td>
</tr>
<tr>
<td></td>
<td>8. Aspectos técnicos para la rehabilitación de redes y estructuras de alcantarillado. Bogotá: EAB-ESP. (NS-061)</td>
</tr>
<tr>
<td>SERVICIO Y GARANTIA</td>
<td>Si bien está ligada en gran medida a los materiales utilizados durante la etapa constructiva, también está fuertemente relacionada con la intensidad y frecuencia de las precipitaciones, por lo cual se presta un servicio postventa de hasta un año posterior a la entrega del producto (jarillones).</td>
</tr>
</tbody>
</table>

Tabla 16 Ficha técnica del servicio

4.2 DISEÑO DEL PROCESO

De acuerdo al estudio de mercado y el producto establecido, teniendo en cuenta las variables más importantes y las características técnicas innatas al proceso y además procesos comunes, es decir establecidos previamente en el campo, se adopta el procedimiento desde su búsqueda, concepción, desarrollo y servicio posventa.
La figura anterior representa el enlace de las funciones principales a desarrollar en el proyecto, aunque claramente se deberían agregar actividades de apoyo que son fundamentales para el desarrollo y funcionamiento de todos los proyectos, tales como gestión humana, compras, sistemas de información y administración y finanzas; sin embargo, en la figura anterior se muestra el carácter misional con el que se enfocará la empresa y será el eje operativo de la empresa.

4.2.1 Plan de desarrollo por áreas

1. **Licitaciones**: Teniendo en cuenta que el mercado se caracteriza por proyectos públicos, el área de licitaciones se convierte en una ficha fundamental en la búsqueda y adquisición de proyectos nuevos, por lo cual, no se trata solamente de plantear una oferta frente a los pliegos emitidos por la entidad contratante. Lo que convierte la oferta de licitación en algo atractivo, aparte del % de ajuste económico, es también el valor agregado que se pueda dar a las actividades descritas por los pliegos. Por lo cual, es necesario que al frente de este proceso se encuentre un ingeniero civil en la capacidad de conocer los procesos constructivos, determinar los valores de las actividades y las posibles mejoras basado no solo en las necesidades de la entidad, sino también en las descubiertas a través del estudio de mercado. Esta área del proceso, puede tener variaciones significativas en tiempo, dependiendo la naturaleza de cada proyecto, sin embargo, se estima que el proceso de licitación desde la publicación de oferta hasta la adjudicación del proyecto tarde en promedio 2 meses, dichos tiempos estarán siempre en función de la complejidad de cada proyecto, su cuantía, numero de oferentes y tiempos de ejecución.

2. **Planificación del proyecto**: Una vez sea adjudicado el proyecto, comienza para la empresa la etapa de planificación en la cual se recibe toda la información elaborada por la entidad, como lo son diseños hidráulicos, estructurales, estudios de suelos y estudios de la zona afectada. Como primera medida, toda esta información debe ser estudiada y analizada con el fin de determinar el método constructivo, posibles errores en diseños, faltantes o incongruencias. Toda vez que los diseños han sido avalados por los expertos (sean pertenecientes a la empresa o ajenos a ella) se comenzará con el proceso de planificación de obra, en el cual se establecerá una programación de obra, cantidades de obra iniciales, presupuesto detallado, inicio de
compras y contratación, búsqueda de maquinaria, elaboración de subcontratación (si hubiese lugar). Dadas las características técnicas de dicho puesto, necesariamente debe estar al frente de un Ingeniero Civil con experiencia en el campo de construcción y en obras específicas como el proyecto a desarrollar, toda vez que la realización de manera ideal de esta planificación permitirá el buen comienzo y desarrollo de las actividades de obra y finalmente su ejecución en los términos y tiempos inicialmente acordados. Esta planificación varía también cuanto, a la dimensión del proyecto, sin embargo, se estima una duración de un mes, que correspondería a las etapas de

3. **Construcción de obra civil y servicios:** Este proceso consiste en la materialización del proyecto, sea construcción, mantenimiento, renovación o mitigación de estructuras de contención de acuerdo a lo previamente planificado, el tiempo de ejecución de cada proyecto es altamente variable dependiendo las actividades a ejecutar y la complejidad del medio, sin embargo, podrá estar entre 3 a 6 meses incluso dependiendo las características climáticas de la época donde se desarrollen las actividades. El personal ideal para llevar a cabo estas actividades contará de un equipo de ingenieros civiles en cabeza de un director de obra que éste especializado en gerencia o gestión de proyectos, que se encuentre en la capacidad de programar las actividades, mantenerlas controladas, prever todo tipo de situaciones incluso adversas y estar en la capacidad de responder ante situaciones imprevistas, posterior a ello, dependiendo de la dimensión del proyecto, también se requiere un Ingeniero residente que se encontrará al frente de las actividades en campo, controlando y verificando la calidad y correcta ejecución de las actividades hasta su terminación.

4. **Servicio de Posventa:** Teniendo en cuenta que se ha hecho una terminación y entrega de proyectos, es necesario considerar el servicio de posventa dentro de la cadena de servicios ofrecidos, ya que dado el sector y diversos factores siempre podrán existir variables a corregir a posteriori. Sin embargo, dada la naturaleza del proyecto donde no se trata de vivienda o edificaciones, dicha área no corresponde a un gran eje de la empresa, por lo cual podrá ser asumida desde la cabeza del director de proyectos sin requerir profesionales adicionales.
PROCESO VARIABLE DE ENTRADA VARIABLE RESPUESTA DURACIÓN ESTIMADA (en función del proyecto) RECURSOS

<table>
<thead>
<tr>
<th>PROCESO</th>
<th>VARIABLES DE ENTRADA</th>
<th>VARIABLES RESPUESTA</th>
<th>DURACION ESTIMADA (en función del proyecto)</th>
<th>RECURSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LICITACIONES</td>
<td>Pliegos de la entidad contratante</td>
<td>Propuesta:</td>
<td>2 meses desde la recepción de la información por parte de la entidad hasta la elaboración de la propuesta y publicación de resultados</td>
<td>Ingeniero Civil con experiencia en licitaciones de 3 a 4 años</td>
</tr>
</tbody>
</table>
| PLANIFICACION DEL PROYECTO | • Diseños hidráulicos y estructurales
 • Estudio de suelos
 • Estudios Técnicos | • Planos aprobados para construcción
 • Programación de Obra
 • Presupuesto de Obra
 • Pedidos Iniciales
 • Plan de contratación | 1 mes desde la publicación de resultados hasta el inicio de obra | Coordinador de proyectos: Ingeniero Civil con experiencia de 4 a 5 años |
| CONSTRUCCION DE OBRA | • Planos aprobados para construcción
 • Programación de Obra
 • Presupuesto de Obra
 • Pedidos Iniciales
 • Plan de contratación | • Entrega de actividades intermedias de acuerdo a los criterios técnicos de cada una de ellas
 • Entrega de obra final de acuerdo a los requisitos globales técnicos | La duración de este proceso tiene una alta variabilidad y dependencia de la magnitud y complejidad del proyecto, se estima una duración de 3 a 6 meses de acuerdo a múltiples factores. | • Director de Obra: Ingeniero civil con 8 años de experiencia general y 2 años de experiencia específica
 • Residente de Obra: Ingeniero civil con 4 años de experiencia general y 2 años de experiencia específica (Los requisitos de experiencia de estos cargos varían de acuerdo a los establecidos por el pliego de la entidad contratante) |
| SERVICIO DE POSTVENTA | Requisito o Solicitud por parte de la entidad | • Análisis de pertinencia
 • Atención y solución de posventa | 15 a 30 días, de acuerdo a la complejidad | • Director de Obra y residente de proyectos alternos.
 • Coordinador de proyectos |

Tabla 17. Plan de Desarrollo por Áreas (Análisis de variables)

4.3 PROCESO CONTRACTIVO

Para determinar los procedimientos y la documentación necesaria para planificar, desarrollar, gestionar, ejecutar y controlar el cronograma del proyecto, primero se debe definir el proceso constructivo que se piensa emplear en la construcción de las obras.
Como ya se ha venido explicando, se plantea la construcción de jarillones solamente mediante el procedimiento convencional, o dicho de otra manera, mediante el uso de suelo natural, así como se describe a continuación:

4.3.1 Proceso constructivo Jarillones – Uso de suelo natural

1.1. Preparación del terreno

Limpie el talud retirando troncos, piedras y cualquier elemento suelto que dificulte el contacto directo con el suelo (los afloramientos de roca se dejarán). (Figura 1).

El talud debe ser estable y el material que lo conforma denso o compacto, especialmente en taludes conformados por relleno.

1.2. Conformación de la cortina de pilotes

Conforme una cortina de pilotes de madera, de ocho metros de longitud cada uno, hincados hasta una profundidad de 7,30 m por debajo del nivel de aguas medias del río Tunjuelo y separados 0,50 m entre ejes.

1.3. Excavación de las trincheras de anclaje
Excave trincheras de anclaje en la corona y en la pata del talud, con sección trapezoidal, profundidad mínima de 0.20 m y ancho en la base de 0.30 m. (Ver Figura 2).

Nota: La Geo celda no es un material para estabilización mecánica de taludes ni laderas inestables.

1.4. Extensión de la Geo celda

Para extender los paneles de la geo celda se debe fijar el borde superior del panel dentro de la trinchera de anclaje utilizando ganchos metálicos, para luego expandirlos en sentido longitudinal al talud.

1.5. Grapas de anclaje

Se podrá utilizar grapas de anclajes tipo “J” en varilla metálica de diámetro no menor a 6 mm (1/4 pulg) o estacas de madera. Las dimensiones de las grapas deben establecerse de acuerdo con las condiciones locales, tal como se indica en la Figura 4. Cuando las Geo celdas se instalen sobre superficies artificiales donde no se pueda hincar ganchos, la unión entre paneles deberá hacerse mediante amarres con CABLE, entrelazándolo en las aberturas de la geo malla inferior de cada
1.6. **Llenado de las trincheras**

Llene las trincheras de anclaje con el suelo de la excavación o con suelo fértil y compacte el material. Para prevenir el flujo concentrado de agua sobre la superficie, coloque un cordón de material en la corona del talud a todo lo largo de la superficie a proteger. Para taludes altos se debe interceptar el agua de escorrentía mediante zanjas, trincheras, cunetas de coronación y obras de recolección sobre el talud.

![Ilustración 21. Llenado de trincheras](image)

1.7. **Colocación de anclajes intermedios**

Coloque grapas intermedias dentro del área cubierta por la Geo celda garantizando un contacto continuo y ceñido con la superficie del terreno.

Como guía general se recomienda colocar la cantidad de grapas o estacas indicadas en la Tabla 1 de acuerdo con la pendiente del talud.

<table>
<thead>
<tr>
<th>Pendiente del talud</th>
<th>Frecuencia de anclaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 3H : 1V</td>
<td>1 a 2 anclajes / m2</td>
</tr>
<tr>
<td>3H : 1V a 2H : 1V</td>
<td>2 a 3 anclajes / m2</td>
</tr>
<tr>
<td>2H : 1V a 1H : 1V</td>
<td>3 a 5 anclajes / m2</td>
</tr>
</tbody>
</table>

Tabla 18. Distribución de anclajes

1.8. **Aplicación de gravilla y del suelo fértil**

Se llena con gravilla hasta una altura de 5 cm del alto de la geo celda, prepare una mezcla fértil de tierra negra. Disponga estos materiales dentro de cada una de las celdas de la Geo celda.

1.9. **Riego permanente**
Aplique riego en forma de lluvia fina como riegos periódicos.

![Ilustración 22. Riego permanente](image)

4.4 DIMENSIONAMIENTO DEL SISTEMA OPERATIVO

Teniendo en cuenta la naturaleza del servicio es necesario realizar el diseño de la planta operativa para la ejecución de los procesos antes descritos, que de acuerdo a los atributos descritos corresponden a procesos operativos, administrativos y de campo.

4.4.1 Análisis de capacidades

De acuerdo al diseño del proceso, se estable el cálculo de los recursos necesarios para poder cumplir con el plan de ventas estimado, para este caso en particular, se dimensionaron los puestos de trabajo para cada uno de los primeros cinco años estudiados, de acuerdo al número de contratos pronosticados, y teniendo en cuenta que el año de máxima capacidad implicará la mayor demanda de recursos. Por medio de la herramienta Microsoft Project, como se muestra a continuación:

<table>
<thead>
<tr>
<th>AREA</th>
<th>CARGO</th>
<th>TIEMPO (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unitario</td>
</tr>
<tr>
<td>Gerencia General</td>
<td>Gerente</td>
<td>1</td>
</tr>
<tr>
<td>Dirección Financiera</td>
<td>Contador</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Auxiliar contable</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Auxiliar Administrativo</td>
<td>0</td>
</tr>
<tr>
<td>Licitaciones</td>
<td>Coordinador de licitaciones</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de licitaciones</td>
<td>0</td>
</tr>
<tr>
<td>Coordinación de Proyectos</td>
<td>Ingeniero de Proyectos</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de Proyectos</td>
<td>0</td>
</tr>
<tr>
<td>Coordinador de Compras</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
NOTA: Es importante tener en cuenta que en la Coordinación de Proyectos se encuentran dos ingenieros y dos auxiliares, los cuales tendrán las funciones de supervisar cada uno de los contratos para el año de máxima capacidad.

El personal que se encuentre en terreno (obra), no se tendrá en cuenta para el dimensionamiento del sistema operativo, puesto que esta cantidad de personal varía de acuerdo al contrato que se esté ejecutando, así como la maquinaria necesaria para la construcción de las obras. Estos recursos lo establece la Entidad contratante, por medio de las Condiciones y Términos del Contrato, así mismo, dentro de estos pliegos se establecen las condiciones particulares que el contratista deberá tener en cuenta para establecer el campamento de obra, en función del personal exigido por la EAAB-ESP.

CONVENCIONES

- Actividades Crítica (Holgura cero)
- Actividades (Ver holguras en Columna 5)
Ilustración 23. Dimensionamiento del sistema operativo (Para un contrato promedio). Duración: 6 meses
4.4.2 Plan de operación

De acuerdo a la meta de la empresa, las necesidades de los proyectos que se abarcarán y los procesos antes descritos, se establece el plan de operaciones que permita dar una respuesta óptima y eficiente de acuerdo al plan de ventas antes pronosticado, para el año de máxima capacidad. Para este caso en particular, el pronóstico realizado nos arroja que nuestra empresa durante el año No. cinco ejecutara 4 contratos (desde su inicio hasta su terminación), y estarán en etapa de terminación otros 2. El análisis de capacidades establece que la Empresa deberá contar con un personal permanente de 17 personas, distribuidas según sus cargos como se observa en el numeral 3.3.1. Análisis de capacidades. Sin embargo, como ya se mencionó anteriormente, la ejecución de estos 6 contratos deberá contar con personal variable, con dedicación del 100% en terreno, por este motivo; no se tendrá en cuenta para el dimensionamiento del sistema operativo, puesto que esta cantidad de personas varía de acuerdo al contrato que se esté ejecutando, así como la maquinaria necesaria para la construcción de las obras.

Estos recursos lo establece la Entidad contratante, por medio de las Condiciones y Términos del Contrato, así mismo, dentro de estos pliegos se establecen las condiciones particulares que el contratista deberá tener en cuenta para establecer el campamento de obra, en función del personal exigido por la EAAB-ESP.

4.4.3 Análisis de Impacto Ambiental

Se identificaron los cinco principales impactos ambientales que se podrían generar durante la etapa constructiva. De éstos, el que presenta una mayor importancia es la generación de procesos erosivos, debido fundamentalmente a la vulnerabilidad de la zona frente a este fenómeno. El segundo impacto se relaciona con la pérdida de cobertura vegetal, caracterizado principalmente por su magnitud, debido a la extensión de las áreas de intervención que contempla cada uno de los contratos relacionados con la rehabilitación de jarillones. Los impactos alteración de la calidad del agua, deterioro de la calidad del aire y reducción de la fauna, presentaron en este orden menores valores de calificación de importancia.

Desde el punto de vista social, el impacto benéfico de mayor magnitud es la reducción del riesgo de inundación, para la población que habita en la ronda hidráulica del río, o en sus alrededores. Además de esto, si se contempla la construcción de los espacios recreativos
que hemos venido planteado (parques lineales, ciclorutas, gimnasios) se mejorarían notablemente las condiciones socioculturales del sector.

Por otro lado, desde el punto de vista económico, la implementación de tiendas “casetas” en estos espacios generaría un gran impacto en el sector económico de la población afectada, sin embargo, su calificación es baja debido a que generaría ingresos económicos a una parte muy reducida de la comunidad.

<table>
<thead>
<tr>
<th>SISTEMA</th>
<th>COMPONENTE AMBIENTAL</th>
<th>CALIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIO FÍSICO</td>
<td>Generación de procesos erosivos</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Pérdida de cobertura vegetal</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Alteración de la calidad del agua</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Deterioro de la calidad del aire</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Reducción de la fauna</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TOTAL MEDIO FÍSICO</td>
<td>300</td>
</tr>
<tr>
<td>MEDIO SOCIO ECONOMICO Y CULTURAL</td>
<td>Reducción del riesgo de inundación</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Construcción de los espacios recreativos</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Aumento del Alumbrado Público</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Creación de empleo (Instalación de casetas)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>TOTAL MEDIO SOCIO ECONOMICO Y CULTURAL</td>
<td>260</td>
</tr>
<tr>
<td>TOTAL MEDIO AMBIENTE AFECTADO</td>
<td></td>
<td>560</td>
</tr>
</tbody>
</table>

Tabla 20 Análisis Impacto Ambiental

Sin embargo, una vez se ejecuten las medidas que debe contemplar el Plan de Manejo Ambiental - PMA, para cada uno de los contratos que posteriormente se gane nuestra empresa, ninguno de los impactos identificados anteriormente se convertiría en un obstáculo a tener en cuenta durante la ejecución de los proyectos.
5. ESTUDIO ADMINISTRATIVO

Para esta actividad, se desarrolla el paso a paso a tener en cuenta, como se muestra a continuación:

5.1 **NOMBRE DE LA EMPRESA**

Para establecer el nombre de la Empresa se tomaron las iniciales de los nombres de los dos integrantes de la asignatura, es decir: S&A SAS

5.2 **MISIÓN**

Desarrollar proyectos de ingeniería con un grupo profesional interdisciplinario, infraestructura y recursos enfocados en la satisfacción y cumplimiento de las expectativas de nuestros clientes, comprometidos con el crecimiento integral de nuestro grupo de trabajo.

5.3 **VISIÓN**

S&A SAS, se proyectará como una compañía en constante crecimiento, líder al año 2022 en el desarrollo de proyectos de ingeniería enfocados en la prevención, mitigación y renovación de las estructuras de contención de los cuerpos de agua de Bogotá, reconocida por su calidad y servicio.

5.4 **ORGANIGRAMA**

De acuerdo al dimensionamiento del sistema operativo y al pronóstico realizado, se establece el siguiente organigrama administrativo:
5.5 PERFILES DE LOS CARGOS

De acuerdo al dimensionamiento del sistema operativo y dimensionamiento del sistema administrativo, se establece las áreas, cargos, perfiles, roles y funciones, autoridad, y rendición de cuentas del recurso humano a tener en cuenta para el año de máxima capacidad de la empresa, tal y como se observa a continuación:
<table>
<thead>
<tr>
<th>AREA</th>
<th>CARGO</th>
<th>PERFIL</th>
<th>ROLES Y FUNCIONES</th>
<th>AUTORIDAD</th>
<th>RENDICION DE CUENTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerencia General</td>
<td>Gerente</td>
<td>Ingeniero civil especialista en gerencia de proyectos con amplio conocimiento y experiencia en el área de gerencia y gestión de proyectos de ingeniería civil (10 años en adelante).</td>
<td>1. Dirección de proyectos a desarrollar. 2. Planeación estratégica de la empresa 3. Relacionar la organización con aliados estratégicos. 4. Asignación de funciones, recursos y la conversión de objetivos en actividades concretas. 5. Direccionar, orientar y mantener el esfuerzo humano para lograr las metas propuestas mediante el trabajo en equipo. 6. Revisión, verificación y control 7. Control financiero y tributario de la organización. 8. Mantener en todos los niveles de la organización el enfoque al cliente y por procesos.</td>
<td>• Máxima autoridad en el control integral de la revisión, seguimiento y el direccionamiento de la organización y del Sistema Integrado de Gestión de esta.</td>
<td>• La rendición de cuentas es realizada a la Junta Directiva de la empresa, si la hubiere, en cuanto al mantenimiento general del Sistema Integrado de Gestión.</td>
</tr>
<tr>
<td>Dirección Financiera</td>
<td>Contador</td>
<td>Contador con 5 años de experiencia general y 2 años de experiencia específica en el área de la construcción con conocimientos integrales de la normativa vigente y aplicable a la empresa.</td>
<td>1. Control y revisión de los movimientos contables. Responsable de Verificar que cada documento se encuentre debidamente legalizado, autorizado y registrado en el sistema contable. 2. Causación de nómina, retenciones, provisiones de prestaciones sociales y toda obligación laboral que se presente. Responsable de Verificar las liquidaciones completas de los diferentes gastos de nómina y su respectiva acusación contable, al igual que el diligenciamiento de los formularios de riesgos profesionales, EPS, pensión, parafiscales, cesantías y las que se presenten ocasionalmente como son indemnizaciones, liquidaciones laborales, certificados de retención en la fuente, certificaciones laborales, etc. 3. Supervisión del personal asignado por el área contable. Responsable de Verificar que la persona asignada ejecute las tareas de las cuales es responsable contablemente.</td>
<td>Autoridad sobre auxiliares contables y administrativos</td>
<td>• Es responsable de la rendición de cuentas a la dirección por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td></td>
<td>Estudiante de nivel técnico, tecnológico o en formación profesional de últimos semestres, certificados en el área de la Contaduría. Preferiblemente con experiencia en el área de la construcción, con conocimientos integrales de la normativa vigente y aplicable a la empresa.</td>
<td>1. Elaboración de los movimientos contables. Responsable de Asegurar que cada documento se encuentre debidamente legalizado, autorizado y registrado en el sistema contable. 2. Causación de nómina, retenciones, aportes parafiscales, provisiones de prestaciones sociales y toda obligación laboral que se presente. Responsable de Verificar las liquidaciones completas de los diferentes gastos de nómina y su respectiva acusación contable, al igual que el diligenciamiento de los formularios de riesgos laborales, EPS, pensión, parafiscales, cesantías y las que se presenten ocasionalmente como son indemnizaciones, liquidaciones laborales, certificados de retención en la fuente, certificaciones laborales, etc.</td>
<td>• La rendición de cuentas es realizada a la Junta Directiva de la empresa, si la hubiere, en cuanto al mantenimiento general del Sistema Integrado de Gestión.</td>
<td>• La rendición de cuentas es realizada a la Junta Directiva de la empresa, si la hubiere, en cuanto al mantenimiento general del Sistema Integrado de Gestión.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auxiliar Contable</td>
<td>Estudiante de nivel técnico, tecnológico o en formación profesional de últimos semestres, certificados en el área de la Contaduría. Preferiblemente con experiencia en el área de la construcción, con conocimientos integrales de la normativa vigente y aplicable a la empresa.</td>
<td>1. Recepción Información Externa. Responsable de Recibir, registrar y clasificar físicamente la información que llega a la oficina. 2. Control de correspondencia interna. Responsable de Controlar y organizar las comunicaciones oficiales que genera la organización hacia y desde las entidades externas. 3. Atención al personal interno y visitantes externos. Responsable de_Atender a las partes interesadas en las consultas requeridas. 4. Archivar información en expedientes y/o legajarlas. Responsable del Control documental 5. Apoyo administrativo para los diferentes procesos de la organización. Responsable de Mantener y controlar la papelería que requieren los funcionarios de cada área. 6. Realizar reservas y cancelación de tiquetes aéreos.</td>
<td>• La rendición de cuentas es realizada a la Junta Directiva de la empresa, si la hubiere, en cuanto al mantenimiento general del Sistema Integrado de Gestión.</td>
<td>• La rendición de cuentas es realizada a la Junta Directiva de la empresa, si la hubiere, en cuanto al mantenimiento general del Sistema Integrado de Gestión.</td>
</tr>
<tr>
<td>AREA</td>
<td>CARGO</td>
<td>PERFIL</td>
<td>ROLES Y FUNCIONES</td>
<td>AUTORIDAD</td>
<td>RENDICIÓN DE CUENTAS</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingeniero civil con experiencia de 3 a 4 años en el área de licitaciones, con conocimientos integrales sobre infraestructura hidráulica, análisis de precios unitarios y presupuestos. Funciones: Búsqueda de ofertas y elaboración de propuestas para concurso frente a las diferentes entidades.</td>
<td>1. Revisar y analizar informes de desempeño y de procesos licitatorios vigentes. Responsable de Contar con la revisión de registros e informes suministrados por el coordinador comercial. 2. Mantener comunicación directa entre contratantes y la organización, Responsable de la revisión de registros de seguimiento del proceso licitatorio. 3. Revisar las modificaciones o aclaraciones dadas en audiencias y demás actividades con miras a la aclaración de términos. Responsable de sugerir la participación en los procesos dependiendo de los resultados de las audiencias y contenido total de requerimientos y viabilidad económica del proceso. 4. Revisión final de propuestas licitatorias antes de ser liberadas al cliente. Responsable de validar el contenido de las propuestas para que el proceso licitatorio sea exitoso. 5. Consultar en los medios de comunicación las convocatorias e invitaciones para participar en procesos licitatorios públicos y privados. Responsable de Entregar a gerencia el informe de valoración para que se evalúe la participación en un proceso licitatorio. 6. Entablar canales de comunicación con el cliente para aclarar dudas con relación al proceso precontractual y contractual. Responsable de Mantener los registros de las interacciones que se generen en la comunicación con el cliente.</td>
<td>Autoridad sobre auxiliares de licitaciones</td>
<td>• Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td>Licitaciones</td>
<td>Coordinador de licitaciones</td>
<td>Estudiante de nivel técnico, tecnológico o en formación profesional de últimos semestres de Ingeniería Civil, con experiencia de mínimo 1 año en proyectos de infraestructura, preferiblemente relacionada con obras hidráulicas</td>
<td>1. Consultar en los medios de comunicación las convocatorias e invitaciones para participar en procesos licitatorios con el estado. Responsable de Entregar a gerencia el informe de valoración para que se evalúe la participación en un proceso licitatorio. 2. Entablar canales de comunicación con el cliente para aclarar dudas con relación al proceso precontractual y contractual. Responsable de Mantener los registros de las interacciones que se generen en la comunicación con el cliente. 3. Participar en audiencias y demás actividades con miras a la aclaración de términos. Responsable de Tener en cuenta los resultados de las audiencias y demás actividades para el informe de valoración de participación en un proceso. 4. Elaborar propuestas comerciales. Responsable de Cumplir con entrega de propuestas dentro de las fechas y horas previstas por la entidad. 5. Identificar las causas de las no conformidades, proponer las acciones de contención y ejecutar dichas acciones.</td>
<td>Autoridad sobre auxiliares de licitaciones</td>
<td>• Es responsable de la rendición de cuentas ante la coordinación de licitaciones por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de licitaciones</td>
<td>Ingeniero civil con experiencia de 5 años en el área de proyectos, con conocimientos integrales sobre construcción de obras civiles, análisis de precios unitarios, presupuestos y programación de obra. Funciones: Análisis y revisión de diseños a ejecutar, cantidades de obra, análisis de precios unitarios y presupuesto, programación de obras.</td>
<td>1. Revisión de los proyectos. 2. Control y revisión en el cumplimiento de cada proyecto en cuanto a la normatividad exigida por los entes. Autorizados para fijarlas a los parámetros dispuestos por la organización. 3. Supervisión técnica y administrativa en el desarrollo de los proyectos. 4. Asesorar administrativamente la organización en la contratación de proyectos. 5. Vigilar el proceso de diseño de proyectos. 6. Entrega de proyecto aprobado en los límites establecidos en la planificación. 7. Vigilar el desempeño de los procesos del SIG.</td>
<td>Autoridad sobre auxiliares de licitaciones</td>
<td>• Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td></td>
<td>Ingeniero de proyectos</td>
<td>Coordinación de proyectos</td>
<td>Estudiante de nivel técnico, tecnológico o en formación profesional de últimos semestres de Ing. civil, con experiencia de mínimo 2 años en el área de proyectos, con conocimientos integrales sobre construcción de obras civiles, análisis de precios unitarios, presupuestos y programación de obra.</td>
<td>Apoyar las tareas específicas del área de coordinación de proyectos</td>
<td>Autoridad sobre auxiliares de licitaciones</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de proyectos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>CARGO</td>
<td>PERFIL</td>
<td>ROLES Y FUNCIONES</td>
<td>AUTORIDAD</td>
<td>RENDICION DE CUENTAS</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Compras y Contratación</td>
<td>Coordinador de Compras</td>
<td>Ingeniero civil o industrial con experiencia de 3 años en el área compras de construcción, con conocimientos básicos en los procesos constructivos y materiales.</td>
<td>1. Asegurar el cumplimiento de la política de adquisiciones de la compañía en términos de cantidad, calidad y precio. 2. Informarse, documentarse y asesorarse sobre las características ideales de los productos a comprar. 3. Analizar y gestionar las necesidades de adquisiciones de los diferentes proyectos y/o departamentos. Responsable de Garantizar la disponibilidad de los materiales en los tiempos establecidos en las disposiciones. 4. Buscar, seleccionar y mantener proveedores competentes. 5. Realizar las adquisiciones mediante órdenes de compra desarrolladas en el software administrativo y realizar control de las mismas mediante control de adquisiciones en proyecto. 6. Solicitar las garantías por incumplimiento de entrega o calidad de los materiales, así como de servicios, postventa y mantenimiento contemplado en los contratos. Responsable de Control y gestión de garantías.</td>
<td>Autoridad sobre auxiliares de compras</td>
<td>• Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de Compras</td>
<td>Estudiante de nivel técnico, tecnológico o en formación profesional de últimos semestres de Ing. Civil o industrial, con experiencia de mínimo 1 año en el área compras de construcción, con conocimientos básicos en los procesos constructivos y materiales.</td>
<td>Apoyar las tareas específicas del área de coordinación de compras</td>
<td></td>
<td>• Es responsable de la rendición de cuentas ante la coordinación de compras</td>
</tr>
<tr>
<td></td>
<td>Coordinador de Contratación</td>
<td>Teniendo en cuenta que inicialmente no es posible contar con la maquinaria a implementar en este tipo de proyectos o la mano de obra especializada es necesario realizar subcontrataciones en los proyectos a ejecutar por lo cual se requiere al frente de ello un Ingeniero civil o industrial con experiencia de 3 años en el área de construcción, con conocimientos integrales en los procesos constructivos, materiales y mano de obra.</td>
<td>1. Gestionar las necesidades de contratación en términos de tiempo, calidad y precio. 2. Solicitar cotizaciones a empresas Contractistas según la especialidad de acuerdo a las necesidades. 3. Establecer, analizar e informar al jefe inmediato los posibles riesgos al contratar y proponer alternativas para su mitigación. 4. Exigir los soportes relevantes antes de realizar la contratación 5. Realizar selección del contratista según criterios establecidos en procedimiento incluida la capacidad logística y financiera debidamente registrada 6. Redactar el contrato junto con el responsable de proyecto para luego validar con asesores legales externos. 7. Convocar a proveedores de acuerdo a los requerimientos fundamentados por profesionales de la organización. 8. Realizar las negociaciones con contratistas propendiendo por un justo precio, calidad, servicio y cumplimiento legal.</td>
<td>Autoridad sobre auxiliares de compras</td>
<td>• Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td>Calidad</td>
<td>Ingeniero Industrial</td>
<td>Teniendo en cuenta la magnitud de la empresa y de los proyectos a manejar se plantea inicialmente integrar estas áreas a cargo de una sola persona, que será ingeniero industrial con 5 años de experiencia general y 3 años de experiencia específica en el área de la construcción con conocimientos integrales de la normativa vigente y aplicable a la empresa. Funciones: Administrar, coordinar y gestionar el sistema integral de gestión de calidad (incluyendo todo lo relativo a la gestión ambiental). Elaborar procesos de selección para contratación de personal nuevo.</td>
<td>1. Control de documentos del Sistema Integrado de Gestión Responsable de Verificar que los documentos del Sistema Integrado de Gestión se encuentran actualizados, disponibles en los puntos de uso y para acceso a todo el personal de la organización, incluyendo los documentos de origen externo. 2. Coordinar los procesos de inducción y capacitación en temas relacionados con el Sistema de Calidad. Responsable de Asegurarse de la toma de conciencia de las políticas y objetivos de calidad, los deberes establecidos en el Manual del Sistema Integrado y la Norma ISO 9001-20000, en todos los niveles de la organización, fomentando la motivación del personal y las actividades de participación que se han establecido. 3. Control de los registros del Sistema de calidad. Responsable de Verificar el adecuado diligenciamiento, almacenamiento y disposición de los registros de la empresa. 4. Coordinar el trámite de acciones correctivas, preventivas y/o mejora. Responsable de Asegurar la implementación de acciones correctivas, preventivas y de mejora, resultado del análisis de las no conformidades detectadas en los diferentes procesos</td>
<td></td>
<td>• Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción.</td>
</tr>
<tr>
<td>AREA</td>
<td>CARGO</td>
<td>PERFIL</td>
<td>ROLES Y FUNCIONES</td>
<td>AUTORIDAD</td>
<td>RENDICION DE CUENTAS</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| Gestión Ambiental | Ingeniero Ambiental | • NIVEL PROFESIONAL Y/O ESTUDIOS: Ingeniera Ambiental
• EXPERIENCIA: Dos (2) años en el cargo de consultor y/o coordinador y/o director ambiental.
• HABILIDADES: Liderazgo, comunicación efectiva, calidad humana, manejo de conflictos, calidad, actitud, trabajo en equipo, flexibilidad, responsabilidad y eficacia. | 1. Planificar, organizar, dirigir, desarrollar y mantener el Sistema de ambiental.
2. Asegurar la capacitación y entrenamiento de todo el personal en planes de manejo, fichas de manejo, procedimientos y formatos, en cada proyecto.
3. Coordinar la estructuración de los planes de manejo ambiental requeridos de carácter particular en cada proyecto.
Responsable de Asegurar que el plan de manejo ambiental es realizado de manera acorde a los lineamientos establecidos.
4. Establecer objetivos, metas y programas, identificando las actividades, recursos y plazos para desarrollar la gestión ambiental.
Responsable de Soportar el proceso de implementación y seguimiento del sistema de gestión ambiental para cada proyecto y oficina.
5. Verificar el diligenciamiento de los registros por cada responsable asignado en el plan de manejo ambiental.
Responsable de Realizar seguimiento al cumplimiento de requisitos por parte de los contratistas en temas de control ambiental y uso de EPPS.
6. Definir y solicitar recursos para implementar plan de manejo relativos a control en la fuente, medio e individuo. | • Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción. |
| Recursos Humanos | Trabajadora social | • NIVEL PROFESIONAL Y/O ESTUDIOS: Trabajador social o antropólogo o sociólogo.
• EXPERIENCIA: Entre uno (1) y (2) años de experiencia en cargos relacionados para la construcción de obras civiles.
• HABILIDADES: Comunicación efectiva, cumplimiento, liderazgo, responsabilidad, eficacia, puntualidad y organización. | 1. Realizar convocatoria para la selección del personal directo Responsable de Publicar las necesidades de nuevo personal según perfil de cargo requerido.
2. Desarrollar procesos de selección, realizar entrevistas para ingreso de personal.
Responsable de verificar competencias y habilidades del personal.
3. Validar los soportes de educación, experiencia y formación de los aspirantes a ocupar cargos dentro de la organización.
4. Realizar afiliaciones al sistema de seguridad social y riesgos laborales.
Responsable de garantizar el correcto cumplimiento con el sistema general de seguridad social en el país.
5. Elaborar manuales de funciones y escalas salariales según políticas organizacionales de acuerdo con la estructura organizacional.
6. Coordinar con CALIDAD, el desarrollo y ejecución del plan de capacitación.
Responsable de establecer y supervisar el plan de capacitación acorde con las necesidades de formación y entrenamiento y en concordancia con políticas y normativa de la organización.
7. Realizar, consolidar, analizar y emitir resultados de las evaluaciones de desempeño.
Responsable de Validar el desempeño de todo el personal en un periodo de tiempo.
8. Realizar contratación directa o por prestación de servicio de profesionales. | • Es responsable de la rendición de cuentas ante la dirección por la implementación de las acciones a cargo determinadas en planes de acción. |

Tabla 21 Roles y funciones de los cargos requeridos
5.6 CÁLCULO DE RECURSOS PARA TRABAJAR POR PROYECTOS

Para estimar el cálculo de los recursos para el dimensionamiento del sistema administrativo, se procedió a realizar el mismo análisis que determinó el dimensionamiento del sistema operativo. En el cual se tuvieron en cuenta los cargos y rendimientos necesarios para ejecutar el máximo número de contratos para el año de máxima capacidad. A partir de esto, se obtuvieron las siguientes cantidades:

<table>
<thead>
<tr>
<th>CARGO</th>
<th>AÑO</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unitario</td>
<td>Total/Área</td>
</tr>
<tr>
<td>Gerente</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Contador</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Auxiliar contable</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Auxiliar Administrativo</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coordinador de licitaciones</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Auxiliar de licitaciones</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ingeniero de Proyectos</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Auxiliar de Proyectos</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coordinador de Compras</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Auxiliar de Compras</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coordinador de Contratación</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ingeniero Industrial</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ingeniero Ambiental</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Trabajadora social</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 22. Cálculo de recursos (S. Administrativo)

5.7 DISTRIBUCIÓN Y UBICACIÓN DE INSTALACIONES

Teniendo en cuenta que han sido definidos los puestos de trabajo, la estructura organizacional de la empresa es posible ahora realizar el diagrama de espacio requerido para identificar el espacio requerido por cada empleado y la cercanía que puede tener un departamento de otro. Adicionalmente, se tiene una proyección a 5 años de una capacidad productiva diferente a la inicial, en la cual varía el número de personal expuesto en las
mismas áreas antes presentadas, por lo cual se presenta el diagrama de espacios para esta capacidad:

5.7.1 SLP

La distribución y ubicación de instalaciones se realizó mediante la técnica SLP, para este caso en particular se asumió que una persona ocupaba un área de puesto de trabajo de 5 m², y se procedió a realizar los respectivos cálculos por Áreas (o Departamentos):

<table>
<thead>
<tr>
<th>AREA</th>
<th>CARGO</th>
<th>TIEMPO (Años)</th>
<th>AREA FISICA POR DEPARTAMENTO (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Unitario</td>
</tr>
<tr>
<td>Gerencia General</td>
<td>Gerente</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dirección Financiera</td>
<td>Contador</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Licitaciones</td>
<td>Coordinador de licitaciones</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de licitaciones</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coordinación de proyectos</td>
<td>Ingeniero de Proyectos</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de Proyectos</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Compras y Contratación</td>
<td>Coordinador de Compras</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Auxiliar de Compras</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coordinador de Contratación</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Calidad</td>
<td>Ingeniero Industrial</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gestión Ambiental</td>
<td>Ingeniero Ambiental</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Recursos Humanos</td>
<td>Trabajadora social</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 23 Área física por departamento

5.8 ESQUEMA GENERAL DE PLANTA (DIAGRAMA RELACIONAL DE ESPACIOS - REAL)

El espacio calculo debe tener un área de 122 m², los departamentos se distribuyeron de la siguiente manera:
6. ESTUDIO ECONÓMICO - FINANCIERO

6.1 COSTOS DE PRODUCCIÓN

Se deben conocer a detalle cada una de las actividades que compone el proceso constructivo, así como las unidades de medida y sus respectivas cantidades. Para este caso, se realiza el presupuesto para un metro lineal de rehabilitación de Jarillón, mediante el uso de suelo natural, debido a que como ya menciono, es la tecnología más aplicada actualmente por la EAAB-ESP en este tipo de contratos. Debido a que las cantidades varían de acuerdo al tipo de obra a realizar, a su ubicación geográfica, y al estado físico y estructural en el cual se encuentren este tipo de infraestructuras, se presenta el presupuesto con las respectivas cantidades de un valor aproximado del metro lineal, correspondiente a los costos de producción del proyecto.
Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>UND</th>
<th>CANTIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCAVACIÓN, DEMOLICIONES Y TRASLADO DE ESTRUCTURAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavación en suelo consistente 2 < h <= 4 m</td>
<td>M3</td>
<td>6</td>
<td>$11,951,00</td>
<td>$71,706,00</td>
</tr>
<tr>
<td>Excavación en suelo blando h > 4 m</td>
<td>M3</td>
<td>0,8</td>
<td>$13,445,00</td>
<td>$10,756,00</td>
</tr>
<tr>
<td>ENTIBADOS, TABLESTACAS Y CORTINAS PILOTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortina pilotes L=8 m, D=0,18m</td>
<td>M2</td>
<td>1</td>
<td>$37,674,00</td>
<td>$37,674,00</td>
</tr>
<tr>
<td>RELENOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suministro e Instalación de Recebo</td>
<td>M3</td>
<td>0,8</td>
<td>$60,141,00</td>
<td>$48,112,80</td>
</tr>
<tr>
<td>Material seleccionado proveniente de la excavación</td>
<td>M3</td>
<td>1,2</td>
<td>$19,263,00</td>
<td>$23,115,60</td>
</tr>
<tr>
<td>Piedra partida</td>
<td>M3</td>
<td>0,8</td>
<td>$84,709,00</td>
<td>$67,767,20</td>
</tr>
<tr>
<td>Gravilla</td>
<td>M3</td>
<td>0,6</td>
<td>$86,003,00</td>
<td>$51,601,80</td>
</tr>
<tr>
<td>RETIRO Y DISPOSICIÓN DE MATERIALES SOBRANTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retiro y disposición de materiales sobrantes</td>
<td>M3</td>
<td>0,1</td>
<td>$23,865,00</td>
<td>$2,386,50</td>
</tr>
<tr>
<td>GEOTEXTILES, GEOCOMPUESTOS, GEOMEMBRANAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suministro e Instalación de protección de taludes confinamiento celular con anclaje</td>
<td>M2</td>
<td>0,8</td>
<td>$54,493,00</td>
<td>$43,594,40</td>
</tr>
<tr>
<td>OBRAS COMPLEMENTARIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaviones</td>
<td>M3</td>
<td>0,4</td>
<td>$144,266,00</td>
<td>$57,706,40</td>
</tr>
<tr>
<td>Suministro e instalación de Bolsacretos</td>
<td>UN</td>
<td>2</td>
<td>$17,419,00</td>
<td>$34,838,00</td>
</tr>
<tr>
<td>Suministro e Instalación de Colchacresco Articulado</td>
<td>M2</td>
<td>0,8</td>
<td>$78,263,00</td>
<td>$62,610,40</td>
</tr>
<tr>
<td>Suministro e Instalación de Malla tipo gallinero</td>
<td>ROLLO</td>
<td>0,3</td>
<td>$15,536,00</td>
<td>$4,660,80</td>
</tr>
<tr>
<td>INTERVENCION Y MANEJO ZONAS VERDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poda césped</td>
<td>M2</td>
<td>4</td>
<td>$318,00</td>
<td>$1,272,00</td>
</tr>
<tr>
<td>Poda formación árboles</td>
<td>UN</td>
<td>0,05</td>
<td>$8,216,00</td>
<td>$410,80</td>
</tr>
<tr>
<td>VEGETALIZACIÓN CON ENRREDADERAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empradización con Cespedón</td>
<td>M2</td>
<td>4</td>
<td>$16,282,00</td>
<td>$65,128,00</td>
</tr>
<tr>
<td>MANTENIMIENTO CANALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dragado de canales</td>
<td>M2</td>
<td>1</td>
<td>$77,584,00</td>
<td>$77,584,00</td>
</tr>
<tr>
<td>Manejo de aguas</td>
<td>GLB</td>
<td>0,008</td>
<td>$6,608,018,79</td>
<td>$52,864,15</td>
</tr>
<tr>
<td>Extracción de pilotes de madera</td>
<td>UND</td>
<td>1</td>
<td>$73,838,00</td>
<td>$73,838,00</td>
</tr>
<tr>
<td>VALOR TOTAL</td>
<td></td>
<td></td>
<td>$787,626,85</td>
<td></td>
</tr>
</tbody>
</table>

Nota: precios unitarios tomados de la lista de precios unitarios SAI de la EAAB-ESP, 2017

-Costos Indirectos de producción

Teniendo en cuenta que los gastos administrativos implícitos a la naturaleza del contrato, están inmersos en la Administración, cubiertas por el AIU del proyecto, se analizarán los costos correspondientes a los gastos indirectos de cada uno de los proyectos, referentes al personal lo cuales se muestran en el cuadro a continuación, teniendo en cuenta que estos valores incluyen todos los gastos que representa el personal, sueldos y prestaciones de ley.
Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

COSTOS INDIRECTOS PERSONAL

<table>
<thead>
<tr>
<th>Cargo</th>
<th>UN</th>
<th>CANT</th>
<th>VLR UNITARIO</th>
<th>VLR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerente</td>
<td>mes</td>
<td>12</td>
<td>$6.000.000</td>
<td>$72.000.000</td>
</tr>
<tr>
<td>Contador</td>
<td>mes</td>
<td>12</td>
<td>$4.000.000</td>
<td>$48.000.000</td>
</tr>
<tr>
<td>Mensajero</td>
<td>mes</td>
<td>12</td>
<td>$1.500.000</td>
<td>$18.000.000</td>
</tr>
<tr>
<td>Auxiliar administrativo</td>
<td>mes</td>
<td>12</td>
<td>$1.500.000</td>
<td>$18.000.000</td>
</tr>
<tr>
<td>Recursos Humanos</td>
<td>mes</td>
<td>12</td>
<td>$3.500.000</td>
<td>$42.000.000</td>
</tr>
<tr>
<td>Coordinador de Licitaciones</td>
<td>mes</td>
<td>12</td>
<td>$3.500.000</td>
<td>$42.000.000</td>
</tr>
<tr>
<td>Coordinador de Proyectos</td>
<td>mes</td>
<td>12</td>
<td>$3.500.000</td>
<td>$42.000.000</td>
</tr>
<tr>
<td>Abogado</td>
<td>mes</td>
<td>12</td>
<td>$3.500.000</td>
<td>$42.000.000</td>
</tr>
<tr>
<td>Auxiliar de Licitaciones</td>
<td>mes</td>
<td>12</td>
<td>$2.500.000</td>
<td>$30.000.000</td>
</tr>
</tbody>
</table>

Tabla 25 Costos Indirectos Personal

Por otro lado, también se tienen los costos anuales indirectos correspondiente a los gastos operativos o administrativos referente al funcionamiento de la oficina central que se refiere a:

COSTOS INDIRECTOS GASTOS ADMIN

<table>
<thead>
<tr>
<th>Cargo</th>
<th>UN</th>
<th>CANT</th>
<th>VLR UNITARIO</th>
<th>VLR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canon arriendo</td>
<td>mes</td>
<td>12</td>
<td>$1.700.000</td>
<td>$20.400.000</td>
</tr>
<tr>
<td>servicios públicos</td>
<td>MES</td>
<td>12</td>
<td>$650.000</td>
<td>$7.800.000</td>
</tr>
<tr>
<td>Útiles de escritorio y papelería</td>
<td>MES</td>
<td>12</td>
<td>$200.000</td>
<td>$2.400.000</td>
</tr>
<tr>
<td>Transporte y otros visita al sitio del proyecto</td>
<td>MES</td>
<td>12</td>
<td>$700.000</td>
<td>$8.400.000</td>
</tr>
<tr>
<td>Certificaciones entidades privadas y/o estatales</td>
<td>UN</td>
<td>24</td>
<td>$350.000</td>
<td>$8.400.000</td>
</tr>
<tr>
<td>Garantía de seriedad de la propuesta</td>
<td>UN</td>
<td>3</td>
<td>$700.000</td>
<td>$2.100.000</td>
</tr>
<tr>
<td>Gastos varios administrativos</td>
<td>mes</td>
<td>12</td>
<td>$300.000</td>
<td>$3.600.000</td>
</tr>
</tbody>
</table>

Tabla 26 Costos Indirectos administrativos

-Costos de Inversión
Ahora bien, teniendo en cuenta que los costos de inversión corresponden únicamente a los de puesta en marcha de oficina central, y no los que se involucran a cada proyecto, a continuación, se presentan los costos referentes a los gastos de inversión:

COSTOS INVERSION PROYECTO

<table>
<thead>
<tr>
<th>UN</th>
<th>CANT</th>
<th>VLR UNITARIO</th>
<th>VLR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposito arriendo</td>
<td>GLB 12</td>
<td>$ 5.000.000</td>
<td>$ 60.000.000</td>
</tr>
<tr>
<td>Equipos de cómputo,</td>
<td>GLB 1</td>
<td>$ 12.500.000</td>
<td>$ 12.500.000</td>
</tr>
<tr>
<td>Fotocopiadora multifuncional</td>
<td>GLB 1</td>
<td>$ 5.500.000</td>
<td>$ 5.500.000</td>
</tr>
<tr>
<td>Plotter</td>
<td>GLB 1</td>
<td>$ 7.500.000</td>
<td>$ 7.500.000</td>
</tr>
<tr>
<td>Mobiliario</td>
<td>GLB 1</td>
<td>$ 5.000.000</td>
<td>$ 5.000.000</td>
</tr>
<tr>
<td>Útiles de escritorio y papelería</td>
<td>GLB 1</td>
<td>$ 3.000.000</td>
<td>$ 3.000.000</td>
</tr>
<tr>
<td>Gastos varios administrativos</td>
<td>mes 12</td>
<td>$ 450.000</td>
<td>$ 5.400.000</td>
</tr>
</tbody>
</table>

Tabla 27 Costos de Inversión

Todos los costos anteriores, de acuerdo al comportamiento del mercado en la última década tendrán un aumento del 2.5% anual para los fines de este análisis. Los equipos tendrán una vida útil de 5 años con un valor de salvamiento de $15.000.000.

6.2 PRECIO DE VENTA

De acuerdo al estudio de mercado ejecutado, y la historia de los proyectos hasta ahora ejecutados por la EAAB y un estudio presupuestal previo realizado por uno de los funcionarios de la Empresa de Acueducto, se determinó que el precio por metro lineal estaría alrededor de $ 1’000.000. Por este motivo, de acuerdo al pronóstico realizado para determinar la demanda potencial cuantitativa, se puede establecer el valor aproximado de los costos que implicaría la ejecución de los contratos que probablemente se gane nuestra empresa, durante los primeros 5 años proyectados.

Para esto, se procedió a calcular inicialmente el Índice de Precios al Consumidor - IPC de los últimos 10 años (2007-2017), para tener como referente un valor que nos permita establecer una aproximación del comportamiento de los precios durante los 5 años proyectados, de la siguiente manera:
Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

<table>
<thead>
<tr>
<th>AÑO</th>
<th>IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>5,69</td>
</tr>
<tr>
<td>2008</td>
<td>7,67</td>
</tr>
<tr>
<td>2009</td>
<td>2,00</td>
</tr>
<tr>
<td>2010</td>
<td>3,17</td>
</tr>
<tr>
<td>2011</td>
<td>3,73</td>
</tr>
<tr>
<td>2012</td>
<td>2,44</td>
</tr>
<tr>
<td>2013</td>
<td>1,94</td>
</tr>
<tr>
<td>2014</td>
<td>3,66</td>
</tr>
<tr>
<td>2015</td>
<td>6,77</td>
</tr>
<tr>
<td>2016</td>
<td>5,75</td>
</tr>
<tr>
<td>2017</td>
<td>4,09</td>
</tr>
<tr>
<td>2018</td>
<td>4,15</td>
</tr>
<tr>
<td>2019</td>
<td>4,13</td>
</tr>
<tr>
<td>2020</td>
<td>4,11</td>
</tr>
<tr>
<td>2021</td>
<td>4,09</td>
</tr>
<tr>
<td>2022</td>
<td>4,07</td>
</tr>
<tr>
<td>2023</td>
<td>4,05</td>
</tr>
</tbody>
</table>

A partir de esta información, se procede a estimar el valor de los contratos pronosticados, en donde es importante resaltar que se determinó la longitud de intervención de cada uno de los contratos proyectados a partir de la información brindada por uno de los funcionarios de la empresa, en donde se estableció que uno de los contratos que actualmente ejecuta la EAAB-ESP tiene una duración de 4 meses, para la rehabilitación de 550 metros lineales, de la siguiente manera:

<table>
<thead>
<tr>
<th>AÑO DE EJECUCION</th>
<th># DE CONTRATOS</th>
<th>DURACIÓN (meses)</th>
<th>LONGITUD (mL)</th>
<th>IPC</th>
<th>VALOR CONTRATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Contrato 1</td>
<td>7</td>
<td>875</td>
<td>4,13</td>
<td>$ 875.041.300</td>
</tr>
<tr>
<td>2019</td>
<td>Contrato 2</td>
<td>9</td>
<td>1125</td>
<td>4,13</td>
<td>$ 1.125.041.300</td>
</tr>
<tr>
<td>2020</td>
<td>Contrato 3</td>
<td>9</td>
<td>1125</td>
<td>4,11</td>
<td>$ 1.125.041.100</td>
</tr>
<tr>
<td>2020</td>
<td>Contrato 4</td>
<td>6</td>
<td>750</td>
<td>4,11</td>
<td>$ 750.041.100</td>
</tr>
<tr>
<td>2020</td>
<td>Contrato 5</td>
<td>8</td>
<td>1000</td>
<td>4,11</td>
<td>$ 1.000.041.100</td>
</tr>
<tr>
<td>2021</td>
<td>Contrato 6</td>
<td>6</td>
<td>750</td>
<td>4,09</td>
<td>$ 750.040.900</td>
</tr>
<tr>
<td>2021</td>
<td>Contrato 7</td>
<td>6</td>
<td>750</td>
<td>4,09</td>
<td>$ 750.040.900</td>
</tr>
<tr>
<td>2021</td>
<td>Contrato 8</td>
<td>9</td>
<td>1125</td>
<td>4,09</td>
<td>$ 1.125.040.900</td>
</tr>
<tr>
<td>2021</td>
<td>Contrato 9</td>
<td>7</td>
<td>875</td>
<td>4,09</td>
<td>$ 875.040.900</td>
</tr>
</tbody>
</table>

Fuente: Años 2018 a 2023: Proyección

Ilustración 26 Proyección IPC 2007-2023
Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

<table>
<thead>
<tr>
<th>AÑO DE EJECUCIÓN</th>
<th># DE CONTRATOS</th>
<th>DURACIÓN (meses)</th>
<th>LONGITUD (mL)</th>
<th>IPC</th>
<th>VALOR CONTRATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>Contrato 10</td>
<td>9</td>
<td>1125</td>
<td>4,07</td>
<td>$1.125.040.700</td>
</tr>
<tr>
<td>2022</td>
<td>Contrato 11</td>
<td>7</td>
<td>875</td>
<td>4,07</td>
<td>$875.040.700</td>
</tr>
<tr>
<td>2022</td>
<td>Contrato 12</td>
<td>7</td>
<td>875</td>
<td>4,07</td>
<td>$875.040.700</td>
</tr>
<tr>
<td>2022</td>
<td>Contrato 13</td>
<td>6</td>
<td>750</td>
<td>4,07</td>
<td>$750.040.700</td>
</tr>
<tr>
<td>2022</td>
<td>Contrato 14</td>
<td>6</td>
<td>750</td>
<td>4,07</td>
<td>$750.040.700</td>
</tr>
<tr>
<td>2022</td>
<td>Contrato 15</td>
<td>7</td>
<td>875</td>
<td>4,05</td>
<td>$875.040.500</td>
</tr>
<tr>
<td>2022</td>
<td>Contrato 16</td>
<td>8</td>
<td>1000</td>
<td>4,05</td>
<td>$1.000.040.500</td>
</tr>
<tr>
<td>2023</td>
<td>Contrato 17</td>
<td>7</td>
<td>875</td>
<td>4,05</td>
<td>$875.040.500</td>
</tr>
<tr>
<td>2023</td>
<td>Contrato 18</td>
<td>6</td>
<td>750</td>
<td>4,05</td>
<td>$750.040.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16250</td>
<td>4,08</td>
<td>$16.250.735.000</td>
</tr>
</tbody>
</table>

Tabla 28 Proyección valores de contratos a ejecutar

Esto representado de manera visual, reflejaría el comportamiento de los precios por año, de acuerdo al número de contratos pronosticado:

<table>
<thead>
<tr>
<th>AÑO</th>
<th>VALOR CONTRATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>$2.000.082.600</td>
</tr>
<tr>
<td>2020</td>
<td>$2.875.123.300</td>
</tr>
<tr>
<td>2021</td>
<td>$3.500.163.600</td>
</tr>
<tr>
<td>2022</td>
<td>$4.375.203.500</td>
</tr>
<tr>
<td>2023</td>
<td>$3.500.162.000</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
</tr>
</tbody>
</table>

Ilustración 27 Comportamiento de los precios a 5 años

De acuerdo a la información mostrada anteriormente, el año 2022 sería el periodo de tiempo en el cual nuestra empresa tendría el mayor número de contratos en ejecución, por ende, la mayor cantidad de flujo de dinero.

6.3 ANÁLISIS FINANCIERO

Teniendo en cuenta una tasa impositiva del 33% y un préstamo del 70% del valor de inversión con una tasa de interés efectivo anual del 25% de acuerdo al mercado actual, a continuación, se presenta el flujo neto del proyecto a 5 años.
ESQUEMA DEL FLUJO DE FONDOS DEL INVERSIONISTA, CON FINANCIAMIENTO, DESDE EL PUNTO DE VISTA DEL DUEÑO DEL PROYECTO.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGRESOS DE OPERACIÓN</td>
<td>$2.000.082.600.00</td>
<td>$2.875.123.300.00</td>
<td>$3.500.163.600.00</td>
<td>$4.375.203.500.00</td>
<td>$3.500.162.000.00</td>
<td></td>
</tr>
<tr>
<td>INGRESOS FINANCIEROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTOS DE OPERACIÓN</td>
<td>-$1.982.353.700.64</td>
<td>-$2.742.386.374.54</td>
<td>-$3.332.347.306.16</td>
<td>-$4.162.181.420.51</td>
<td>-$3.510.030.959.90</td>
<td></td>
</tr>
<tr>
<td>INTERESES SOBRE CRÉDITOS RECIBIDOS POR EL PROYECTO</td>
<td>-$</td>
<td>$24.230.500.00</td>
<td>$19.384.400.00</td>
<td>$14.538.300.00</td>
<td>$9.692.200.00</td>
<td>$4.846.100.00</td>
</tr>
<tr>
<td>DEPRECIACIÓN</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>GANANCIAS NETAS GRAVABLES</td>
<td>-$</td>
<td>$22.180.799.36</td>
<td>$132.344.525.46</td>
<td>$162.578.993.84</td>
<td>$202.940.779.49</td>
<td>-$24.796.859.90</td>
</tr>
<tr>
<td>IMPUESTOS INDIRECTOS</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>VALORES DE SALVAMENTO GRAVABLES (POR VENTA DE ACTIVOS)</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>IMPUESTO A LA UTILIDAD POR VENTA DE ACTIVOS</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>INGRESOS NO GRAVABLES</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>COSTOS DE OPERACIÓN NO DEDUCIBLES</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>VALOR EN LIBROS DE ACTIVOS VENDIDOS (INGRESO NO GRAVABLE)</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>GANANCIAS NETAS</td>
<td>-$</td>
<td>$14.861.135.57</td>
<td>$88.670.832.06</td>
<td>$108.927.925.87</td>
<td>$135.970.322.26</td>
<td>-$14.746.859.90</td>
</tr>
<tr>
<td>DEPRECIACIÓN</td>
<td>-$</td>
<td>$19.780.000.00</td>
<td>$19.780.000.00</td>
<td>$19.780.000.00</td>
<td>$19.780.000.00</td>
<td>$19.780.000.00</td>
</tr>
<tr>
<td>VALOR DE SALVAMENTO (ACTIVOS NO VENDIDOS)</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>INVERSIONES FINANCIERAS</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>COSTOS DE INVERSIÓN</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>INGRESOS POR EMISIONES DE BONOS O ACCIONES DEL PROYECTO</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>DIVIDENDOS PAGADOS</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>CRÉDITOS RECIBIDOS</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
<td>-$</td>
</tr>
<tr>
<td>AMORTIZACIONES DE CRÉDITOS Y PRÉSTAMOS</td>
<td>-$</td>
<td>$6.923.000.00</td>
<td>$6.923.000.00</td>
<td>$6.923.000.00</td>
<td>$6.923.000.00</td>
<td>$6.923.000.00</td>
</tr>
<tr>
<td>FLUJO DE FONDOS NETO</td>
<td>-$</td>
<td>$41.564.135.57</td>
<td>$115.373.832.06</td>
<td>$135.630.925.87</td>
<td>$162.673.322.26</td>
<td>$11.956.140.10</td>
</tr>
</tbody>
</table>

Tabla 29 Flujo de Fondos a 5 años
De acuerdo a este flujo se pueden establecer los siguientes indicadores:

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Io</td>
<td>25%</td>
</tr>
<tr>
<td>VPN</td>
<td>$148.182.375,81</td>
</tr>
<tr>
<td>TIR</td>
<td>79%</td>
</tr>
<tr>
<td>R C/B</td>
<td>$1,49831</td>
</tr>
</tbody>
</table>

Tabla 30. Indicadores económicos

De acuerdo a estas variables, el balance financiero del proyecto es viable, sin embargo, este estado es un panorama muy vulnerable, dado que está atado a la proyección de ejecución de metros dentro de determinado contrato, por lo cual, la no ejecución de uno de estos contratos cambiaría drásticamente el escenario y probablemente volcaría en pérdidas la inversión. De acuerdo a ello, se debe reducir el riesgo, buscando flexibilizar la rigidez de búsqueda de licitaciones, es decir, no estar atados a una mínima cantidad de contratos, sino procurar la mayoría de metros a ejecutar.

7. CONCLUSIONES Y RECOMENDACIONES

Es muy importante tener en cuenta lo contemplado durante el desarrollo del proyecto, debido a que, como se evidencia, la ciudad de Bogotá tiene un gran riesgo de afectación por este tipo de infraestructura, los cuales radican en la falta de mantenimiento durante el paso del tiempo puede incurrir en un efecto aún más grave, como lo puede el desprendimiento total de los mismos, los cuales producirían un efecto negativo en términos...
de afectación a los bienes materiales, la salud y la vida de las personas que habitan en las zonas de ronda hidráulica de este tipo de fuentes hídricas. Se debe tener en cuenta lo complejo que resulta para una ciudad tan grande como Bogotá controlar la construcción de urbanizaciones en lugares no autorizados; como es el caso analizado, aún más teniendo en cuenta que la ciudad ya se encuentra totalmente consolidada.

Sin embargo, es primordial garantizar la calidad de vida de esta población, y otras alternativas como lo puede ser la reubicación de estas personas resulta ser una solución demasiado costosa, sin contar el problema social que esta reubicación generaría, por ende; la alternativa más viable sería recurrir a soluciones como la planteada en este documento, en donde se prima el factor humano por encima de todo, sin embargo, se tiene en cuenta para la selección del método constructivo diferentes factores, como el componente sociales, ambiental, financiero y político.

Por otro lado, si bien la situación problémica que se evaluó se hizo con base en el caso estudio de la Localidad de Bosa, Río Tunjuelito, es evidente que tanto el planteamiento como la evaluación financiera se hace con el segmento de Bogotá, puesto que dicho segmento es el único que garantiza la viabilidad económica del proyecto, toda vez que se requiere intervenir mínimo 3 km anualmente, con un mercado potencial de cuerpos de agua en Bogotá de 40 km a lo largo de 5 años. De acuerdo a lo anterior, se puede concluir que el escenario es prometedor y aunque se puedan tomar medidas como las anteriormente planteadas para reducir los riesgos, sigue siendo un panorama susceptible de cambios, teniendo en cuenta que depende de la acción de terceros; en concordancia con dichos riesgos, la rentabilidad del proyecto es también prometedora.

En relación con el planteamiento para la construcción de la infraestructura necesaria para prevenir, mitigar o renovar el estado actual de los jarillones que se encuentran en estado crítico, se analizó la metodología más aplicable al sector objeto de estudio, y se definió cada uno de los pasos constructivos que se deben tener en cuenta para la intervención de este tipo de obras de infraestructura, proceso que actualmente lleva a cabo la Empresa de Acueducto y Alcantarillado de Bogotá en la gran mayoría de los cuerpos de agua que tiene bajo su jurisdicción. Además de esto, se tuvieron en cuenta otro tipo de metodologías aplicables en la rehabilitación o reconstrucción de jarillones, como lo puede ser el
Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

revestimiento de canales en concreto, e implementar tubería con sección errada mediante la creación de los Box Culvert, sin embargo; como se analizó específicamente en ese apartado de este documento, estas dos propuestas, soluciones o métodos constructivos resultan inviables, dado el alto costo que estas conllevarían durante su ejecución, así como el alto impacto ambiental que estas generarían.

En cuanto a la reducción del riesgo de afectación de los habitantes que directa o indirectamente se ven perjudicados por vivir en las zonas aledañas a cualquier tipo de cuerpo de agua, evidentemente efectuando la metodología propuesta en este documento se mitigaría el impacto y por ende el riesgo que este fenómeno natural pueda producir en estas personas, además; desde el punto de vista ambiental, social y paisajístico, mantener las condiciones naturales del sector reflejaría un resultado positivo en la adaptación de las obras, tanto en su ejecución como posteriormente en su terminación.

Dado lo expuesto anteriormente, determinamos que este trabajo tiene un gran impacto positivo, ya que a nivel nacional Colombia cuenta con una gran extensión de cuerpos de agua, actualmente se encuentra registrado como el tercer país con la mayor cantidad de agua dulce del mundo, lo cual lo favorece notablemente, pero así mismo; debe contemplar las medidas necesarias para evitar cualquier tipo de riesgo que se pueda presentar a causa del desbordamiento de este gran volumen de agua, por ende, es bastante importante tener claridad y buenos conocimientos sobre los diferentes métodos constructivos y tecnologías que actualmente se usan para controlar y evitar cualquier tipo de afectación a causa de este fenómeno natural.
Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

8. REFERENCIAS

Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

Planteamiento de las obras de renovación de los jarillones que se encuentran en estado crítico en los cuerpos de agua de la ciudad de Bogotá D.C.

ANEXOS