IMPLEMENTACION DE LA TEORIA DE LAS RESTRICCIONES PARA MEJORA DE DISTRIBUCION DE PLANTA Y PROCESOS DE PRODUCCION EN LA COMPAÑÍA ASCENSEORES ASCINTEC

HECTOR JAVIER SALINAS HERNANDEZ
CÓDIGO 20181197094
DANNY ARGENIL PAEZ CUESTA
CÓDIGO 20181197078

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN GESTIÓN DE PROYECTOS DE INGENIERÍA
BOGOTÁ
2018
IMPLEMENTACION DE LA TEORIA DE LAS RESTRICCIONES PARA MEJORA DE DISTRIBUCION DE PLANTA Y PROCESOS DE PRODUCCION EN LA COMPAÑIA ASCENSEORES ASCINTEC

HECTOR JAVIER SALINAS HERNANDEZ
CÓDIGO 20181197094
DANNY ARGENIL PAEZ CUESTA
CÓDIGO 20181197078

TUTOR:
ING. ANSELMO QUINTERO
PROFESOR UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

UNIVERSIDAD DISTRITAL “FRANCISCO JOSÉ DE CALDAS”
FACULTAD DE INGENIERÍA
ESPECIALIZACION EN GESTION DE PROYECTOS DE INGENIERIA
BOGOTÁ
2018
AGRADECIMIENTOS

Reconocimiento especial para mi familia por el apoyo dado a lo largo del proceso, a mis compañeros de aula, a la Universidad y a los docentes sin los cuales no hubiese sido posible, al Ingeniero Jose Anselmo Quintero ya que sin su ayuda seguramente no hubiésemos conseguido los objetivos indicados, a la compañía Ascintec S.A.S por proporcionar los estudios y recursos necesarios para la investigación, en especial al Ingeniero Orlando Salinas cuyo conocimiento en el área resulto imprescindible para alcanzar los objetivos esperados.
LISTADO DE FIGURAS ... 6
LISTADO DE TABLAS .. 7
RESUMEN EJECUTIVO .. 7
JUSTIFICACION .. 9
PLANTEAMIENTO DEL PROBLEMA .. 9
1. OBJETIVOS ... 10
 1.1 GENERAL: ... 10
 1.2 ESPECIFICOS: ... 10
2. ESTADO DEL ARTE ... 10
3. MARCO TEORICO .. 11
 3.1 SISTEMAS DE PRODUCCION ... 11
 3.1.1 CONFIGURACIÓN EN LÍNEA ACOMPASADA POR EL EQUIPO (LAE) ... 12
 3.1.2 CONFIGURACIÓN POR PROYECTO .. 12
 3.1.3 BALANCEO DE LINEAS DE PRODUCCION .. 12
 3.2 HERRAMIENTAS DE ANALISIS DE SISTEMAS DE PRODUCCIÓN .. 13
 3.2.1 ANÁLISIS GENERAL: ... 13
 3.2.2 DIAGRAMA DE PARETO .. 14
3.3 CUELOS DE BOTELLA .. 15
 3.3.1 IDENTIFICACION DE CUELOS DE BOTELLAS ... 15
 3.3.2 ESTUDIO DE TIEMPOS CON CRONOMETRO ... 15
 3.3.3 ESTUDIO DE TIEMPOS PREDETERMINADOS .. 16
 3.3.4 ESTUDIO DE TIEMPOS ESTIMADOS ... 16
 3.3.5 IDENTIFICACION POR CARGA DE TRABAJO .. 17
 3.3.6 ESTUDIO DE TIEMPO .. 17
4. METODOLOGIA ... 17
 4.1 IDENTIFICACION .. 17
 4.1.1 MARCO INSTITUCIONAL ASCINTEC ... 18
 4.1.2. MISIÓN ... 18
 4.1.4. POLITICA DE CALIDAD ... 18
 4.1.5 ORGANIGRAMA ASCINTEC .. 19
4.2 FORMULACION .. 19
 4.2.1 DELIMITACION DEL PROBLEMA .. 20
4.3 ANÁLISIS DEL PROBLEMA - DIAGNOSTICO ASCINTEC ... 20
 4.3.1 UNIDAD DE ESTUDIO .. 20
 4.3.2 UNIDAD DE TIEMPO ... 21
 4.3.3 UNIDAD GEOGRÁFICA ... 21
 4.3.4 ESTUDIO DE TIEMPOS ... 21

NOTA: EL MUESTREO DE TIEMPOS SE REALIZÓ 3 VECES A LA SEMANA POR PROCESO HACIENDO USO DE LOS TIEMPOS PREDETERMINADOS COMO HERRAMIENTA PARA EL ANÁLISIS DE LOS CUELOS DE BOTELLA, TIEMPO DURANTE EL CUAL SE TOMARON...
MUESTRAS DE LOS PROCESOS A CONTINUACIÓN DESCritos CUYO PROMEDIO SE MUESTRA COMO RESULTADO A TRAVÉS DE CADA ETAPA .. 21

4.3.4.1 ETAPA 1. DISEÑO .. 21
4.3.4.2 ETAPA 2. SELECCIÓN ... 22
4.3.4.3 ETAPA 3. FABRICACION .. 23
4.3.4.4 ETAPA 4. MONTAJE .. 24
4.3.4.5 ETAPA 5. EVALUACION Y CONTROL ... 24

5. RESULTADOS .. 25
5.1 ENCUESTA A IMPLICADOS EN EL PROBLEMA ... 25
5.2 DIAGRAMA DE PARETO ... 27
5.3 ESTUDIO DE TIEMPOS ... 29

LOS SIGUIENTES SON RESULTADOS DE UNA PROPUESTA DE DISTRIBUCIÓN DE PLANTA QUe UTILIZA UN SISTEMA DE PRODUCCIÓN DE .. 29

6. PROPUESTA DE MEJORA ... 32
6.1 PLANTEAMIENTO DE UN ORDEN DE TRABAJO ... 32
6.1.1 ACCIÓN DE MEJORA 1 .. 33
6.1.2 ACCION DE MEJORA 2 ... 34
7. ESTABLECIENDO EL SERVICIO - PARAMETROS DEL SERVICIO ... 37

7.1 ESTUDIO TECNICO .. 37
7.1.1 TAMAÑO: .. 37
7.1.2 COSTOS Y ASPECTOS TECNICOS .. 37
7.1.2.1. PRESUPUESTO DE INVERSIÓN PARA ANÁLISIS DE PROCESOS: 37
7.1.3. PRESUPUESTO DE INVERSION DE MAQUINARIA Y PERSONAL: 38
7.1.4. PRINCIPALES FUENTES DE INGRESOS .. 39
EL PROYECTO SE FINANCIARA DE LA SIGUIENTE MANERA: .. 39
7.1.5. DISPONIBILIDAD DE INSUMOS Y SERVICIOS PUBLICOS ... 40

7.2 LOCALIZACION .. 40
7.2.1 MACROLOCALIZACION .. 40
7.2.1.1 ASPECTOS GEOGRAFICOS .. 41
7.2.1.2 ASPECTOS SOCIOECONOMICOS .. 41
7.2.2 MICROLOCALIZACION .. 41
7.2.2.1 DISTRIBUCION Y DISEÑO DE LAS INSTALACIONES .. 41
7.2.2.2 PRESUPUESTO DE INVERSION ... 42
7.2.3. PRINCIPALES FUENTES DE INGRESOS EL PROYECTO SE FINANCIARA DE LA SIGUIENTE MANERA: .. 42
7.3 INGENIERIA DEL PROYECTO .. 43
 7.3.1 DESCRIPCION ... 43
7.3.2 LISTADO DE EQUIPOS .. 43
7.4 ESTUDIO DE MERCADO ... 44
 7.4.1 SERVICIOS PRINCIPALES ... 44
 7.4.1.1 SUSTITUTOS .. 44
 7.4.2 IDENTIFICACION DEL BIEN O SERVICIO 44
 7.4.3 DESTINO .. 44
 7.4.4 VIDA UTIL ... 45
 7.4.5 USOS .. 45
 7.4.6 USUARIOS ... 45
 7.4.7 CARACTERISTICAS DEL PROYECTO 45
 7.4.8 UBICACIÓN SENSORIAL .. 46
 7.4.9 ENTORNO ... 46
7.5 OFERTA ... 47
 7.5.1 LISTADO DE proveedores .. 47
 7.5.2 REGIMEN DE MERCADO ... 47
 7.5.3 REGIMEN DE MERCADO DE INSUMOS 48
 7.5.4 ESTIMACION DE LA OFERTA ... 49
 7.5.5. MODELO DE TENDENCIAS ... 50
7.6 DEMANDA .. 51
 7.6.1 FUENTES DE INFORMACIÓN PARA EL ANÁLISIS DEL MERCADO 51
 7.6.1.1 FUENTES PRIMARIAS (ENCUESTAS Y ENTREVISTAS) 51
 7.6.1.2 FUENTES SECUNDARIAS .. 51
 7.6.2 ÁREA DEL MERCADO .. 51
7.7 ESTRATEGIA DE MERCADOTECNIA 53
 7.7.1 MERCADO META .. 53
 7.7.2 POSICIONAMIENTO .. 54
 7.7.3.4 P’S ... 54
 7.7.3.1 PRODUCTO .. 54
 7.7.3.2 PLAZA ... 54
 7.7.3.3 PRECIO .. 54
 7.7.4 PROMOCION .. 54
CONCLUSIONES ... 55
9. BIBLIOGRAFIA .. 56
ANEXOS .. 58
 ANEXO 1 – ENCUESTA A FUNCIONARIOS DE ASCINTEC 58
 ANEXO 2 – DESARROLLO DE PLANOS PROPUESTO 58
 ANEXO 3 – FORMATO DE REQUISICION PROPUESTO 61
 ANEXO 4 – FORMATO DE SEGUIMIENTO DE OBRAS PROPUESTO 62
 ANEXO 5 – FORMATO DE REVISION DE ADECUACION A LA NORMA PROPUESTO
LISTADO DE TABLAS

TABLA 1. APARTADO DEL INFORME DE ENTREGAS – 2018 ASCINTEC S.A. ... 20
TABLA 2. ESTUDIO DE TIEMPOS PARA ETAPA DE FABRICACIÓN .. 24
TABLA 3. TIEMPOS FASE DE INSTALACIÓN ... 24
TABLA 4. ESTUDIO DE TIEMPOS PROCESO ACTUAL – ASCENSORES ASCINTEC SAS ... 25
TABLA 5. RESULTADOS ENCUESTA ÁREAS – ASCENSORES ASCINTEC SAS .. 26
TABLA 6. TABLA CUELLOS DE BOTELLA IDENTIFICADOS .. 27
TABLA 7. ESTUDIO DE TIEMPOS. FUENTE AUTOR .. 30
TABLA 8. TABLA DE RELACIÓN - TEMPO - BENEFICIO .. 31
TABLA 9. ESQUEMA DE FLUJO DE FONDOS DE INVERSIONES, CON FINANCIAMIENTO DESDE PUNTO DEL DUEÑO DEL PROYECTO ... 32
TABLA 10. TABLA MATERIAL QUE CONFORMAN PARTE PRINCIPAL DE UN ELEVADOR .. 33
TABLA 11. TABLA DE RESULTADOS PARA LOS PLANOS DE CORTE Y DOBLES DE ACUERDO CON REQUERIMIENTOS DEL EQUIPO ... 34
TABLA 13. PRESUPUESTO PARA EL ANÁLISIS DE PROCESO PRODUCTIVO DE UN PROYECTO DE 1 MES 37
TABLA 14. PRESUPUESTO PARA EL ANÁLISIS DE PROCESO DE MEJORÍA EN UN PROYECTO DE 1 MES 38
TABLA 15. INVERSIÓN INICIAL ... 39
TABLA 16. ESTRUCTURA DE COSTOS ... 39
TABLA 17. TABLA INGRESOS BENEFICIO ... 40
TABLA 18. ESTRUCTURA DE COSTOS ... 42
TABLA 19. CRECIMIENTO DE LA ECONOMÍA NACIONAL TOMADO DE LA REVISTA SEMANA-ARTÍCULO/CRECIMIENTO-ECONÓMICO ... 46

RESUMEN EJECUTIVO
En todos los procesos de elaboración de un producto existen vacíos, tiempos muertos, rutas críticas que no se siguen a cabalidad e imprevistos causados por factores diversos que van desde errores humanos en la mano de obra hasta incumplimiento por parte de los proveedores, estas falencias implican la mayoría de las veces que el proceso no se entregue en los tiempos provistos desencadenando en pagos de pólizas, trabajos incompletos e inconformismos de los clientes, en la compañía Ascintec, objeto de estudio aproximadamente un 12% de los trabajos totales incluyendo reparaciones, instalaciones y modernizaciones presentan demoras o inconvenientes, puesto que la producción de un ascensor implica estar dispuesto a múltiples inconvenientes en la importación de productos, ejecución de labores e incluso por causa de terceros, por tal razón es necesario establecer un sistema de producción que minimice al máximo las falencias inherentes de todo proceso, más aun cuando los productos insignia de la empresa son principalmente al mantenimiento y modernización de equipos, se hace necesaria la identificación de las causas en las entregas tardías de las instalaciones nuevas, debido a ello este trabajo propone identificar los cuellos de botella en el modelo de producción de Ascintec enfocado al modelado, estructuración y montaje de un equipo de transporte vertical a través de la emulación del proceso.

Para llegar a la solución final es necesario analizar el entorno que afecta indefectiblemente el ambiente interno de la compañía, una breve descripción del mercado colombiano y mundial nos permitirá obtener un mejor entendimiento del desarrollo. Al finalizar se espera obtener un análisis que reduzca en la mayor cantidad posible las fallas en el proceso, mediante el uso de diagramas, formatos, cálculos y controles que no se han implementado de manera correcta o se encuentran ausentes en el proceso actual de la compañía.
JUSTIFICACION

La investigación e identificación de los procesos restrictivos en el proceso productivo y el área de montaje para elevadores en la compañía Ascensores Ascintec permitirá establecer cuáles son los procesos cuellos de botella dentro de la organización que limitan la producción, si bien lo dijo Goldratt en su libro the Goal, la capacidad productiva de una compañía está dada en la medida de la capacidad de sus procesos restrictivos, esto implica que al mejorar el proceso en los puntos críticos se estará beneficiando toda la operación, lo cual se verá reflejado en la reducción de sobrecostos causados por las acciones que se dan a lugar como acción de respuesta a las tardanzas en la operación, mejorará la percepción del cliente ante la compañía, impulsará la publicidad voz a voz, entre otros tantos beneficios. Para desarrollar este proyecto se requerirá aplicar los conocimientos adquiridos durante la especialización relacionada con el sistema de gestión de calidad, análisis de procesos y uso de herramientas para la planificación con enfoque en la mejora de los procesos de fabricación en una compañía industrial. La realización de las labores necesarias para implementar una mejora de procesos ejecutada en Ascintec permitirá establecer una metodología para la prestación del servicio de auditorías en la identificación de cuellos de botella en las compañías de elevadores en general. Mediante la aplicación de los conocimientos adquiridos en la especialización se da solución a un problema real promoviendo la mejora de los procesos de fabricación permitiendo un control más eficaz sobre las operaciones, la reducción de costos, el aumento de la calidad de los productos y servicios ofrecidos, entre otros beneficios.

PLANTEAMIENTO DEL PROBLEMA

En la compañía ascensores Ascintec al año son producidos un promedio de 35 equipos nuevos para la venta con una tendencia creciente del 3% promedio anual, el dato ilustrado anteriormente corresponde al periodo 2016-2017, periodo en el cual se registró una tasa de retraso en obras promedio (área de instalación) del 9% a causa de implicaciones en el desarrollo innato de todo proceso. De los datos expuestos se obtiene que en promedio uno de cada diez equipos en las labores de instalación en la operación de la compañía se entrega al cliente de manera tardía, es de aclarar que, aunque esta tardanza no supera excesivamente los tiempos provistos para el desarrollo de un proyecto genera un inconformismo en los clientes, un cuestionamiento en la propuesta de valor, sobrecostos, entre otros factores perjudiciales para la imagen de la compañía. Esto sumado a la falta de un proceso estandarizado en la producción y distribución de equipos de transporte vertical para equipos nuevos, la planificación optimista, los procesos restrictivos, la falta de capacitación del personal administrativo, ausencia de seguimientos periódicos bien definidos, mal manejo del inventario y/o los tiempos de planeación, dificultan evaluar de manera concreta los puntos críticos, el desarrollo de los sistemas de ejecución o la causa de las falencias, por esta razón se analizará el proceso de fabricación de los equipos de manera tal que se puedan identificar los puntos críticos del proceso y generar control sobre los mismos. Esto refleja el problema que padecen varias compañías por la falta de control en sus procesos y la mala asignación de recursos y tiempos en sus procesos internos.
1. OBJETIVOS

1.1 GENERAL:

Ejecutar el estudio de cuellos de botella en la compañía ascensores Ascintec para determinar los recursos requeridos en un análisis de mejora de procesos como costos y tiempos de la ejecución de un proyecto para la mejora de procesos enfocados en el mercado de los elevadores.

1.2 ESPECÍFICOS:

- Estandarizar las partes críticas del proceso de manera que se reduzcan tiempos y costos en de producción.
- Determinar el valor comercial para la prestación del servicio de mejora de procesos productivos en la empresa de elevadores Ascintec en Colombia.
- Determinar la demanda del servicio ofrecido para establecer las estrategias de mercadotecnia más convenientes.

2. ESTADO DEL ARTE

En Colombia la promoción de la mejora continua incita a las diferentes áreas de la economía a indagar sobre sus procesos restrictivos o cuellos de botella, ejemplo de ello es el estudio realizado por el DNP (Departamento Nacional de Planeación), quienes en su investigación titulada Diez cuellos de botella frenan el desarrollo del campo colombiano identificaron los principales cuellos de botella que frenan el desarrollo rural y agropecuario en el país, reducción y envejecimiento de la población rural; baja remuneración laboral y limitadas capacidades para generar ingresos; brechas acentuadas de pobreza y bienestar entre la población urbana y rural; territorio desordenado en términos de la propiedad y el uso del suelo, son los principales problemas que afectan el desarrollo rural. Otro de los cuellos de botella es la comercialización y el acceso a los mercados que se ve limitada por la falta de infraestructura, por la intermediación sin valor agregado, y por la falta de organización de los productores para acceder en mejores condiciones a los mercados. De igual forma, los productores no tienen acceso a recursos financieros de bajo costo ni a productos crediticios que se adapten a sus necesidades. Por último, los riesgos del sector agropecuario han estado siempre presentes y, la mayoría, se derivan de eventos imprevisibles como desastres naturales, la volatilidad de los precios internacionales, alzas en el precio de los combustibles o variaciones en el tipo de cambio. El diagnóstico presentado es el primer paso para que la Misión estructure las políticas públicas que el campo colombiano necesita para hacer realidad su transformación en los próximos años.

Dado que el estudio de cuellos de botella puede ser objeto de investigaciones aplicado a cualquier proceso productivo su campo de acción es bastante amplio, por lo cual es posible encontrar aplicaciones en empresas dedicadas al comercio, fabricación, textil, agro, etc, claro ejemplo de ello es la investigación de los cuellos de botella en una empresa textil expuesta por (Sanchez F, Ceballos G, Torres S, 2015) en su artículo titulado Análisis del proceso productivo en una empresa de confecciones: modelación y simulación, “El objetivo del estudio se centró en el análisis del proceso productivo de una empresa nacional para incrementar la productividad
identificando las partes de los procesos responsables de atrasos y “cuellos de botella”. La empresa analizada está caracterizada en la franja de pequeñas y medianas empresas con tres años de trayectoria dedicada fundamentalmente a la confección de ropa exterior masculina. Aunque la empresa elabora diferentes prendas, el análisis se concentra en el proceso de producción de camisas debido a que esta constituye el producto de mayor demanda y con la mayor participación en los ingresos de la compañía. El aporte principal consiste en mostrar al sector, de forma específica representada en un caso de aplicación real, las bondades de la incorporación de herramientas tecnológicas que le permiten mejorar sus procesos.” (Paola A. Sánchez1, 2014).

Por último el proyecto Diseño Del Sistema Productivo Para El Mejoramiento De Los Procesos A Traves De La Cadena De Valor, Para Optimizar El Ensamble De Bombas En Barnes De Colombia expuesto por: Rodrique W, Amaya S, 2015 resalta una vez más la importancia del análisis de cuellos de botella en una organización al permitir establecer los puntos críticos del proceso y para el caso particular dar cabida a acciones de mejora como establecer control sobre el rendimiento del banco de pruebas para que no sea el cuello de botella del flujo de producción, o la reducción de los inventarios en proceso a la mitad para la mejora de los dispositivos de acoplamiento a bombas en la línea de producción de bombas centrífugas en la empresa Barnes alcanzando un nivel de rendimiento 10% superior al inicial como resultado de la identificación y análisis de los procesos restrictivos en la compañía. (AMAYA BRICEÑO, 2015).

3. MARCO TEORICO

Dado que para entender a cabalidad el proceso se recreará el diseño y montaje de un elevador es necesario enmarcar estos procesos según sus características de manera que se facilite el entendimiento de los diversos factores y elementos que intervienen en el presente proyecto. La emulación de la ejecución del proyecto en un caso real permitirá establecer los recursos físicos e intelectuales requeridos para el análisis de cuellos de botella en la compañía lo cual facilitará la reducción de los costos y permitirá establecer una metodología para mejorar el desempeño del proceso. Para ello es preciso establecer los tipos de sistemas productivos que intervienen aquí, lo cual facilitará la identificación de los cuellos de botella o procesos restrictivos del mismo.

3.1 SISTEMAS DE PRODUCCION

Los sistemas de producción son sistemas que están estructurados a través de un conjunto de actividades y procesos relacionados, necesarios para obtener bienes y servicios de alto valor añadido para el cliente, con el empleo de los medios adecuados y la utilización de los métodos más eficientes.

En las empresas, ya sean de servicio o de manufactura, estos sistemas representan las configuraciones productivas adoptadas en torno al proceso de conversión y/o transformación de unos inputs (materiales, humanos, financieros, informativos, energéticos, etc.) en unos outputs (bienes y servicios) para satisfacer unas necesidades, requerimientos y expectativas de los clientes, de la forma más racional y a la vez, más competitiva posible.

Existen sistemas de producción clasificados de manera diversa según sus autores basados en criterios de continuidad de los sistemas, repetición de ciclos, intermitencias de los sistemas de
trabajo interno, entre otros, sin embargo quizá la tipología existente de procesos de producción más difundida es la propuesta por Hayes y Wheelwright (1984; pp. 176-179) (ayes, 1984), que hace especial énfasis en las pautas que siguen los flujos de trabajo en la fábrica. Ellos arribaron a cinco tipos de configuraciones productivas bien definidas: proyecto, taller de trabajo (job-shop), lotes o flujo en línea desacoplado, línea de ensamblaje (también denominada en serie, repetitiva o de producción en masa) y proceso continuo. Asimismo, destacaron que estas últimas cuatro varían entre dos extremos en lo que a desplazamiento de materiales se refiere, la configuración orientada hacia el producto y la configuración orientada hacia el proceso, cuya diferencia más evidente es la distribución en planta, por producto, para la primera y por procesos, para la segunda.

Si bien se clasifican según lo descrito por los autores, a continuación, se referencian los sistemas de producción que más se acoplan a las características productivas de la compañía de estudio.

3.1.1 CONFIGURACIÓN EN LÍNEA ACOMPASADA POR EL EQUIPO (LAE).

El equipo y procesos están organizados en una línea o líneas especializadas para producir un pequeño número de productos diferentes o familias de productos. Estos sistemas se usan sólo cuando el diseño del producto es estable y el volumen es lo suficientemente elevado para hacer un uso eficiente de una línea especializada con capacidades dedicadas. Se fabrica a una tasa constante, con un flujo automatizado e intensivo en capital. Los operarios realizan tareas relativamente simples a un ritmo determinado por la velocidad de la línea. El control del ciclo productivo está automatizado, existe alta estandarización y una elevada eficiencia en todo el proceso.

3.1.2 CONFIGURACIÓN POR PROYECTO.

Producción generalmente de productos únicos de cierta complejidad que requieren gran cantidad de inputs. Estos deben fabricarse en un lugar definido debido a que es difícil o casi imposible transportarlos una vez terminados. Como resultado, y a diferencia de cualquier otro proceso productivo, los recursos que comprende deben trasladarse al lugar de operación, ya que aquí no existe flujo del objeto de trabajo, sino que son los recursos técnicos y humanos quienes acuden al lugar de trabajo. Las actividades y recursos se gestionan como un todo. Su coordinación adquiere carácter crítico. Existe un connotado interés por el control de los costos y las fechas de terminación. (Acevedo Suárez, 1987). Para el presente proyecto aplica en los casos en los que se necesita desarrollar equipos de gran capacidad o con características menos regulares de lo común (ascensores panorámicos), los cuales no son tan recurrentes.

3.1.3 BALANCEO DE LINEAS DE PRODUCCION

Para Suñé, Arcusa y Gil (2004), el elemento más importante en el diseño de una línea de producción o montaje radica en la división del trabajo realizada de la manera más equitativa posible a lo largo de todo el proceso.
El verdadero problema en el balanceo de líneas de producción radica en que la asignación de labores en las diferentes estaciones de trabajo se encuentre lo más ajustada y equilibradamente posible dentro de un tiempo de ciclo. El propósito del sistema es establecer un proceso donde los tiempos de ejecución entre áreas sean los mínimos posibles. Para lograr un adecuado balanceo de líneas de producción se debe:

- Definir e identificar las tareas que componen al proceso productivo.
- Tiempo necesario para desarrollar cada tarea.
- Los recursos necesarios.

De este modo se busca que el balanceo de líneas permita el mismo tiempo de ciclo en las diferentes líneas de producción, mediante el control de tiempos en cada estación promoviendo que el producto fluya de una estación a otra cada vez que se cumple el tiempo de ciclo evitando la acumulación de trabajo. Este método es de principal importancia para el estudio puesto que plantea la premisa de que todas las estaciones de trabajo pasen el trabajo realizado a la siguiente estación cada vez que se cumple el tiempo de ciclo, por lo tanto no hay cuellos de botella porque todas las estaciones tardan lo mismo en sus operaciones, no obstante para lograr esto hace falta estandarizar, eliminar o mejorar los procesos de modo que esto sea posible.

3.2 HERRAMIENTAS DE ANALISIS DE SISTEMAS DE PRODUCCIÓN

En este punto se realiza el estudio de proceso de producción del caso específico de manera sistémica, esto implica establecer de manera secuencial cada subproceso, estando compuesto por:

3.2.1 ANÁLISIS GENERAL:

Mediante el análisis general se realiza una descripción detallada del proceso productivo a analizar, en este caso en particular el proceso de producción y montaje del elevador, acompañado de los correspondientes diagramas que describen el desarrollo del mismo de manera específica. A pesar de que no existe una simbología convencional totalmente aceptada que satisfaga todas las necesidades, existen algunos estándares comúnmente aceptados dentro de las organizaciones los cuales son:

- American Society of Mechanical Engineers (ASME)
- American National Standard Institute (ANSI)
- International Organization for Standarization (ISO)
- Deutches Institut fur Normung e.V (DIN)
- Símbolos del flujograma de ingeniería de operaciones y de administración y mejora de la calidad del proceso (DO)
- Diagramas integrados de flujo (DIF) en las versiones de Yourdon-De Marco y Gane & Sarson

Según los estándares establecidos por la ASME, referentes para el desarrollo del diagrama de procesos en Ascintec en el presente documento, las figuras utilizadas en la elaboración de los diagramas de flujo con sus respectivos usos se muestran en la tabla figura número 1.
3.2.2 DIAGRAMA DE PARETO

Se usa un diagrama de Pareto para: - presentar, en orden de importancia, la contribución de cada elemento al efecto total - ordenar las oportunidades de mejora. Un diagrama de Pareto es una técnica gráfica simple para ordenar elementos, desde el más frecuente hasta el menos frecuente, basándose en el principio de Pareto. Hay consenso en admitir que en numerosas situaciones que se plantean en las organizaciones, los problemas tienen una importancia desigual, fenómeno que no está limitado a cuestiones relativas a la calidad. En estos casos se da el principio de «los pocos vitales y los muchos triviales» que se conoce como principio de Pareto. Dicha proporción, en una gran mayoría de los casos, ha resultado ser de aproximadamente un 20% para los “pocos vitales” y de un 80% para los “muchos triviales”. Este 20% es el responsable de la mayor parte del efecto que se produce.

Figura 1. SIMBOLOGIA DIAGRAMAS DE FLUJO ASME, Tomado de procesosbio diagramación de procesos industriales

Figura 2. Representación del diagrama de Pareto. Tomado Herramientas para la mejora de calidad.
Como se observa en la figura el diagrama de Pareto se basa en un gráfico de barras, la cuales representan los factores correspondientes a una magnitud cualquiera y están ordenados de mayor a menor (en orden descendente) y de izquierda a derecha. Analizando las causas más frecuentes de las complicaciones en los procesos pueden establecerse métodos de mejora y luego mediante un nuevo análisis de Pareto establecer la mejoría obtenida en relación al primer diagrama.

3.3 CUELLOS DE BOTELLA

“Esta teoría es usada frecuentemente en la industria. Decimos que en nuestra cadena de producción tenemos un cuello de botella cuando una fase de nuestro proceso productivo es más lenta que las demás y la producción total se ve limitada a causa de ella. En este ámbito, además, los dividen en dos: a corto y largo plazo. Los a corto plazo son temporales y no suelen ser un problema —un ejemplo de uno sería un trabajador tomando unos días de descanso que provoca un embudo en los pedidos—. Los a largo plazo ocurren todo el tiempo y de forma acumulativa y si pueden ralentizar considerablemente la producción.

También, atendiendo al tipo de restricción, se dice que hay tres tipos, pero en realidad son dos porque el tercero se refiere al límite de la demanda del mercado y no se presenta una solución para él:

Físicas: se refiere a los equipos o instalaciones, recursos humanos, espacio, tiempos... en general las distingue que hay dos formas de mejorarlas: puedes agregar capacidad o, si no lo estás haciendo ya, forzarlas a trabajar más cerca de su máximo.

Políticas: no se refiere exactamente a la política, aunque podría aplicar. En general, son las reglas o modos de actuar que están limitando el alcance de la meta. El punto con ellas es que la única forma de superarlas es reemplazándolas. Esta sería la crucial diferencia entre físicas y políticas” (V Pérez, 2017).

3.3.1 IDENTIFICACION DE CUELLOS DE BOTELLAS

Aunque muchas veces la identificación de cuellos de botella se realiza de manera empírica dentro del proceso, existen herramientas que facilitan su identificación dentro de un proceso, una de estas es la identificación mediante el estudio de tiempos.

3.3.2 ESTUDIO DE TIEMPOS CON CRONÓMETRO

El estudio de tiempos con cronómetro es una técnica que determina con la mayor exactitud posible, partiendo de un número limitado de observaciones, el tiempo estándar necesario para determinar y controlar la eficiencia del trabajo y de esta manera estar en posibilidad de incrementarla. El cálculo de tiempos de trabajo por medio del cronómetro es el sistema más empleado en las industrias, utiliza la observación directa y continua del operario y/o máquina durante un corto periodo, lo que requiere que la actividad se esté realizando. (OSPIÑA GALVIS BIBIANA, 2007).
Los elementos fundamentales para desarrollar estándares de tiempo reales y aplicables son: seleccionar el operario, analizar el trabajo y la descomponer el mismo en sus respectivos elementos, registrar los valores elementales, calificar la actuación del operario, aceptar márgenes apropiados (Neira L, 2006).

Un estudio de tiempos debe realizarse cuando: se vaya a ejecutar una nueva operación, se presenten quejas de sobre el tiempo que consume una operación, surjan retardos por una operación lenta que ralentiza las demás operaciones, se desee fijar tiempos estándar para un sistema de incentivos, se identifiquen bajos rendimientos o tiempos muertos en alguna máquina. (Kanawaty G, 2011)

Los pasos básicos para la realización de un estudio de tiempos son (García Criollo, 2000):

- Preparación, selección de la operación y del trabajador
- Ejecución, obtención y registro de la información descomposición de la tarea en elementos, cronometraje y cálculo del tiempo observado
- Valoración, establecer el ritmo normal del trabajador promedio, uso de técnicas de valoración, cálculo del tiempo base o valorado
- Suplementos, análisis de demoras, estudiar la fatiga, calcular suplementos y tolerancias
- Tiempo estándar, cálculo de frecuencia de los elementos, tiempos de interferencia, cálculo de tiempo estándar

3.3.3 ESTUDIO DE TIEMPOS PREDETERMINADOS

Los tiempos predeterminados son una colección de tiempos válidos asignados a movimientos y a grupos de movimientos básicos, que no pueden ser evaluados con exactitud con el procedimiento ordinario del estudio cronométrico de tiempos. Son el resultado del estudio de un gran número de muestras de operaciones diversificadas, con un dispositivo para tomar el tiempo, tal como la cámara de cine, que es capaz de medir elementos muy cortos.

Por sus características, estos movimientos básicos se pueden agrupar adecuadamente hasta formar los elementos completos de operaciones pudiendo cuantificar el tiempo de éstos sin necesidad del cronómetro, además de las ventajas de un análisis minucioso del método.

El uso de tiempos predeterminados se utilizan para sintetizar las estimaciones hechas, puesto que las diferentes operaciones manuales consisten en diferentes combinaciones y permutaciones de un número limitado de movimientos de los miembros del cuerpo, tales como mover la mano hacia un objeto, tomarlo, trasladarlo y dejarlo, y debido a que cada una de estas pequeñas subdivisions son comunes a un gran número de operaciones manuales, es posible, técnica y económicamente, obtener un tiempo esperado de ejecución para cada una de ellas.

3.3.4 ESTUDIO DE TIEMPOS ESTIMADOS

Son aquellos tiempos determinados según la experiencia del trabajador, quien tiene un concepto superficial del tiempo usado en un proceso. Dada la experiencia se determina que los tiempos históricos, predeterminados o estimados no tienen el mismo nivel de exactitud que la estimación de tiempos por cronómetro, puesto que estos efectúan una aproximación real de la duración actual de las tareas.
3.3.5 IDENTIFICACION POR CARGA DE TRABAJO

Para determinar la presencia de cuellos de botella en el proceso mediante la identificación de carga se emulará el desarrollo y construcción de un elevador en la compañía mediante la ejecución de las labores normales en la implementación de un proyecto y se realizará la toma de tiempos correspondiente para el estudio.

3.3.6 ESTUDIO DE TIEMPO

A diferencia de la identificación de procesos restrictivos mediante tiempos descrito anteriormente, para la determinación de cargas en áreas de trabajo se toman muestreos de datos, recomendado por algunos autores no inferior a 38 muestras de manera que se tenga un conjunto de datos estadísticamente significativos.

4. METODOLOGIA

Consiste en la identificación de los pasos comprendidos para realizar el análisis de mejora de procesos dentro de la compañía objeto del estudio, donde inicialmente se debe obtener información de la estructura de la organización en cuestión con la finalidad de identificar sus objetivos estratégicos, lineamientos y propósitos, posteriormente se realiza el muestreo de los tiempos predeterminados de las actividades base de la operación para luego organizar dicha información y establecer herramientas de mejora o de reducción de los impactos generados por los cuellos de botella en la compañía.

4.1 IDENTIFICACION

Esta etapa para el presente estudio y para la formulación de un servicio establecido en la mejora de procesos hace referencia al conocimiento de la compañía objeto de estudio, donde se identifican las políticas y objetivos estratégicos de la misma.

La Política De Calidad en Ascensores Ascintec y las compañías en general se enfocan en garantizar la calidad de sus productos y servicios, cumpliendo con la legislación vigente entre otros requisitos, llevando a cabo procesos controlados y eficaces que mejoran continuamente, el enfoque de estas políticas da cabida al estudio de procesos restrictivos en pro de la mejora continua y la gestión de la calidad del producto. Por ello el propósito fundamental del proyecto busca la identificación de los cuellos de botella en el proceso productivo de la empresa Ascensores Ascintec que permitan una planeación, control o propuesta de mejora de los mismos para aminorar los impactos negativos que producen, esto se hará mediante los siguientes mecanismos:

- Determinar los puntos críticos (cuello de botella) en el desarrollo del proceso y modelar planes de amortización para estos.
- Estandarizar las partes críticas del proceso de manera que se reduzcan tiempos y costos en el proceso de producción.
Documentar los modelos del proceso en las áreas de fabricación y/o montaje que aún se encuentran sin documentar.

De manera tal que se citan a continuación los lineamientos de la compañía para establecer el enfoque del servicio y el plan de acción del proceso de mejora con base en los objetivos estratégicos de la compañía.

4.1.1 MARCO INSTITUCIONAL ASCINTEC

Ascensores Ascintec es una compañía de origen colombiano localizada en la ciudad de Bogotá en la calle 1 d no 26-25, en el barrio santa Isabel. Su oferta en el mercado incluye instalación de equipos nuevos, reparaciones, modernizaciones y adecuación a la norma para equipos de transporte vertical, siendo un fuerte competidor en la adecuación a la norma tanto como por su experiencia, como por contribuir en la implementación de la norma que rige el criterio de inspección para ascensores, la NTC 5926-1.

Ascintec, cuenta actualmente con un amplio número de clientes que abarcan gran parte del territorio nacional, teniendo equipos en ciudades como Bogotá, Barranquilla, Cartagena y Cali por citar algunas de ellas. Actualmente su nicho de mercado busca potencializar el área de instalación soportada por la experiencia y los conocimientos obtenidos de sus otras actividades en la industria.

4.1.2. MISIÓN

Ascensores Ascintec S.A.S, es una empresa comprometida en brindar una excelente calidad en sus productos y servicios para satisfacer la demanda de fabricación, montaje, instalación, modernización, mantenimiento predictivo, preventivo, y correctivo, suministro de repuestos, partes a equipos de transporte vertical como ascensores, montacargas, bandas transportadoras, rampas y escaleras eléctricas. Ofrecemos productos y servicios seguros, confiables a precios justos y competitivos, gracias al compromiso de nuestros colaboradores, llevando a cabo procesos que mejoran continuamente.

4.1.3. VISIÓN

Ascensores Ascintec S.A.S., en el año 2020 tendrá la mayor participación en el mercado de las empresas competentes, en las áreas de suministro, montaje, mantenimiento y reparación de ascensores, rampas, escaleras eléctricas, y otros equipos de transporte vertical a nivel nacional, caracterizándose por su excelente calidad, alta productividad y cumplimiento.

4.1.4. POLITICA DE CALIDAD

Ascensores Ascintec S.A.S, garantiza la calidad de sus productos y servicios, cumpliendo con la legislación vigente entre otros requisitos, llevando a cabo procesos controlados y eficaces que mejoran continuamente. Nuestra prioridad es brindar una atención individualizada y eficiente al cliente, comprendiendo sus necesidades y colmando sus expectativas. Disponemos de recursos necesarios (humanos, tecnológicos, financieros, infraestructura) que nos permiten cumplir con
los requisitos del cliente y aumentar su satisfacción. Velamos por el bienestar de nuestros trabajadores y colaboradores ofreciendo puestos de trabajo seguros gracias a la eficiente gestión de las personas que conforman nuestra organización. Preservamos el medio ambiente haciendo uso racional de los recursos disponibles y controlando aquellos productos, procesos y actividades que generan contaminación, reduciendo el impacto ambiental de nuestra labor.

4.1.5 ORGANIGRAMA ASCINTEC

Dado que el estudio se realizó de manera sistemática a continuación se muestra el organigrama de la compañía, el cual facilitó el análisis de las áreas de ventas, supervisión y operación por separado para buscar los cuellos de botella generados en la operación.

![Organigrama Ascintec](image)

Figura 3. Organigrama Ascintec - Fuente: Autor del Proyecto

4.2 FORMULACION

Un diagnóstico previo a la operación de la compañía permitió determinar que tanto en el proceso productivo como en el área de montaje se encuentran ausentes o mal establecidos los procesos de control y evaluación, lo cual repercute directamente de manera negativa sobre el producto y los tiempos de entrega el cual representa uno de los mayores inconvenientes en la compañía. Dado que se hayan ausentes o mal planteados los elementos de control como cronogramas, indicadores de rendimiento o guías de montaje, entre otros elementos es necesario para la compañía Ascensores Ascintec sas estandarizar sus procesos en relación con el tiempo de los procedimientos, actividades y tareas de manera inmediata mediante la identificación de procesos restrictivos en producción y montaje los cuales se analizarán al documentar la fabricación y montaje de un equipo.
En esta etapa una vez identificados los lineamientos de la compañía se hace un análisis detallado del proceso cuantificando el nivel de cumplimiento y de compromiso con los objetivos estratégicos, lo cual permite identificar las áreas que presentan falencias en la compañía tal como se apreció con antelación.

4.2.1 DELIMITACION DEL PROBLEMA

Como cualquier compañía Ascensores Ascintec sas cuenta con un proceso que trabaja de manera mancomunada y cíclica para satisfacer las necesidades del cliente, proceso que comprende análisis de mercado, oferta, ventas, facturación, producción, montaje y seguimiento por nombrar algunos de los procesos más representativos de la compañía.

En el reporte de entrega de equipos se relaciona el total de los equipos entregados, los entregados de manera tardía y sus causas.

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>NUMERO DE EQUIPOS</th>
<th>ENTREGAS TARDIAS</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>133</td>
<td>14</td>
<td>N/A</td>
</tr>
<tr>
<td>2018</td>
<td>78</td>
<td>9</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Tabla 1. Apartado del informe de entregas – 2018 Ascintec S.A

Es importante hacer notar que los datos previos corresponden a las diversas actividades de la compañía: Reparación, Montaje e Instalaciones Nuevas. Dados los datos se identifica que existe un porcentaje considerable de entregas tardías, se parte del supuesto de que existen cuellos de botella en el proceso productivo cuya identificación y análisis abarcará las áreas de fabricación y montaje de la compañía para elevadores de pasajeros los cuales representan la mayor demanda en el mercado.

El análisis de los cuellos de botella a los que se dará lugar pretenden mostrar la información recolectada de manera práctica y eficiente de forma que se pueda ver el impacto positivo de su implementación reflejado tanto en tiempos como monetariamente en la compañía, puesto que a pesar de que los resultados sean relevantes para la empresa si estos se promueven de una manera demasiado técnica o incomprensible los resultados de aceptación en el mercado serán menores y por ende su índice de ventas (La estrategia del océano azul, Chan K Mauborgne R,2005), lo cual aplica al caso si se piensa en el estudio de cuellos de botella y sus resultados como un producto el cual sera entregado al final del estudio a la compañía Ascensores Ascintec Sas.

4.3 ANÁLISIS DEL PROBLEMA - DIAGNOSTICO ASCINTEC

4.3.1 UNIDAD DE ESTUDIO

Las variables involucradas en esta investigación son:

- Tiempos estándar del proceso actual por medio de estudios de tiempos (tiempos predeterminados).
- La interacción de las operaciones, las cuales se caracterizan por medio de procedimientos y según los diagramas de flujo de estos.
- Afectación del proceso por mano de obra
- Tecnologías involucradas en el proceso

4.3.2 UNIDAD DE TIEMPO

La investigación se ejecutó en el segundo semestre del año 2018.

4.3.3 UNIDAD GEOGRÁFICA

Ubicada en la Calle 1D # 26-25 Santa Isabel, Ascensores Ascintec SAS

4.3.4 ESTUDIO DE TIEMPOS

Para el estudio y análisis de los cuellos de botella en el proceso productivo de ascensores Ascintec sas se recreará la fabricación y montaje de un elevador de manera que se puedan determinar los puntos críticos ligados al proceso. Con el fin de recolectar información y verificar el estado actual de los procesos. Para la identificación de los cuellos de botella en la compañía el proceso se segmentará en las etapas de: diseño, Selección de recursos, fabricación, montaje, evaluación y control.

![Diagrama de metodología para estudio de tiempos](image)

NOTA: El muestreo de tiempos se realizó 3 veces a la semana por proceso haciendo uso de los tiempos predeterminados como herramienta para el análisis de los cuellos de botella, tiempo durante el cual se tomaron muestras de los procesos a continuación descritos cuyo promedio se muestra como resultado a través de cada etapa.

4.3.4.1 ETAPA 1. DISEÑO

Los requerimientos para el diseño de un equipo en una edificación nueva son distintos para cada caso, esto debido a que las especificaciones de la construcción, el espacio disponible, el número de paradas, capacidad de carga, espacio de cabina y de foso, entre otros factores hacen que cada diseño cuente con sus características particulares. El proceso de diseño contempla
además de las normativas expuestas en el normograma legal previamente toda la parte funcional de la que se tiene conocimiento previo para la elaboración de un ascensor. La etapa de diseño contempla:

- Medición de área de construcción.
- Levantamiento de tríptico de obra.
- Diseño de elevador- Primera Fase.
- Diseño de elevador- Segunda Fase.

El diagrama de procesos para la etapa de diseño haciendo uso de la simbología ASME se describe a continuación:

4.3.4.2 ETAPA 2. SELECCIÓN

La etapa de selección hace referencia a los tiempos y criterios establecidos para la “selección” y manejo de la materia prima para su tratamiento posterior. Puede segmentarse principalmente en dos actividades:

- SELECCIÓN MATERIA PRIMA NACIONAL: Comprende materiales como lamina, madera, tornillería, cables de tracción, guaya de regulador, rieles de cabina y contrapeso, botoneras de hall, botonera de cabina y zapatas guías de cabina y contrapeso principalmente. El tiempo de compra de esta materia prima en general es de 2880 min.
- SELECCIÓN MATERIA PRIMA INTERNACIONAL (IMPORTACIÓN): Hace referencia a materiales extranjeros requeridos para la instalación y cuya importación representa un mayor beneficio para la compañía que la compra nacional o la fabricación, de esta lista hacen parte elementos como: indicadores led, botones de pulso, inductores biestables y monoestables, tarjeta de maniobra, regulador de velocidad, variador de frecuencia, entre otros. El tiempo estimado para la puesta en obra de los materiales de importación contando desde el día del anticipo es de 30 días hábiles.

4.3.4.3 ETAPA 3. FABRICACION

La etapa 3 combina una serie de criterios técnicos, administrativos y humanos que hacen que las actividades ligadas al proceso sean complejos. El proceso de fabricación consta de:

Figura 6. Grafica Etapa de Fabricación.

Esta etapa en particular depende de los proveedores, dado que el volumen de producción de equipos nuevos no justifica la tenencia de maquinaria y espacios especializados la mayor parte de los trabajos aquí descritos se subcontratan con empresas especializadas. Los datos aquí suministrados corresponden a tiempos reales de ejecución de las labores descritas, por cuestiones de privacidad de la compañía los nombres de proveedores no se muestran en el documento:
Dado que este tiempo corresponde al tiempo real y no a las 8 horas de jornada laboral comunes, los 4320 min equivalen a tres días al igual que los demás subprocesos de esta etapa.

4.3.4.4 ETAPA 4. MONTAJE

La etapa de montaje comprende la articulación de otros centros de trabajo que deben estar correctamente sincronizados para facilitar la instalación del elevador, estos son las tareas a ejecutar por el área de fabricación, el almacén y la mano de obra. En Ascensores Ascentec uno de los principales inconvenientes es que al depender en partes del proceso de los proveedores los procesos autónomos de la compañía se ven perjudicados por la demora de los mismos que resultan ser la base del proceso en el suministro de estructuras, a su vez estos procesos no cuentan con un control específico como formatos de recepción de materiales del proveedor, cronograma, etc. Actualmente el proceso de montaje está dividido en dos etapas: primera y segunda fase; la primera comprende instalación de rieles guías, máquinas y parte mecánica en general y la segunda las conexiones eléctricas, maniobra de control y acabados. Actualmente la duración del proceso está dada por:

<table>
<thead>
<tr>
<th>FASE DE INSTALACIÓN</th>
<th>DURACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera Fase</td>
<td>7200 min</td>
</tr>
<tr>
<td>Segunda Fase</td>
<td>7200 min</td>
</tr>
</tbody>
</table>

De la evaluación del proceso obtenemos el tiempo total expresado en minutos y en días que toma la fabricación y montaje de un equipo estándar no superior a 7 paradas, de lo cual se obtiene 7200 min equivalentes a 480 min diarios en una jornada de 8 horas, por lo cual tanto la etapa de primera como la de segunda fase duran un aproximado de 15 días calendario.

4.3.4.5 ETAPA 5. EVALUACION Y CONTROL

La ausencia de cronogramas dificulta la labor de inspección y control en la obra, actualmente se ejecuta la labor sobre las rutas críticas, se evalúan las instalaciones sobre la marcha y se toman
acciones correctivas una vez se identifican los inconvenientes, el proceso toma 1.5 hora semanales sobre el área de instalación por equipo lo cual llevado a la práctica representa un tiempo de entre 6 a 9 horas según la ejecución y retrasos del proyecto.

El estudio de tiempos para el proceso de la compañía se muestra en la siguiente tabla.

<table>
<thead>
<tr>
<th>Diseño</th>
<th>Selección</th>
<th>Fabricación</th>
<th>Montaje</th>
<th>Evaluación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triplicado (20 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición de área (5 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseño 1 fase (70 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseño 2 fase (50 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspección (5 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material nacional (2880 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material internacional (43200 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corte–postcorte (4320 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldadura (5640 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pintura (2880 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensamble (1440 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primera fase (3600 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segunda fase (3600 min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>46080</td>
<td>17280</td>
<td>1440</td>
<td>540</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>78300</td>
</tr>
<tr>
<td>Control (540 min)</td>
<td></td>
<td></td>
<td></td>
<td>57420</td>
</tr>
</tbody>
</table>

Tabla 4. Estudio de tiempos proceso actual-Ascensores Ascintec SAS.

De donde obtenemos un tiempo total de 78300 min equivalente a 54,3 días, no obstante existen actividades que se traslapan y ejecutan de manera simultánea reduciendo los tiempos de ejecución a 57420 minutos o lo que es lo mismo 39,8 días.

5. RESULTADOS

5.1 ENCUESTA A IMPLICADOS EN EL PROBLEMA

Una vez descrito el problema de manera general se procede a enfatizar en las áreas afectadas de la compañía, para conocer una percepción más profunda de lo que ocurre en los procesos. Es necesario interactuar con los operarios de manera incluyente abarcando los conceptos de aquellos que se encuentran más inmersos en la operación para garantizar la veracidad de la información recolectada. Con base a los criterios expuestos por la compañía uff Movil (Kanawaty G, 2011) se estableció una participación colectiva interna y externa de los colaboradores y clientes que permiten generar una percepción del problema más amplia abarcando el problema desde diversos puntos de vista y permitiendo encontrar diversos causales de los inconvenientes evidenciados. La encuesta utilizada para identificar algunos de los inconvenientes en la compañía puede apreciarse en el anexo 1.
Como resultado de las encuestas realizadas se encontraron las siguientes causas de restricciones en los procesos, los cuales se dividen por actividad para facilitar su identificación:

<table>
<thead>
<tr>
<th>AREA IMPLICADA</th>
<th>CAUSAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISEÑO</td>
<td>Comunicación entre áreas (Especificaciones de diseño entre ventas y producción).</td>
</tr>
<tr>
<td></td>
<td>Estandarización de diseños.</td>
</tr>
<tr>
<td>SELECCIÓN DE RECURSOS</td>
<td>Tiempo de importación de materiales</td>
</tr>
<tr>
<td>FABRICACIÓN</td>
<td>Proveedores (tiempo de ejecución)</td>
</tr>
<tr>
<td></td>
<td>Ausencia de cronogramas</td>
</tr>
<tr>
<td>MONTAJE</td>
<td>Ausencia de formato de recepción de materiales en obra de contratista a Ascintec.</td>
</tr>
<tr>
<td></td>
<td>Ausencia de formatos de control periódicos.</td>
</tr>
<tr>
<td>EVALUACIÓN Y CONTROL.</td>
<td>Falta estandarizar procesos de inspección.</td>
</tr>
<tr>
<td></td>
<td>Implementación de gestión del conocimiento.</td>
</tr>
</tbody>
</table>

Tabla 5. Resultados Encuesta Areas - Ascensores ASCINTEC SAS

Una vez realizada la descripción del proceso, encuestas a los colaboradores y el análisis de datos es posible determinar algunas de las principales complicaciones del proceso de la compañía. En la Figura 8 se ilustra de manera muy general el proceso de ventas, producción y puesta en marcha de un equipo de transporte vertical con especificaciones comunes para la empresa Ascensores Ascintec, En este es posible apreciar la consecución de procesos, cómo unos tienen dependencia de otros y por tanto resultan ser actividades críticas y algunas de las fallas más recurrentes que retrasan la entrega de los equipos en consecuencia de la falta de control. Por ejemplo se observa que la actividad de compras está limitada por las especificaciones del equipo que se definen en el área de ventas pero cuya información no es difundida adecuadamente, allí por ejemplo se evidencia ausencia de la gestión del conocimiento y la comunicación entre áreas fundamental para cualquier compañía.
A pesar de que es evidente la intención de la compañía de generar buena imagen y entregar los trabajos a tiempo se establecen las entregas tardías como ausencia de procesos o falta de control en los procesos ya existentes.

5.2 DIAGRAMA DE PARETO

Con base en los datos recolectados mediante la medición de tiempos, encuestas, diagramas y demás herramientas utilizadas en el diagnóstico del actual proceso en ascensores Ascentec se identifican los siguientes cuellos de botella:

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>FRECUENCIA</th>
<th>FRECUENCIA ACUMULADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comunicación inter - áreas</td>
<td>13</td>
<td>21,31%</td>
</tr>
<tr>
<td>Control de material</td>
<td>10</td>
<td>37,70%</td>
</tr>
<tr>
<td>Tercerización de actividades</td>
<td>9</td>
<td>52,46%</td>
</tr>
<tr>
<td>Cronograma de trabajo</td>
<td>9</td>
<td>67,21%</td>
</tr>
<tr>
<td>Material incompleto en obra</td>
<td>8</td>
<td>80,33%</td>
</tr>
<tr>
<td>Disponibilidad del material</td>
<td>7</td>
<td>91,80%</td>
</tr>
<tr>
<td>Revisión por etapas</td>
<td>5</td>
<td>100,00%</td>
</tr>
<tr>
<td>Tamaño de la muestra</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6. Tabla cuellos de botella identificados.
Mediante el diagrama de Pareto es posible determinar las causas que generan la mayor parte de los problemas dentro de la organización, tal como lo dijo J.M Juran (Mayo 1975) en el control de calidad antes y ahora, “El principio de Pareto es el nombre abreviado para el fenómeno de que en toda población que contribuye a un efecto común unos pocos de los contribuyentes son responsables del grueso del efecto” (JURAN, 1975), este concepto de manera más específica discrimina a esos contribuyentes como pocos vitales y muchos triviales, donde el tratamiento de los pocos vitales equivale a la regla 80/20 según la cual si se tiene un problema con muchas causas, puede decirse que el 20% de las causas resuelven el 80% del problema y el 80% de las causas solo resuelven el 20% del problema. El análisis de Pareto para la recolección de datos en la organización resulta:

![Diagrama de Pareto](image)

Figura 8. Diagrama de Pareto.

Según la teoría los pocos vitales se sitúan a la izquierda de la gráfica, lo cual resulta evidente en concordancia con la frecuencia de los eventos, adicionalmente puede observarse que unas actividades resultan ser consecuencia de otras, como por ejemplo que la disponibilidad del material en las obras sea consecuencia de la falta de control del mismo desde la bodega al igual que la ausencia de material en las obras. De igual modo las entregas tardías, piezas faltantes y sobrecostos entre otras consecuencias resultan ser producto de la falta de comunicación entre áreas para definir adecuadamente el producto que se entregara al cliente, la falta de control de material que promueve la desorganización y retrasa el montaje y la tercerización de actividades debido a la falta de compromiso de los agentes externos de la compañía con la misión y visión de la empresa.
5.3 ESTUDIO DE TIEMPOS

Los siguientes son resultados de una propuesta de distribución de planta.

El estudio de tiempos de fabricación de la compañía teniendo en cuenta el proceso dicho anteriormente para la fabricación está comprendido por.

Se establecen las siguientes condiciones iniciales en un ámbito de trabajo que simula la ejecución de labores para la elaboración de los componentes de un elevador estándar.

- El ritmo de trabajo está dado por el desempeño de un operario promedio.
- La disponibilidad de la materia prima no presenta ausencias.
- La máquina en la que se ejecuta la labor no cuenta con otras labores pendientes.

Resultados

Los resultados aquí presentados son las lecturas únicas hechas a las tareas antes descritas (ver Tabla 1).

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>TIEMPO (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISEÑO</td>
<td></td>
</tr>
<tr>
<td>Diseño</td>
<td>150</td>
</tr>
<tr>
<td>CORTE</td>
<td></td>
</tr>
<tr>
<td>Corte cizalla</td>
<td>300</td>
</tr>
<tr>
<td>Corte segueta mecánica</td>
<td>32</td>
</tr>
<tr>
<td>Corte laser</td>
<td>1140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTCORTE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plegado</td>
<td>334</td>
</tr>
<tr>
<td>SOLDADURA</td>
<td></td>
</tr>
<tr>
<td>Bancada</td>
<td>156</td>
</tr>
<tr>
<td>Chasis de contrapeso</td>
<td>204</td>
</tr>
<tr>
<td>Paños</td>
<td>144</td>
</tr>
<tr>
<td>Piso</td>
<td>217</td>
</tr>
<tr>
<td>Techo</td>
<td>132</td>
</tr>
<tr>
<td>Flotante</td>
<td>171</td>
</tr>
<tr>
<td>Chasis de cabina</td>
<td>525</td>
</tr>
<tr>
<td>Puertas</td>
<td>666</td>
</tr>
<tr>
<td>PINTURA</td>
<td></td>
</tr>
<tr>
<td>Fondo</td>
<td>210</td>
</tr>
<tr>
<td>Pintura acabados (externa)</td>
<td>1440</td>
</tr>
<tr>
<td>ENSAMBLE</td>
<td></td>
</tr>
<tr>
<td>Alambrado de pozo</td>
<td>120</td>
</tr>
<tr>
<td>Ensamble final de cabina</td>
<td>603</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6544</td>
</tr>
</tbody>
</table>

Tabla 7. Estudio de tiempos. Fuente Autor.

Es notoria la mejora que se da con la ejecución de los trabajos simulando el desempeño que la empresa tendría con maquinaria propia y un área de trabajo dispuesta para ello al pasar de un tiempo de fabricación de 17280 min a 6544 min. El ejercicio de estudio de tiempos no solo permite dar una aproximación de los tiempos que tomaría en la práctica la fabricación de un elevador sino que a su vez permite mapear el proceso por ciclos haciendo uso de la teoría de la división del trabajo para aumentar la productividad.

5.4 RELACION TIEMPO – BENEFICIO

Realizados los estudios de tiempo y atacando los cuellos de botella en el proceso productivo fue posible establecer un ahorro de tiempo en las actividades de 13411 minutos aproximadamente por proceso (fabricación y montaje de un elevador), tiempo que traducido en dinero representa $ 6.862.430, lo cual abre posibilidades a inversiones, inyecciones de capital, etc.
<table>
<thead>
<tr>
<th>AREA</th>
<th>TIEMPO ACTUAL (min)</th>
<th>TIEMPO IDEAL (min)</th>
<th>BENEFICIO TIEMPO</th>
<th>SALARIO BASE</th>
<th>BENEFICIO ECONOMICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISEÑO</td>
<td>150</td>
<td>115</td>
<td>35</td>
<td>$ 1.200.000</td>
<td>$ 23.333</td>
</tr>
<tr>
<td>SELECCIÓN</td>
<td>46080</td>
<td>46080</td>
<td>0</td>
<td>$ 1.200.000</td>
<td>$ 0</td>
</tr>
<tr>
<td>FABRICACION</td>
<td>17280</td>
<td>6544</td>
<td>10736</td>
<td>$ 900.000</td>
<td>5.368.000</td>
</tr>
<tr>
<td>MONTAJE</td>
<td>14400</td>
<td>11800</td>
<td>2600</td>
<td>$ 1.000.000</td>
<td>1.444.430</td>
</tr>
<tr>
<td>EVALUACION</td>
<td>540</td>
<td>500</td>
<td>40</td>
<td>$ 1.200.000</td>
<td>$ 26.667</td>
</tr>
<tr>
<td>TOTAL</td>
<td>78450</td>
<td>65039</td>
<td>13411</td>
<td>$ 5.500.000</td>
<td>6.862.430</td>
</tr>
</tbody>
</table>

Tabla 8. Tabla de relación - Tiempo - Beneficio

Este ahorro de tiempos y dinero fue posible gracias a la identificación y análisis delos cuellos de botella segmentados de la siguiente manera:

- **DISEÑO**: En el área de diseño se identificó que a pesar de que se utilizaban diseños similares esta área del proceso no estaba estandarizada, y gracias a que representa el punto de partida para el resto del proceso los retrasos en diseño repercutían en toda la operación, para lo cual se diseñó una interfaz sencilla sobre Excel en donde se introducen los parámetros de diseño entregando como resultado los despiecees, cortes y dobleces de la cabina para la segunda fase, representado un ahorro de 35 minutos en la operación.

- **FABRICACION**: El estudio de tiempos permitió determinar el tiempo desperdiciado en transportes, proveedores y errores en general, para lo cual se planteó una propuesta de distribución de planta haciendo autónomos procesos que actualmente son tercerizados por la organización traduciéndose en un ahorro de 10736 minutos en la operación.

- **MONTAJE – EVALUACION**: Para las áreas de montaje y evaluación se utilizó el mismo método de mejora, el cual consiste en la implementación de formatos de control para efectuar la trazabilidad con los objetivos, documentos anexos a la presente documento.

Con base en el ahorro de tiempos se estima un ahorro equivalente por equipo de $ 6.862.430, a su vez que el ahorro de tiempo maximiza la producción en 10 equipos anuales, haciendo uso de estos datos se establece un flujo de fondos que muestra el beneficio obtenido para la compañía ascensores Ascintec proyectado en un periodo de 5 años, cuyos costos de inversión, créditos y otros aspectos se describen a detalle en el capítulo 7.
De allí observamos que la relación beneficio – costo monetizado para una proyección de 5 años en la compañía Ascintec representa una fuente de ingresos de $ 231.106.210 anual como resultado final del flujo habiendo descontado los costos de inversión y teniendo en cuenta las amortizaciones e intereses a créditos y depreciación del proyecto.

6. PROPUESTA DE MEJORA

Gracias a la identificación de procesos restrictivos mediante las metodologías de encuesta, análisis de Pareto y diagnóstico organizacional/operacional ejecutados en la compañía se establece una propuesta de mejora para el proceso en Ascintec mediante el estudio de tiempos y la división del trabajo lo cual busca mejorar el tiempo de respuesta en las actividades de la compañía y su funcionamiento como parte de un todo. El actual proceso muestra un tiempo de 57 420 min, se planteará una reducción de tiempos en las áreas de fabricación y montaje en los cuales se evidencian los principales cuellos de botella del proceso.

6.1 PLANTEAMIENTO DE UN ORDEN DE TRABAJO

En esta etapa se toman fundamentos teóricos y promueve la cultura organizacional para plantear un orden de trabajo y reglas básicas para la dinámica de trabajo en la planta.

El estudio de caso de ascensores Ascintec devela que existen muchas tareas que son subcontratadas, una propuesta de mejora que haría sus procesos más independientes y mejoraría...
el tiempo de entrega de los productos es sin duda la división del trabajo en áreas propias de la compañía por tal razón a continuación se presenta el estudio de tiempos de la compañía con maquinaria en planta, en caso de resultar viable podrían estudiarse propuestas de financiamiento, leasing u otros métodos para la adquisición de dichas máquinas. La división del trabajo permite que cada trabajador se especialice en su área mejorando los tiempos de ejecución de labores tal como lo expone Adam Smith en su libro la riqueza de las naciones, “el progreso en la destreza del obrero incrementa la cantidad de trabajo que puede efectuar, y la división del trabajo, al reducir la tarea del hombre a una operación sencilla, y hacer de ésta la única ocupación de su vida, aumenta considerablemente la pericia del operario”, no obstante no deben olvidarse los perjuicios que causa dicha dinámica al despojar de su creatividad al individuo, por tal razón es necesario acompañar estas prácticas de otras que fomenten la creación y el pensamiento innovador dentro de la organización.

6.1.1 ACCIÓN DE MEJORA 1

Se propone la fabricación del equipo totalmente a cargo de la compañía, para ello se deberán establecer planos de plegado y corte con su respectivo estudio de tiempos.

Inicialmente se debe identificar el material que conforma en su mayor parte un elevador.

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>MEDIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>4.8 mm</td>
</tr>
<tr>
<td>HR</td>
<td>3 mm</td>
</tr>
<tr>
<td>HR</td>
<td>2.5 mm</td>
</tr>
<tr>
<td>CR</td>
<td>14</td>
</tr>
<tr>
<td>CR</td>
<td>16</td>
</tr>
<tr>
<td>CR</td>
<td>18</td>
</tr>
<tr>
<td>CR</td>
<td>20</td>
</tr>
<tr>
<td>ACERO INOX 403</td>
<td>18</td>
</tr>
<tr>
<td>ACERO INOX 403</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabla 10. Tabla material que conforman parte principal de un elevador

Una vez identificados los materiales a utilizar deben establecerse planos de corte, plegado y ensamble para mejorar el uso de material y los tiempos de corte.

En el anexo 2 pueden observarse los planos de corte y plegado para un ascensor estándar con capacidad para 4 pasajeros de medidas 734 mm x 1125 mm

Por esta razón se planteó realizar

1. Planos de corte
2. Planos de plegado
3. Mejorar los planos de ensamble

En el ANEXO 6 pueden encontrar los planos propuestos para corte y para plegado.

Adicionalmente a esto dado que actualmente no es un proceso que este contemplado en la compañía debido a que estas labores se tercerizan se realizaron los cálculos pertinentes mediante el programa Excel de manera genérica de modo que se introduzcan las especificaciones de diseño de la cabina y este arroje los planos de corte y dobles reduciendo los tiempos de diseño al mínimo posible.

<table>
<thead>
<tr>
<th>DIMENSIONES CABINA</th>
<th>UNIDAD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTURA</td>
<td>250</td>
</tr>
<tr>
<td>ANCHO</td>
<td>320</td>
</tr>
<tr>
<td>PROFUNDO</td>
<td>790</td>
</tr>
<tr>
<td>APERTURA</td>
<td>800</td>
</tr>
<tr>
<td>TAMANO DE DIATOMIC</td>
<td>10</td>
</tr>
<tr>
<td>NUMERO DE DIATOMIC</td>
<td>5</td>
</tr>
<tr>
<td>NUMERO DE DIATOMIC</td>
<td>3</td>
</tr>
<tr>
<td>NUMERO DE DIATOMIC</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAÑOS LATERALES</th>
<th>PLANOS DE CORTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTURA</td>
<td>224</td>
</tr>
<tr>
<td>ANCHO</td>
<td>217,1</td>
</tr>
<tr>
<td>CANTIDAD</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAÑOS TRASEROS</th>
<th>PASAMANOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTURA</td>
<td>200</td>
</tr>
<tr>
<td>ANCHO</td>
<td>100</td>
</tr>
<tr>
<td>CANTIDAD</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRONTAL</th>
<th>EQUIPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTURA</td>
<td>2200</td>
</tr>
<tr>
<td>ANCHO</td>
<td>142,1</td>
</tr>
<tr>
<td>CANTIDAD</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 11. Tabla de resultados para los planos de corte y dobles de acuerdo con requerimientos del equipo.

Los espacios en azul son los parámetros variables, mientras que la ventana ubicada en la parte derecha arroja los resultados para los planos de corte y dobles según los requerimientos del equipo. Con la implementación de este formato el tiempo de diseño de segunda fase podría pasar de un tiempo promedio de 50 min a alrededor de unos 15 min, lo ideal sería establecer el mismo formato de diseño para una primera fase en instancias futuras.

6.1.2 ACCION DE MEJORA 2

Implementar formatos de control que permiten mantener monitoreados los factores de éxito en la compañía, como el desperdicio de lámina, de tiempos de transporte, y de avance de obra, los documentos se pueden apreciar en el Anexo 3-4.

6.1.3 ACCION DE MEJORA 3

Se plantea una propuesta para la distribución de la planta basado en los procesos necesarios para la elaboración de elevadores usando el método SLP para la distribución de la planta, el cual es una forma organizada de realizar la planeación de la distribución de áreas en la planta mediante una serie de pasos que permiten identificar, evaluar y visualizar los elementos y áreas involucradas en la planificación. Se establece la proximidad según el peso de las razones estipuladas en la tabla permitiendo establecer la importancia de que un área tenga cercanía con
otra área, dando así una idea general de como podría ser una propuesta para la organización de procesos y equipos en la planta.

<table>
<thead>
<tr>
<th>CODIGO DE RAZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMERO</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LETRA</th>
<th>ORDEN DE PROXIMIDAD</th>
<th>VALOR EN LINEAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ABSOLUTAMENTE NECESARIA</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>ESPECIALMENTE IMPORTANTE</td>
<td>3</td>
</tr>
<tr>
<td>I</td>
<td>IMPORTANTE</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>ORDINARIA O NORMAL</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>SIN IMPORTANCIA</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>INDESEABLE</td>
<td>-1</td>
</tr>
<tr>
<td>XX</td>
<td>MUY INDESEABLE</td>
<td>-2</td>
</tr>
</tbody>
</table>

Tabla 12. Criterios de proximidad entre áreas según el método SLP.

Con base en este código de razones y los criterios de proximidad establecidos por el método SLP, se genera el diagrama de relaciones entre áreas donde se expresa la importancia de la cercanía entre las áreas de la planta a raíz de las razones que para el caso particular son: seguridad, control, tiempo, esfuerzo y salubridad.

Figura 11. Relación de cercanías entre áreas establecido mediante el método SLP.
De allí se observa que las áreas de corte plegado y ensamble tienen cierta dependencia con el área de diseño dados los procesos de control y que las áreas en general deben estar separadas del área de pintura por razones de salubridad. Se presenta a continuación el diagrama de hilos que representa las relaciones entre áreas y da una idea de la distribución propuesta para las áreas del proceso de elaboración de un elevador en la planta.

![Diagrama de hilos](image.png)

Figura 12. Diagrama de Hilos para distribución de planta dedicada a la fabricación de elevadores.

De donde se obtiene una idea general de la distribución de la planta para reducir los tiempos de proceso de fabricación, adicionalmente se presenta en el diagrama de la Figura 13 una idea general del proceso donde se utilizaría el sistema de producción por lotes ya que como se vio en la sección 5.3 los tiempos de ciclo no son los mismos para las áreas que componen el proceso de fabricación por lo cual no podría proponerse un sistema de producción por balanceo de cargas. Sin embargo esto permitiría dar cabida a otro tipo de prácticas como por ejemplo realizar la pintura de dos líneas de producción en un solo proceso o manejar medidas estándar para los guacales en el área de transporte, lo cual permitiría ir adelantando las tareas de empaquetamiento y transporte mientras se trabaja al tiempo el ensamble y desensamble de los equipos.

![Diagrama de proceso](image2.png)

Figura 13. Diagrama de proceso para la elaboración de un elevador.
7. ESTABLECIENDO EL SERVICIO - PARAMETROS DEL SERVICIO

El ejercicio realizado en la identificación de cuellos de botella en la compañía ASCENSORES ASCINTEC SAS, permitió determinar los tiempos requeridos, tamaño de la operación, costos promedio y otros factores relevantes del proyecto que se presentan de manera detallada a continuación:

7.1 ESTUDIO TECNICO

7.1.1 TAMAÑO:

Para el ofrecimiento del servicio de análisis de procesos productivos el tamaño del proyecto inicialmente abarcaría la intervención sobre un proceso. Dado que la prestación de un servicio debe tener un alcance definido de los sistemas que afecta, para el caso del estudio de procesos en la empresa ascensores Ascintec el tamaño del proyecto abarca el estudio y análisis en el sistema productivo que implica la elaboración de un ascensor de pasajeros de especificaciones normales, dejando por fuera otros procesos de la compañía como lo son fabricación de montacoches, mantenimiento de rampas eléctricas, comercio, entre otras.

7.1.2 COSTOS Y ASPECTOS TECNICOS

7.1.2.1. Presupuesto de inversión para análisis de procesos:

Una vez establecida la alternativa de solución se identifican las labores y presupuesto requerido para la ejecución del mismo. Para establecer el presupuesto requerido para el desarrollo del proyecto se incluyen las horas trabajadas por un ingeniero que guíe el proceso, transporte a obras, investigación, auditoria, imprevistos y documentación requerida.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 12. Presupuesto para el análisis de proceso productivo de un proyecto de 1 mes

Por otra parte la propuesta de mejora requiere el análisis de la información recolectada, el manejo de la información y los trabajos requeridos para mostrar los resultados de una manera llamativa.
De allí que los recursos para la identificación y realización de los puntos propuestos no requiere un apalancamiento financiero robusto sino que depende en mayor medida de los conocimientos aplicados por quienes ejecutan el proyecto, estos recursos pueden financiarse mediante un préstamo a la compañía que se vería justificado tras la implementación de la investigación (en caso de ser adoptada por la empresa). Dado que se trata de la prestación de un servicio en el cual el alcance del proyecto, tamaño de la empresa y cantidad de datos son influyentes, el costo y precio del estudio de procesos varía con cada organización, para el caso particular los costos son descritos en las tablas de recolección de datos y propuesta de mejora.

Los costos de un proyecto están relacionados con el alcance del mismo, por esta razón para estimar el costo de la prestación del servicio para el análisis de procesos productivos se establecen los factores que intervienen en todo proyecto como la mano de obra, transportes, auditorias, documentación, etc. Estos valores serán tomados en cuenta de forma individual para cada proyecto y dependiendo de temas como el tamaño de la compañía la trascendencia de la información y el tiempo de ejecución puede darse un valor estimado de los costos del proyecto. Para el caso de estudio del proceso de Ascintec este valor es de $ 5.370.400, debe tenerse en cuenta que esto es una estimación del costo del estudio pero no se han identificado a profundidad los costos indirectos y el margen de utilidad, por lo cual el precio de ofrecimiento del servicio puede variar en relación a este.

7.1.3. PRESUPUESTO DE INVERSION DE MAQUINARIA Y PERSONAL:

Se describen a grandes rasgos los elementos requeridos para la inversión inicial y los costos operacionales anuales por implementar el proyecto:

<table>
<thead>
<tr>
<th>INVERSION INICIAL</th>
<th>DOBLADORA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$220.000.000</td>
</tr>
<tr>
<td>CORTADORA</td>
<td>$170.000.000</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EQUIPO MIC</td>
<td>$20.000.000</td>
</tr>
<tr>
<td>COMPUTO</td>
<td>$12.500.000</td>
</tr>
<tr>
<td>CAPACITACION</td>
<td>$6.000.000</td>
</tr>
<tr>
<td>MANTENIMIENTO</td>
<td>$1.200.000</td>
</tr>
<tr>
<td></td>
<td>$429.700.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COSTOS DE OPERACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANTENIMIENTO</td>
</tr>
<tr>
<td>ESTUDIO DE T</td>
</tr>
</tbody>
</table>

Tabla 145. Inversión Inicial.

Una descripción más detallada de la parte de cómputo es la siguiente:

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>CANTIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPOS DE COMPUTO PORTATILES</td>
<td>2</td>
<td>$2.500.000</td>
<td>$5.000.000</td>
</tr>
<tr>
<td>EQUIPOS DE COMPUTO DE MESA</td>
<td>2</td>
<td>$2.300</td>
<td>$4.600.000</td>
</tr>
<tr>
<td>TABLETS</td>
<td>2</td>
<td>$300.000</td>
<td>$600.000</td>
</tr>
<tr>
<td>PAPELERIA</td>
<td>NO APLICA</td>
<td>$300.000</td>
<td>$300.000</td>
</tr>
<tr>
<td>MUEBLES Y ENSERES</td>
<td>1</td>
<td>$2.000.000</td>
<td>$2.000.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$12.500.000</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 156. Estructura de costos

7.1.4. PRINCIPALES FUENTES DE INGRESOS

El proyecto se financiará de la siguiente manera:

- 31% Recursos propios de los socios capitalistas
- 69% Financiación con una tasa EA de 17.46% y para un monto de $6.2250.000

De igual manera para poder implementar los cambios requeridos sobre el planteamiento resultado de la investigación de los cuellos de botella, deben invertirse en máquinas, capacitación del personal y otros elementos que se describen a continuación:
De donde se pueden determinar los pagos de intereses y amortizaciones proyectados a 5 años. Aquí observamos que el número de equipos vendido por año tiene un incremento del 3% anual en concordancia con la tendencia actual de la compañía ascintec, a esto se le suman los 10 equipos anuales que podrían producirse de más en caso de adoptarse las medidas descritas en el presente proyecto.

7.1.5. DISPONIBILIDAD DE INSUMOS Y SERVICIOS PUBLICOS

Ya que los insumos en la prestación del servicio son la mano de obra y las capacidades del personal, la actividad económica no está supeditada a disponibilidad de insumos en el mercado.

7.2 LOCALIZACION

7.2.1 MACROLOCALIZACION

Como lo demuestra el estudio de mercado el lugar más propicio para una sede de análisis de datos es la capital del país, esto dado que la mayoría de las compañías de elevadores a nivel nacional se concentran en la capital a pesar de tener sucursales en otras ciudades. La siguiente imagen corresponde a un estudio realizado en el periodo 1993-2005, donde se releja el Índice de Urbanización Municipal2 – ÍUM elaborado por Peña C. (2010) (Barrera, 2010), alimentado por las siguientes variables: 1) los datos netos de las variables población, vivienda y superficies para 1993 y 2005; 2) el número de personas por vivienda; 3) número de personas por hectárea; 4) el número de viviendas por hectárea; 5) la variación porcentual intercensal de personas; 6) la variación porcentual intercensal de vivienda, lo cual permitió establecer el IUM, reflejo de la tendencia expansionista de la sociedad y de la concentración del desarrollo económico en la ciudad de Bogotá, lo cual marca una tendencia que hace que este mercado sea atractivo para la construcción de elevadores y por ende el ofrecimiento de servicios relacionados.
7.2.1.1 ASPECTOS GEOGRÁFICOS

Bogotá está constituida por 20 localidades, se encuentra a un promedio de 2.625 metros sobre el nivel del mar. Está ubicada en el centro de Colombia, tiene una longitud de 33 km de sur a norte, y 16 km de oriente a occidente.

7.2.1.2 ASPECTOS SOCIOECONÓMICOS

En un artículo publicado por el periódico el espectador el 13 de Agosto de 2017 - Invest in Bogotá y la Secretaría de Desarrollo Económico muestran los resultados de un estudio para detallar las clases sociales, sobre todo los estratos medios. Los resultados, según las organizaciones, fueron satisfactorios: el 50 % de los habitantes de la capital pertenecen a la clase media y tienen ingresos diarios entre $12.963 y $64.813. Con un aumento de 14 %, Bogotá es la segunda ciudad del país con mayor número de personas en este segmento, después de Bucaramanga (53 %). El estudio se basó en una metodología del Banco Mundial, que clasifica según ingresos per cápita diarios. Para esta organización, mientras la clase social media tiene un ingreso diario per cápita equivalente al rango entre $12.963 y $64.813, la clase vulnerable tiene un ingreso entre $5.185 y $12.963. La población considerada en estado de pobreza tiene ingresos diarios per cápita inferiores a $5.185 y los de la clase alta superan los $64.813.

En ese sentido, en Bogotá hay 3'719.941 personas que pertenecen a la clase media. El 62,9 % reside en estratos 3 y 4, y el 34,8 %, en estratos 1 y 2. En promedio, un hogar de este segmento está conformado por 3,03 personas.

Bogotá tiene una dinámica de inversión extranjera directa importante: “El crecimiento promedio estimado en el monto de inversión hacia la ciudad durante la última década es del 26 %”. El futuro, señala, es promisorio para la capital y para el país, teniendo en cuenta que la ciudad aporta el 25,7 % del producto interno bruto y es la que más empleos ofrece. Este crecimiento en la economía impulsan el sector de la construcción de conjuntos residenciales que van de a mano con el desarrollo del sector productivo de ascensores y posibilitan la implementación de asesorías especializadas para la mejora de procesos de este tipo.

7.2.2 MICROLOCALIZACIÓN

Debido a que el proyecto establece la prestación de un servicio donde no será necesario una bodega en arrendamiento para disponibilidad de inventario o maquinaria y por razones económicas el centro de trabajo quedará establecido en los predios de los proponentes, actualmente ubicados en suba – villa maría y Normandía, desde donde se podrán ejecutar las labores propias de la propuesta sin generar costos adicionales.

7.2.2.1 DISTRIBUCION Y DISEÑO DE LAS INSTALACIONES

En el caso en particular por la dimensión del proyecto y la naturaleza de las actividades a ejecutar y en vista de que se utilizarán los espacios disponibles actualmente por la empresa para
la disposición y redistribución de la planta, razón por la cual no se contemplan como parte de la inversión inicial.

7.2.2.2 PRESUPUESTO DE INVERSION

Para el desarrollo del proyecto se necesitan los siguientes materiales que serán financiados como se muestra a continuación:

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>CANTIDAD</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPOS DE COMPUTO</td>
<td>2</td>
<td>$2.500.000</td>
<td>$5.000.000</td>
</tr>
<tr>
<td>PORTATILES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUIPOS DE COMPUTO</td>
<td>2</td>
<td>$2.300</td>
<td>$4.600.000</td>
</tr>
<tr>
<td>DE MESA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLETS</td>
<td>2</td>
<td>$300.000</td>
<td>$600.000</td>
</tr>
<tr>
<td>PAPELERIA</td>
<td>NO APLICA</td>
<td>$300.000</td>
<td>$300.000</td>
</tr>
<tr>
<td>MUEBLES Y ENSERES</td>
<td>1</td>
<td>$2.000.000</td>
<td>$2.000.000</td>
</tr>
</tbody>
</table>

Tabla 178. Estructura de costos

7.2.3. PRINCIPALES FUENTES DE INGRESOS El proyecto se financiará de la siguiente manera:

- 50% Recursos propios de los socios capitalistas
- 50% Financiación con una tasa EA de 17.46% y para un monto de $6.2250.000

Cuya simulación se muestra a continuación:
7.3 INGENIERIA DEL PROYECTO

7.3.1 DESCRIPCION

El estudio para la identificación y análisis de procesos restrictivos en la compañía ascensores Ascintec tendrá la siguiente estructura:

- Nombre técnico: Análisis de procesos restrictivos en producción para propuesta de plan de mejoramiento.
- Composición: Análisis e identificación de procesos. Propuesta de plan de mejoramiento.
- Presentación: Informes entregables.
- Unidad de medida: Unidad
- Forma de almacenamiento: Uso de la gestión del conocimiento, redes, espacio en la nube, etc.
- Vida útil: 1 Año.

El estudio está enfocado a la mejora de procesos en la producción de elevadores en ascensores Ascintec, con una vida útil de un año, lo cual implica que el estudio deba realizarse anualmente para que sea efectivo y refleje la situación actual de la empresa y los procesos a mejorar.

7.3.2 LISTADO DE EQUIPOS

Para que la mejora de procesos en la compañía sea efectiva y se alcancen los resultados esperados deberá contar con los siguientes equipos para el diseño y control de los procesos, adicionalmente se suman los equipos necesarios para reducir la tercerización y apropiarse de la producción en áreas como el corte, doblaje y ensamblado.
• Dispositivos electrónicos para registro documental y fotográfico; cámaras, Smartphone, tabletas, etc.
• Laptops, computadores de escritorio, impresoras.
• Papelería en general.
• Cortadora de cizalla
• Dobladora
• Equipo de soldadura Mic

7.4 ESTUDIO DE MERCADO

El estudio busca establecer la participación de ascensores ascintec en el mercado, reflejado por el análisis de recursos que suministrara ahorros sustanciales en tiempos y costos sobre los procesos.

7.4.1 SERVICIOS PRINCIPALES

Ofrecimiento de instalación de elevadores eléctricos o hidráulicos para el transporte vertical.

7.4.1.1 SUSTITUTOS

Automatismos para el transporte vertical de personas como monta coches, rampas o escaleras eléctricas.

7.4.1.2 COMPLEMENTARIOS

Toda clase de servicios que hacen parte de la normativa de seguridad vigente NTC 5926-1 como citofonia, corrales de protección de personal sobre cabina, sistema autónomo de emergencia, y rescatamatic(Fuente de emergencia).

7.4.2 IDENTIFICACION DEL BIEN O SERVICIO

El enfoque del estudio busca identificar los procesos restrictivos o cuellos de botella presentes en el proceso productivo de las compañías de elevadores, dedicadas a la elaboración e instalación de ascensores, ascensores que deben estar acordes con el cumplimiento de los requisitos y estándares de calidad exigidos en la norma colombiana NTC 5926-1 y 2961 que establecen los criterios de seguridad para la instalación de elevadores en el territorio nacional dando como resultado una propuesta de mejoramiento de procesos traducido en ahorro de costos y tiempos.

7.4.3 DESTINO

El proyecto está destinado a la reducción de tiempos y costos manifiestos a causa de los procesos restrictivos de las compañía Ascensores Ascintec de Colombia, ubicado en el área de santa Isabel, los cuales entorpecen el normal funcionamiento de la compañía.
7.4.4 VIDA UTIL

La recolección y análisis de datos en la compañía con aras de fortalecer y mejorar sus procesos productivos tiene una vida útil de 1 año, tiempo a partir del cual debería establecerse un nuevo análisis para determinar nuevamente la situación presente de la compañía, esto dado el dinamismo inherente del mercado, el ambiente político, económico y cultural, por nombrar algunos de los factores del macro entorno cuyos cambios constantes hacen necesario la actualización anual de los procesos, tecnologías y métodos utilizados en la producción descrita.

7.4.5 USOS

El uso principal de un estudio de procesos para propuestas de mejoramiento consiste en la identificación de rutas críticas, procesos y costos mal asignados, estudio de tiempo, entre otros en la compañía ascintec, cuya mejora se vería representada en una mayor productividad y una mayor utilidad principalmente. Su aplicabilidad se diversifica a todos los sectores de la empresa puesto que es aplicable a cualquier ramo del proceso, no obstante vale aclarar que el alcance del actual proyecto se limita al estudio de los procesos productivos y sus áreas directamente relacionadas.

7.4.6 USUARIOS.

El proyecto va dirigido al estudio de procesos en la compañía ascensores ascintec, con el fin de disminuir los tiempos y costos de la operación, lo cual permitiría ofrecer el producto con precios reducidos a usuarios que no son posibles en la actualidad dados los costos de producción y adquisición de las otras compañías de elevadores, empresas como Schindler, Mitsubishi u Otis. Para establecer un criterio acertado de las características más comunes de los potenciales compradores se realizaría un análisis del mercado con información relevante, mediante la cual se generara una estadística de la población de mayor demanda para el producto. Esto implica que inicialmente el usuario final del caso será la compañía Ascensores Ascintec Sas.

7.4.7 CARACTERISTICAS DEL PROYECTO

El análisis de procesos restrictivos en la compañía debe caracterizarse por ser especializado en el área de estudio y por tener un factor diferenciador en el mercado. Ya que los estudios exitosos suelen ser especializados no aceptan todas las ofertas, no obstante tampoco se cierran a nuevos proyectos. Pero básicamente especializarse en algún sector empresarial confiere credibilidad y mejores resultados.

De igual manera debe contar con un enfoque en el cliente y en los ejecutores del proyecto si se considera que el caso de estudio es objeto de trabajo de un grupo multidisciplinar a cargo de una compañía ya que en un estudio de procesos el principal activo lo constituyen las personas: su capacidad, talento, actitud, dedicación y compromiso. Involucrar al cliente en todo el proceso también resulta ser una característica de un análisis de un proceso productivo para identificar las fallas de este, esto dado que el cliente conoce muchos factores influyentes sobre su negocio que pueden resultar importantes para el proceso creativo y analítico.

Es posible apreciar que en el análisis de los procesos intervienen no solo factores técnicos sino también humanos, y por ello es importante tener esto en cuenta a la hora de realizar los
estudios pertinentes dado que no existe mucha información relevante en la web acerca de los procesos de fabricación y montaje de un elevador y podría decirse que tampoco existe un estándar para su elaboración por lo cual las especificaciones en el diseño y proceso en general pueden cambiar de un fabricante a otro, razón por la cual se resalta la importancia de la intervención del cliente en el proceso.

7.4.8 UBICACIÓN SENSORIAL

Desde hace algunos años ha crecido la demanda del transporte vertical en Colombia, debido a que las nuevas normas de construcción exigen que, por ejemplo, los conjuntos y proyectos de Vivienda de Interés Social se ejecuten con ascensores cuando estas edificaciones tienen más de 5 pisos. Esa misma norma también rige en centros comerciales y otro tipo de construcciones. Esto ha impulsado el mercado no solo para las empresas de elevadores si no que a su vez ha favorecido la creación de entidades encargadas de regular el cumplimiento de la norma acreditadas por el ONAC, de allí que muchas compañías estén en la búsqueda constante de mejoras de su proceso. Un estudio arrojado por la revista semana correspondiente al 13 de mayo de 2018 muestra que el crecimiento económico de la nación para el 2017 se centró en Bogotá y Antioquia en mayor parte, lo cual lo hace un escenario propicio para cualquier mercado como se parecía en la siguiente tabla:

<table>
<thead>
<tr>
<th>CIUDAD/DEPARTAMENTO</th>
<th>CRECIMIENTO ECONOMICO (PORCENTUAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOGOTA</td>
<td>24,4</td>
</tr>
<tr>
<td>ATLANTICO</td>
<td>3,7</td>
</tr>
<tr>
<td>ANTIOQUIA</td>
<td>13</td>
</tr>
<tr>
<td>BOLIVAR</td>
<td>4,2</td>
</tr>
<tr>
<td>SANTANDER</td>
<td>7,6</td>
</tr>
<tr>
<td>ARAUCA</td>
<td>2,3</td>
</tr>
<tr>
<td>META</td>
<td>5,7</td>
</tr>
<tr>
<td>VALLE</td>
<td>9,4</td>
</tr>
</tbody>
</table>

Tabla 189. Crecimiento de la economía nacional Tomado de la revista semanal artículo/crecimiento-económico

Es por ello que aunque no existe como tal un foco para el ofrecimiento del servicio para el análisis de los procesos productivos en el territorio nacional los espacios que han visto disparados sus mercados para la venta e instalación de ascensores se sitúan en las grandes ciudades del país como Bucaramanga, Cali, Cartagena, Barranquilla y Bogotá, siendo la capital del país el centro de operaciones de la compañía, razón por la cual la mejor alternativa para el ofrecimiento del servicio es Bogotá.

7.4.9 ENTORNO
Como es bien sabido tanto el micro como el macro-entorno juegan un papel fundamental en el desempeño de una idea de negocio, en el caso en particular no es distinto, factores económicos, políticos, culturales, e incluso climáticos pueden llegar a alterar la normal ejecución de una labor, a continuación se tienen en cuenta las normativas legales vigentes a considerar en el proceso analítico de producción y desarrollo de mejoras. Inicialmente considerando el sector industrial al que va dirigido se tienen en cuenta las normas para la construcción de elevadores nuevos y su respectivo montaje, además de la normativa para la seguridad de sus usuarios, de igual manera se consideran los estándares de calidad que debe tener un proceso alineado con los objetivos de la organización y la importancia de la seguridad y salud en el trabajo, a continuación se presenta el nomograma a considerar para el análisis de procesos productivos en una compañía de elevadores.

7.5 OFERTA

7.5.1 LISTADO DE PROVEEDORES

Para la compra de materiales y producción de elevadores con las mejoras propuestas se listan algunos de los principales proveedores, por petición de la compañía dado que es información sensible se pidió se cambiarán los nombres de los proveedores:

OLEF: Proveedor de suministros eléctricos, cables de conexiones e implementos de electricidad en general.

SAKA: Proveedor de componentes electrónicos requeridos para el ensamble de los comandos de control, como puentes rectificadores, diodos, transistores, contactores, etc.

MYC: Proveedor de servicios de instalación y fabricación de elevadores.

AMADISM: Proveedor de servicios de instalación y fabricación de elevadores.

MUNDIAL DE GUAYAS: Suministro de guayas para ascensor de 1/8, 1/4, 10 mm, etc.

7.5.2 REGIMEN DE MERCADO

Actualmente la prestación del servicio de instalación y puesta en marcha de elevadores en Colombia cuenta con varios intérpretes, los cuales compiten con sus fortalezas representativas (calidad, precio, certificaciones, peso geográfico, etc) día a día, esto sitúa el mercado en una posición de competencia donde pueden darse distintos escenarios:

- No puede haber ninguna empresa con superioridad sobre las demás Todas concurren al mercado en condiciones de igualdad, por lo que el mercado no está centrado en pocas manos que influyan en el precio final.
- Nadie influye sobre los precios Ya sea comprador o vendedor. Es el propio mercado el que fija el precio, de manera que no sea demasiado alto – lo que amedrenta el consumo y fomenta la producción de forma excesiva –, ni demasiado bajo – lo que desalienta la producción y promueve en exceso el consumo.
- Homogeneidad del producto Esto quiere decir que, en cada segmento del mercado, el producto es igual. Al consumidor le debe dar igual comprar el de un producto que el de otro. En este mercado idílico no hay campañas de marketing.

7.5.3 REGIMEN DE MERCADO DE INSUMOS

Como se dijo con anterioridad la reducción de costos y tiempos en la compañía puede ampliar el portafolio de servicios de Ascensores Ascintec, permitiendo vender equipos instalados o sus piezas listas para el montaje a empresas que hasta la fecha jamás se habrían contemplado. A continuación se enuncian algunas de las empresas más influyentes en la industria.

<table>
<thead>
<tr>
<th>AMBITO NACIONAL</th>
<th>DESCRIPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHINDLER- ANDINO</td>
<td>Produce ascensores tipo exportación, posee el 30% del mercado nacional y sus productos son de alto nivel de ingeniería y tecnología; con costos que oscilan entre los 70 – 100 millones de pesos. Para el año 2011 andino empresa nacional integra sus operaciones con la multinacional Schindler obteniendo beneficios mutuos de dicha fusión.</td>
</tr>
<tr>
<td>EUROLIFT</td>
<td>Empresa colombiana con capacidad de exportación especializada en la fabricación de ascensores de todo tipo, se posiciona como una de las marcas en constante crecimiento con influencia en ciudades como Tunja, Cali y Bogotá.</td>
</tr>
<tr>
<td>INTERLIFT</td>
<td>Compañía fabricante de ascensores y diferentes sistemas de elevación como: rampas vehiculares, elevadores vehiculares, escaleras eléctricas, bandas transportadoras, plataformas de carga, duplicadores de parqueo, y/o proyectos especiales para garantizar la movilidad de personas en condiciones de incapacidad.</td>
</tr>
</tbody>
</table>

<p>| AMBITO INTERNACIONAL – (PRESENCIA NACIONAL) | |
| OTIS | Representada en Colombia por medio de Internacional Elevador Inc., con sede en Bogotá. Esta empresa comercializa una amplia gama de productos para el transporte vertical (ascensores de pasajeros, montacargas, plataformas hidráulicas y mini cargas), ofreciendo capacidades para cada requerimiento de los |</p>
<table>
<thead>
<tr>
<th>Claves</th>
<th>Comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITSUBISHI</td>
<td>Japón), representada en Colombia por MELCO de Colombia (Bogotá), que ofrece ascensores de carga y de pasajeros, con gran respaldo técnico en todos los lugares del país, y excelente servicio de mantenimiento</td>
</tr>
<tr>
<td>THYSSENKRUPP</td>
<td>(EUROPA) Las plataformas elevadoras se construyen para mover cargas desde 100 hasta 40,000 kg, bien como instalaciones aisladas de elevación en industrias, almacenes, comercios, etc. o integradas en algún proceso productivo o como proyectos especiales en escenarios móviles para teatros y otras Salas de espectáculos.</td>
</tr>
</tbody>
</table>

Tabla 20. Empresas potenciales para la demanda del servicio.

Sin embargo para realizar un análisis de la oferta preciso es necesario identificar el ahorro de tiempo suministrado por el estudio de procesos en la compañía en mención.

7.5.4 ESTIMACION DE LA OFERTA

El siguiente cuadro hace referencia a la capacidad de la oferta actual para a compañía ascintec sin haber implementado la mejora de servicios para trabajos de modernizaciones y equipos nuevos.

<table>
<thead>
<tr>
<th># DE EQUIPOS</th>
<th>TIEMPO POR EQUIPO</th>
<th>TIEMPO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>57140</td>
<td>1999900</td>
</tr>
<tr>
<td>35</td>
<td>13411</td>
<td>469385</td>
</tr>
<tr>
<td></td>
<td>43729</td>
<td>1530515</td>
</tr>
</tbody>
</table>

Como se dijo con antelación la fabricación y montaje de un elevador en condiciones normales de operación rondan los 57420 minutos, con el ahorro de tiempos del proceso equivalente a 13411 minutos se pasaría de una producción aproximada de 35 equipos a 45 equipos, y en una reducción de costos por equipos cercana a los $6,000,000. Se proyecta que con la implementación de los procesos requeridos resulte en la fabricación de 45 unidades anuales casi un 30% más de la producción actual.
Tendencia es el modelo que se utilizó para analizar datos históricos de producción de la empresa.

7.5.5. MODELO DE TENDENCIAS.

Es utilizado para establecer el marco de trabajo de la empresa. La posible estructura de trabajo es obtenida de la base de datos de la empresa para reflejar las funciones entre los contratistas dentro del equipo de trabajo. Las funciones del modelo son definir las relaciones entre los miembros, predecir las cantidad de producción, tipo de relaciones entre áreas y establecer el sistema de control y planeación apropiado para realizar el trabajo dentro de un marco de tiempo.

El modelo puede analizar la operación del equipo basándose en conceptos tales como dependencia, incertidumbre y posiciones de nicho durante la operación. Las relaciones de dependencia se definen como mutua, secuencial o independencia, en grado de importancia. La incertidumbre se clasifica según genere riesgos altos, medios o bajos; y los nichos se establecen según las posiciones relativas entre los miembros del equipo de trabajo. El modelo establece el desarrollo de 7 pasos:

1. Entender las características del trabajo a realizar
2. Dibujar la red de trabajo de acuerdo a las relaciones entre tareas y áreas.
3. Estimar la incertidumbre en cada tarea.
4. Dibujar esquema de todas las posibles estructuras organizacionales de acuerdo a las funciones que se realizan en la empresa.
5. Definir las relaciones entre los miembros del equipo de trabajo.
6. Establecer los datos de tendencias para facilitar el análisis de problemas asociados con la comunicación y coordinación entre los miembros del equipo de trabajo.
7. Proponer ajustes para poder obtener resultados positivos.

Desarrollo del modelo de trabajo: El modelo incorpora varios de los 7 pasos del modelo de tendencias, e incorpora datos históricos de la empresa obteniendo la información que se utilizan como modelo de análisis. Con este se realiza primero el estudio de tiempos y de producción. El proceso es utilizado para cuantificar los valores de acuerdo con la tendencia de la organización. La organización ideal puede quedar definida en función de esos resultados.

Con base en el estudio realizado en la compañía ascensores Ascintec se establecieron los tiempos promedio para la ejecución del proyecto, estos tiempos están sujetos a modificaciones directamente relacionados con el tamaño del proyecto. El porcentaje de proyectos por área estimado se presenta en la siguiente grafica
7.6 DEMANDA

7.6.1 FUENTES DE INFORMACIÓN PARA EL ANÁLISIS DEL MERCADO

7.6.1.1 FUENTES PRIMARIAS (Encuestas y entrevistas)

- Propietarios/as de empresas
- Vendedores de ascensores
- Consumidores finales
- Comunidades de Población usuarios del sistema

7.6.1.2 FUENTES SECUNDARIAS

- Documentos sobre industria del ascensor y procesamiento de datos.
- Instituto Nacional de Estadística, Internet, etc.

7.6.2 ÁREA DEL MERCADO

La demanda está dirigida a proyectos privados los cuales son los mayores consumidores de elevadores a nivel nacional. Se considera que el área de estudio de la demanda es el área de la capital principalmente constituida por 20 localidades, y en menor instancia debe considerarse la demanda ofrecida por compañías presentes en otras ciudades del país que presentaron altos índices de crecimiento económico, entre estas Barranquilla, Cartagena y Cali. Teniendo en cuenta el crecimiento económico descrito en el estudio de la revista semanal mostrado anteriormente, es posible determinar que la tendencia del mercado en cuanto a la demanda será proporcional a esta relación, por tanto encontraremos mayor cantidad de potenciales clientes en Bogotá, seguido por Antioquia y el valle. Se estima que la demanda para el servicio es amplia pero especializada en el sector industrial de los ascensores es más limitada. La concentración del mercado está dada por: Bogotá 24,4, Atlántico 3,7, Antioquia 13, Bolívar 4,2, Santander 7,6, Arauca 2,3, Valle 9,4 %, otros Aproa 40%.
Teniendo en cuenta el crecimiento económico descrito en un estudio de la revista Semana, es posible determinar que la tendencia del mercado en cuanto a la demanda será proporcional a esta relación, por tanto encontraremos mayor cantidad de potenciales clientes en Bogotá, seguido por Antioquia y el valle. Se estima que la demanda para el servicio es amplia pero especializada en el sector industrial de los ascensores es más limitada. La concentración del mercado está dada por: Bogotá 24,4, atlántico 3,7, Antioquia 13, bolívar 4,2, Santander 7,6, arauca 2, 3, valle 9,4 %, otros Aproa 40%.

Existen alrededor de 280 compañías de ascensores reconocidas registradas en las páginas amarillas. De las 280 una muestra aleatoria refleja que la mayor parte del mercado se encuentra en la capital del país y en la ciudad de Medellín y en menor instancia en el valle.

<table>
<thead>
<tr>
<th>EMPRESA</th>
<th>CIUDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascentronic</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>Maquinas Procesos Y Logistica</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>Gruinsteck De Elevadores</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>Cf Ascensores S.a.s</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>Tecmalim Sas</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>Thysot Elevadores Ingeniería</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>G 12 SERVICIOS</td>
<td>BOGOTA</td>
</tr>
<tr>
<td>Elevators National S.A.S.</td>
<td>ANTIOQ</td>
</tr>
<tr>
<td>Ascensores Y Escaleras Innova S.A.S.</td>
<td>CALI</td>
</tr>
<tr>
<td>Seal Power Central Hidraulica</td>
<td>CALI</td>
</tr>
<tr>
<td>Imperial Elevadores S.A.S.</td>
<td>ANTIOQ</td>
</tr>
<tr>
<td>Elevadores Integral S.A.S.</td>
<td>ANTIOQ</td>
</tr>
<tr>
<td>Prowinch Colombia S.A.S.</td>
<td>BOGOTA</td>
</tr>
</tbody>
</table>

Tabla 22. Empresas en el ámbito nacional dedicadas a la producción y/o mantenimiento de ascensores.

El crecimiento del PIB en Bogotá en los últimos años ha sido positivo lo que indica que la economía tiende a crecer, además el índice de desempleo disminuye paulatinamente sugiriendo que la población ocupada aumenta, indicando mayor cantidad de hogares que requerirán el servicio.
debido a la escasa formalidad del sector de servicios especializado a la industria de ascensores para el análisis de procesos no se encuentran datos concluyentes en esta área, sin embargo se estima la demanda con base al crecimiento de la economía y los niveles de ingreso, por lo cual se determina que existen alrededor de 300 clientes (marcas reconocidas, empresas formales) dedicados al sector de ascensores de los cuales aproximadamente el 60% se encuentra en la capital del país los cuales representan la demanda futura.

7.7 ESTRATEGIA DE MERCADOTECNIA

7.7.1 MERCADO META

como es posible observar la oferta del servicio debe ir dirigido al nicho de ascensores, en especial a las gerencias de las compañías productoras, particularmente de pequeñas y medianas empresas puesto que se sabe que las grandes compañías cuentan con sus modelos de desarrollo e innovación permanente.
7.7.2 POSICIONAMIENTO

Hace referencia a la percepción que tiene el cliente del servicio ofrecido, allí radica la importancia en la diferenciación del servicio, si un producto o servicio no ofrece valor agregado alguno en relación con los otros servicios del mercado, el cliente en particular no tendrá una motivación para adquirir este servicio por sobre otro, es por esto que el servicio aquí planteado ofrece la exclusividad de ser el único especializado en el área de los elevadores entre las compañías consultoras de la ciudad y del país mejorando la percepción y aceptación de los clientes por el servicio. Existen dos tipos de posicionamiento: Real Y Deseado.

DESEADO: Empresa líder en fabricación y montaje de elevadores en el territorio nacional.

7.7.3 4 P’S

7.7.3.1 PRODUCTO

Servicio de fabricación y montaje de elevadores en el territorio nacional.

7.7.3.2 PLAZA

El servicio podrá difundirse en los sitios frecuentes para las industrias de elevadores como son: dobladoras, cortadoras, administraciones de edificios, ferias de elevadores, directamente en las administraciones de empresas de elevadores.

7.7.3.3 PRECIO

El precio de los equipos varía según su estructura pudiendo darse un estimado de $50.000.000 de base para un equipo de 2 paradas(minimas) y sumando 10 millones adicionales por parada.

7.7.4 PROMOCION

Debido a la naturaleza del proyecto el medio propicio para la difusión del servicio es la publicidad directa, en ella se busca la distribución desde la compañía hasta el cliente, logrando una comunicación directa con el cliente y una relación especializada que facilitara satisfacer las necesidades particulares de cada uno de los clientes. Comprende:

- Buzoneo postal, mediante contenido publicitario.
- Reparto de material publicitario físico, como folletos, flyers, posters…
- Empleo de cupones y descuentos
- Emailing, especialmente destacado en los últimos años con la aparición de las nuevas tecnologías y el acceso al correo electrónico desde nuevos dispositivos.
- Mensajes dirigidos a las redes sociales de la compañía.
CONCLUSIONES

1. Se realiza un análisis exhaustivo de los cuellos de botella para los procesos de la empresa de elevadores Ascintec donde se logra analizar cada uno de las labores mal planteadas y ejecutadas, también se hace un análisis de los inconvenientes que se generaban por las malas prácticas en la compañía, dando solución de manera efectiva, y estandarizando procesos, de esta manera obteniendo mejores resultados en los tiempos de respuesta con una mejora del 10% en cada uno de los proyectos elaborados y ejecutados.

2. Se realiza el estudio del valor comercial para la prestación de los servicios y elaboración de elevadores en la empresa Ascintec, proponiendo realizar una producción más eficiente en manejos de inventarios donde se optimizan los costos de elaboración y manteamiento, logrando de esta manera un mayor ingreso para la compañía y una mejor eficiencia el uso de cada uno de los recursos y materiales utilizados para la producción de ascensores.

3. Se elabora un estudio de mercados donde se logró observar que la demanda del servicio ofrecido tiene un comportamiento que es creciente debido a la cantidad de edificaciones y proyectos de construcción que se desarrollan a nivel nacional e internacional, donde se pueden proponer nuevos campos de mercado, siendo más amplios, en este caso el mantenimiento de los equipos de transporte vertical, teniendo en cuenta que por normatividad y seguridad ya es requisito para poder operar con normalidad cualquier estructura residencial o comercial mayor a cuatro pisos, por ende las empresas cada día necesitan optimizar de manera más eficiente cada uno de los procedimientos implementados.

4. Las empresas actualmente se enfocan en garantizar la calidad de sus productos y servicios, cumpliendo con la normatividad vigente y con los requisitos establecidos, dado esto todas buscan optimizar sus recursos, mejorar sus tiempos de producción y tener una mejor planeación y control en cada uno de sus procesos para visualizar mejores resultados tanto económicos como productivos, por eso el estudio realizado en este proyecto es un gran avance para implementar mejores tareas y mejores prácticas principalmente en las empresas de elaboración de equipos de transporte vertical y automatización.

5. Se evidencio que a pesar de obtener una notable reducción en los tiempos de fabricación atacando los cuellos de botella identificados en el proceso como la falta de comunicación entre áreas, o la ausencia de control en el proceso si se hubiera atacado la problemática desde el punto de vista de la planeación pudieran haberse obtenido mejores resultados, esto con base a que la mayor parte del tiempo del proceso la demanda la actividad de importación de piezas para lo cual no se estableció ningún plan de acción.
9. BIBLIOGRAFIA

[8] Victoria Pérez - Feb 24, 2017 - 21:16 (CET) La teoría de las restricciones o cuellos de botella, hipertextual

[10] Simulacion, metodo de montecarlo area de estadistica e investigacion operativa´ licesio j. Rodríguez-aragón marzo 2011 pp 8-39

[11] Diez cuellos de botella frenan el desarrollo del campo colombiano 2 de julio de 2014 11:40 am, dnp

[14] el control de la calidad antes y ahora J.M Juran, reproducido por Quality Progress, mayo 1975, pp 8-9

ANEXOS

ANEXO 1 – ENCUESTA A FUNCIONARIOS DE ASCINTEC

<table>
<thead>
<tr>
<th>NOMBRE:</th>
<th>DIRECCIÓN:</th>
<th>TELÉFONO:</th>
</tr>
</thead>
</table>

Gracias por realizar la encuesta de procesos. No tardará más de cinco minutos en completarla y nos será de gran ayuda para mejorar la calidad del servicio e identificar los problemas en la organización.

FECHA:

1. ¿Cree usted que existe esta falta de comunicación entre el área de ventas y la de producción?
2. ¿Cuándo se definen las especificaciones de construcción de un equipo desde el área de ventas a quien se pasa esa información?
3. ¿Qué debería hacerse para estandarizar los diseños para equipos con funciones similares?
4. ¿Por qué en la mayoría de los casos se retrasa la importación, ¿cómo podría ser una alternativa de solución para esto?
5. ¿A qué se debe la escasez de mano de obra?
6. ¿Por qué no se solicitan cronogramas de control en la fabricación de equipos?
7. ¿Por qué no se tiene mayor rigurosidad con las cláusulas de cumplimiento con proveedores?
8. ¿Por qué no existe un punto de control para la recepción de equipos nuevos de los proveedores por parte de Ascintec?
9. ¿Qué aspectos deberían evaluarse en los controles periódicos de montaje?
10. ¿Por qué no existe un medio para la entrega de equipos en funcionamiento de un área a otra (modernización-mantenimiento, instalación-mantenimiento)?

Desea realizar algún comentario adicional:

FECHA DE ELABORACIÓN: RESPONSABLE: FECHA DE REVISIÓN:

ANEXO 2 – DESARROLLO DE PLANOS PROPUESTO
Material = acero; Etiqueta = 2D; Cantidad = 1
Material = acero; Etiqueta = 2D; Cantidad = 1
ANEXO 3 – FORMATO DE REQUISICIÓN PROPUESTO

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REFERENCIA</th>
<th>DESCRIPCIÓN</th>
<th>CANTIDAD</th>
<th>ENTREGADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboro: Aproba: Entrego:
ANEXO 4 – FORMATO DE SEGUIMIENTO DE OBRAS PROPUESTO

<table>
<thead>
<tr>
<th>FECHA:</th>
<th>N°</th>
</tr>
</thead>
</table>

CARACTERÍSTICAS GENERALES (Datos Completos)

<table>
<thead>
<tr>
<th>EDIFICIO</th>
<th>ASOCUAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECCIÓN</td>
<td></td>
</tr>
<tr>
<td>NOMBRE DEL ADMINISTRADOR</td>
<td></td>
</tr>
<tr>
<td>NÚMERO DE CONTACTO</td>
<td></td>
</tr>
</tbody>
</table>

ESPECIFICACIONES DEL EQUIPO (Datos Completos)

<table>
<thead>
<tr>
<th>MARCA DEL EQUIPO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APERTURA</td>
<td></td>
</tr>
<tr>
<td>MÁQUINA</td>
<td></td>
</tr>
<tr>
<td>N° PARADAS</td>
<td></td>
</tr>
<tr>
<td>TIPO DE EQUIPO (USO)</td>
<td></td>
</tr>
<tr>
<td>CAPACIDAD</td>
<td></td>
</tr>
</tbody>
</table>

OPCIONES DE RESTAURACIÓN DEL EQUIPO

| Modernización |
| Instalacion Equipo Nuevo |
| Cambio de maniobra |
| Mantenimiento de máquinas |
| Cambio de cables de tracción o polea tractora |
| Otros |

TRABAJOS A REALIZAR

<table>
<thead>
<tr>
<th>NORMA/MODERNIZACION/INSTALACION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>ESTADO</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>E-P</td>
</tr>
<tr>
<td></td>
<td>S-I</td>
<td></td>
</tr>
</tbody>
</table>

900.538.935-6
ANEXO 5 – FORMATO DE REVISION DE ADECUACION A LA NORMA PROPUESTO

<table>
<thead>
<tr>
<th>Datos Obra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre del Proyecto:</td>
<td></td>
</tr>
<tr>
<td>Dirección:</td>
<td>Fecha de Inicio</td>
</tr>
<tr>
<td>Responsable Venta</td>
<td>Fecha de Entrega</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datos Técnicos Equipo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Paradas</td>
<td>Capacidad</td>
</tr>
<tr>
<td>1:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Directo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medidas de Hueco:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho</td>
<td>mm</td>
</tr>
<tr>
<td>Fondo</td>
<td>mm</td>
</tr>
<tr>
<td>Sobre Recorrido</td>
<td>mm</td>
</tr>
<tr>
<td># de Equipo</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUERTAS DE ACCESO A ASCENSOR Y SU SISTEMA MECANICO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>INCONFORMIDAD</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CABLES DE TRACCION Y SUS AMARRES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>INCONFORMIDAD</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Mantenimiento, Reparación & Modernización
Ascensores, Escaleras, Automatismos, EquipamentoNuevos