EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SISTEMA DE PUESTA A TIERRA DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

RICARDO IVAN CAYCEDO RODRIGUEZ

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
PROYECTO CURRICULAR INGENIERÍA ELÉCTRICA
BOGOTÁ D.C.
2018
EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SISTEMA DE PUESTA A TIERRA DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

Trabajo de pasantía presentado como requisito para optar al título de: INGENIERO ELÉCTRICO

Presentado por:

RICARDO IVAN CAYCEDO RODRIGUEZ
CÓDIGO: 20122007085

Director Interno:
I.E., M.SC, OSCAR DAVID FLOREZ CEDIEL

Director Externo:
I.E., OSCAR JAVIER GONZALEZ ESTUPIÑAN

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
FACULTAD DE INGENIERÍA
PROYECTO CURRICULAR INGENIERÍA ELÉCTRICA
BOGOTÁ D.C.
2018
CONTENIDO

1 **INTRODUCCIÓN** ... 5
 - PLANTEAMIENTO DEL PROBLEMA ... 6
 - OBJETIVOS ... 6
 - GENERAL ... 6
 - ESPECÍFICOS .. 6
 - METODOLOGÍA .. 7

2 **MARCO REFERENCIAL** ... 8
 - 2.1 ANTECEDENTES NORMATIVOS ... 8
 - 2.2 OBJETIVOS Y FUNCIONES DE LOS SISTEMAS DE PUESTA A TIERRA 8
 - 2.3 RESISTENCIA DE PUESTA A TIERRA ... 9
 - 2.4 RESISTIVIDAD DEL SUELO .. 10
 - 2.5 MÉTODOS PARA LA MEDICIÓN DE LA RESISTIVIDAD DEL SUELO 12
 - 2.5.1 Método de Wenner .. 12
 - 2.5.2 Método de Schlumberger .. 13
 - 2.6 MAPA DE PROCESO A ALTO NIVEL – SIPOC .. 14
 - 2.7 METODOLOGÍA PHVA .. 15

3 **CARACTERIZACIÓN DEL PROCESO DE DISEÑO ACTUAL** .. 16
 - 3.1 DESCRIPCIÓN DEL PROCESO DE DISEÑO .. 16
 - 3.1.1 Elaboración mapa de proceso a alto nivel - SIPROC 17
 - 3.1.2 Requerimientos básicos .. 18
 - 3.1.3 Medición de la resistividad del terreno ... 19
 - 3.1.4 Interpretación de las medidas obtenidas en terreno 19
 - 3.1.5 Calculo de la malla de puesta a tierra ... 20
 - 3.2 CICLO PHVA .. 20

4 **DIAGNÓSTICO DEL PROCESO DE DISEÑO ACTUAL** ... 22
 - 4.1 SECUENCIA DE ACTIVIDADES ... 22
 - 4.1.1 Procedimiento medición de la resistividad del terreno 22
 - 4.1.2 Procedimiento cálculo de la resistividad .. 23
4.1.3 Procedimiento cálculo de la malla de puesta a tierra... 27

4.2 DETERMINACIÓN CAUSAS-EFECTO... 28

5. MEJORA DEL PROCESO... 33

5.1 RECOMENDACIONES DE MEJORA... 33

5.1.1 Medición de resistividad aparente del terreno .. 33

5.1.2 Calculo de resistividad a partir de las medidas obtenidas en terreno................. 34

5.1.3 Cálculos Malla de Puesta a Tierra .. 35

5.1.4 Diagrama de Flujo ... 35

5.2 CICLO PHVA... 36

6. RESULTADOS ALCANZADOS... 37

7. ANÁLISIS DE RESULTADOS... 38

8. EVALUACIÓN Y CUMPLIMIENTO .. 39

9. CONCLUSIONES Y RECOMENDACIONES .. 40

BIBLIOGRAFÍA.. 41

ANEXOS.. 42
Capítulo 1

1 INTRODUCCIÓN

Las descargas atmosféricas actúan sobre los sistemas de transporte de energía mediante diferentes mecanismos: descargas directas a los conductores, causadas por fallas de apantallamiento, y descargas directas a las estructuras o cables de guarda, provocando en algunos casos flámeos inversos que suceden a través de la cadena de aisladores de las líneas de transmisión, originando envejecimiento de estos últimos e incluso su destrucción. Así mismo estos fenómenos generan sobrevoltajes que causan la salida de las líneas y ponen en riesgo a los seres vivos que circulan por la zona.

Ahora bien, estadísticas recogidas en un lapso de 20 años indican que la mayor causa de salidas de líneas de transmisión (el 60%) en la red de interconexión de Colombia, fue originada por descargas eléctricas atmosféricas, resaltando el problema que existe en nuestro sistema interconectado debido a descargas atmosféricas. Respecto a los rayos se puede afirmar, que ninguna medida es económica y efectiva para evitarlos, como tampoco para garantizar un 100% de protección, por tanto, las precauciones de protección apuntan hacia los efectos secundarios y a las consecuencias de una descarga eléctrica atmosférica. En este sentido, este tipo de fallas relacionadas con los sistemas de puesta a tierra, han enfatizado la necesidad de mejorar los procesos de diseño, construcción y mantenimiento de la malla de puesta a tierra de las líneas de transmisión.

A partir de las necesidades expuestas, el presente trabajo caracteriza, diagnostica y mejora el proceso de diseño eléctrico del sistema de puesta a tierra de las líneas de transmisión intervenidas por CODENSA, a partir de la investigación de las normas internacionales, locales y criterios de diseño de la empresa, evaluación de requerimientos básicos de diseño, acompañamiento en campo y determinación de las causas que provocan desviaciones en los diseños de la malla de puesta a tierra.
PLANTEAMIENTO DEL PROBLEMA

Con el objetivo de mejorar la calidad en la prestación del servicio de energía eléctrica, Codensa adelanta planes de inversión que contemplan la renovación y construcción de líneas de transmisión. La Unidad operativa de Gestión y Control es el área funcional de la empresa encargada de verificar que los diseños eléctricos, mecánicos y civiles, elaborados por una empresa colaboradora, estén acordes a las especificaciones técnicas del contrato y los requerimientos normativos.

Ahora bien, la unidad operativa de gestión y control ha presentado comentarios a la empresa colaboradora respecto a los diseños de los SPT de las líneas de transmisión intervenidas por CODENSA, ya que se han encontrado desviaciones en cuanto a las mediciones de la resistividad del terreno, interpretación de las medidas, inviabilidad en la construcción de la malla de puesta a tierra y oportunidades en mejora de los diseños ya que la asignación de los recursos abarcan mayores áreas y materiales del que se requieren para cumplir su función con los parámetros de calidad estipulados.

De lo anterior surge la necesidad de analizar y evaluar el proceso de diseño eléctrico del sistema de puesta a tierra de las líneas de transmisión intervenidas por CODENSA, con el objetivo de mejorar los tiempos de entrega, la calidad del diseño y la asignación de recursos.

OBJETIVOS

GENERAL

Diagnostificar y mejorar el proceso de Diseño eléctrico del Sistema de Puesta a Tierra de las estructuras de apoyo de las líneas de Transmisión intervenidas por Codensa.

ESPECÍFICOS

Establecer las macro actividades, mediante la caracterización del proceso de diseño del SPT de las líneas de transmisión intervenidas por Codensa.

Verificar las especificaciones del proceso de diseño del SPT y evaluar cada una de las actividades que los integran para proponer acciones en búsqueda de la mayor eficacia y eficiencia.

Plantear una propuesta que permita mejorar los tiempos de las actividades, cantidades de obra y costos.
METODOLOGÍA

Para el desarrollo del trabajo de pasantía, en primer lugar, se realiza la revisión previa del reglamento técnico de instalaciones Electricas (RETIE), la norma IEEE std 81 y las normas técnicas proporcionadas por CODENSA, con el objetivo de identificar los requisitos establecidos por estas en lo relacionado con el diseño del SPT de las líneas de transmisión.

A continuación, se realiza la caracterización del proceso actual, estableciendo las macro actividades y las actividades que componen cada eje estratégico del proceso, así mismo se realiza un diagnóstico de cada una de estas actividades enmarcado dentro de los ejes estratégicos organizacionales, permitiendo así encontrar puntos del proceso donde existan oportunidades de mejora. Particularmente se realiza una evaluación del estado actual de las mediciones de resistividad del terreno, realizando trabajo de campo, el cual se ejecuta por parte de la empresa colaboradora, posteriormente se realizará un análisis de los informes que contienen todos los datos de las medidas realizadas.

En tercer lugar, se analizan cada uno de los elementos del proceso identificados en la segunda etapa para detectar las actividades susceptibles de mejora, concibiendo así una actualización del procedimiento, en el cual se planteen las acciones que permitirán optimizar el diseño y corregir las desviaciones encontradas durante la evaluación del proceso.
Capítulo 2

2 MARCO REFERENCIAL

2.1 ANTECEDENTES NORMATIVOS

El Reglamento Técnico de Instalaciones Eléctricas, RETIE, por medio del Artículo No. 15 establece que “Toda instalación eléctrica que aplique el RETIE, excepto donde se indique expresamente lo contrario, tiene que disponer de un Sistema de Puesta a Tierra, SPT” [1]. De la misma manera el Artículo No. 15.2 establece el procedimiento básico sugerido para el diseño del SPT.

Según los criterios de diseño de líneas de transmisión de alta tensión, NO046, proporcionado por CODENSA se deben establecer criterios para asegurar la transmisión de energía eléctrica de manera continua, garantizando la seguridad de las personas, de los equipos asociados y la preservación del medio ambiente. Asimismo, se debe garantizar la máxima eficiencia en la asignación de recursos tanto financieros como humanos garantizando los criterios de seguridad.

La IEEE Std 81 expone diferentes metodologías para efectuar las mediciones de resistividad eléctrica del terreno, la resistencia de puesta a tierra y los voltajes superficiales de un sistema de puesta a tierra, enfocadas a subestaciones y líneas de transmisión. La IEEE Std 80 describe el procedimiento de diseño de la malla de puesta a tierra de una subestación, asegurando niveles seguros de tensiones de paso y contacto, garantizando la seguridad de las personas y equipos expuestos a tensiones peligrosas durante descargas atmosféricas o fallas del sistema.

2.2 OBJETIVOS Y FUNCIONES DE LOS SISTEMAS DE PUESTA A TIERRA

Un sistema de puesta a tierra (SPT) es el conjunto de elementos conductores de un sistema eléctrico, que conecta los equipos asociados a este con el suelo o una masa metálica de referencia común que distribuye las corrientes eléctricas de falla en el suelo o en la masa. En el caso específico de las líneas de transmisión de energía eléctrica, el SPT está compuesto por cables de guarda, la estructura de soporte y los electrodos, cables, conexiones y contrapesos que se encuentran enterrados en el suelo (Ver Figura 1).

El diseño, implementación y mantenimiento deben seguir las normas correspondientes que garanticen el cumplimiento de los principales objetivos de los sistemas de puesta a tierra, los cuales según el artículo 15 del RETIE, son: “La seguridad de las personas, la protección de las instalaciones y la compatibilidad electromagnética” [1].
De igual manera un sistema de puesta a tierra, según el artículo 15 del RETIE, debe cumplir con las siguientes funciones:

- Garantizar condiciones de seguridad a los seres vivos.
- Permitir a los equipos de protección despejar rápidamente las fallas.
- Servir de referencia común al sistema eléctrico.
- Conducir y disipar con suficiente capacidad las corrientes de falla, electrostática y de rayo.
- Realizar una conexión de baja resistencia con la tierra y con puntos de referencia de los equipos.

Figura 1. Sistema de puesta a tierra torre de transmisión.

Fuente: Judith Ramirez, Propuesta de procedimiento para la medición de la resistividad del suelo y la resistencia de puesta a tierra en las líneas de transmisión.

En las líneas de transmisión, el sistema de puesta a tierra tiene una trascendente función ya que evita que las descargas atmosféricas provoquen flameos inversos a través de la cadena de aisladores, originando salidas no programadas de las líneas de transmisión.

2.3 RESISTENCIA DE PUESTA A TIERRA

La resistencia que se presenta al paso de la corriente eléctrica a través de un electrodo hacia el suelo tiene tres componentes principales (Ver figura 2):

- Resistencia propia de los electrodos de puesta a tierra.
- Resistencia de contacto entre el electrodo y el suelo.
- Resistencia de la tierra circundante.
El aporte más significativo al valor de la resistencia de puesta a tierra es el correspondiente al valor de la resistencia de la tierra circundante, debido a que los primeros dos componentes son muy pequeños y pueden ser despreciados para efectos prácticos.

Figura 2. Elementos que constituyen una puesta a tierra.

En los alrededores del electrodo de puesta a tierra, la resistencia del suelo es la suma de los valores de resistencias serie de las capas coaxiales circundantes del suelo, localizadas progresivamente hacia fuera del electrodo. Como se puede observar en la figura 2, las capas del suelo presentan mayor área transversal a la corriente a medida que aumenta la distancia, causando un valor menor de resistencia. Debido a lo anterior se sabe que la resistencia de puesta a tierra reside esencialmente en las capas del suelo próximas al electrodo, EPM, mediante sus normas técnicas presenta lo siguiente: “Normalmente para una varilla de 2.4 metros, el 90% del valor de la resistencia de puesta a tierra se encuentra dentro de un radio de 3.0 metros” [4], validando la información anterior.

2.4 RESISTIVIDAD DEL SUELO

La resistividad del suelo es la propiedad que tiene está, para oponerse al flujo de corriente eléctrica. Es la relación entre la diferencia de potencial en un material y la densidad de corriente que resulta en el mismo. La resistividad del suelo varía ampliamente en el globo terrestre, normalmente la naturaleza del suelo es heterogénea; se forma por la descomposición de rocas por cambios bruscos de temperatura y la acción de la humedad, aire y seres vivos, desarrollando una estructura de niveles superpuestos, los cuales tienen composiciones químicas y biológicas diferentes.
Así mismo la resistividad del terreno es afectada por varios factores. Entre ellos podemos destacar los siguientes:

Sales Solubles: La resistividad del suelo es determinada principalmente por la cantidad de electrolitos presentes, tales como sales solubles, ácidas o alcalinas. En la figura 3 se puede apreciar el efecto de la cantidad de sales respecto a la resistividad del terreno.

Humedad: La resistividad del terreno aumenta significativamente cuando la humedad cae por debajo del 15 % por cantidad de peso. Por otro lado, un mayor contenido de humedad del 20 %, no afecta significativamente el valor de resistividad, como se puede apreciar en la figura 3.

Temperatura: La temperatura juega un factor importante en el valor de la resistividad del terreno ya que, como se observa en la figura 3, este valor aumenta significativamente una vez la temperatura cae por debajo del punto de congelación del agua.

Compactación del terreno: Un suelo más compacto presenta una mayor continuidad física, lo que en principio facilita una mejor conductividad.

Estratificación del suelo: Usualmente la composición del suelo es estratificada en varias capas, de manera que un mismo terreno puede poseer resistividades diferentes.

Figura 3. Factores que influyen en la resistividad del suelo.

2.5 MÉTODOS PARA LA MEDICIÓN DE LA RESISTIVIDAD DEL SUELO

La resistividad del terreno donde se localizara la estructura es uno de los factores más importantes a tener en cuenta al momento del diseño del sistema de puesta a tierra, en el proceso de medición de esta se consideran los efectos de las diferentes capas que componen el terreno bajo estudio, obteniéndose lo que se denomina “Resistividad aparente”, la cual según Judith Ramírez debe ser interpretada como “la resistividad promedio de las capas del suelo que se encuentran comprendidas entre la superficie y la profundidad de investigación” [2].

En la actualidad existen muchos métodos para determinar la resistividad aparente del suelo mediante la medición de la respuesta en términos de resistencia que presenta el terreno ante una excitación impuesta. A continuación, se presentan lo métodos de medición más utilizados en la actualidad.

2.5.1 Método de Wenner

El método de 4 puntos de Wenner, es el procedimiento más utilizado en el sector eléctrico actualmente. Consiste en 4 electrodos enterrados en línea recta a una profundidad “b” y equidistantes a una distancia “a” simétricamente respecto al punto en el que se desea medir la resistividad del terreno. Un flujo de corriente es inyectado en el terreno mediante los electrodos más externos y la diferencia de potencial producida es medida por los electrodos internos, con estos valores se puede calcular la relación V/I, originando un valor de resistencia en ohmios.

Figura 4. Método de 4 puntos de Wenner.

La resistividad aparente del terreno está dada por:

\[p = \frac{2\pi R}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}} \quad [\Omega \cdot m] \]
Donde:

- \(a \) es la distancia de separación entre electrodos en metros.
- \(b \) es la profundidad de enterramiento de los electrodos en metros.
- \(R \) es la relación \(V/I \) en ohmios.

Usualmente los electrodos se entierran a una profundidad despreciable respecto a la distancia de separación, normalmente la relación es \(1/20 \), siendo así se puede aproximar la resistividad aparente de la siguiente forma:

\[
p = 2\pi a R \quad [\Omega \cdot m]
\]

Donde:

- \(a \) es la distancia de separación entre electrodos en metros.
- \(R \) es la relación \(V/I \) en ohmios.

Favio Casas presenta que la resistividad aparente obtenida es “básicamente la de las capas comprendidas entre la superficie del suelo y la profundidad a la cual la densidad de corriente se ha reducido a la mitad del valor en superficie, es decir, la profundidad de investigación es “\(0.75 a \)” [5]. En otras palabras, debido a que el suelo bajo estudio habitualmente es no homogéneo, la resistividad obtenida mediante este método debe ser interpretada físicamente como el valor promedio de las resistividades de las capas del suelo comprendidas entre la superficie del suelo y la profundidad “\(h \)”, profundidad a la cual la densidad de corriente se ha reducido a la mitad de su valor en la superficie (\(h \) está comprendida entre \(a \) y \(0.75 a \)).

Se recomienda realizar una serie de medidas a distintas separaciones entre electrodos “\(a \)” y en diferentes direcciones, usualmente a lo largo de dos ejes perpendiculares, con el objetivo de obtener una muestra representativa más acertada de la resistividad del terreno.

2.5.2 Método de Schlumberger

Este procedimiento es una modificación del método de Wenner, en este método el espaciamiento no es igual para los cuatro electrodos, la distancia entre los electrodos de corriente y los electrodos de potencial es diferente como se puede observar en la figura 5, lo cual incrementa la magnitud de voltaje medida por el equipo.

La resistividad aparente se puede calcular mediante la siguiente ecuación:

\[
p = \frac{\pi c(c + d)R}{d} \quad [\Omega \cdot m]
\]

Donde:

- \(c \) es la distancia de separación entre electrodos de corriente y potencial en metros.
- \(d \) es la profundidad de enterramiento de los electrodos en metros.
EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SPT DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

Figura 5. Método de Schlumberger.

![Diagrama de Schlumberger](image)

Cabe resaltar que para implementar la ecuación anterior la profundidad “b” debe ser pequeña comparada a la separación “d” y “c”, y c>2d.

El procedimiento de Schlumberger, es de gran utilidad en los casos en que se requieren conocer las resistividades de capas más profundas, debido a que según la IEEE. Std 81 “el método de Wenner tiene una limitación, la magnitud del potencial decrece rápidamente conforme el espaciamiento entre los dos electrodos de corriente se incrementa a valores relativamente grandes. Usualmente los equipos comerciales de medida son inadecuados para medir valores bajos de tensión” [6].

2.6 MAPA DE PROCESO A ALTO NIVEL – SIPOC

El SIPOC por sus siglas en inglés – Supplier-Inputs-Process-Outputs-Customers, es una diagrama de flujo a alto nivel, sirve como primer paso para la realización de un diagrama de flujo detallado. Este diagrama permite visualizar de una manera adecuada los pasos secuenciales de un proceso, mediante la clara definición de sus entradas, salidas, proveedores y clientes.

Figura 6. Mapa de proceso de alto nivel – SIPOC.

![Diagrama de SIPOC](image)

Fuente: Caletec. SIPOC- Mapa de proceso de alto nivel.
De manera general los pasos para realizar un diagrama SIPOC son los siguientes:

- Identificar los procesos de gestión.
- Establecer las entradas y recursos del proceso.
- Definir los proveedores de las entradas.
- Establecer las salidas del proceso.
- Definir quién es el cliente de cada una de las salidas obtenidas.

Con el diagrama de alto nivel realizado, se puede observar cuales son las actividades involucradas en el proceso y de qué forma están interconectadas, adicionalmente se puede identificar fácilmente a los clientes y resaltar las metas a satisfacer de acuerdo con los objetivos del proceso.

2.7 METODOLOGÍA PHVA

El ciclo de mejor continúa PHVA constituye una de las principales herramientas de mejoramiento continuo de los procesos de las organizaciones, al tratar con la planificación, implementaciones, verificación y mejora. Por su dinamismo puede ser utilizado en cualquier proceso de una organización, permitiendo que las actividades se realicen de una forma organizada y eficaz.

Figura 7. Ciclo de mejora continua – PHVA.

“Planificar” Establecer los objetivos y procesos necesarios para conseguir resultados de acuerdo con los requisitos del cliente y las políticas de la organización;
“Hacer” Implementar los procesos;
“Verificar” Realizar el seguimiento y la medición de los procesos y los productos respecto a las políticas, los objetivos y los requisitos para el producto, e informar sobre los resultados.
“Actuar” Tomar las acciones para mejorar continuamente el desempeño del proceso.

Una de las características más importantes del ciclo es el movimiento continuo, en donde no se tiene un punto final en el que se obtenga un resultado; este se convierte en un círculo, el cual se reinicia una y otra vez, creando un proceso de mejora continua.
Capítulo 3

3 CARACTERIZACIÓN DEL PROCESO DE DISEÑO ACTUAL

La caracterización es la identificación de todos los factores que intervienen en el proceso y que se deben controlar. Al caracterizar el proceso, todas las partes involucradas adquieren una visión integral del proceso y entienden para que sirve lo que individualmente realiza cada uno, permitiendo así fortalecer el trabajo en equipo y la comunicación.

Se describiría de manera específica el objetivo y alcance del proceso, así como los elementos de entrada, macro procesos y los productos hacia los clientes o usuarios.

3.1 DESCRIPCIÓN DEL PROCESO DE DISEÑO

CODENSA adelanta planes de inversión que contemplan la construcción y renovación de las líneas de transmisión de 115 kV, con el objetivo de asegurar la transmisión de energía eléctrica de manera continua, garantizando la seguridad de las personas, equipos asociados y la preservación del medio ambiente. La Unidad Operativa de gestión y control AT, área funcional de la gerencia de Infraestructura y redes, es la responsable de los procesos de diseño de Subestaciones y líneas de alta tensión. Su objetivo principal es la verificación de los diseños eléctricos, mecánicos y civiles, elaborados por una empresa colaboradora, estén acordes a los requerimientos establecidos por las normas y los criterios de diseño de la empresa. Nótese que para cumplir el objetivo principal, es necesario la ejecución de dos procesos, el proceso de diseño de la empresa colaboradora y por otro lado el proceso de verificación de la unidad operativa de CODENSA, dentro del alcance de este proyecto solo se contempla la evaluación del proceso de diseño, sin embargo en algunas ocasiones se hará referencia a el proceso de verificación ya que existe una interrelación entre los dos.

Con el propósito de contar con un Sistema de Puesta a Tierra que cumpla con los objetivos y requerimientos establecidos por norma, es necesario el desarrollo de ciertas etapas que hacen parte del proceso de diseño y construcción de la misma, cabe resaltar que los detalles de la etapa de construcción no se encuentran dentro de los alcances del desarrollo del presente documento. En las siguientes secciones se definirán estas etapas asociadas al diseño con sus respectivas entradas y salidas, para tener un panorama más amplio del proceso y poder realizar una correcta evaluación.
3.1.1 Elaboración mapa de proceso a alto nivel - SIPROC

A partir del estudio de las normas IEEE Std 80 y 81, y los informes entregados por la empresa colaboradora se definen 3 actividades principales del proceso (Figura 8), a partir de las cuales se elaborará el diagrama SIPOC.

Figura 8. Diagrama de macro actividades del proceso.

Fuente: Elaboración propia.

Una vez definidas las actividades principales, se procede a elaborar el SIPOC mediante la definición de los proveedores, entradas, salidas y clientes.

Tabla 1. Mapa de proceso de alto nivel

<table>
<thead>
<tr>
<th>PROVEEDORES</th>
<th>ENTRADAS</th>
<th>PROCESO</th>
<th>SALIDAS</th>
<th>CLIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reglamento técnico</td>
<td>Requerimientos básicos</td>
<td>Medición de resistividad aparente del terreno</td>
<td>Registro fotográfico</td>
<td>Empresa colaboradora</td>
</tr>
<tr>
<td></td>
<td>Metodología de medición</td>
<td></td>
<td></td>
<td>CODENSA</td>
</tr>
<tr>
<td></td>
<td>Restricciones técnicas y normativas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empresa colaboradora</td>
<td>Registro fotográfico</td>
<td>Interpretación de las medidas de resistividad</td>
<td>Resistividad del terreno</td>
<td>Empresa colaboradora</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Informe de resistividad del terreno</td>
<td>CODENSA</td>
</tr>
<tr>
<td>Empresa colaboradora</td>
<td>Resistividad del terreno</td>
<td>Calculo de la malla de puesta a tierra</td>
<td>Plano de diseño de malla de puesta a tierra</td>
<td>CODENSA</td>
</tr>
<tr>
<td>CODENSA</td>
<td>Tensión Nominal Fase-Fase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SPT DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

CODENSA Corriente de cc monofásica Memoria de cálculos del diseño de la malla de puesta a tierra CODENSA
CODENSA Tiempo de despeje de falla

Fuente: Elaboración propia.

En las siguientes secciones se proporcionara una breve descripción de cada una de las etapas del proceso que realiza la empresa colaboradora en base al mapa de alto nivel que se realizó (Ver Figura 9).

Figura 9. Proceso de diseño eléctrico del SPT para líneas de transmisión.

Fuente: Elaboración propia.

3.1.2 Requerimientos básicos

Los requerimientos más relevantes que deben cumplir los sistemas de puesta a tierra de las líneas de transmisión intervenidas por CODENSA son los siguientes:

Baja resistencia de puesta a tierra: Esta baja resistencia previene los flameos inversos a través de la cadena de aisladores y potenciales peligrosos, que se producen por descargas atmosféricas o fallas en el sistema. La NO046 establece que “el valor de la resistencia de puesta a tierra de las estructuras, poste o torre no deben ser superior a 10 ohmios. Sin embargo la medida de puesta a tierra de una estructura puede superar los 10 ohmios solamente si el valor promedio entre las cinco estructuras adyacentes es menor a la restricción de 10 ohmios” [3].

Garantizar valores mínimos de Tensión de paso y contacto: Según el artículo 22.4 del RETIE “... las tensiones de paso y contacto deben ser comprobadas en las estructuras de líneas de transmisión con tensión igual o superior a 115 kV en zonas urbanas y en estructuras localizadas en menos de 20 m de escuelas, viviendas, industrias, comercios y en general en lugares de alta concentración de personas” [1].
Conducción efectiva de la corriente de falla: El sistema de puesta a tierra debe ser capaz de disipar la corriente de falla de una manera controlada, permitiendo la actuación de los sistemas de protección.

Costo lo más bajo posible, sin que se comprometa la seguridad: Se debe buscar la máxima eficiencia en la asignación de los recursos, tanto económicos como humanos, garantizando la seguridad de las personas, equipos asociados y la preservación del medio ambiente.

3.1.3 Medición de la resistividad del terreno

La resistividad del terreno donde se localizará la estructura es uno de los factores más importantes a tener en cuenta al momento del diseño del sistema de puesta a tierra, en el proceso de medición de esta se consideran los efectos de las diferentes capas que componen el terreno bajo estudio, obteniéndose lo que se denomina “Resistividad aparente”.

Con el fin de obtener una muestra representativa de la resistividad del suelo, la empresa colaboradora aplica el método de Wenner, realizando una serie de lecturas a distintas separaciones entre electrodos y en diferentes direcciones, habitualmente toman medidas a lo largo de dos ejes perpendiculares.

3.1.4 Interpretación de las medidas obtenidas en terreno

El objetivo final de las mediciones de resistividad del terreno, es obtener un modelo que sea una buena aproximación de las condiciones de este. A partir de la información suministrada por las medidas de resistividad aparente, la empresa colaboradora realiza una modelización en estratos horizontales del terreno. Los modelos de resistividad de suelo que habitualmente usan son los de suelo homogéneo y de dos capas.

Modelo de suelo homogéneo: El procedimiento actual considera la implementación de este modelo cuando los valores de resistividad aparente obtenidos para cada espaciamiento de electrodos, no se apartan en más de un 30 % del valor máximo de los mismos. Para poder realizar una aproximación de un suelo heterogéneo a un suelo homogéneo utilizan el método de Box Cox, el cual es un modelo probabilístico donde se asume un suelo homogéneo con un valor de resistividad constante con la variación de la profundidad.

Modelo de dos capas horizontales: Este modelo permite obtener una aproximación más acercada a las reales condiciones del suelo, proporcionando una capa superior de profundidad finita y con diferente resistividad que la capa inferior de profundidad infinita. Existen diferentes métodos que permiten determinar las resistividades equivalentes de las capas superior e inferior, y la profundidad de la capa superior del modelo de dos capas. Estos métodos pueden ser analíticos o empíricos, pero el procedimiento comúnmente empleado es el método gráfico de Sunde.
3.1.5 **Calculo de la malla de puesta a tierra**

Para el cálculo de la malla de puesta a tierra, el diseñador usa un software de modelación de sistemas eléctricos de potencia llamado “Paladin Design Base 5.0”, que es utilizado para simular cualquier tipo de instalación eléctrica independiente de su complejidad, para el caso de diseño de sistemas de puesta a tierra, el software posee el módulo “Ground Mat V5.01.0.0”, el cual utiliza el método de la matriz de conductancia, considerando impedancias mutuas existentes entre electrodos horizontales y verticales, de acuerdo con la configuración de cada caso.

Los parámetros de diseño que tienen en cuenta para todas las estructuras son los siguientes:

- Tensión nominal fase-fase: 115 kV
- Corriente de cortocircuito a través de los cables de guardia: 19 kA
- Factor de división de la corriente de cortocircuito: 0.1
- Tiempo de despeje de falla: 300 ms
- Resistencia máxima de puesta a tierra: 10 Ω

Los anteriores parámetros están de acuerdo a los “criterios de diseño de Líneas de Transmisión de Alta Tensión”- NO046, aprobada el 14 de enero del 2013.

3.2 CICLO PHVA

En esta sección se definirán las etapas del ciclo PHVA del proceso actual, las cuales son planear, hacer, verificar y actuar, con el fin de tener un panorama más amplio del cómo se desarrolla el proceso de diseño de la malla de puesta a tierra.

En la primera etapa, la planeación, se define junto a CODENSA, mediante una visita técnica el alcance que tendrá el proyecto, más adelante se realiza la programación de los recursos humanos y físicos que son necesarios para realizar la tarea, así mismo se elabora la programación y presupuesto de los trabajos previstos, acto seguido se establece el método de medición de la resistividad del terreno, que para todos los casos es el método de cuatro puntos de Wenner y así mismo se planifica la implementación de los métodos de interpretación de las medidas ya expuestos anteriormente.

En la etapa de hacer, se ejecutan las mediciones de resistividad del terreno según el método de medición de cuatro puntos de Wenner, con los registros fotográficos obtenidos de la actividad anterior, se realiza un análisis a la dispersión de los datos medidos, con el objetivo de definir cuál método de interpretación implementar y obtener la resistividad eléctrica del terreno en estudio, acto seguido mediante la utilización de un software licenciado se diseña la malla de puesta a tierra, considerando los parámetros de diseño entregados por CODENSA.
EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SPT DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

En la tercera etapa, la verificación, se realiza una revisión y aprobación por parte del coordinador eléctrico y el gerente de la empresa colaboradora, respectivamente, esto con el fin de encontrar desviaciones en el diseño antes de la entrega al cliente, después de esto el ingeniero funcional de CODENSA realiza una revisión y verificación del diseño y las especificaciones técnicas definidas en el contrato, cabe resaltar que esta actividad también hace parte del proceso de verificación que realiza la Unidad operativa de gestión y control.

Figura 10. Proceso de diseño eléctrico del SPT para líneas de transmisión.

Fuente: Elaboración propia.

Por último, en la etapa de actuar, se realiza un replanteo del diseño y especificaciones técnicas, según los comentarios plasmados por el ingeniero funcional de la unidad operativa de control de CODENSA.
Capítulo 4

4 DIAGNÓSTICO DEL PROCESO DE DISEÑO ACTUAL

4.1 SECUENCIA DE ACTIVIDADES

Con el fin de desarrollar un diagnóstico correcto del proceso de diseño actual, se llevó a cabo la definición de las secuencias de actividades que se realizan en cada etapa del proceso. Para lograr lo anterior fue necesario realizar una serie de acompañamientos a la empresa colaboradora en terreno y reuniones con los ingenieros encargados del diseño de la malla de puesta a tierra. En las siguientes secciones se expondrá las actividades que realiza la empresa colaboradora para el diseño de la malla de puesta a tierra.

4.1.1 Procedimiento medición de la resistividad del terreno

El procedimiento para la medición de resistividad del terreno que utiliza la empresa colaboradora se muestra paso a paso a continuación:

I. Ejecutar una visita técnica, en la cual se realiza una inspección visual al terreno donde se edificará la estructura de apoyo de la línea de transmisión, identificando las limitaciones de área existentes.

II. Planear y programar trabajos, mediante la solicitud de descargos.

III. Realizar la medición de resistividad aparente del terreno de acuerdo al siguiente procedimiento, teniendo en cuenta que la técnica de medición que la empresa aplica es el método de los cuatro electrodos de Wenner.

 a. En terreno, diligenciar el tablero operativo, identificando riesgos y vías de emergencia.

 b. Identificar los ejes de medición diagonales al sentido de la línea como establece la figura 11.

 c. A lo largo del eje 1, enterrar los electrodos de medida a una separación inicial de 1 metro.

 d. Conectar los cables al equipo de medición y a los electrodos enterrados.

 e. Encender el equipo de medición y ejecutar la medida.
f. El operador toma fotos del telurometro, el cual arroja el resultado de resistividad (Ω-m) y de la resistencia (Ω).

g. Desconectar los cables de los electrodos y desenterrarlos del suelo.

h. Repetir los pasos de los encisos c al g, pero con distancias de separación entre electrodos de 3 m, 5 m y 7 m.

i. Ejecutan nuevamente el procedimiento anterior, siguiendo el eje de medida 2 de la figura 11.

Figura 11. Ejes perpendiculares de medida.

4.1.2 Procedimiento cálculo de la resistividad

El procedimiento para la interpretación de las medidas de resistividad del terreno que utiliza la empresa colaboradora se muestra paso a paso a continuación:

I. Los datos obtenidos de en cada una de las direcciones o perfiles medidos en terreno, son tabulados mediante la observación de los registros fotográficos en función del espaciamiento entre electrodos “a”. Para cada espaciamiento “a”, se debe calcular el promedio aritmético de los valores de resistividad obtenidos para cada perfil de medida, como se puede observar en la tabla 2.
II. Mediante observación de la tabla 2, estiman la desviación de cada medida obtenida a un espaciamiento entre electrodos “a”, en relación con el valor promedio respectivo. Adicionalmente descartan los valores de resistividad que tengan una desviación mayor al 30 % en relación a su promedio.

III. Según el comportamiento de la curva de resistividad seleccionar que método de análisis aplicar, para el primer caso en el cual los valores de resistividad no se apartan en más de un 30 % del valor máximo de los mismos, utilizan el modelo de suelo uniforme, para el segundo caso, en el cual los valores de resistividad presentan una dispersión considerable, utilizan el modelo de las dos capas.

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Separación (m)</th>
<th>Perfil 1</th>
<th>Perfil 2</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistencia (Ω)</td>
<td>Resistividad (Ω.m)</td>
<td>Resistencia (Ω)</td>
<td>Resistividad (Ω.m)</td>
</tr>
<tr>
<td>PN-1</td>
<td>1</td>
<td>6.18</td>
<td>51.40</td>
<td>9.13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.09</td>
<td>72.10</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.90</td>
<td>90.90</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.27</td>
<td>100.10</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Fuente: AC Energy, informe de resistividad del terreno.

4.1.2.1 Modelo de Suelo Homogéneo

Para el primer caso (Box-Cox), el procedimiento es el siguiente:

I. Calcular el logaritmo natural del promedio aritmético de los valores de resistividad, por medio de:

\[X_i = \ln(p_i) \]

Donde:
\(p_i \): Cada una de las medidas de resistividad aparente del suelo, obtenidas en campo.

II. Hallar la resistividad promedio (\(x \)) de la siguiente manera:

\[x = \frac{\sum_{i=1}^{n} X_i}{n} \]

Donde:
\(n \): Número de medidas de resistividad tomadas en terreno.
III. Calcular \((X_i - x)^2\)

IV. Calcular la desviación estándar de la siguiente manera:

\[
S = \sqrt{\frac{\sum_{i=1}^{n}(X_i - x)^2}{n}}
\]

V. Por último calcular la resistividad de la siguiente manera:

\[
p = e^{(SZ+x)}
\]

Donde:
\(Z\): es igual a 0.524411 para una probabilidad no menor al 70\% de encontrar el valor real.

4.1.2.2 Modelo de las dos capas

Para el segundo caso (Dos capas), el procedimiento es el siguiente:

I. Elaborar varias curvas que están en función de la profundidad (espaciamiento de los electrodos “a”) y los valores de resistividad medidos en campo para cada uno de los perfiles de medición establecidos (ver figura 12).

II. A partir de la inspección visual de la curva de resistividad promedio aparente estimar \(\rho_1\) y \(\rho_2\). \(\rho_1\) es un valor de resistividad aparente que corresponde a pequeños espaciamientos y \(\rho_2\) es un valor de resistividad aparente que corresponde a grandes espaciamientos.

III. Calcular la relación \(\rho_2/\rho_1\) y seleccionar una curva de la gráfica de Sunde (Ver Figura 13), o interpolar y dibujar una nueva curva.

IV. Localizar un punto central dentro de la zona inclinada de la curva \(\rho_2/\rho_1\) elegida en el paso anterior y seleccionar un valor del eje y que corresponderá a \(pa/\rho_1\).

V. Dado el valor de \(pa/\rho_1\) observar que valor corresponde de a/h en el eje x de la gráfica de Sunde.

VI. Calcular el valor de \(pa\) a partir de la siguiente ecuación: \(pa = \left(\frac{pa}{\rho_1}\right) \cdot \rho_1\), donde \(pa/\rho_1\) es el valor correspondiente al eje Y encontrado en el paso IV.

VII. Ubicar en la curva de resistividad aparente promedio de la figura 12 el valor de espaciamiento “a” que corresponde al valor de resistividad “\(pa\)”.
Figura 12. Curvas de resistividad aparente.

Fuente: AC Energy, informe de resistividad del terreno.

VIII. Calcular el valor de profundidad \(h \), a partir del espaciamiento “a” obtenido en el paso VII y la relación \(a/h \) obtenida en el paso V, de la siguiente manera:

\[
H = \frac{a}{(\frac{a}{h})}
\]

IX. A partir de los cálculos anteriores, el valor de resistividad para la profundidad \(H \) es \(\rho_1 \) y el valor de resistividad para una profundidad desde \(H \) a infinito es \(\rho_2 \).

El procedimiento actual realiza un informe donde evidencia el procedimiento utilizado para la toma de medidas de resistividad del terreno, proporcionando los resultados de este y los registros fotográficos, así mismo plasma en el documento la interpretación de las medidas obtenidas, dando como resultado los valores de resistividad obtenidos mediante el método de las dos capas o Box Cox para cada estructura.

4.1.3 Procedimiento cálculo de la malla de puesta a tierra

El procedimiento de diseño de la malla de puesta a tierra es el siguiente:

I. Examinar el informe entregado por el contrato actual de diseño, donde se presentan los valores de resistividad del terreno.

II. Ingresar los parámetros de diseño y el valor de resistividad del suelo con su respectiva profundidad, según el modelo de interpretación escogido, al software “Paladin Design Base 5.0”.

III. De acuerdo con la experiencia y el criterio del diseñador, elaborar una configuración de malla de puesta a tierra preliminar y posteriormente en el software simular su comportamiento.

IV. Una vez realizada la simulación se evalúan que los resultados de resistencia de puesta a tierra, tensiones de paso y contacto estén dentro los rangos admisibles especificados por norma.
V. De no cumplir con los valores especificados por norma en paso 4, repetir los pasos 3 y 4 las veces que sea necesario hasta que los valores de resistencia de puesta a tierra, tensiones de paso y contacto, estén acorde a los valores especificados por norma.

VI. En algunos casos las dimensiones de la malla de puesta a tierra exceden las limitantes de terreno, servidumbre de las estructuras y los valores de longitud de contrapeso efectiva, por estos motivos se hace necesario recomendar un mejoramiento del terreno de un 70 % de la resistencia de puesta a tierra obtenida en anteriores simulaciones.

Por último se realiza un informe donde evidencia las consideraciones utilizadas para cada estructura de soporte, así mismo plantea la configuración del sistema de puesta a tierra que permite obtener una resistencia menor al valor máximo sugerido, y garantizar el cumplimiento del control de las tensiones de paso y contacto, adicional a lo anterior plantea los elementos que se requieren para construir la malla de puesta a tierra.

4.2 DETERMINACIÓN CAUSAS-EFECTO

Para lograr la determinación de las causas del problema ya planteado, se utiliza la herramienta de Ishikawa de causa-efecto, la cual permite determinar causas posibles por categorías, ayudando al diagnóstico de la situación actual del proceso.

En el diagrama de Ishikawa se relacionaran los diferentes factores internos y externos que provocan comentarios a los diseños del sistema de puesta a tierra. Las categorías que se definieron fueron las siguientes:

- Diseño.
- Medición ρ.
- Personas.
- Método.

Para la elaboración del diagrama de causas-efecto se realizaron reuniones en donde se expuso a los ingenieros eléctricos encargados de la revisión de los diseños eléctricos del sistema de puesta a tierra, el objetivo y la metodología con la cual se iba a desarrollar el proyecto, así mismo se solicitó a la empresa colaboradora que proporcionara las causas y factores que creían ocasionaban las observaciones a los diseños, desarrollando así el diagrama(Figura 14). Del mismo modo se tuvo en cuenta el procedimiento expuesto en la sección anterior, ya que este no existía y los encargados de la revisión no tenían conocimiento de este.

En la categoría de diseño se propusieron las siguientes causas:

- **Datos de entrada,** estos datos se pueden dividir en dos, los requerimientos técnicos que proporciona CODENSA (corriente de corto circuito, tiempos de despeje de falla, resistencia mínima de puesta a tierra, etc.) y los datos que recolectan en campo (resistividad eléctrica...
del terreno, contexto del proyecto y necesidad de control de las tensiones de paso y contacto).

Gestión de la información, se aprecia que la información referente a las medidas de resistividad del terreno se transmiten al diseñador mediante registros fotográficos, esto puede inducir errores de lectura en la etapa de tabulación, previa a la interpretación, dando como resultado en una desviación en el valor de resistividad del terreno, dato que redunda en el diseño final.

Imprevistos, en todos los proyectos surgen imprevistos que no se prevén en la planeación, aquí se trata de identificar si algunos se presentan de manera reiterada, clasificarlos y revisar que tratamiento le ha dado el diseñador y si ha implementado o no alguna solución.

Cumplimiento de plazos, con el fin de cumplir con los tiempos establecidos para la entrega de los diseños en algunas ocasiones se encontró comprometida la calidad del producto final.

Análisis de los escenarios, En algunos diseños de la malla de puesta a tierra no se contemplan factores externos que pudieran influenciar en la construcción de la malla, factores como andenes, cimentaciones aledañas, ductos u otras estructuras entre otros.

Modificaciones.

![Diagrama de Ishikawa](image)

Fuente: Elaboración propia.
En la categoría de medición de resistividad eléctrica se propusieron las siguientes causas:

Alta carga laboral, el cansancio del operario puede conllevar a implementación no adecuada del método de medición, induciendo errores en la lectura de la instrumentación o causando una falta de análisis de los datos tomados en campo.

Imprevistos, al momento de realizar la medición, puede haber presencia de materiales y estructuras metálicas que influyen en la medida, el operador debe estar en la capacidad de sortear estos obstáculos para obtener una medida acertada.

Interpretación medidas en campo, por diferentes factores las medidas de resistividad pueden estar erradas, esto se evidencia en el comportamiento de las medidas, por tanto el operador debe tener estar en la capacidad de poder analizar el comportamiento de estas y en caso de que estén erradas, plantear soluciones al respecto.

Implementación método medición, es crucial la estricta implementación del método de medición, en algunas ocasiones se presenció que no se medía la separación entre electrodos de manera precisa, lo que aumenta incertidumbre al proceso de la medida.

Conocimiento sobre la instrumentación, para poder realizar una correcta medición y resolver los diferentes problemas que se presentan en campo, es crucial conocer los equipos que se están manejando.

Planificación, es necesario realizar una correcta planificación de los trabajos que se van a desarrollar en campo mediante el establecimiento del método de medición que se va a utilizar y desarrollo del procedimiento a seguir.

De la misma manera se propusieron las siguientes causas en la categoría de personas:

Responsabilidad, es muy importante saber asumir tareas y cumplir con los deberes adquiridos para no entorpecer el buen desarrollo del proceso.

Número de trabajadores, un bajo número de trabajadores y un gran flujo de trabajo, puede influenciar en la generación de desviaciones en el diseño.

Formación, la capacitación impartida a las personas que hacen parte del proceso de diseño influye en el resultado.

Actualización, la tecnología se encuentra en constante cambio, es por esto que es imperativo la constante capacitación de las personas que intervienen directa y externamente en el proceso.

Conocimiento, el por qué y para que se ejecuta cada paso del proceso, es indispensable para el buen desarrollo de este.

En la categoría de método, se propusieron las siguientes causas:

Organización, este aspecto es esencial ya que en algunas organizaciones, por falta de este aspecto, algunos trabajadores no saben que tareas realizar.

Procedimiento, contar con un adecuado procedimiento facilita las labores que tienen que realizar los trabajadores.
Innovación.

Comunicación, la comunicación entre las diferentes partes del proceso es fundamental para que no hayan dudas e inconsistencias al momento de articular el proyecto.

Para determinar las causas raíces del problema, se realizó otra sesión con los ingenieros eléctricos, en la cual se expuso el diagrama de la figura 14 y se les pidió que indicaran cuales eran las causas que consideraban que eran las más recurrentes e influenciaban más en la ocurrencia de las desviaciones en el diseño.

Figura 15. Diagrama de Ishikawa- causas raíces.

Como se puede observar en la figura 15 las causas raíces que se obtuvieron del análisis del diagrama de Ishikawa se agruparon de la siguiente manera:

Planificación: En primer lugar se determina la causa de planificación, la cual comprende aspectos como la falta de planteamiento y análisis de escenarios probables, además de no contar con un procedimiento propio para realizar las mediciones de resistividad del terreno e interpretación de estas medidas. Se considera esta causa debido a que, según el ciclo PHVA, la planeación y la planificación son la primer y más importante etapa para el correcto desarrollo de un proceso.

Competencias del personal: Es importante que el recurso humano que interviene en cada etapa del proceso de diseño conozca los principios teóricos y prácticos de la labor que
desempeña, para que sepa cómo resolver situaciones que eventualmente se presentan en campo bien sea en la selección uno u otro método de medición o el correcto uso del equipo con el que se está realizando la medida.

Datos de entrada: Como ya se había mencionado, estos datos se puede dividir en dos aspectos, en primer lugar, los datos medidos en terreno y en segundo lugar, las características de la línea datos que proporciona CODENSA como (corriente de corto circuito, tiempos de despeje de falla, resistencia mínima de puesta a tierra, etc.), estos valores se establecieron para el diseño de la condición más extrema de todas la líneas del sistema de 115 kV, ocasionando que en algunas ocasiones los diseños de la malla de puesta a tierra tengan un factor de seguridad mayor que el requerido.

Finalizada así la descripción y diagnóstico del proceso de diseño eléctrico del sistema de puesta a tierra, se ha podido determinar las principales causas que generan las oportunidades de mejora. De esta manera, se tiene la guía para realizar las mejoras que se orienten a un círculo de mejora continua.
Capítulo 5

5. MEJORA DEL PROCESO

A partir del diagnóstico que se realizó en el capítulo 4, se tiene claro cuáles son las principales oportunidades de mejora en el proceso de diseño, este capítulo expondrá las metodologías que se utilizaron para aportar mejorías al proceso de diseño durante el tiempo de pasantía en la empresa.

5.1 RECOMENDACIONES DE MEJORA

Durante el transcurso de la evaluación de las etapas del proceso de diseño eléctrico del SPT se realizó lectura de los informes de resistividad del terreno presentados para proyectos anteriores, así mismo se realizaron dos acompañamientos a la empresa colaboradora con el fin de observar el procedimiento de medición de la resistividad eléctrica del terreno, se revisaron diversos diseños de malla de puesta a tierra y se acompañó el proceso de iteración de las simulaciones en las oficinas del diseñador, en esta recolección de información se hicieron preguntas sobre los procesos, que permitieron ir ajustando los procedimientos y los informes de manera que hoy en día ya se encuentran adoptadas varias de las recomendaciones expuestas a continuación.

Producto de estas revisiones, acompañamientos y entrevistas se presentan una serie de recomendaciones de mejora a los distintos procesos del diseño en general, las cuales se han ido aplicando durante el transcurso de la pasantía del estudiante.

5.1.1 Medición de resistividad aparente del terreno

Desde la visita inicial a la ó las estructuras a intervenir es importante determinar si el diseño del SPT, debe controlar las tensiones de paso y de contacto, de acuerdo con el siguiente criterio “las tensiones de paso y contacto deben ser comprobadas en las estructuras de líneas de transmisión con tensión igual o superior a 115 kV en zonas urbanas y en estructuras localizadas a menos de 20 m de escuelas, viviendas, industrias, comercios y en general en lugares de alta concentración de personas” [1].

Se recomienda planear cual método de medición se va a implementar, el método de Wenner es útil para pequeños espaciamientos entre electrodos, mientras que el método de Schulmberger se recomienda para grandes espaciamientos entre electrodos, así mismo se debe planear el trazado de los ejes de medición con anterioridad, teniendo en cuenta la presencia de materiales, rocas y estructuras que puedan influenciar en la medición.
Usualmente realizan 4 mediciones con distancias de separación entre electrodos de 1 a 7 metros, se recomienda que cuando existan valores de resistividad por encima de los 2000 Ω-m, realizar mediciones con distancias de separación entre electrodos desde 1 hasta 20 metros.

Se recomienda tener conocimiento completo del equipo utilizado para la medición de la resistividad del terreno, en este caso telurometro marca METREL de referencia MI2088, para hacer una correcta interpretación del significado de cualquier símbolo especial que aparece en el display, que indique una anomalía en la medición.

Se recomienda la utilización de una cinta métrica para corroborar las distancias de separación.

Es recomendable descartar los valores de resistividad que tengan una desviación mayor al 30% en relación a su promedio. En este último caso, el promedio correspondiente para cada espaciamiento deberá recalcularse nuevamente.

El método de medición de Wenner que es el utilizado en este caso recomienda por simplicidad en los cálculos, que los electrodos no se entierren más del 10% de la separación entre electrodos que se está implementado, se recomienda verificar que recomienda el fabricante del equipo al respecto, para evitar distorsión en resultado de la medida.

Adicional al registro fotográfico se recomienda diligenciar en campo el registro de las mediciones en el formato establecido por la empresa colaboradora (Ver Anexo A) y agregarlo al informe de resistividad del terreno, pues se evidencio que solo realizar el registro fotográfico puede inducir errores en la tabulación, previa a la etapa del cálculo de resistividad e desviando el resultado final de la medición.

5.1.2 Calculo de resistividad a partir de las medidas obtenidas en terreno.

Según la metodología presentada en los informes, se selecciona la forma de calcular la resistividad del terreno entre el método de Box Cox o el método de las dos capas de acuerdo con la dispersión de los datos encontrados en el terreno, de ser menor o igual a 30% se utiliza el método de Box Cox, se recomienda seguir este criterio en todas la mediciones ya que en al menos uno se encontró que la selección del método no fue la adecuada, de acuerdo con el criterio establecido.
En el caso que se presente la información referente a más de una estructura por informe, se recomienda que se incluya una tabla donde se resuman los valores de resistividad para cada estructura indicando si requiere mejora del terreno y en ese caso en qué porcentaje.

Se recomienda que el colaborador haga un procedimiento del cálculo de resistividad que sea referencia de futuros cálculos, de esta forma estandarizar el proceso.

5.1.3 Cálculos Malla de Puesta a Tierra

Se encontró que los diseños anteriores a Marzo 2017, tenían en cuenta el control de las tensiones de paso y contacto, sea en un lugar aislado de personas o no, debido a lo anterior se recomendó tener en cuenta para el diseño el criterio del artículo 22.4 del RETIE, para hacer el diseño con o sin control de tensiones de paso y de contacto o solo restringirse al valor de resistencia de puesta a tierra que también se actualizó en la misma fecha pasando de 20 Ωm a 10 Ωm como lo establece la NO046 en su edición más reciente.

Es útil destacar que en el mercado existen múltiples ofertas de nuevas tecnologías como cementos conductivos, y capacitores que permiten mejorar las características eléctricas del SPT que se va a instalar en la torre o poste de transmisión, se recomienda evaluar estas alternativas y si es factible, realizar los diseños del sistema de puesta a tierra considerando estas soluciones.

Se recomienda que el diseño del SPT sea construible y tenga en cuenta el entorno pues las estructuras de apoyo, sea tipo poste o torre, se encuentran sobre separadores, vías, andenes paso ó corredores férreos inclusive dentro de subestaciones, etc.

Con el fin de hacer un diseño más ajustado a las estructuras a proteger se recomienda usar como dato de entrada la corriente de corto circuito de la propia línea.

5.1.4 Diagrama de Flujo

Los diagramas de flujo se utilizan ampliamente en numerosos campos para documentar, estudiar, planificar, mejorar y comunicar procesos que suelen ser complejos en diagramas claros y fáciles para la comprensión. En el anexo B se puede observar el diagrama de flujo del proceso de diseño de la malla de puesta a tierra, teniendo en cuenta las recomendaciones de mejora más significativas.
5.2 CICLO PHVA

En el capítulo 3 ya se había definido el ciclo PHVA del proceso de diseño actual, en esta sección se expondrá el nuevo ciclo PHVA, el cual incluye algunas mejoras respecto al ciclo anterior, esto con el fin de lograr una mejora continua del proceso.

Figura 16. Mejora Ciclo PHVA.

Fuente: Elaboración propia.

Como se puede observar en la Figura 16, se incluyen diferentes acciones al ciclo PHVA, con el fin de que se pueda realizar una mejora continua al proceso y corregir las inconsistencias encontradas en el capítulo anterior, en primer lugar, en la etapa de planeación, se agregó la elaboración del procedimiento de medición e interpretación de las mediciones de resistividad, esto con el fin de que los operarios de los equipos tengan una guía para la correcta ejecución de sus actividades, se recomienda modificar el procedimiento plasmado en este documento según las condiciones de trabajo lo requieran.

En segundo lugar, en la etapa de verificación, se incluyó la validación de los valores de resistencia de puesta a tierra, tensiones de paso y tensiones de contacto de la malla, esto con el fin de que estén acordes a los valores del diseño. Por último se incluyeron acciones correctivas para la mejora de la resistencia de puesta a tierra y/o tensiones de paso y contacto según la evaluación que se le realiza a la malla de puesta a tierra en la etapa anterior, adicional a lo anterior es necesario en la etapa de actuar realizar regularmente diversas capacitaciones al personal para mejorar la calidad del proceso.
6. RESULTADOS ALCANZADOS

Durante el desarrollo de la pasantía se alcanzaron los siguientes resultados:

1. Caracterización del proceso de diseño actual mediante la elaboración del mapa de proceso de alto nivel SIPROC, establecimiento de los requerimientos básicos de diseño y elaboración del ciclo PHVA.

2. Diagnóstico del proceso de diseño actual mediante la elaboración del procedimiento para la medición e interpretación de las medidas de resistividad eléctrica y el diseño de la malla de puesta a tierra, así mismo mediante la herramienta causa-efecto se logró determinar las causas raíz que producían las desviaciones en el proceso de diseño, susceptibles de mejora.

3. Actualización del proceso de diseño mediante la implementación de las recomendaciones de mejora que se obtuvieron durante el transcurso de la pasantía, así mismo se elaboró un diagrama de flujo acorde a las actividades a realizar por la empresa, por último se realizó nuevamente el ciclo de mejora continua PHVA, teniendo en cuenta las causas raíces encontradas mediante la herramienta de causa-efecto.
Los resultados obtenidos durante el transcurso de la pasantía fueron producto de la caracterización y diagnóstico del proceso de diseño eléctrico del sistema de puesta a tierra de las líneas de transmisión, para poder lograr lo anterior fue necesario realizar una serie de revisiones a los informes de resistividad del terreno elaborados por la empresa colaboradora, así mismo se realizaron diversos acompañamientos a terreno con el fin de observar las destrezas y procedimientos seguidos por los operarios, igualmente se verificaron diversos diseños de mallas de puesta a tierra y se acompañó el proceso de iteración de las simulaciones en las oficinas del diseñador.

Con el fin de poder realizar la mejor caracterización del proceso se elaboró un mapa de proceso de alto nivel, con el cual se definió las tres actividades principales del proceso, estas son, la medición de las resistividad eléctrica del terreno, la interpretación de las medidas obtenidas en terreno y el diseño de la malla de puesta a tierra, igualmente se definieron los actores implicados en el proceso y sus respectivas entradas y salidas. Lo anterior permitió tener un panorama bastante claro de cómo se desarrollaba el proceso y quien tenía implicaciones en este, permitiendo así el establecimiento de los los requerimiento básicos para el diseño según las normativas locales e internacionales y los criterios de la empresa, y la elaboración de algunas descripciones breves de las tres actividades principales del proceso. Por último se estableció el ciclo PHVA del proceso, mediante el cual se pudo observar de primera mano, algunas de las causas de las desviaciones en el diseño.

Ahora bien, para diagnosticar el proceso se llevó a cabo la definición de las secuencias de actividades que se realizan en cada etapa del proceso. Para lograr lo anterior fue necesario realizar una serie de acompañamientos a la empresa colaboradora en terreno y reuniones con los ingenieros encargados del diseño de la malla de puesta a tierra ya que no se contaba con un procedimiento definido. Ya teniendo claro cómo se desarrollaba el proceso, se procedió a obtener las causas del problema ya planteado mediante la aplicación de la herramienta del diagrama de Ishikawa y varias reuniones con los ingenieros encargados de la revisión de los diseños.

Teniendo claro las principales causas del problema ya planteado, se elaboraron una serie de recomendaciones de mejora a las distintas etapas del proceso de diseño, que permitieron ir ajustando los procedimiento e informes de manera que hoy en día ya se encuentran adoptadas varias de las recomendaciones expuestas. Igualmente se elaboró un diagrama de flujo y el ciclo PHVA teniendo en cuenta las causas encontradas anteriormente, esto con el fin de asegurar la mejora continua del proceso.
8. EVALUACIÓN Y CUMPLIMIENTO

Durante el desarrollo de la pasantía, se tuvieron ciertos inconvenientes debido a la poca cantidad de información que se poseía, esto debido a que no se le realizaba un exhaustivo seguimiento a las memorias de cálculo y los planos de diseño de la malla de puesta a tierra, inicialmente no se contaba con que se presentara esta situación, sin embargo mediante la colaboración de los ingenieros de la unidad, se le pudo dar un manejo adecuado a la situación. Igualmente se tuvieron retardos al momento de solicitar información a la empresa colaboradora ya que tenía que hacerlo por medio del ingeniero encargado de la revisión de los diseños, del mismo modo la empresa colaboradora se demoraba mucho en proporcionar lo solicitado, acarreando demoras en el inicio de la caracterización del proceso.

Por otra parte se logró mejorar la confianza en los diseños de la empresa colaboradora por parte de los ingenieros de CODENSA, esto repercutió en la disminución de la cantidad y tiempo de las revisiones, logrando así cumplir satisfactoriamente con los tiempos de entrega de los diseños a la unidad de construcción, así mismo en algunas ocasiones era necesario volver a realizar las mediciones de la resistividad del terreno, esto implicaba más tiempo en la realización del diseño, y en muchas ocasiones no se cumplían con los tiempos de entrega a la unidad de construcción, acarreando mayores costos al proyecto.

Los objetivos específicos planteados al inicio de la pasantía fueron cumplidos, se tuvieron dificultades al momento de realizar la medición de los nuevos tiempos de las actividades, cantidades de obras y costos del proceso, debido a que, como se indicó en el párrafo anterior, al momento de recolectar la información del proceso se tuvieron bastantes demoras, acarreando que el corto tiempo de la pasantía no fuera suficiente para lograr este fin, teniendo en cuenta que el diseño y construcción de una torre de transmisión puede ser aproximadamente, mayor a seis meses.
9. CONCLUSIONES Y RECOMENDACIONES

La medición de la resistividad del suelo y la implementación de un modelo adecuado de interpretación de las medidas que se aproxime con buen grado de exactitud a las condiciones reales del suelo es fundamental para realizar un apropiado diseño que cumpla con los requerimientos básicos y la seguridad de equipos y seres vivos.

En el Método de Wenner, entre mayor espaciamiento entre electrodos “a”, la corriente que inyecta el dispositivo de medición circula a mayor profundidad permitiendo considerar la resistividad de un número mayor de capas, específicamente en la medición de la resistividad del terreno de la línea Faca-Villeta, inicialmente se ejecutó la medición con distancias de separación entre electrodos de 1 a 7 metros, resultando valores de resistividad muy grandes que no eran normales, se recomendó realizar la medición con espaciamiento entre electrodos de 10 a 16 metros, resultando valores más razonables. Este suceso permite observar la importancia de tener un conocimiento amplio sobre el método de medición que se va a utilizar, para así resolver problemas que resulten en campo eficazmente.

Se debe reconocer que el modelo del suelo es solo una aproximación de las condiciones del suelo en el momento de hacer las mediciones. Las pruebas de perforación y otras investigaciones geológicas proveen a menudo información importante acerca de la presencia de diferentes capas y la naturaleza del material del suelo.

La mejora continua se debe construir en todo sentido, es por eso que como recomendación general, el colaborador investigue, revise, proponga y presente acciones de mejora a sus procesos.

Para obtener un proceso de diseño adecuado a las necesidades de la empresa, se recomienda elaborar indicadores que tengan como propósito medir los tiempos de ejecución de las actividades y comparar lo presupuestado contra lo ejecutado.

ANEXOS

ANEXO A. FORMATO REGISTRO MEDICIONES.

<table>
<thead>
<tr>
<th>Profundidad</th>
<th>Perfil 1</th>
<th>Perfil 2</th>
<th>Perfil 3</th>
<th>Perfil 4</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistividad</td>
<td>[Ω.m]=2nRa</td>
<td>Resistividad</td>
<td>[Ω.m]=2nRa</td>
<td>Resistividad</td>
<td>[Ω.m]=2nRa</td>
</tr>
</tbody>
</table>

Notas:
- Para las mediciones de resistividad del suelo, debe aplicarse el método de Wenner.
- Los electrodos y placas deben estar limpios exentos de óxido para posibilitar un buen contacto con el suelo.
- Las mediciones deberán realizarse preferiblemente en un periodo seco. No se deben realizar mediciones condiciones atmosféricas adversas, teniendo en cuenta la posibilidad de ocurrencia de rayos.
- Debe utilizarse calcado y guantes aislados para realizar las medidas.
- De considerarse necesario levantar más perfiles, pueden adicionarse columnas similares.
- Para diseño de puesta a tierra de equipos de distribución (Equipos de transformación, maniobra o protección) debe caracterizarse la resistividad como mínimo en dos direcciones perpendiculares, hacia la parte central del terreno.
- Para el diseño de mallas de puesta a tierra de instalaciones industriales, comerciales o residenciales, deben efectuarse medidas que cubran toda el área donde quedará la malla. Como mínimo deberá medirse en dos direcciones perpendiculares hacia la parte central del área del terreno y en dos direcciones o perfiles hacia la periferia, paralelos a los lados del área.
- Se deben descartar los valores de resistividad que tengan una desviación mayor al 30% en relación con su promedio. En este último caso, el promedio correspondiente para cada espaciamiento deberá recalcularse nuevamente.
- Distancias mayores a 32 metros son adoptadas en el caso de diseño de instalaciones de área de gran tamaño (>1000m²)
ANEXO B. DIAGRAMA DE FLUJO.

1. Inicio
 - Ejecutar visita técnica a terreno
 - Programar trabajos mediante solicitud de descargos
 - Planear método de medición

2. Si Gran Espaciamiento entre electrodos
 - Realizar mediciones según el Método de Schlumberger

3. No
 - Realizar mediciones según el Método de Wenner
 - Planear ejes de medición
 - Diligenciar tablero operativo, identificando riesgos y vías de emergencia
 - Realizar medición de resistividad de acuerdo a la planeación previa.
 - Diligenciar formato de registro de mediciones de resistividad.

A
EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SPT DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

A

Tabular y graficar las Mediciones de Resistividad

Estimar la desviación de cada una de las medidas

Desviación en relación con el valor promedio respectivo

Si

¿Desviación de más del 30%?

No

Modelo de las Dos Capas

\[X_i = \ln (p_i) \]

\[x = \frac{\sum_{i=1}^{n}(X_i)}{n} \]

\[(X_i - x)^2 \]

\[S = \sqrt{\frac{\sum_{i=1}^{n}(X_i - x)^2}{n}} \]

\[p = e^{(SZ+x)} \]

Informe de Resistividad del Terreno

B

Modelo de Suelo Homogéneo

Estimar p1 y p2

Calcular p2/p1

Punto central dentro la zona inclinada de la curva p2/p1

Seleccionar pa/p1 y a/h

\[\rho a = \left(\frac{\rho a}{\rho 1} \right) \cdot \rho 1 \]

Espaciamiento "a" correspondiente a pa

\[H = \frac{a}{\rho 1} \]

Realizar una tabla donde se resuma los valores de resistividad de cada estructura
EVALUACIÓN Y MEJORA DEL PROCESO DE DISEÑO ELÉCTRICO DEL SPT DE LAS ESTRUCTURAS DE SOPORTE DE LAS LÍNEAS DE TRANSMISIÓN INTERVENIDAS POR CODENSA.

Examinar informe de resistividad del terreno

Ingresar parámetros de diseño y valor de Resistividad al Software "Paladin Design Base"

Elaborar y simular configuración de malla de puesta a tierra preliminar

¿La Resistencia de Puesta a tierra es menor a 10 ohm?

No

¿Aplica, cumple con TP y TC?

No

Sí

Memorias de cálculo y Planos del diseño de la Malla de Puesta a Tierra

Fin