PROPUESTA DE MEJORAMIENTO EN LA DISTRIBUCIÓN DEL ÁREA DE PRODUCCIÓN EN LA EMPRESA CTR EN BOGOTÁ

ANDRÉS FABIÁN ESPINOSA TRUJILLO
BRANDO SMITH VÁSQUEZ TRIANA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
TECNOLOGÍA INDUSTRIAL
BOGOTÁ
2015
PROPUESTA DE MEJORAMIENTO EN LA DISTRIBUCIÓN DEL ÁREA DE PRODUCCIÓN EN LA EMPRESA CTR EN BOGOTÁ

ANDRÉS FABIÁN ESPINOSA TRUJILLO
BRANDO SMITH VÁSQUEZ TRIANA

TRABAJO DE GRADO COMO REQUISITO PARCIAL PARA OPTAR AL TÍTULO DE TECNÓLOGO INDUSTRIAL

DIRECTOR: YENNY NIÑO
INGENIERA INDUSTRIAL

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
TECNOLOGÍA INDUSTRIAL
BOGOTÁ
2015
RESUMEN EJECUTIVO

El presente proyecto se realizó en la empresa CTR (Centro Técnico de Rectificación), ubicada en las inmediaciones de la Zona Franca de la localidad de Fontibón, en la ciudad de Bogotá, cuya actividad económica es el servicio de rectificación de motores de diversos vehículos automotores.

Este proyecto planteo una propuesta de distribución en planta en la cual se tuvo en cuenta recomendaciones de seguridad básicas referente a las instalaciones, los procesos que se realizan, los espacios que actualmente se disponen y la maquinaria que se maneja, haciendo uso de herramientas gráficas para su planteamiento, que de implementarse dejaría atrás el problema de los continuos cruces que se presentan en el flujo de materiales en la planta y se puedan prevenir accidentes trabajo y enfermedades profesionales en los trabajadores.
CONTENIDO

RESUMEN EJECUTIVO .. 3
1. PLANTEAMIENTO DEL PROBLEMA .. 9
2. DESCRIPCIÓN DE LA UNIDAD DE ANÁLISIS ... 10
 GENERALIDADES .. 10
 TECNOLOGÍAS Y CAPACIDAD INSTALADA ... 11
 HISTORIA ... 12
3. OBJETIVOS ... 15
 OBJETIVO GENERAL .. 15
 OBJETIVOS ESPECÍFICOS ... 15
4. REFERENTES TEÓRICOS .. 16
 IMPORTANCIA DE UNA ADECUADA DISTRIBUCIÓN EN PLANTA 16
 DEFINICIÓN DE DISTRIBUCIÓN EN PLANTA .. 17
 PROBLEMAS DE DISTRIBUCIÓN EN PLANTA ... 17
 PRINCIPIOS DE UNA DISTRIBUCIÓN EN PLANTA ... 19
 TIPOS DE DISTRIBUCIÓN .. 19
 DIAGRAMA DE RECORRIDOS .. 22
 DIAGRAMA DE FLUJO .. 22
 PLANEACIÓN SISTEMÁTICA DE DISTRIBUCIONES .. 23
 MÉTODO DE TRABAJO PARA LA DISTRIBUCIÓN DE TALLERES ... 24
 CALCULO DE LAS SUPERFICIES A DISTRIBUIR DE GUERCHET .. 25
 COMPARACIÓN DE LOS PLANTEAMIENTOS DE DIFERENTES AUTORES 26
5. PLAN DE TRABAJO ... 28
 CRONOGRAMA DE LAS FASES ... 29
6. RESULTADOS ... 30
 FASE I: FASE DE ANÁLISIS ... 30
 FASE II: FASE DE SÍNTESIS .. 56
 FASE III: FASE DE DISEÑO DE LA PROPUESTA .. 59
7. RELACIÓN COSTO- BENEFICIO ... 74
8. RECOMENDACIONES ... 76
9. CONCLUSIONES ..77
BIBLIOGRAFÍA ...78
ANEXOS ...83
LISTA DE TABLAS

Tabla 1. Clasificación según código CIIU ..10
Tabla 2. Clasificación según el sector de actividad o productividad10
Tabla 3. Ventajas de los tipos de distribución en planta ...21
Tabla 4. Simbología empleada en diagramas de flujo ..22
Tabla 5. Comparación teórica de algunos autores ...26
Tabla 6. Tiempo de realización de cada una de las fases ...29
Tabla 7. Partes de un motor que se rectifican en la empresa CTR ..31
Tabla 8. Inventario de máquinas que intervienen en el proceso de rectificación.31
Tabla 9. Distribución de metros cuadrados del área de la empresa39
Tabla 10. Maquinaria disponible para cada uno de los procesos CTR40
Tabla 11. Color de recipientes de acuerdo a los desechos generados.42
Tabla 12. Residuos generados en el proceso de rectificación ...42
Tabla 13. Estados de alarma de las emisiones atmosféricas ..46
Tabla 14. Escala de calificación lista de chequeo ...52
Tabla 15. Parámetros de necesaria mejoría en las instalaciones, infraestructura y distribución en planta de la empresa CTR ...53
Tabla 16. Parámetros de necesaria mejoría en el manejo medio ambiental de la empresa CTR. 54
Tabla 17. Parámetros de necesaria mejoría en la seguridad e higiene industrial en las instalaciones de la empresa CTR. ...55
Tabla 18. Superficie necesaria por cada área de trabajo ...58
Tabla 19. Superficie asignada a cada área de trabajo ..59
Tabla 20. Pasos para desarrollar el método SLP ...59
Tabla 21. Calificación de las relaciones SLP ..60
Tabla 22. División de las áreas de la empresa ...65
Tabla 23. Listado de los estantes ...65
Tabla 24. Listado de la maquinaria ...65
Tabla 25. Convenciones de la propuesta ...66
Tabla 26. Comparación empresas de servicio de montacargas ...67
Tabla 27. Costos de transporte de maquinaria ..67
Tabla 28. Costos de almacenamiento de maquinaria .. 68
Tabla 29. Costos de arreglos locativos .. 68
Tabla 30. Costos de arreglos locativos .. 69
Tabla 31. Costos totales ... 69
Tabla 32. Criterio 1: Integración en conjunto ... 70
Tabla 33. Criterio 2: Mínima distancia recorrida ... 71
Tabla 34. Criterio 3: Circulación o flujo de materiales .. 71
Tabla 35. Criterio 4: Seguridad y satisfacción ... 72
Tabla 36. Criterio 5: Flexibilidad ... 72
Tabla 37. Grado de importancia de los criterios .. 73
Tabla 38. Matriz de calificación de las propuestas ... 73
Tabla 39. Matriz de calificación ponderada .. 73
Tabla 40. Relación costo-beneficio propuesta 1 ... 74
Tabla 41. Relación costo-beneficio propuesta 2 ... 75
LISTA DE FIGURAS

Figura 1. Localización de la empresa CTR ... 12
Figura 2: Vista alzada de la ubicación de la maquinaria en la empresa CTR 32
Figura 3: Estado actual del suelo de la empresa CTR .. 39
Figura 4: Vista superior de la maquinaria de la empresa CTR 40
Figura 5: Puntos ecológicos en las instalaciones de la empresa CTR 43
Figura 6: Puntos ecológicos del área de procesos .. 43
Figura 7: Sistema de filtración de grasas y aceites .. 44
Figura 8: Caja para extraer residuos de la rejilla 1 .. 44
Figura 9: Caja para extraer residuos de la rejilla 2 .. 44
Figura 10: Caja para extraer residuos de la rejilla 3 .. 45
Figura 11: Bodega de residuos peligrosos ... 45
Figura 12: Emisiones atmosféricas en la planta CTR .. 47
Figura 13: Localización del área de lavado ... 48
Figura 14: Señalización de vías de transporte ... 50
Figura 15: Uso de la estantería CTR ... 50
Figura 16: Señalización de seguridad ... 51
Figura 17: Análisis de la situación actual de las instalaciones, infraestructura y distribución 52
Figura 18: Análisis de la situación actual del manejo medio ambiental 54
Figura 19: Análisis de la situación actual del manejo medio ambiental 55
Figura 20: Diagrama de bloques proceso de rectificación de un motor 56
Figura 21: Diagrama de relaciones áreas de proceso de rectificación 60
Figura 22: Diagrama de relaciones de las actividades .. 62
Figura 23: Plano propuesta 1 .. 65
Figura 24: Plano propuesta 2 .. 65
Figura 25: Localización de puntos ecológicos, extintores y rutas de evacuación (Propuesta 1) ... 66
Figura 26: Localización de puntos ecológicos, extintores y rutas de evacuación (Propuesta 2) ... 66
1. PLANTEAMIENTO DEL PROBLEMA

Frente al aumento de la demanda, la empresa CTR, se vio en la obligación de adquirir nuevas máquinas que aumentaran su productividad y su capacidad de respuesta a las necesidades de los clientes, consiguiendo mantenerse en el mercado. Pero lo que no se tuvo en cuenta es que CTR al contar con una infraestructura muy restringida en cuanto a espacio se refiere y al no disponer de un plan de distribución en planta, estas nuevas máquinas ocasionarían la reducción del espacio para el flujo de material, el proceso y la mano de obra.

La actual distribución de planta que tiene la empresa CTR ha generado varios problemas: mala circulación de los elementos de trabajo en cada una de las operaciones, mayor recorrido de los trabajadores en cada operación, mayor tiempo en la producción, sobrecostos, almacenamiento de mercancía y riesgos laborales en la seguridad de las instalaciones, todos estos problemas se han convertido en una necesidad para la empresa con mira a establecer soluciones que le permitan corregir cada uno de estos.

Por lo anterior, este proyecto realiza la propuesta de redistribución de planta en el área productiva de la empresa CTR, con miras a mitigar los problemas que allí se presentan, generando grandes beneficios, los cuales permitan a la empresa mejorar el proceso de producción que actualmente tiene, y seguir creciendo en el mercado de manera competente, ajustándose a los pronósticos de crecimiento que tiene el sector y buscando mejorar la seguridad de las instalaciones y equipos en la planta, si esta propuesta se llega a implementar. Frente a esto se plantea el siguiente interrogante:

¿Es posible diseñar una propuesta aplicable de distribución de la maquinaria en la planta de producción de la empresa CTR, teniendo en cuenta las condiciones actuales de espacio, y que a su vez genere beneficios para la compañía si se decidiera implementarla?
2. DESCRIPCIÓN DE LA UNIDAD DE ANÁLISIS

GENERALIDADES

A continuación, se presenta una descripción detallada de la empresa y su entorno, para comprender la situación actual de la empresa CENTRO TÉCNICO DE RECTIFICACIÓN LTDA.

Las empresas dedicadas al mantenimiento y reparación de vehículos automotores pueden ser clasificadas según diversos criterios, algunas de estas clasificaciones se definen según el Código CIIU (clasificación industrial internacional uniforme), el sector de actividad o productividad y el tamaño o volumen de producción.

- **Clasificación según código CIIU**: según el código CIIU, las empresas de mantenimiento y reparación de vehículos automotores se encuentran descritas de la siguiente manera:

 Tabla 1. **Clasificación según código CIIU**

<table>
<thead>
<tr>
<th>Sección</th>
<th>G</th>
<th>COMERCIO AL POR MAYOR Y AL POR MENOR; REPARACIÓN DE VEHÍCULOS AUTOMOTORES Y MOTOCICLETAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>División</td>
<td>45</td>
<td>Comercio, mantenimiento y reparación de vehículos automotores y motocicletas, sus partes, piezas y accesorios</td>
</tr>
<tr>
<td>Grupo</td>
<td>452</td>
<td>Mantenimiento y reparación de vehículos automotores</td>
</tr>
<tr>
<td>Clase</td>
<td>4520</td>
<td></td>
</tr>
</tbody>
</table>

- **Clasificación según el sector de actividad o productividad**: En esta clasificación las empresas se reconocen según el sector económico en el cual llevan a cabo su expansión:

 Tabla 2. **Clasificación según el sector de actividad o productividad**

 | Empresas del sector terciario | A través de un proceso productivo, las empresas industriales dedicadas al mantenimiento y reparación de vehículos automotores, prestan servicios de rectificación de motores de gasolina, diésel y gas |

Se puede realizar una segunda clasificación de las empresas según la actividad que
desarrollan, es por ello que las empresas dedicadas al mantenimiento y reparación de vehículos automotores se clasifican como una actividad comercial que prestan un servicio tras un proceso de mantenimiento.

- **Clasificación según el tamaño o volumen de producción:** Según la ley 590 de 10 de julio del 2000, "Por la cual se dictan disposiciones para promover el desarrollo de las micro, pequeñas y medianas empresa" (Congreso de Colombia, 2000), las pequeñas empresas tienen de 11 a 50 personas y su capital se encuentra entre quinientos 501 y 5001 salarios mínimos mensuales legales vigentes. Es por ello que la empresa CENTRO TÉCNICO DE RECTIFICACIÓN LTDA (CTR) se clasifica como una pequeña empresa, ya que cuenta con 16 colaboradores.

TECNOLOGÍAS Y CAPACIDAD INSTALADA

El Centro Técnico de Rectificación cuenta con la tecnología necesaria para la reconstrucción de alojamientos en motores diésel en todas sus líneas; cepillado y cajeado de plenitudes de motores Mercedes 447, serie 500, Actroz, Scania, línea Cummins, entre otros. Bruñidora de cilindros automática, que permite mayor precisión en la rugosidad y ángulo de bruñido. Maquinaria de alta gama para el rectificado de asientos de válvulas con nivel electrónico y probador de estanqueidad, que garantizan el 95% del sellado entre válvula y asiento.

Maquinaria para prueba hidrostáticas a temperatura de trabajo por recirculación que detecta posibles fisuras en la culata y maquinaria digital para cepillado, que controla alineamiento y rugosidad de la plenitud. Además, equipo para la instalación de camisillas para inyectores en motores diésel en general.

Rectificadora para ejes y cigüeñales tipo liviano y pesado; equipos para rectificación de bujes y círculos de bielas con buril y piedra abrasiva que garantizan la conservación de la geometría y la maquinaria requerida para la restauración de puntas de cigüeñales y fabricación de asientos top-break para motores Mercedes Benz.

Adicionalmente el sistema de información les permite mantener registros de la trazabilidad de cada uno de los motores ingresados, conservando una hoja de vida de los procedimientos realizados.
HISTORIA

El Centro Técnico de Rectificación surgió en el año 2005 con el objetivo de transformar el servicio de rectificación de motores en los campos automotriz, a través de la implantación de tecnología de punta y un excelente servicio al cliente. Ubicada desde sus inicios a 200 metros de zona Franca Fontibón, en la ciudad de Bogotá. Como lo muestra la figura 1.

![Figura 1. Localización de la empresa CTR](https://www.google.com/maps/place/CTR+Centro+Técnico+de+Rectificación+de+Motores+Recuperado+el+27+de+enero+de+2015,+de+google.com:https://www.google.com/maps/place/CTR+)

A la fecha cuenta con la certificación de su Sistema de Gestión de Calidad con la norma ISO 9001. Durante este tiempo CTR se ha fortalecido, llegando a ser reconocida por ofrecer soluciones prácticas y eficaces a los problemas propios de la industria de los motores, y por innovar continuamente creando condiciones para seguir presente en la industria. Es por esto que CTR ha logrado consolidarse en el sector como una compañía de amplia proyección a nivel nacional, al contar con un excelente equipo de profesionales especializados e integrados a los más avanzados procesos industriales.

Misión

Rectificadora de motores CTR, trabaja con una visión competitiva del servicio. Contamos con el conocimiento y experiencia, la organización adecuada y personal competente, ofreciendo a nuestros clientes asesoría integral en cada una de sus necesidades y expectativas, proyectando
confiabilidad en cada uno de nuestros procesos y la responsabilidad con el cuidado del medio ambiente.

Visión

En el 2020, ser una Rectificadora de Motores con reconocimiento a nivel local, a partir del mejoramiento permanente en todos nuestros procesos, con personal competente, actualización tecnológica continua, implementando buenas prácticas ambientales y entendiendo las necesidades de cada uno de nuestros clientes, ofreciendo asesoría integral en nuestro servicio.

Política de calidad

En CTR Rectificadora de Motores mejoramos continuamente para ofrecer un servicio de rectificación de calidad, el cual se define por la precisión con la que se realizan los procedimientos, así como la rapidez en los procesos de diagnóstico y ejecución, siempre ofreciendo a nuestros clientes una oportuna y amable atención.

Descripción de servicios que ofrece la empresa

- Asesoría técnica y valoración de motores diésel y gasolina a domicilio: Este servicio es por el que empieza cualquier procedimiento en la empresa, ya que se le realiza a el motor que proporciona el cliente un diagnóstico técnico teniendo en cuenta los síntomas que este haya sufrido, y la inspección realizada, con el fin de poder determinar que procedimientos se le deben realizar para repararlo y que piezas se necesitaran para dicha tarea. Cabe aclarar que este servicio se realiza en ocasiones de manera domiciliaria, según lo que el cliente requiera.

- Rectificación de Culatas: En el servicio de rectificación de una culata, van incluido otros servicios, para garantizar el adecuado rectificado. Estos servicios son: prueba hidrostática, rectificación de bases, instalación y cambio de camisillas, fabricación de anillos, fabricación de bushing y verificación metrológica, es de aclarar que no todos estos servicios se realizan para rectificar una culata, esto dependerá del diagnóstico realizado de manera inicial.

- Rectificación de Bloques: La rectificación de un bloque se compone de diversas actividades, dependiendo las falencias que presente cada bloque. Entre estas actividades
encontramos la rectificación de cilindros, que en la empresa CTR se realiza utilizando una bruñidora de cilindros automática, lo que otorga una mayor precisión para dicha actividad, también se realiza el encamisado haciendo un proceso de verificación y rectificación de tolerancias, el ensamble de los pistones que se deslizarán por los cilindros, cambio de bujes, todo esto enmarcado dentro de una verificación metrológica constante.

- Rectificación de Cigüeñas: Esta rectificación se realiza para cigüeñas de tipo liviano y pesado, realizando una reconstrucción de puntas en este, y para garantizar la calidad en el maquinado, una verificación metrológica.

- Otros: Entre otros servicios se pueden encontrar el servicio de torno y fresadora en las ocasiones que sea necesario fabricar una pieza, también están los servicios de soldadura, prensa hidráulica, mantenimiento industrial y venta de repuestos
3. OBJETIVOS

OBJETIVO GENERAL

• Diseñar una propuesta de mejora en la distribución del área de producción en la empresa CTR en Bogotá.

OBJETIVOS ESPECÍFICOS

• Analizar el sistema productivo, el flujo y el sistema de manejo de material en el área de producción.
• Considerar en la propuesta los factores de seguridad y manejo ambiental, en el diseño de instalaciones, de acuerdo con la naturaleza de la actividad económica.
• Establecer la relación costo-beneficio de la propuesta.
4. REFERENTES TEÓRICOS

IMPORTANCIA DE UNA ADECUADA DISTRIBUCIÓN EN PLANTA

Desde el punto de vista teórico la distribución en planta es útil porque contribuye al éxito de la gestión empresarial. Por otro lado, se puede afirmar que la distribución en planta es de vital importancia ya que por medio de ella se logra un adecuado orden y manejo de las áreas de trabajo y equipos, con el fin de minimizar tiempos, espacios y costos, orientan a los directivos en su tarea de dirigir las actividades y caminos a seguir y señalar los peligros que se deben evitar en la producción.

Los motivos que hacen necesaria la redistribución, se deben a tres tipos de cambios.

- En el volumen de la producción
- En la tecnología y en los procesos
- En el producto

La frecuencia de la redistribución dependerá de las exigencias del propio proceso puede ser periódicamente, continuamente o con una periodicidad no concreta. Los síntomas que ponen de manifiesto la necesidad de recurrir a la redistribución de una planta productiva son:

- Congestión y deficiente utilización del espacio.
- Acumulación excesiva de materiales en proceso.
- Excesivas distancias a recorrer en el flujo de trabajo.
- Simultaneidad de cuellos de botella y ociosidad en centros de trabajo.
- Trabajadores cualificados realizando demasiadas operaciones poco complejas.
- Ansiedad y malestar de la mano de obra.
- Accidentes laborales.
- Dificultad de control de las operaciones y del personal.

Finalmente, una buena distribución en planta es importante porque evita fracasos productivos y financieros, contribuyendo a un mejoramiento continuo en los procesos, tanto en las empresas industriales, así como en la de servicios.
DEFINICIÓN DE DISTRIBUCIÓN EN PLANTA

Para Palacios (2009), la distribución en planta es el proceso de ordenamiento físico de los espacios necesarios para el equipo de producción, los materiales, la mano de obra el movimiento y el almacenamiento tanto de los materiales como de los productos terminados, alcanzando los objetivos fijados de la forma más adecuada y eficiente posible.

La mayoría de las distribuciones quedan diseñadas eficientemente para las condiciones de partida, pero a medida que la organización crece debe adaptarse a cambios internos y externos lo que hace que la distribución inicial se vuelva menos adecuada, hasta el momento en que la redistribución se hace necesaria.

Por ende, la importancia de la distribución en planta es fundamental para conseguir el mejor funcionamiento de las instalaciones. Se aplica a todos aquellos casos que necesiten disponer de unos medios físicos en un espacio determinado ya este prefijado o no.

A continuación, se darán a conocer el objetivo general y los principales objetivos específicos que tiene una distribución en planta según Palacios (2009). Principalmente una distribución en planta debe hallar el ordenamiento de las áreas de trabajo, equipo y materiales, que sea el más funcional, económico estético, seguro y satisfactorio para el personal, a partir de este objetivo se reconocen otros relacionados con el transporte de material, el uso adecuado de las instalaciones, la seguridad en las instalaciones, flexibilidad para posibles cambios, asegurar espacios adecuados para el almacenamiento de materiales.

PROBLEMAS DE DISTRIBUCIÓN EN PLANTA

Una distribución en planta se soporta en un proceso de expansión o traslado de una planta ya existente y en adaptaciones o ajustes de la distribución existente.

Un problema de distribución está relacionado de manera entrañable con toda la organización de la empresa. En este problema intervienen diversos factores innatos de una corporación, lo que aumenta el nivel de complejidad para encontrar una solución óptima a dicho problema.
Entre los diversos factores Pierre (1975), examina los que en su concepto tiene una mayor relevancia, teniendo en cuenta que entre esos factores podría haber algunos otros que inciden de manera determinante:

- **Circulación de los materiales**: para Pierre reducir el costo de manutención de los materiales en una corporación es sumamente importante, empezando por reducir las distancias de recorrido del material de manera horizontal y vertical, teniendo en cuenta las dimensiones de las vías de acceso, puertas y pasillos por donde el material se va a transportar.

- **Circulación de las personas**: evitar al máximo el paso de personas ajenas en la planta de producción, localizando cerca de la entrada de la planta los locales a las cuales las personas ajenas de la empresa pueden tener acceso. Distribuir los locales de producción de manera que se reduzca al máximo las distancias a recorrer por cada uno de los trabajadores. Localizar de manera adecuada los departamentos de distribución y planificación del trabajo en la empresa.

- **Economía de personal**: tener en cuenta el tiempo perdido de desplazamiento la mano de obra de manutención y la posibilidad de confiar a un mismo trabajador el manejo de varias máquinas.

- **Calidad del trabajo**: cuidar la localización de los talleres u oficinas cuya labor pueda sufrir los efectos de la proximidad a otras.

- **Condiciones de trabajo**
 - Seguridad: prever suficientes salidas de emergencia, evitar la ubicación de maquinaria peligrosa en los lugares de acceso frecuente.
 - Iluminación: iluminar de manera adecuada los locales y departamentos donde se hagan trabajos minuciosos.
 - Higiene: prever para cada departamento un volumen de aire suficiente teniendo en cuenta las personas que trabajan en cada uno de estos.
 - Ambiente: ordenar de manera adecuada los talleres con un aspecto en lo posible agradable.

- **Facilidades de mando y de control**: prever almacenes cerrados, localizar la oficina del supervisor en lugares donde sea visible la totalidad de la planta.
PRINCIPIOS DE UNA DISTRIBUCIÓN EN PLANTA

- **Principio de la integración de conjunto:** la mejor distribución es la que integra a los hombres, los materiales, la maquinaria, las actividades auxiliares, así como cualquier otro factor, de modo que resulte el compromiso mejor entre todas estas partes.

- **Principio de la mínima distancia recorrida:** en igualdad de condiciones, es siempre mejor la distribución que permita que la distancia a recorrer entre operaciones sea la más corta.

- **Principio de la circulación o flujo de materiales:** lograr que la interrupción entre los movimientos de cada uno de los materiales o elementos de un proceso productivo sea la más mínima posible.

- **Principio del espacio cubico:** la economía se obtiene utilizando de un modo efectivo todo el espacio disponible, tanto vertical como horizontal.

- **Principio de la satisfacción y de la seguridad:** siempre será más efectiva la distribución que haga el trabajo más satisfactorio y seguro para los productores, teniendo en cuenta también los demás principios.

- **Principio de la flexibilidad:** en igualdad de condiciones, siempre será más efectiva la distribución que pueda ser ajustada o reordenada con menos costo o inconvenientes.

TIPOS DE DISTRIBUCIÓN

Según Muther, existen dos tipos de distribución las cuales hacen parte de la organización específica que debe haber en una planta, (como se cita en NIEBEL, B., & FREIVALDS, A. (2009).)

- **La distribución por producto:** tiene algunas desventajas ya que, al tener un área pequeña y muchas ocupaciones, los empleados tienden a sentirse un poco insatisfechos. Es notable en cuando las ocupaciones tienen distintos salarios esto se debe al tener varias instalaciones diferentes agrupadas. Otra de las desventajas de la distribución por productos es el hecho de que este arreglo tiene tendencia a parecer caótico y desordenado.

- **Las distribuciones por proceso:** implican que deben agruparse en instalaciones similares, por ende, si estuviéramos hablando de tornos, fresadoras, esmeriles, estos irían ubicados todos los tornos en una instalación y así sucesivamente. Este tipo de distribución
proporciona una apariencia general de limpieza y orden. Así si las ordenes de producción de productos similares son limitadas y existe “trabajo” la distribución por procesos resulta más eficiente. Una de las desventajas de esta distribución es que es desplazamiento largo si es necesario dar un seguimiento de tareas que requieren una serie de operaciones en diversas maquinas.

De manera complementaria para Pierre pueden existir infinidad de posibles distribuciones, además que no existe un tipo de distribución que llegue a hacer la mejor ya que una distribución puede ser la mejor en unas condiciones, pero puede resultar ser la peor en otras. En general una distribución de planta representa la combinación de dos distribuciones básicas.

Pierre categoriza los tipos de distribución teniendo en cuenta el tipo de industria y teniendo en cuenta la organización de la producción de la siguiente manera:

Según el tipo de industria:

- **Industrias mono lineales:** la producción en este tipo de industrias se hace a lo largo de un único circuito qué de manera sucesiva es recorrida por cada uno de los productos.
- **Industrias convergentes:** en este tipo de industrias las materias primas, materiales o productos semi-ensamblados o semi-acabados, llegan de distintas procedencias y se unen a una línea final de producción.
- **Industrias divergentes:** se da inició desde una materia prima, que en el curso de tratamiento diverge en varias líneas particulares de fabricación. dando como resultado un producto diferente en cada una de estas.
- **Industrias convergentes-divergentes:** en estas industrias se parte de cierto número de materias primas o materiales, con el fin de elaborar un producto intermedio que posteriormente diverge en diversas líneas de producción, dando como finalidad varios productos diferentes.

Según la organización de la producción:

- **Distribución funcional:** los puestos de trabajo se agrupan teniendo en cuenta el tipo de actividad que se realiza.
• **Distribución en cadena:** los puestos de trabajo se colocan uno junto a otro teniendo en cuenta el orden en que se efectúa cada uno de los procesos.

• **Producción en línea:** los puestos de trabajo están colocados en cadena donde cada cadena ejecuta una serie de trabajos diferentes de manera análoga permitiendo la consecución de trabajos unitarios de pequeñas series.

• **Producción en puesto fijo:** estas partes de cierto estado de avance de algún producto el cual es muy grande y pesado para mover a lo largo de un proceso de producción es por esta razón que los materiales y las máquinas son muy livianas y de fácil movimiento para que se dirijan hacia dicho producto.

• **Línea de montaje en puestos fijos:** que son de las piezas principales de los productos ensamblar se disponen de manera ni lineal concierto proximidad y las demás piezas se dirigen hacia estás. De la misma manera lo hacen los trabajadores los cuales se desplazan teniendo en cuenta sus capacidades de un sitio a otro para realizar la tarea de acuerdo a su competencia.

Palacios (2009) plantea algunas ventajas de los tipos de distribución en planta las cuales especificas los beneficios que se tendrían al aplicar cada una de estas.

Tabla 3.
Ventajas de los tipos de distribución en planta

<table>
<thead>
<tr>
<th>LÍNEA O CADENA</th>
<th>FUNCIONAL O PROCESO</th>
<th>POSICIÓN FIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor trasporte de materiales.</td>
<td>Mejor utilización de maquinaria.</td>
<td>El transporte de materiales se reduce al mínimo.</td>
</tr>
<tr>
<td>Menor cantidad de materiales en proceso y menor espacio temporal.</td>
<td>Flexibilidad en la asignación de equipo.</td>
<td>Asegura continuidad por asignación de equipo de operarios responsables.</td>
</tr>
<tr>
<td>Uso efectivo de la mano de obra por especialización, facilidad de entrenamiento y mayor oferta a menor costo.</td>
<td>Se adapta la demanda intermitente con gran variedad de productos.</td>
<td>Se adapta la demanda intermitente con gran variedad de productos.</td>
</tr>
<tr>
<td>Mayor facilidad de control.</td>
<td>Mayor incentivo al operario.</td>
<td>Permite cambios en el diseño de productos y secuencias de operaciones.</td>
</tr>
<tr>
<td>Se simplifica la planeación, control y supervisión de la producción.</td>
<td>Más facilidad continua de producción por avería de maquinaria, escases de material o ausencia de operarios.</td>
<td>Es más flexible.</td>
</tr>
</tbody>
</table>

Nota Fuente: Palacios, L. (2009). Ingeniería de métodos, movimientos y tiempos. Colombia: ECOE.
DIAGRAMA DE RECORRIDOS

Antes de corregir una configuración o diseñar una nueva, el analista debe acumular los hechos que pueden influir sobre la distribución. Los diagramas de recorrido pueden ser de gran utilidad para diagnosticar problemas relacionados con el arreglo de departamentos y áreas de servicio, así como la ubicación de equipo dentro de un determinado sector de la planta. El diagrama de recorrido consiste en una matriz que despliega la magnitud del manejo de materiales que se lleva a cabo entre dos instalaciones en un periodo determinado. La unidad que identifica la cantidad de manejo de materiales puede ser la que le parezca más apropiada al analista. Pueden ser libras, toneladas, frecuencias de manejo de materiales.

DIAGRAMA DE FLUJO

El diagrama de flujo es una representación gráfica de la secuencia de todas las operaciones, transporte, inspecciones, esperas, y todos los almacenamientos en los que incurre un proceso desde el inicio hasta el final. Además, se incluye una pequeña información que pueda ayudar al análisis de este, con el objetivo de tener una idea clara de toda la secuencia del proceso. Y es una herramienta que ayuda a mejorar la distribución de los almacenes, bodegas, plantas de procesos y el manejo de los materiales. De tal manera que disminuya las esperas y mejore los tiempos ociosos en el proceso.

Por otro lado, los diagramas de flujo son una herramienta que se utiliza mucho en el campo de la distribución, ya que analizando el proceso se puede modificar el orden de algunas máquinas he instalaciones.

Tabla 4. Simbología empleada en diagramas de flujo

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Símbolo</th>
<th>Resultado predominante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación</td>
<td></td>
<td>Se produce o se realiza algo</td>
</tr>
<tr>
<td>Transporte</td>
<td>[ójala]</td>
<td>Se cambia de lugar o se mueve un objeto</td>
</tr>
<tr>
<td>Inspección</td>
<td>[]</td>
<td>Se verifica la calidad o la cantidad del producto</td>
</tr>
<tr>
<td>Demora</td>
<td>[]</td>
<td>Se infiere o se retrasa el paso siguiente</td>
</tr>
<tr>
<td>Almacenaje</td>
<td>[▼]</td>
<td>Se guarda o se protege el producto o los materiales</td>
</tr>
<tr>
<td>Actividad combinada</td>
<td>[▼]</td>
<td>Operación combinada con una inspección</td>
</tr>
</tbody>
</table>

PLANEACIÓN SISTEMÁTICA DE DISTRIBUCIONES

Muther, plantea la planeación sistemática (SLP), cuyo objetivo es ubicar dos áreas con grandes relaciones lógicas y de frecuencias cercanas entre sí mediante el uso de un procedimiento directo de seis pasos: (NIEBEL, B., & FREIVALDS , A. (2009).)

1. **Diagrama de relaciones:** en esta primera etapa se establecen las relaciones en las diferentes áreas; después se elabora un diagrama sobre un formato llamado *diagrama de relaciones*. Una relación es el grado relativo de acercamiento, que se desea o que se requiere, entre diferentes actividades, áreas, departamentos, habitaciones etc. Según lo determine la información cuantitativa del flujo de un diagrama desde-hacia, o más cualitativamente, de las interacciones funcionales o información subjetiva.

2. **Establezca las necesidades de espacios:** se establecen las necesidades de espacio en términos de pies cuadrados que existen. Estos valores se pueden calcularse con base en las necesidades de producción, a partir de áreas existentes.

3. **Elabore diagrama de relación entre actividades:** se dibuja una representación visual de las distintas actividades.

4. **Elabore relaciones de espacios en la distribución:** se crea una representación parcial escalando las áreas en términos de su tamaño relativo. Luego que los analistas estén satisfechos con la distribución las áreas se compactan en un solo plano, también de tener en cuenta área de servicios, área de cafetería, etc.

5. **Evalué una distribución alterna:** debido a la gran magnitud de alternativas y de propuestas las cuales la mayoría pueden ser igual de probables. Por ende, el analista debe evaluar cada una de las opciones para poder determinar la mejor solución. Según Muther (1973) para identificar la mejor opción lo adecuado es hacer una ponderación de ciertas características como: ampliar instalaciones, flexibilidad, eficiencia, manejo de materiales eficiente, seguridad, facilidad de supervisión. La calificación que sugiere Muther (1973) es de 0-4; donde 4 representa casi perfecto; 3 especialmente bueno; 2 importante; 1 resultado ordinario; o sin importancia.

6. **Seleccione la distribución e impleméntela:** la fase final consiste en implementar el nuevo método.
Para Niebel & Freivalds (2009), el manejo de materiales y la utilización de equipo mecánico para trasladar los materiales es un factor fundamental en la distribución de planta, ya que este incluye restricciones en los movimientos, tiempo, lugar, cantidad y espacio.

MÉTODO DE TRABAJO PARA LA DISTRIBUCIÓN DE TALLERES

Principalmente, es indispensable plantear de manera clara y exacta los objetivos a conseguir con la distribución en planta que se pretende hacer en una empresa, consiguiente a esto Pierre plantea una metodología de trabajo para poder efectuar una distribución de planta en algún taller, teniendo en cuenta tres fases para la consecución de esto:

1. **Fase de análisis:** en esta fase es indispensable reunir toda la información necesaria y pertinente para plantear de manera exacta el problema de distribución en una empresa determinando entre tantas cosas las gamas de operación que se realizan allí las características de la maquinaria planos de los locales y las instalaciones inventario de material entre otras cosas

2. **Fase de síntesis**

 Esta fase se conforma por unas más pequeñas que son:

 2.1 **Definir el esquema funcional:** en éste se busca definir los desplazamientos que se realizan, en cuanto a materiales a lo largo del proceso productivo empezando desde la recepción de material, hasta el envío de productos terminados, señalando de manera sucesiva el orden en que se presenta cada desplazamiento para los puestos de trabajos. Es necesario tener en cuenta el espacio que ocupa, la potencia que necesita, el personal que requiere y las dimensiones de la maquinaria que allí se encontraría localizada.

 2.2 **Determinar una distribución teórica de conjunto:** Escoger de manera primordial entre los diferentes tipos de distribución, teniendo en cuenta los sistemas de producción y de manutención que se empleen en la empresa, además tener en cuenta las dimensiones de cada taller o departamento en los que se realizara la distribución, contemplando las superficies que se necesitan para el manejo de la maquinaria, etc.

 2.3 **Estudiar la distribución que se empleará en cada taller:** tener en cuenta en este estudio las entradas, salidas y pasillos qué tendrá cada departamento, y si son lo suficientemente anchos para lo que se requiera, sin ir a exceder el tamaño necesario teniendo en cuenta el incremento de manutención probable que se podría presentar. Considerar el
desplazamiento de los materiales reduciendo el circuito de los que son más pesados o peligrosos ayudando con esto reducir también los desplazamientos de personal.

3. **Fase de elección:** Para poder determinar cuál de las opciones resulta mucho más viable, rentable y segura para la empresa, es necesario sopesar las ventajas y desventajas que tiene cada una de éstas frente a los diversos aspectos que se podrían generar, teniendo en cuenta los gastos de instalación a los que se incurriría, además de los gastos por la falta de producción que se produciría.

Otro punto sumamente importante que Pierre menciona, es referente al grado de agilidad de la distribución que se ha propuesto, es decir con qué facilidad se puede modificar esta distribución con el mínimo gasto posible teniendo en cuenta los diversos escenarios de modificación

CALCULO DE LAS SUPERFICIES A DISTRIBUIR DE GUERCHET

Este método de cálculo de superficies creado por P. F. Guerchet, ayuda a conocer de manera clara el espacio necesario para reordenar de manera adecuada la maquinaria que se tiene.

Para conocer la superficie total necesaria para cada elemento a distribuir se tiene en cuenta la sumatoria de 3 superficies parciales:

\[
St = Ss + Sg + Se
\]

- **Superficie estática (Ss):** es la superficie en metros cuadrados que corresponde a los muebles la maquinaria y las instalaciones.

- **Superficie de gravitación (Sg):** superficie alrededor de los puestos de trabajo que es utilizada por el trabajador y por el material necesario para la operación. Para obtener este valor se multiplica la superficie estática de cada máquina o puesto de trabajo, por el número de los lados a partir de los cuales este es utilizado (N)

\[
Sg = Ss \times N
\]

- **Superficie de evolución (Se):** es el espacio de reserva necesario entre los puestos de trabajo para los desplazamientos de personal, de material y para la manutención. Este valor se obtiene multiplicando la suma de la superficie estática y la superficie de gravitación individual de cada máquina, por un coeficiente de superficie evolutiva (K), conocido como “coeficiente de
evolución”, el cual representa una medida ponderada de la relación entre las alturas de los elementos móviles y estáticos.

\[Se = (S_s + S_g)(K) \]

Dónde:

\[h_{EM} = \frac{\sum_{i=1}^{r} S_s * n * h}{\sum_{i=1}^{t} S_s * n} \]

\[h_{EE} = \frac{\sum_{i=1}^{t} S_s * n * h}{\sum_{i=1}^{t} S_s * n} \]

Siendo:

- \(r \) = Variedad de elementos móviles
- \(t \) = Variedad de elementos móviles
- \(S_s \) = Superficie estática de cada elemento
- \(n \) = Número de elementos de cada tipo
- \(h \) = Altura de cada elemento

COMPARACIÓN DE LOS PLANTEAMIENTOS DE DIFERENTES AUTORES

Tabla 5.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Definición</th>
<th>Tipos de distribución</th>
<th>Método</th>
</tr>
</thead>
</table>
| Muther | Desarrollar un sistema de producción que permita la fabricación del número deseado de productos con la calidad que se requiere y a bajo costo. | Por producto: tiene algunas desventajas ya que, al tener un área pequeña y muchas ocupaciones, los empleados tienden a sentirse un poco insatisfechos. Por proceso: implican que deben agruparse en instalaciones similares. | Planeación sistemática (SLP), la cual consta de 6 pasos para ser desarrollada:
 1. Diagrama de relaciones.
 2. Establezca las necesidades.
 3. Elabore diagrama de relación entre actividades.
 4. Elabore relaciones de espacios en la distribución.
 5. Evalué una distribución alterna.
 6. Seleccione la distribución e implementela. |
| Pierre | Según el tipo de industria:
 • Industrias mono lineales.
 • Industrias convergentes.
 • Industrias divergentes.
 • Industrias convergentes-divergentes.
 Según la organización de la producción:
 • Distribución funcional.
 • Distribución en cadena.
 • Producción en línea.
 Producción en puesto fijo. | Plantea una metodología para la distribución de talleres en tres fases:
 1. Fase analítica.
 2. Fase de síntesis:
 • Definir el esquema funcional.
 • Determinar una distribución teórica de conjunto.
 • Estudiar la distribución que se empleará en cada taller.
 3. Fase de elección. |
Proceso de ordenamiento físico de los espacios necesarios para el equipo de producción, los materiales, la mano de obra el movimiento y el almacenamiento tanto de los materiales como de los productos terminados, alcanzando los objetivos fijados de la forma más adecuada y eficiente posible.

- Línea o cadena.
- Funcional o proceso.
- Posición fija.

5. PLAN DE TRABAJO

Teniendo en cuenta que se desarrolla un estudio de la distribución en planta, y un diagnóstico previo a la empresa CTR, este plan de trabajo como propuesta de redistribución de planta, se desarrolló a través de diferentes fases contenidas en el “Método de trabajo para el estudio de la distribución de talleres” elaborado por Pierre (1975). Cada una de esas fases se complementa con los procedimientos expuestos por Muther (1965) con su método SLP, de esta forma se estructuró y se desarrolló la siguiente metodología:

FASE I: Fase de análisis: Esta fase tuvo como fin analizar las actividades y procesos rectificación que se realizan en la empresa CTR. De tal manera que se pudieran hallar las posibles falencias en los recorridos.

Esta fue desarrollada con visitas permanentes a la empresa para conocer los procesos, identificar la maquinaria que interviene en éste y tomar las medidas de las instalaciones y de las maquinas.

Para recolección de la información se utilizaron los siguientes instrumentos: lista de chequeo, entrevista, libros. Los cuales fueron de gran utilidad para poder desarrollar la fase y tener un diagnóstico previo de las falencias de la empresa.

FASE II: Fase de síntesis: En esta fase se buscó determinar las características del proceso por pieza del motor a rectificar y así identificar recorridos innecesarios, se analizó el tipo de distribución adecuado para esta y se hicieron los cálculos adecuados para hallar el área requerida para la distribución por el método de Guerchet.

La cual fue desarrollada mediante la elaboración de diagramas de recorrido, diagramas de flujo, y la toma detallada de medidas tanto de máquinas como de las instalaciones.

FASE III: Fase de diseño de la propuesta: Esta fase tuvo como fin de desarrollar y diseñar la propuesta de redistribución en la planta de producción en la empresa CTR, teniendo en cuenta los procesos que allí se realizan, optimizando de la mejor manera el espacio con el que se cuenta.
Para el desarrollo de esta se agrupó la maquinaria por áreas, se plantearon los nuevos recorridos del proceso, se diseñó la propuesta de distribución haciendo uso del software de diseño gráfico CAD (Solid Edge) y se propusieron acciones correctivas para la seguridad en las instalaciones con el fin de mitigar los riesgos en el proceso.

CRONOGRAMA DE LAS FASES

La siguiente tabla muestra la relación de las fases con el tiempo que se implementara cada una de estas, durante un tiempo de cinco meses que es lo que se tuvo planeado para desarrollar la propuesta de redistribución en la planta de la CTR.

<table>
<thead>
<tr>
<th>FASE</th>
<th>Mes 1</th>
<th>Mes 2</th>
<th>Mes 3</th>
<th>Mes 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores
Fase I: Fase de análisis

La esta fase se analizó la situación actual de la rectificadora CTR, interpretando los problemas más evidentes y así describir las condiciones actuales en las que se encuentra la empresa frente a sus procesos, maquinaria, infraestructura, instalaciones, seguridad e higiene industrial, manejo medioambiental, todo esto, enmarcado en la distribución en planta. Como parte de los resultados de esta fase, se elaboraron todos los diagramas de proceso, los cuales se presentan en los anexos 1 al 10 del informe.

Rectificación de motores

- El motor está constituido por un conjunto de piezas que están sometidas al desgaste y deformaciones, esto debido al rozamiento entre piezas y el calor que tienen que soportar. Es por esto que nace el proceso de rectificación para corregir el desgaste y las deformaciones, que consiste en el mecanizado de cada una de las piezas que lo necesiten hasta poder igualar todas las superficies de contacto, dándole así un acabado que disminuya el rozamiento y favorezca la lubricación de todas las partes.

- Se le puede realizar rectificación a las siguientes partes del motor: los cilindros del bloque motor, cigüeñales, árboles de levas, asiento de válvulas. También se rectifican las piezas de ajuste como: culatas, bloques de motor. Para poder realizar una adecuada rectificación es necesario contar con maquinaria que garantice la calidad del proceso, las cuales deben tener un diseño para el trabajo en las distintas piezas.

Partes de un motor que se rectifican en la empresa CTR

La siguiente tabla muestra las principales piezas de un motor que se pueden rectificar en la empresa Centro Técnico de Rectificación CTR y su función específica.
Partes de un motor que se rectifican en la empresa CTR

<table>
<thead>
<tr>
<th>PARTES DE UN MOTOR</th>
<th>MÁQUINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cigüeñal</td>
<td>Rectificadora de culatas</td>
</tr>
<tr>
<td>Culata</td>
<td>Rectificadora de válvulas</td>
</tr>
<tr>
<td>Biela</td>
<td>Prueba hidrostática</td>
</tr>
<tr>
<td>Bloque</td>
<td>Cepilladora</td>
</tr>
<tr>
<td>Válvula</td>
<td>Desarmadora de culatas</td>
</tr>
</tbody>
</table>

Notas:
- Fuente: Adoptado de Giraldi, J. (1985). Reparación de Motores de Tractores Agrícolas. Obtenido de https://books.google.es/books?hl=es&lr=&id=qAVnkJCD3YCY&oi=fnd&pg=PR5&dq=partes+de+un+motor+que+se+rectifican+&ots=027t8LIUJm&sig=x7njD6jQ3Ng_gl_B_5l3KwN-C#v=onepage&q=partes%20de%20un%20motor%20que%20se%20rectifican&f=false

Descripción de los procesos

En la siguiente tabla se puede observar el inventario de la maquinaria con la que actualmente cuenta la empresa CTR y que interviene directamente en el proceso.

Tabla 8.
Inventario de máquinas que intervienen en el proceso de rectificación.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Máquina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rectificadora de culatas</td>
</tr>
<tr>
<td>2</td>
<td>Rectificadora de válvulas</td>
</tr>
<tr>
<td>3</td>
<td>Prueba hidrostática</td>
</tr>
<tr>
<td>4</td>
<td>Cepilladora</td>
</tr>
<tr>
<td>5</td>
<td>Desarmadora de culatas</td>
</tr>
<tr>
<td>6</td>
<td>Rectificadora de bielas</td>
</tr>
<tr>
<td>7</td>
<td>Ensambladora de bielas</td>
</tr>
<tr>
<td>8</td>
<td>Rectificadora de cigüeñales 2.0</td>
</tr>
<tr>
<td>9</td>
<td>Rectificadora de cigüeñales 1.4</td>
</tr>
<tr>
<td>10</td>
<td>Mandrinadora de cilindros #1</td>
</tr>
<tr>
<td>11</td>
<td>Mandrinadora de cilindros #2</td>
</tr>
<tr>
<td>12</td>
<td>Bruñidora de cilindros</td>
</tr>
<tr>
<td>13</td>
<td>Fresadora</td>
</tr>
<tr>
<td>14</td>
<td>Torno 1mt</td>
</tr>
<tr>
<td>15</td>
<td>Torno 1.5 mt</td>
</tr>
<tr>
<td>16</td>
<td>Círculo de bancada</td>
</tr>
<tr>
<td>17</td>
<td>Lavadora a ultrasonido</td>
</tr>
<tr>
<td>18</td>
<td>Lavadora de motores</td>
</tr>
</tbody>
</table>
En la figura 2 se encuentra el posicionamiento actual de cada una de las maquinas referenciadas en el inventario.

Figura 2: Vista alzada de la ubicación de la maquinaria en la empresa CTR

Fuente: Los autores, software utilizado Solid Edge V18

Rectificación de un motor

En el diagrama de flujo correspondiente a la rectificación completa de un motor (Anexo 1), se describe a grandes rasgos la secuencia de procedimientos realizados para la rectificación total de un motor, y del cual se desprenden los procesos realizados en las instalaciones de la empresa, para cada una de las partes de este.

Rectificación de una culata

Descripción: la rectificación de la culata es un proceso en el cual inicia con la entrada al sistema de información que es la base de datos que tiene la empresa para hacer un seguimiento a esta durante el proceso, luego se desmontan todas las partes de la culata como árbol de levas, balancines, muelles y chavetas de fijación, válvulas, retenes y accesorios como tapas, colectores, sensores. Todas estas piezas y la culata se someten a un proceso de limpieza para desengrasar y eliminar los restos de carbonilla. Si después del lavado se le diagnostica recalentamiento a la culata se realiza una prueba hidrostática donde se detectan fisuras internas que permitirían fugas de anticongelante o compresión. Si se detectara una fisura se suelda o se valora la culata para preferiblemente sustituirla.
Luego se verifica la planitud de la culata, estado de las válvulas, para proceder a la rectificación de esta, después de ser rectificada la culata pasa a la cepilladora donde se le hacen los últimos detalles para que pase al proceso de probado y verificado de tolerancias. (Anexo 2)

Analisis: El recorrido realizado por la culata para ser rectificada (Anexo 11), donde se puede observar que las distancias que recorre esta son largas respecto a las áreas donde debe pasar, también se puede observar que en el recorrido se presentan dos cruces. Esto debido a la distribución de la maquinaria ya que no hay un orden adecuado de esta para realizar las operaciones, por ende las distancias largas y los cruces presentados.

Rectificación de un cigüeñal

Descripción: Para la rectificación de un cigüeñal en la empresa CTR, es necesario primero realizar una exacta medición de la pieza a rectificar, a fin de realizar un diagnóstico inicial acertado, que se le realiza a cada parte del motor para conocer su estado, que procedimientos se le realizaran y que pruebas se necesitaran. Después del proceso de lavado, por el cual pasan todas las piezas, es el momento de la rectificación, donde se puede observar en el diagrama el continuo acompañamiento de un proceso de inspección de la pieza, para garantizar la adecuada rectificación y finalmente realizar los arreglos finales.

En algunas ocasiones es necesario realizar un paso previo y es encamisar los sellos delanteros y traseros del cigüeñal en el torno, si según el diagnóstico, la pieza así lo requiere. (Anexo 3)

Análisis: Este proceso de rectificación es uno de los que menos pasos requiere (Anexo 12), pero en cuanto a las instalaciones, ocupa bastante espacio, no solo con lo referente a la maquinaria, sino también a la estantería utilizada, que casi siempre se encuentra saturada de cigüeñales de diversos tamaños, lo que hace complejo el flujo del personal por esta área, además de representar un riesgo alto de accidente de trabajo para cualquier persona.

La utilización de los elementos de protección personal, por parte del operario y las personas que están involucradas en la manipulación del cigüeñal a rectificar es de suma importancia, ya que en muchas ocasiones estos son bastante grandes y pesados, lo que hace
necesario la implementación de grúas para su movilización, lo que en muchas ocasiones no se realiza.

Proceso de lavado

Descripción: el proceso de lavado es uno de los más importantes ya que este es el inicio de todo el proceso de rectificado. Se inicia con el ingreso al sistema de información del motor, donde se verifica la causa del ingreso y se marcan todas las partes para llevar la trazabilidad de cada una de estas. Después de tener todo el motor desarmado, en el caso de que sea todo el motor o ya sean las partes a rectificar se inicia el proceso de lavado.

Si las piezas son de aluminio pasan al proceso de lavado en una máquina de lavado de ultrasonido, y si las piezas son de hierro pasan a la lavadora de motores, allí las piezas son lavadas con agua caliente para poder quitar la grasa y aceites. (Anexo 4)

Análisis: El proceso de lavado cuenta con dos etapas las cuales se realizan después del diagnóstico del motor y del ingreso a la base de datos, si las piezas son de aluminio van a la máquina de lavado de ultrasonido (maquina 17 en el anexo 13), y si las piezas son de hierro pasan a la máquina de lavado (maquina 18 en el anexo 13). Este proceso es la base principal de la rectificación de las piezas ya que después de este se distribuyen a las áreas correspondientes para finalizar la rectificación.

Rectificación de bloques

Descripción: El proceso de rectificación de un bloque (Anexo 5), empieza por la fabricación de alojamientos en la cual hay unas actividades de maquinado (Torno) y medición, que son fundamentales para para las siguientes tareas que se realizan en este proceso. Luego se encuentra el cepillado (Mandrinadora), en el cual se minimiza la altura que tiene actualmente el bloque comparándolo con unas medidas estándar que se disponen en catálogos.

Después de esto se cajea el motor (Mandrinadora), lo que consiste en aumentar el diámetro de los cilindros donde se deslizan los pistones, y así poder insertar la camisa en la nueva cavidad con ayuda de la prensa hidráulica. Finalmente, se realiza el pulido de cada cilindro (Bruñidora de cilindros) y se cambian los bujes.
Es necesario aclarar que los procesos explicados anteriormente no son realizados en todos los motores, todo dependerá del diagnóstico inicial realizado por los técnicos.

Análisis: En la empresa se rectifican bloques de diversos tamaños, para lo cual el uso de las mandrinadoras en el proceso dependerá de este factor, donde para bloques de grandes dimensiones, normalmente se utiliza la mandrinadora 2 (Máquina 11). En el caso de la mandrinadora 1 (Máquina 10), también se realiza el proceso de cepillado de las culatas, lo que evidencia una conexión entre estos dos procesos por el uso compartido de esta máquina. (Anexo 14)

En la empresa CTR se hace uso en ocasiones de equipos que ayudan en el transporte de estas piezas cuando tienen un tamaño muy grande, pero en el caso de los pequeños se pueden observar a 1 o 2 operarios realizando el transporte o el montaje de estas pesadas piezas.

Verificado y probado

Descripción: El proceso de verificado y probado (Anexo 6), es donde se identifica si el proceso de rectificación y todos los demás cumplen con los requerimientos del cliente, dejando el motor y las partes en perfecto estado. Verificar la calidad del proceso es parte fundamental de la política de calidad de la empresa, por ende, después de haber culminado toda la rectificación se procede a probar cada una de las partes y así identificar falencias para corregirlas antes de realizar la entrega al cliente.

Todo inicia con la verificación el sistema de información para poder tener un control de todo el proceso, si en el proceso de lavado se le diagnostica recalentamiento el bloque o culata, pasan a una prueba hidrostática donde se verifica si la pieza tiene grietas para su respectiva soldadura, si en el proceso de lavado no se diagnostica recalentamiento se omite este procedimiento, después del último proceso de rectificación, la pieza pasa al proceso de probado y verified.

El proceso de verificado y probado solo se realiza para las culatas, también puede ser realizado a los bloques en el caso que el cliente proporcione cigüeñal.
Análisis: En la empresa se presentan dos tipos de verificado y probado: el que se le realiza a la culata y el que se le realiza al bloque como se explica en la descripción del proceso. Uno de estos recorridos hace parte del proceso de lavado porque es allí donde se identifica si el proceso presenta recalentamiento de ser así pasan al área de soldadura para tapar las grietas. Los recorridos realizados (Anexo 15), no presentan gran variación en los procesos ya que estos son independientes a la culata y al bloque.

Alistamiento de culatas y cigüeñales

Descripción: El procedimiento de alistamiento (Anexo 7), empieza con la prueba hidrostática, en el caso de que a la culata se le haya diagnosticado recalentamiento inicialmente, esta permite conocer cuál es el estado en el que ha llegado la culata, determinar fisuras, ya que en este procedimiento se le adiciona agua a la culata, cerrando todas las cavidades por las que esta pueda salir, luego se procede a calentar la pieza y adicionar aire comprimido. También, en ocasiones a esta misma pieza se le realiza cambio de camisillas de forma manual en un área de trabajo destinado para ello, además de esto también se le fabrican los asientos de la culata si es requerido.

Para el caso de los cigüeñales, si el diagnóstico realizado indica la necesidad de encamisar los sellos traseros y delanteros, se lleva a cabo este proceso en el torno de 1,5 metros, en el caso de que sea necesario reconstruir las puntas del cigüeñal, se realiza una verificación metrológica, para que comparando con estándares se pueda rehacer utilizando la soldadura adecuada, luego se le realiza pulido a las piezas y se les fabrica una cuña y un cuadrante. En el caso de que sea necesario reconstruir la punta en su totalidad, se realiza un taladrado en el cigüeñal, para que, por medio de una fabricación de la punta por aparte, se pueda ensamblar esta finalmente a la pieza para luego rebajar, hacer la cuña y un cuadrante.

Análisis: Este procedimiento, es de suma importancia para los procesos realizados en la empresa, ya que en este se le dan las condiciones adecuadas a las culatas y a los cigüeñales para su posterior rectificación. En el área donde se encuentran la mayoría de máquinas para el alistamiento de estas piezas, no está posicionada en un lugar central, lo que representa mayores recorridos de las piezas para los procedimientos de rectificación, y cruces con los demás procesos. (Anexo 16)
Círculos

Descripción: después del proceso de lavado se le hace un diagnostico al bloque, el cual indica si los círculos del motor están en buen estado o están para arreglar, de ser así este pasa a la máquina círculo de bancada donde se reconstruyen las tapas, se rectifica la bancada y círculos. Para esto es necesario también rimar los bujes de biela. Después de este proceso el bloque pasa al procedimiento correspondiente de rectificación. (Anexo 8)

Análisis: este proceso se realiza si y solo si en el proceso de lavado se identifica que los círculos presentan desgaste, de ser así pasan de esta área a la máquina de círculo de bancada. (Anexo 17)

Rectificación de bielas

Descripción: La rectificación de una biela (Anexo 9), es necesaria cuando no hay uniformidad en el diámetro del muñón ensamblando primero en el cojinete de la biela con el cuerpo de esta, para lo cual se procede a realizar la extracción e instalación de bujes de ser necesario, luego se monta en la rectificadora de bielas, en donde se procede a rectificarla y darle el diámetro adecuado de manera uniforme, basándose en los datos de la empresa. Después de realizar el proceso de rectificación, se procede a darle círculo a las bielas bruñéndolas con un disco de material de diamante.

La pieza es llevada a la ensambladora de bielas donde se calienta el pie de la biela a una alta temperatura, para después introducir el bulón, que es la pieza a la que va ensamblado el pistón, se verifican las tolerancias de la biela y se da como finalizado el proceso de rectificación.

Análisis: Para la rectificación de una biela se presentan grandes recorridos (Anexo 18), sobre todo en los pasos 4, 5 y 6, lo que significa además de un tiempo ocioso en producción, cruces con los demás procesos que se realizan en la empresa y un claro ejemplo de la falta de asignación de un área dedicada especialmente a la rectificación de bielas, y que se encuentre solo en un sector de las instalaciones, y que de realizarse, no representaría una gran superficie utilizada, dadas las dimensiones de las pocas maquinas utilizadas en este proceso.
Rectificación de válvulas

Descripción: El rectificado de válvulas (Anexo 10), consiste en un giro simultáneo de la válvula y la muela, estos producen el rectificado. En este la cantidad mínima que se puede desgastar la cabeza de la válvula es de 0,5 mm.

El proceso inicia con el ingreso al sistema de datos, se toman las medidas para la rectificación por medio de un micrómetro, luego se lleva a la rectificadora de culatas o de válvulas y se realiza su respectiva rectificación, se realiza un control de calidad para identificar errores en la rectificación por medio de un reloj comparador y se procede a la rectificación de los asientos de las válvulas, finalizando esto se realiza nuevamente un control de calidad y se finaliza la tarea en el proceso de probado y verificado, para ingresarla al sistema de información.

Análisis: Los recorridos realizados para rectificar una válvula (Anexo 19), son muy largos, el recorrido del paso 2 al 3, 4 al 5 son los que presentan más distancia esto debido a que la maquinaria necesaria para poder realizar este proceso está muy distante de cada paso por ende la persona encargada de realizar este proceso tiene que trasladarse de un lado a otro, por ende, hay tiempo ocioso en el recorrido.

Instalaciones

La empresa centro técnico de rectificación CTR LTDA, cuenta con un área total de 247,5 m2 en sus instalaciones, dadas por 9 metros de ancho y 27,5 metros de largo de la estructura. (Anexo 20)

Estos 247,5 m2 están distribuidos en 5 zonas o áreas las cuales son: oficina, bodega de residuos, área de proceso, baño, bodega de piezas y cada una de esta ocupa un porcentaje significativo como lo muestra la siguiente tabla.
Tabla 9.
Distribución de metros cuadrados del área de la empresa.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Espacio ocupado (m²)</th>
<th>% Ocupado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficina</td>
<td>27,28</td>
<td>11,02</td>
</tr>
<tr>
<td>Bodega de residuos</td>
<td>2,88</td>
<td>1,16</td>
</tr>
<tr>
<td>Área de proceso</td>
<td>168,08</td>
<td>67,92</td>
</tr>
<tr>
<td>Baño</td>
<td>5,28</td>
<td>2,13</td>
</tr>
<tr>
<td>Área de diagnostico</td>
<td>25,92</td>
<td>10,47</td>
</tr>
<tr>
<td>Bodega de piezas</td>
<td>18,06</td>
<td>7,30</td>
</tr>
<tr>
<td>Total</td>
<td>247,5</td>
<td>100</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.

El 78,39 % del área de las instalaciones la ocupa el área de procesos ya que necesita de una gran cantidad de espacio para ubicar las máquinas y poder movilizar las piezas sobre éstas.

Por el paso de los años la infraestructura está un poco deteriorada ya que no se le ha realizado un mantenimiento correspondiente, es por esto que el piso y algunas zonas de la empresa requieren de una mejora para poder laborar amenaemente. (Figura 3)

Maquinaria

La empresa cuenta con gran cantidad de maquinaria de muy buena tecnología que le ha permitido mantenerse en el mercado de rectificación de motores.

Debido al crecimiento en la demanda de este servicio, la empresa ha optado por obtener nueva maquinaria que le permita satisfacer las necesidades de los clientes aumentando la capacidad de producción. Estas nuevas máquinas han reducido el espacio de la planta ya que no
se tuvo en cuenta una planeación para la distribución de estas. Como lo muestra la siguiente figura.

![Figura 4: Vista superior de la maquinaria de la empresa CTR](image)

Fuente: Los autores.

Tabla 10. Maquinaria disponible para cada uno de los procesos CTR.

<table>
<thead>
<tr>
<th>CANT</th>
<th>SECCIÓN</th>
<th>MAQUINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Culatas</td>
<td>Rectificadora de culatas</td>
</tr>
<tr>
<td>1</td>
<td>Culatas</td>
<td>Rectificadora de válvulas</td>
</tr>
<tr>
<td>1</td>
<td>Culatas</td>
<td>Prueba hidrostática</td>
</tr>
<tr>
<td>1</td>
<td>Culatas</td>
<td>Cepilladora</td>
</tr>
<tr>
<td>1</td>
<td>Culatas</td>
<td>Desarmadora de culatas</td>
</tr>
<tr>
<td>1</td>
<td>Bielas</td>
<td>Rectificadora de bielas</td>
</tr>
<tr>
<td>1</td>
<td>Bielas</td>
<td>Ensambladora de bielas</td>
</tr>
<tr>
<td>1</td>
<td>Cigüeñales</td>
<td>Rectificadora de cigüeñales 2.0</td>
</tr>
<tr>
<td>1</td>
<td>Cigüeñales</td>
<td>Rectificadora de cigüeñales 1.4</td>
</tr>
<tr>
<td>1</td>
<td>Bloques</td>
<td>Mandrinadora de cilindros #1</td>
</tr>
<tr>
<td>1</td>
<td>Bloques</td>
<td>Mandriladora de cilindros #2</td>
</tr>
<tr>
<td>1</td>
<td>Bloques</td>
<td>Bruñidora de cilindros</td>
</tr>
<tr>
<td>1</td>
<td>Alistamiento</td>
<td>Fresadora</td>
</tr>
<tr>
<td>1</td>
<td>Alistamiento</td>
<td>Torno 1mt</td>
</tr>
<tr>
<td>1</td>
<td>Alistamiento</td>
<td>Torno 1.5 mt.</td>
</tr>
<tr>
<td>1</td>
<td>Alistamiento</td>
<td>Equipo de soldadura</td>
</tr>
<tr>
<td>1</td>
<td>Bloques</td>
<td>Círculo de bancada</td>
</tr>
<tr>
<td>1</td>
<td>Lavado</td>
<td>Lavadora a ultrasonido</td>
</tr>
<tr>
<td>1</td>
<td>Lavado</td>
<td>Lavadora de motores</td>
</tr>
<tr>
<td>1</td>
<td>Lavado</td>
<td>Hidrolavadora</td>
</tr>
<tr>
<td>1</td>
<td>General</td>
<td>Prensa hidráulica</td>
</tr>
<tr>
<td>1</td>
<td>General</td>
<td>Equipo compresor de aire</td>
</tr>
<tr>
<td>1</td>
<td>General</td>
<td>Pulidor</td>
</tr>
<tr>
<td>1</td>
<td>General</td>
<td>Grúa</td>
</tr>
<tr>
<td>4</td>
<td>General</td>
<td>Computadores</td>
</tr>
<tr>
<td>3</td>
<td>General</td>
<td>Esmeriles</td>
</tr>
</tbody>
</table>

Nota Fuente: Adaptado por los autores, inventario suministrado por la empresa CTR.

Toda esta maquinaria es utilizada para los distintos procesos de rectificación, de las cuales algunas pertenecen a un proceso de rectificación específico (Culatas, cigüeñales, bloques, bielas o lavado), otras tienen un uso más general y se pueden usar en todos los procesos de rectificación o
en el alistamiento de las partes del motor a rectificar. De las maquinas que más espacio ocupan en las instalaciones de la empresa CTR en cuanto a su área, se pueden destacar la rectificadora de cigüeñales 2.0, la bruñidora de cilindros y el torno 1.5 mt.

Entre los equipos de uso general se encuentran algunos que, por no ocupar un área significativa, no fueron contemplados en los planos realizados de las instalaciones. En el caso del equipo compresor de aire, tampoco fue contemplado ya que este no se encuentra precisamente en la planta de producción de la empresa, sino que está ubicada en un cuarto en la parte trasera de las instalaciones en el segundo piso de la infraestructura.

Gran parte de la maquinaria utilizada en CTR es de alta tecnología, como lo es el caso de la bruñidora de cilindros y la mandrinadora de cilindros #1, las cuales son automáticas, lo que facilita su utilización, otorga mayor precisión en los procesos y disminuye el riesgo de que un operario sufra algún accidente.

Manejo ambiental

Disposición final de los residuos 1

Los desechos son un factor que se debe tener en cuenta en todos los procesos, ya sean de producción o de servicios por ende hay que tener en cuenta los puntos ecológicos en la distribución del área de trabajo para garantizar el correcto funcionamiento de esta. Según el proyecto de acuerdo No. 071 de 2010 "Por el cual se exige a los centros comerciales, almacenes de cadena, grandes superficies, establecimientos institucionales, culturales y recreativos ubicados en el Distrito Capital, instalar dentro de las áreas comunes en general, "puntos ecológicos", con el fin de incentivar, motivar, sensibilizar y actuar responsablemente para reciclar todos los residuos sólidos desde la fuente”.

Para establecer este punto ecológico tiene que haber una zona con cuatro recipientes, cada uno de estos debe estar identificado de acuerdo al código de colores reglamentado por la ICONTEC. (ICONTEC INTERNACIONAL, 2009).

Por otro lado, hay que tener en cuenta aquellos residuos que no se le pueden dar una disposición final inmediatamente o como usualmente se hace con los otros residuos, estos son los
residuos peligrosos que por su composición afectan tanto al medio ambiente y a la salud del ser humano si no se le realiza un proceso adecuado. Es por esto que toda organización que origine este tipo de residuos debe “contratar los servicios de almacenamiento, aprovechamiento, recuperación, tratamiento y/o disposición final, con instalaciones que cuenten con las licencias, permisos, autorizaciones o demás instrumentos de manejo y control ambiental a que haya lugar, de conformidad con la normatividad ambiental vigente”. (MINISTERIO DE AMBIENTE, 2005)

Tabla 11.
Color de recipientes de acuerdo a los desechos generados.

<table>
<thead>
<tr>
<th>Color Recipiente</th>
<th>Residuos a depositar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gris</td>
<td>Papel usado y cartón limpio y seco, No sirve para reciclar papel mojado, grasoso o sucio. Tampoco se reciclan otras familias como el papel carbón, papel mantequilla, aluminio, higiénico, servilletas, papel de cocina o el celofán.</td>
</tr>
<tr>
<td>Blanco</td>
<td>Botellas y frascos de vidrio verde, ámbar y transparente, totalmente vacíos. No podrán disponerse en este recipiente, bombillos, vidrio plano, botellas azules, ni recipientes con tóxicos o veneno.</td>
</tr>
<tr>
<td>Café oscuro</td>
<td>Latas de gaseosas y otras bebidas (aluminio), hojalata (de enlatados), las cuales se debe procurar que estén vacías.</td>
</tr>
<tr>
<td>Verde</td>
<td>En esta caneca van todos los residuos (diferentes al papel, metal y vidrio) y que nos son posibles de ser recuperados para reciclar como: servilletas, papel higiénico, restos de comida, colillas, chicles, cáscaras de frutas, etc.</td>
</tr>
<tr>
<td>Rojo</td>
<td>Tóxico e inflamable</td>
</tr>
</tbody>
</table>

Residuos generados por el proceso de rectificación

Durante el proceso de rectificación se generan cierta cantidad de residuos que deben tener una adecuada disposición ya que de no ser así se estaría violando las normas ambientales. A continuación, se observa en la tabla 12 la identificación de los residuos generados en el proceso de rectificación en la empresa CTR.

Tabla 12.
Residuos generados en el proceso de rectificación

<table>
<thead>
<tr>
<th>TIPO DE RESIDUO</th>
<th>CARACTERÍSTICAS</th>
<th>COLOR RECIPIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite usado</td>
<td>Tóxico – inflamable</td>
<td>Rojo</td>
</tr>
<tr>
<td>Filtros de aceites usados</td>
<td>Tóxico- inflamable</td>
<td>Rojo</td>
</tr>
<tr>
<td>Filtros de gasolina usados</td>
<td>Tóxico- inflamable</td>
<td>Rojo</td>
</tr>
<tr>
<td>Trapos o estopas impregnados de aceite</td>
<td>Tóxico- inflamable</td>
<td>Rojo</td>
</tr>
<tr>
<td>Desengrasante contaminado utilizado para el lavado de piezas</td>
<td>Inflamable</td>
<td>Rojo</td>
</tr>
<tr>
<td>Lodos provenientes de la limpieza de drenajes aceitosos trincheras o trampas de separación de aceites.</td>
<td>Tóxico</td>
<td>Rojo</td>
</tr>
<tr>
<td>Cajas de repuestos, bolsas, papel</td>
<td>Reutilizable</td>
<td>Blanco, verde, gris, café.</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.
En la actualidad la empresa cuenta con 4 puntos ecológicos y una bodega para almacenar los residuos, los cuales están distribuidos como lo muestra la siguiente figura:

![Figura 5: Puntos ecológicos en las instalaciones de la empresa CTR. Fuente: Los autores.](image)

El orden y el aseo son fundamentales para que las organizaciones puedan realizar sus funciones y tareas con comodidad, mitigando de esta forma que en las áreas de trabajo no hallan obstáculos o desechos que puedan generar de cierta forma una interrupción en el proceso o accidentes.

Aunque la empresa cumple con los puntos ecológicos que propone la norma GTC 24, no la aplican a cabalidad, ya que teniendo los recipientes adecuados para la disposición de los residuos generados en el proceso no le dan la disposición adecuada a estos, como se muestra en la figura 6.

![Figura 6: Puntos ecológicos del área de procesos Fuente: Los autores.](image)

La gran mayoría de desechos son residuos peligrosos tales como: aceite usado, filtros de aceite o gasolina, trapos o estopas, estos residuos se les da una disposición final inmediata ya que son fáciles de detectar y manipular. Pero hay unos residuos que necesitan de un sistema de filtración para poder recojerlos y darle el debido tratamiento como lo son: desengrasante
contaminado utilizado para el lavado de piezas, lodos provenientes de la limpieza de drenajes aceitosos trincheras o trampas de separación de aceites.

Sistema de drenaje de grasas y aceites

El Centro Tecnico de Rectificación CTR, diseño un sistema de drenaje para todas las sustancias químicas, aceites, gasolina y grasas, generados en el proceso de lavado, el cual permite por medio de rejillas que funcionan como coladores, recoger todas estas sustancias para darles una disposición final adecuada. El sistema de drenaje está diseñado desde el proceso de lavado y cuenta con tres rejillas para poder extraer estas sustancias como lo muestra la figura 7.

![Figura 7: Sistema de filtración de grasas y aceites.](image)

Fuente: Los autores.

![Figura 8: Caja para extraer residuos de la rejilla 1](image)

Fuente: Los autores.

![Figura 9: Caja para extraer residuos de la rejilla 2](image)

Fuente: Los autores.
Todos estos residuos junto con los otros que están contaminados con grasas y aceites son depositados en la bodega de residuos peligrosos como lo muestra la figura 11, mientras la empresa encargada de darles la disposición final viene a recojerlos.

Emisiones atmosféricas

Según el decreto 948 de 1995 por el cual se decreta el “Reglamento De Protección y Control de la Calidad del Aire”, donde se determinaron tres tipos de fuentes, las cuales al mismo tiempo se dividen en dos grupos, fijas, que son fuentes que se sitúan en una posición determinada e inamovible, y las fuentes móviles, la cual normalmente se desplaza, como los vehículos automotores.

Las fuentes fijas pueden ser puntuales o dispersas, donde en las primeras, la emisión atmosférica se realiza por ductos o chimeneas, que en cierta parte sería el caso de la empresa CTR, ya que la emisión de gases en la planta, solo se presenta en el proceso de lavado, pero no se cuenta actualmente con un ducto que los direccione al exterior de las instalaciones.
También de acuerdo a los estados de alarma de las emisiones atmosféricas de las fuentes, en cuanto al tiempo de exposición y los efectos producidos tanto al ambiente como a la salud humana, podemos encontrar las siguientes:

Tabla 13.

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Normal</td>
<td>Es aquél en que la concentración de contaminantes en el aire y su tiempo de exposición o duración son tales, que no se producen efectos nocivos, directos ni indirectos, en el medio ambiente, o la salud humana.</td>
</tr>
<tr>
<td>II Prevención</td>
<td>Es aquél que se presenta cuando las concentraciones de contaminantes en el aire y su tiempo de exposición o duración, causan efectos adversos y manifiestos, aunque leves, en la salud humana o en el medio ambiente.</td>
</tr>
<tr>
<td>III Alerta</td>
<td>Es aquél que se presenta cuando la concentración de contaminantes en el aire y su duración o tiempo de exposición, puede causar alteraciones manifiestas en el medio ambiente o la salud humana y en especial alteraciones de algunas funciones fisiológicas vitales.</td>
</tr>
<tr>
<td>IV Emergencia</td>
<td>Es aquél que se presenta cuando la concentración de contaminantes en el aire y su tiempo de exposición o duración, puede causar enfermedades agudas o graves u ocasionar la muerte de organismos vivos, y en especial de los seres humanos.</td>
</tr>
</tbody>
</table>

En la resolución 619 de 1997 “Por la cual se establecen parcialmente los factores a partir de los cuales se requiere permiso de emisión atmosférica para fuentes fijas”. de manera complementaria al decreto 948 de 1995 se determina que industrias, obras, actividades o servicios en fuentes fijas, necesitan de un permiso de emisión atmosférica emitido en el caso de la ciudad de Bogotá, por la Secretaría Distrital de Ambiente, de acuerdo a unos parámetros permisibles de emisión descritos en esta resolución, y que en el punto 2 y 4 de la misma hacen referencia a la necesidad de que las empresas tengan en sus sistema un ducto o una chimenea.

La resolución 601 de 2006 “Por la cual se establece la Norma de Calidad del Aire o Nivel de Inmisión, para todo el territorio nacional en condiciones de referencia” dicta los máximos niveles permisibles en el aire de diferentes sustancias contaminantes convencionales, no convencionales y generadoras de olores ofensivos de acuerdo a un tiempo de exposición, además, presenta los procedimientos de monitoreo y medición de la calidad del aire realizada por autoridades ambientales o terceros.

Como complemento al decreto 948 de 1995, esta resolución presenta, según la concentración de diferentes sustancias contaminantes en un periodo de exposición, la declaración para los diferentes estados de alarma (prevención, alerta y emergencia).
Actualmente en la empresa CTR solo hay un proceso que origina emisiones a la atmósfera de manera considerable, este es el de lavado, donde se hace uso de una lavadora de motores, que por medio de un proceso de combustión (Figura 12 (A)) se calienta el agua que desengrasa y limpia cada parte del motor que se introduzca en el equipo.

![Figura 12: Emisiones atmosféricas en la planta CTR](image)
Fuente: Los autores.

Teniendo en cuenta eso, se deduce la razón por la cual se originan emisiones atmosféricas en el proceso, aunque son muy mínimas, al igual se producen y necesitan ser conducidas afuera de la planta haciendo uso de un sistema de ductos, con el que no se cuenta en este momento como se muestra en la figura 12 (B), o también con un extractor de mayor capacidad de extracción que el que se muestra, y que actualmente no se cuenta en funcionamiento.

Como se muestra en la siguiente figura 13, el área de lavado y la lavadora de motores se encuentran ubicadas en la planta, donde lo señala la circunferencia amarilla, se encuentra en la parte posterior de la planta, la cual de por sí no cuenta con una ventilación adecuada, mucho menos se tiene una buena ventilación en la zona trasera de las instalaciones para poder manejar los residuos generados por este equipo, que no solo se tratan de vapor de agua, sino que también contienen residuos de combustibles, aceites y material particulado, los cuales necesitan eliminarse de cada una de las partes de los motores, para poder así realizar un proceso de rectificación adecuado.
Seguridad e higiene industrial

El uso de elementos de protección personal es un factor muy importante para las funciones y actividades que se realizan en el proceso de rectificación, en Colombia el uso de estos elementos está contemplados en la ley 9 de 1979 (TITULO III SALUD OCUPACIONAL) en los artículos 122 al 124:

Artículo 122.- Todos los empleadores están obligados a proporcionar a cada trabajador, sin costo para éste, elementos de protección personal en cantidad y calidad acordes con los riesgos reales o potenciales existentes en los lugares de trabajo.

Artículo 123.- Los equipos de protección personal se deberán ajustar a las normas oficiales y demás regulaciones técnicas y de seguridad aprobadas por el Gobierno.

Artículo 124.- El Ministerio de Salud reglamentará la dotación, el uso y la conservación de los equipos de protección personal.

Y en la resolución 2400 de 1979 (TÍTULO IV, CAPÍTULO II DE LOS ELEMENTOS DE PROTECCIÓN PERSONAL) del artículo 176 a 201.

Pero no solo basta con que exista la normatividad y que los empleadores suministren a los trabajadores los elementos de protección personal para las actividades que se realicen. El trabajador también tiene obligaciones y es fundamental para el éxito de estas y de conservación física, de que las cumplan:
a) Cumplir las disposiciones de la presente ley y sus reglamentaciones, así como con las normas del reglamento de Medicina, Higiene y Seguridad que se establezca.

b) Usar y mantener adecuadamente los dispositivos para control de riesgos y equipos de protección personal y conservar en orden y aseo los lugares de trabajo.

c) Colaborar y participar en la implantación y mantenimiento de las medidas de prevención de riesgos para la salud que se adopten en el lugar de trabajo (MINISTERIO DE AMBIENTE, 1979).

También es obligación del empleador asegurar a los trabajadores a una ARL, garantizando así la protección personal, enfermedad laboral, incapacidad temporal, incapacidad permanente (MINISTERIO DE AMBIENTE, 2015).

2.1 Seguridad e higiene industrial en instalaciones

La seguridad e higiene industrial abarca gran cantidad de aspectos en cuanto a las instalaciones, ya que el lugar donde se labora debe ser seguro y cómodo para que los trabajadores cuenten con un excelente clima laboral, el cual les permita trabajar amena y cumplir a cabalidad sus funciones y responsabilidades, es por esto que las organizaciones deben procurar que los diseños de las instalaciones cuenten con todos los parámetros necesarios para que esto se pueda realizar.

No todas las organizaciones se dedican a la misma actividad económica, por ende, el diseño para estas es diferente, en el caso de la empresa Centro Técnico de Rectificación CTR, no solo basta con realizar una redistribución, sino que también, se deben cumplir con ciertas normas en cuanto al proceso y a su naturaleza.

A continuación, se evaluarán los aspectos más relevantes en seguridad e higiene industrial con respecto al diseño de las instalaciones para la adecuada redistribución de la maquinaria:

- Vías de transporte despejadas y señalizadas: el correcto flujo de material y de transporte de piezas y de personal se debe a una adecuada señalización de vías de trasporte las cuales permiten mantener despejado el área de trabajo y el acceso rápido a las zonas tanto de almacenamiento como de trabajo. Centro Técnico de Rectificación CTR, cuenta con la
señalización de las vías de transporte, pero el paso de los años y la falta de mantenimiento de estas presenta deterioro y poca visualización porque están borrosas como lo muestra la figura 14.

Figura 14: Señalización de vías de transporte
Fuente: Los autores.

- Usar estantes a varias alturas, o estanterías, próximos al área de trabajo, para minimizar el transporte manual de materiales: el uso adecuado de todos los espacios ayuda a la reducción de estos dándole un mejor uso, esto se debe a la implementación de estantes, que por sus niveles permiten almacenar: herramienta, piezas y otras materias que se utilizan en el proceso minimizando así todos los espacios ociosos que se estén ocupando.

Figura 15: Uso de la estantería CTR
Fuente: Los autores.

Como lo muestra la figura 15, en el área donde se usa mayor estantería es en la bodega para almacenar todas las piezas que se rectifican, si estás no se usaran no habría espacio suficiente en el suelo para acomodar todas las piezas.

- Marcar las vías de evacuación y mantenerlas libres de obstáculos y señalar claramente las áreas en las que sea obligatorio el uso de equipos de protección individual: una correcta distribución debe tener una señalización adecuada la cual permita en caso de un siniestro, emergencia u accidente la correcta evacuación del personal, pero no solo basta
con tener debidamente señalado las rutas de evacuación si el recorrido de estas no está libre de obstáculos los cuales en vez de ayudar a una evacuación lo que ocasionen es un accidente. También es fundamental que en las áreas de trabajo allá señalización para el uso de EPP’s, los cuales permitan un trabajo seguro.

Figura 16: Señalización de seguridad

Fuente: Los autores.

La figura 16, muestra uno de los puntos donde hay señalización de ruta de evacuación y utilización de EPP’s en la empresa, aunque la empresa cuenta con señalización de evacuación no está lo suficientemente correcta ya que solo hay en ciertos puntos y los cuales no tienen una visión que permita la correcta evacuación, por ende, faltaría reacomodar la señalización de las rutas de evacuación y de uso de EPP’s.

Análisis general de la empresa CTR

El siguiente análisis muestra el estado actual en el que se encuentra la empresa CTR (Centro Técnico de Rectificación), respecto a los temas de distribución, manejo ambiental y seguridad e higiene industrial con respecto a las instalaciones, el cual se realizó por medio de una lista de chequeo (Anexo 21), para identificar cuáles son los factores más relevantes en estas áreas y realizar modificaciones.

La lista de chequeo aplicada a la empresa, tiene una calificación de una escala de 1 a 4, teniendo cada valor su respectiva descripción como lo muestra la siguiente tabla.
Tabla 14.
Escala de calificación lista de chequeo

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INSUFICIENTE: no cumple, no lo practica.</td>
</tr>
<tr>
<td>2</td>
<td>REGULAR: falta por implementar</td>
</tr>
<tr>
<td>3</td>
<td>BUENO: cumple, pero presenta fallas.</td>
</tr>
<tr>
<td>4</td>
<td>MUY BUENO: cumple</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.

A continuación, se realiza un análisis de manera específica en cuanto a los resultados obtenidos de la evaluación de la infraestructura y distribución en planta, manejo ambiental y seguridad e higiene industrial en las instalaciones.

Instalaciones, infraestructura y distribución en planta

Este enfoque evaluativo se planteó pensando en conocer las falencias en el proceso productivo y cómo interviene la organización de la maquinaria en este, ya que es el principal causal al no permitir que el proceso se desarrolle con fluidez. También se realizó una observación a la infraestructura de la empresa, para determinar posibles problemas de mantenimiento o de capacidad, teniendo en cuenta la cantidad de máquinas y equipos que allí se disponen.

Teniendo en cuenta los parámetros evaluados en la lista de chequeo del 1 al 16, podemos observar sus resultados de acuerdo a su escala de calificación en la siguiente figura.

![Gráfico de barras](image)

Figura 17: Análisis de la situación actual de las instalaciones, infraestructura y distribución

Fuente: Los autores.

Frente a los parámetros evaluados con respecto a las instalaciones, infraestructura y distribución en planta, el 50% de los parámetros evaluados se encuentran dentro del rango de aceptabilidad plantead, mientras que el 50% restante, se encuentra en un estado regular según la
escala de calificación, de esta manera se puede determinar que la empresa se encuentra en un estado de alarma frente a los temas relacionados en instalaciones, infraestructura y distribución en planta, donde en la mitad de estos es necesario tomar medidas correctivas.

La siguiente tabla asocia los parámetros de necesaria mejoría, con su respectiva calificación:

Tabla 15.

Parámetros de necesaria mejoría en las instalaciones, infraestructura y distribución en planta de la empresa CTR.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Descripción</th>
<th>Análisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Se cuenta con las ventanas, aberturas o sistemas de ventilación suficientes, para garantizar la adecuada ventilación de la planta.</td>
<td>Se cuenta con insuficientes ventanas y/o aberturas que no garantizan la adecuada ventilación de las instalaciones. En las instalaciones de la empresa se puede observar que la única abertura para el ingreso de aire es la de la puerta principal, en el área de lavado hay un extractor, pero no se encuentra en funcionamiento.</td>
</tr>
<tr>
<td>6</td>
<td>La empresa cuenta con las zonas adecuadas de aseo suficientes, teniendo en cuenta el número de trabajadores que allí laboran.</td>
<td>Hay una sola zona de aseo, y hay más de 15 personas trabajando en la empresa. La única zona de aseo que posee la planta son los baños los cuales permanecen sucios.</td>
</tr>
<tr>
<td>8</td>
<td>La maquinaria que dispone la empresa está organizada adecuadamente según el proceso productivo que allí se lleva a cabo.</td>
<td>La maquinaria se encuentra desordenada, sigue una secuencia lógica solo en algunos procesos, o solo muy pocas máquinas están agrupadas según su función. La maquinaria no está organizada debidamente a la naturaleza del proceso, la cual perjudica los recorridos. Algunos de los sistemas tienen la capacidad suficiente, pero presentan fallas constantemente. Debido a que la maquinaria necesita gran capacidad eléctrica, la cual la empresa aun no la tiene se presentan saltos en los tacos de las redes eléctricas.</td>
</tr>
<tr>
<td>10</td>
<td>Los sistemas eléctricos, neumáticos, hidráulicos o con los que se cuenten, tienen la suficiente capacidad para el proceso que allí se lleva a cabo.</td>
<td>Están espaciados a una distancia entre 0,8 y 1,15 metros. Debido a la gran cantidad de maquinaria con la que cuenta la empresa el espacio disponible para el flujo de personas y material es muy reducido, tan solo entre 0,8 m y 1,15 m. Se cuenta con una bodega de almacenamiento, pero esta no tiene el espacio suficiente para el adecuado flujo de material y de personal, ni la correcta demarcación de seguridad, ni tampoco la estantería suficiente para el almacenaje. La bodega con la que cuenta la empresa para almacenar las piezas no cuenta con el espacio suficiente, por ende, en ocasiones no hay espacio ni para el flujo de los trabajadores.</td>
</tr>
<tr>
<td>11</td>
<td>Las maquinas se encuentran a una distancia adecuada para garantizar el buen flujo de materiales y trabajadores.</td>
<td>Se presentan cruces en el flujo de los materiales y/o las personas. A causa de la organización de la maquinaria la mayoría de los procesos presentan cruces con otros en cuanto al flujo de material. Cuenta con estanterías pero no son utilizadas para el almacenamiento de materiales, la planta cuenta con poca estantería la cual permita el almacenamiento de material, reduciendo así el espacio que pueden ocupar estos.</td>
</tr>
<tr>
<td>12</td>
<td>Se cuenta con una bodega de almacenamiento adecuada para las partes y motores</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>La actual distribución con la que cuenta la empresa, permite el adecuado flujo del proceso evitando cruces.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Se utiliza eficientemente la superficie de las paredes de la planta</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.
Manejo medio ambiental

El presente enfoque evalúa las falencias medioambientales con respecto a la distribución en planta que se pudieran presentar en la empresa, ya que estas son muy importantes en el control de los residuos que se generan en cualquier proceso.

Teniendo en cuenta los parámetros evaluados del 17 al 25 se puede observar los resultados de acuerdo a los criterios de evaluación en la figura 18, donde se muestra que con respecto a la gestión ambiental en instalaciones ambientales no se presentan muchas falencias.

Figura 18: Análisis de la situación actual del manejo medio ambiental
Fuente: Los autores.

A tan solo en el 22% de los parámetros evaluados con respecto al manejo medio ambiental, es necesario realizar algún cambio para solucionarlos. El 78% restante se encuentra dentro del rango de aceptabilidad de acuerdo a la escala de calificación, por ende, no se requiere algún cambio con urgencia. La siguiente tabla asocia los parámetros de necesaria mejora, con su respectiva calificación:

Tabla 16. Parámetros de necesaria mejora en el manejo medio ambiental de la empresa CTR.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Descripción</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>La empresa cuenta con una chimenea o ducto adecuado para el direccionamiento de la emisión al exterior de las instalaciones.</td>
<td>No se cuenta con una chimenea o ducto. La empresa actualmente no cuenta con algún ducto de ventilación, para direccionar los gases emitidos por el área de lavado, ni tampoco con algún otro sistema complementario a este problema, que en cuanto al manejo ambiental en las instalaciones es crítico y de necesaria solución para contrarrestar este efecto.</td>
</tr>
<tr>
<td>24</td>
<td>Los ductos o chimeneas utilizados tienen filtros, que permitan que las emisiones direccionadas al exterior disminuyan su impacto ambiental</td>
<td>No se cuenta con un ducto y la maquinaria no tiene ningún sistema que disminuya los contaminantes de las emisiones. En la empresa no se cuenta con un ducto de extracción de emisiones y la maquina lavadora de motores, de la cual se liberan las emisiones, tampoco cuenta con algún sistema de filtración de contaminantes.</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores.
Seguridad e higiene industrial en las instalaciones

La seguridad e higiene industrial en las instalaciones es un área fundamental para el buen funcionamiento de la organización que al mismo tiempo garantiza un ambiente seguro y cómodo de trabajo, tanto para trabajadores como para cualquier persona que ingrese a la empresa.

Los parámetros del 27 al 35 fueron evaluados con el objetivo de determinar las falencias principales de la organización frente a este tema y que de acuerdo a la figura 19 se puede determinar que es un tema bastante preocupante dado los resultados.

![Figura 19: Análisis de la situación actual del manejo medio ambiental](image)

Fuente: Los autores.

El 60% de los parámetros evaluados referentes al manejo medio ambiental en la empresa, no se encuentran dentro del rango de aceptabilidad especificado según la escala de calificación, mientras que el 40% restante sería pertinente realizarle algunas mejoras.

La siguiente tabla asocia los parámetros de necesaria mejoría, con su respectiva calificación:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Descripción</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Los trabajadores cuentan con señalización que les indique que es necesario usar los elementos de protección personal EPP´s.</td>
<td>El área de trabajo tiene señalización de uso de EPP’s, pero no en el lugar indicado. Los trabajadores realizan sus funciones sin elementos de protección personal debido a la falta de señalización que les indique que es obligatorio el uso de estos. Cuenta con vías de evacuación pero no están adecuadamente señalizadas por toda el área de trabajo, no se encuentran libres de obstáculos y no se encuentran visibles para los trabajadores. La empresa cuenta con vías de evacuación, que por la falta de mantenimiento no son fácilmente visibles, además, estas no se encuentran despejadas, ya que muchas de las partes que allí se...</td>
</tr>
<tr>
<td>30</td>
<td>Se cuenta con vías de evacuación, están adecuadamente demarcadas y libres de obstáculos.</td>
<td></td>
</tr>
</tbody>
</table>
La empresa cuenta con señalización necesaria y fácilmente visible, referente a rutas de evacuación, puntos de encuentro, botiquines, extintores.

Las máquinas cuentan con sistemas de seguridad

El lugar de trabajo se encuentra limpio, antes, durante y después del proceso

Se dispone de iluminación localizada para los trabajos de inspección o precisión.

Nota Fuente: los autores.

FASE II: FASE DE SÍNTESIS

En esta fase se analizó el tipo de distribución de planta adecuado para la empresa, además se calculó la superficie necesaria e ideal para poder reordenar la maquinaria de una manera adecuada, haciendo uso del método para el cálculo de superficies de Guerchet. (PIERRE, 1975)

Tipo de distribución en planta correspondiente al proceso.

De acuerdo con los procesos que se realizan en la empresa CTR, el cual tiene un consecutivo por área o por proceso donde después del proceso de lavado las piezas son distribuidas a sus respectivas máquinas para ser rectificadas de la siguiente manera:

Figura 20: Diagrama de bloques proceso de rectificación de un motor.
Fuente: Los autores.
Por ende, el tipo de distribución apropiado para el proceso de rectificación de motores en la empresa CTR, es el de Distribución por Proceso, el cual implica que se deben agrupar las máquinas por actividades que se realice. En este caso las funciones que se realizan para la rectificación de cada una de las piezas son similares lo que varía es que la maquinaria que se utiliza es diferente para cada uno de estos, esto quiere decir que cada área cuenta con sus máquinas específicas de tal modo que no tendría ninguna relación con las otras áreas.

Tomando este tipo de distribución como base, la propuesta proporcionaría una apariencia general de limpieza y orden, ya que en la actualidad se tienen especificadas las áreas de culatas, bloques, cigüeñas y de lavado, pero toda la maquinaria correspondiente a cada uno de estos no se encuentra en el lugar adecuado, lo cual implica que se tienen que realizar recorridos largos y cruces entre las áreas.

Hay una maquinaria que tiene relación con varias áreas como los tornos y la fresadora, otros como el esmeril, los pulidores y la prensa hidráulica que son de uso general, es decir tienen relación con todas las áreas del proceso, por lo cual se reunirán en un área llamada “alistamiento”.

Cálculo de la superficie necesaria por el método de Guerchet

Definir el espacio necesario para la maquinaria que se dispone en la empresa CTR, es fundamental para la elaboración de la propuesta de distribución en planta, y que es el segundo paso para desarrollar la metodología SLP propuesta por Muther.

En el presente proyecto para determinar el espacio que necesita la empresa, se implementó el método de Guerchet, donde se contempla la superficie ocupada por cada una de las máquinas, la superficie gravitatoria, es decir el espacio necesario para que el operario pueda realizar su tarea en la máquina dependiendo de los lados de utilización de la misma, y por último, una superficie de evolución, la cual hace referencia al área en la que se va a dar el flujo de personas y del material en el proceso.

Para la superficie de evolución se tienen en cuenta la suma de las otras dos superficies calculadas, y un coeficiente de superficie K aplicada para todas las máquinas, donde se contempla el área ocupada y la altura de los elementos móviles y elementos estáticos, que en el...
caso de los primeros, se contemplaron cada uno de los trabajadores y las piezas de mayor tamaño que allí se rectifican, los cuales tienen un flujo en las instalaciones de la planta para realizar cada proceso en los elementos estáticos, es decir, la maquinaria y estantería, el cálculo de estos valores se puede observar en el anexo 22. El valor de K calculado, se puede observar en la siguiente ecuación:

\[K = \frac{1.61}{2 \times 1.77} = 0.45 \]

Los cálculos realizados para conocer la superficie necesaria para todas las máquinas, y por ende para el área de producción en general se pueden observar en el anexo 23.

La superficie que actualmente se tiene en la empresa para el área de producción es de 168,08m² que corresponde al 67,92% del total del área de la instalación, equivalen prácticamente a 57m² menos de los necesarios, que según el método implementado para su cálculo serian 225,18m², falencia que es evidente al ingresar a la planta de producción de la empresa.

Teniendo en cuenta la maquinaria implementada en cada proceso, se tiene una superficie necesaria para cada área como se observa en la tabla 18, donde cada una de estas ocupa en un porcentaje el área necesaria en producción. Para determinar cuál debería ser la superficie ocupada por cada área en condiciones reales de espacio, se aplicaron los porcentajes obtenidos con el método Guerchet, a la superficie total de la planta de producción (168,08m²) como lo muestra la tabla 19.

Tabla 18.
Superficie necesaria por cada área de trabajo

<table>
<thead>
<tr>
<th>SECCIÓN</th>
<th>ÁREA NECESARIA</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culatas</td>
<td>43,58</td>
<td>19,35%</td>
</tr>
<tr>
<td>Bielas</td>
<td>12,36</td>
<td>5,49%</td>
</tr>
<tr>
<td>Cigüeñales</td>
<td>85,32</td>
<td>37,89%</td>
</tr>
<tr>
<td>Bloques</td>
<td>50,43</td>
<td>22,40%</td>
</tr>
<tr>
<td>Lavado</td>
<td>12,29</td>
<td>5,46%</td>
</tr>
<tr>
<td>Alistamiento</td>
<td>21,21</td>
<td>9,42%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>225,18</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores.
Tabla 19.
Superficie asignada a cada área de trabajo

<table>
<thead>
<tr>
<th>SECCIÓN</th>
<th>%</th>
<th>ÁREA NECESARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culatas</td>
<td>19,35%</td>
<td>32,53</td>
</tr>
<tr>
<td>Bielas</td>
<td>5,49%</td>
<td>9,23</td>
</tr>
<tr>
<td>Cigüeñas</td>
<td>37,89%</td>
<td>63,68</td>
</tr>
<tr>
<td>Bloques</td>
<td>22,40%</td>
<td>37,64</td>
</tr>
<tr>
<td>Lavado</td>
<td>5,46%</td>
<td>9,17</td>
</tr>
<tr>
<td>Alistamiento</td>
<td>9,42%</td>
<td>15,83</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>168,08</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores.

FASE III: FASE DE DISEÑO DE LA PROPUESTA

En esta fase se evaluará las diferentes alternativas de distribución que se propondrán con la finalidad de seleccionarla mejor, la cual se acomode al proceso productivo.

La base fundamental será el método SLP, el cual será el principio fundamental de las propuestas de redistribución.

Análisis

Las alternativas de distribución que se realizarán para el área de procesos de CTR, se tendrá en cuenta el método de la planeación sistemática (SLP), propuesto por Muther (1973), el cual está compuesto por seis pasos:

Tabla 20.
Pasos para desarrollar el método SLP

<table>
<thead>
<tr>
<th>MÉTODO PLANEACIÓN SISTEMÁTICA SLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Relaciones en la gráfica.</td>
</tr>
<tr>
<td>2. Requerimientos de espacio.</td>
</tr>
<tr>
<td>3. Diagrama de relaciones de las actividades.</td>
</tr>
<tr>
<td>4. Distribución según la relación del espacio.</td>
</tr>
<tr>
<td>5. Evaluación de nuevas alternativas.</td>
</tr>
<tr>
<td>6. Implementar el método.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Para las posibles alternativas no se tendrá en cuenta el paso 6 ya que este no está dentro del desarrollo del proyecto, el cual solo se basa en una propuesta que mejore la distribución del área de procesos. Para poder realizar las posibles alternativas de distribución, es necesario tener...
en cuenta los planos realizados de las instalaciones que fueron propuestos en la Fase I (Anexo 20), igual que los diagramas de flujo de los procesos, que se encuentran del anexo 1 al anexo 10.

Desarrollo de la metodología SLP

Relaciones en la gráfica.

Para poder realizar una propuesta adecuada hay que tener en cuenta cual es la relación de las áreas, es decir si están comparten algún proceso, actividad o tarea, la tabla 21 muestra el tipo de relación, la calificación de la cercanía y las líneas de diagrama correspondientes para medir dicha relación.

Tabla 21.

Calificación de las relaciones SLP

<table>
<thead>
<tr>
<th>Relación</th>
<th>Calificación de cercanía</th>
<th>Valor</th>
<th>Líneas de diagrama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolutamente necesaria</td>
<td>A</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Especialmente necesaria</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Importante</td>
<td>I</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ordinario</td>
<td>O</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No importante</td>
<td>U</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>No deseable</td>
<td>X</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

Teniendo en cuenta el modelo del diagrama de relaciones propuesto por Muther en la metodología SLP, se halla las relaciones de las áreas con base en la calificación de la tabla anterior, la figura 21, muestra el diagrama de relaciones existentes entre cada área.

Figura 21: Diagrama de relaciones áreas de proceso de rectificación.

Fuente: Los autores.
Como se puede observar el área de lavado tiene una relación absolutamente necesaria con todas las áreas de rectificación (bloques, culatas, bielas, cigüeñas), con lo cual se puede determinar que esta área es la base fundamental del proceso de rectificación, por ende, las otras áreas deben estar cerca o en una ubicación estratégica que garantice un recorrido corto hacia esta área.

La relación que existe entre las áreas de rectificación (bloques, culatas, cigüeñas, bielas), es nula, quiere decir que estas áreas son independientes de sus funciones y tareas y que no necesitan de las otras para poder funcionar, excepto entere el área de culatas y bloques que comparten la máquina mandriladora 1, por ende tienen una relación importante, el área de alistamiento tiene diferentes relaciones con las áreas de rectificación (bloques, culatas, cigüeñas, bielas), por lo tanto esta área debe tener una ubicación estratégica que permita el uso de las otras áreas sin interrumpir los procesos de estas.

Requerimientos de espacio.

El requerimiento de espacio que es el segundo paso de la metodología SLP, el cual se desarrolló en la anterior fase con el fin de calcular el área requerida para la posible propuesta de distribución.

Diagrama de relaciones de las actividades.

Con el fin de determinar la relación existente entre las áreas, y actividades y poder identificar la importancia de la ubicación de estas, de tal manera que el recorrido para la rectificación se pueda minimizar y que las distancias para realizar el proceso sean más cortas aumentando así la eficiente de este y que los cruces entre las áreas sean mínimos, se realiza el siguiente diagrama, el cual muestra dicha relación existente entre las diferentes áreas dando una idea clara de la importancia que tiene cada una de estas frente a las otras figura 22.
Donde se puede observar más gráficamente dicha relación utilizando las líneas de diagrama propuestas en la tabla 21.

Propuestas de distribución

Con el fin de reorganizar la distribución actual del área de procesos de la empresa CTR, y mejorar el flujo del personal y el material de una manera segura y cómoda, se realizaron dos propuestas de distribución, teniendo en cuenta de manera general los siguientes aspectos:

- Distribución por proceso, agrupando las máquinas según la pieza del motor que rectifiquen.
- Menor distancia posible entre el área de lavado y las áreas donde se rectifiquen las partes del motor con mayores dimensiones como los bloques y los cigüeñales, como alternativa de seguridad al ordenamiento de la maquinaria.
- Cercanía entre las áreas que requieran el uso de una misma máquina para sus procesos.
- Uso de maquinaria de alistamiento como paso previo en algunos procesos de rectificación.

La primera propuesta se basará en una organización en la cual no intervengan cambios estructurales, es decir que se pueda realizar sin necesidad de hacer remodelaciones al diseño actual de la infraestructura, con el fin en no incurrir en gastos adicionales a los del movimiento de la maquinaria. La segunda propuesta será orientada al diseño de la infraestructura, es decir que se propondrán algunas remodelaciones, con el fin de poder organizar la maquinaria con un bosquejo de la infraestructura diferente al actual.
Propuesta 1

De acuerdo al diagrama de relaciones planteado (Figura 22) y los aspectos generales anteriormente mencionados, el diseño de la propuesta 1 se puede observar en la figura 23, cuyo plano acotado se puede encontrar en el anexo 24.

En esta propuesta, la maquinaria está organizada por diferentes áreas, de acuerdo al proceso que realizan, según los resultados obtenidos al aplicar los porcentajes de área necesaria calculados por el método de Guerchet, al área disponible en la planta actualmente, se tiene como resultado los valores de la tabla 19, que es el espacio en el cual se ordenara la maquinaria de cada área. Esta propuesta garantiza cercanía entre los procesos que tienen una relación estrecha de acuerdo a su naturaleza y maquinaria compartida, y las cuales se determinaron en el diagrama de relaciones de la figura 22, reduciendo los recorridos necesarios para el transporte de piezas de un área a otra.

También se puede determinar en la propuesta, la proximidad entre el área de bloques, la de cigüeñas y el área de lavado contrarrestando los riesgos que corren los trabajadores al transportar piezas de grandes dimensiones por largos recorridos, generando facilidad y comodidad en estos procesos. Además de esto, la cercanía entre el área de cigüeñas y la de bloques, proporciona una mayor facilidad para realizar el verificado y probado, proceso que se realiza implicitamente en la empresa, puesto que no se tiene un área destinada para este proceso en específico, y que necesita de estas dos piezas para poder realizarse.

En la figura 25 se pueden observar la localización de los puntos ecológicos, los extintores y la ruta de evacuación adecuada para la propuesta 1, cuyas convenciones se pueden ver en la tabla 25.

Propuesta 2

Teniendo en cuenta el diagrama de relaciones planteado (Figura 22) y los aspectos generales mencionados, el diseño de la propuesta se puede observar en la figura 24, cuyo plano acotado se puede encontrar en el anexo 25.
Como se puede observar, de acuerdo a los que cálculos obtenidos para distribución, se planteó distribuir la maquinaria de acuerdo a los procesos que se realizan para la rectificación de un motor, por ende, se dividió la planta de procesos en áreas de trabajo las cuales tienen una relación fundamental con el área de lavado que es la única área que se propone dejar así ya que el costo de otro diseño de infraestructura es elevado.

Garantizando así que las actividades que se generan tengan un flujo adecuado de acuerdo a la naturaleza del proceso y a la relación que tiene cada una de estas como se observa en la figura 22. El objetivo principal de la propuesta es que las máquinas de cigüeñas que por ser las más grandes y pesadas no tengan que trasladarse una gran distancia por lo que se propone dejarlas en el mismo lugar pero con una orientación diferente como se puede observar en la figura 24 maquina 8, 9.

Buscando seguridad en las instalaciones y en el proceso se plantea que las áreas en las que las piezas tengan un tamaño y peso superior a las demás queden cerca al área de lavado para evitar recorridos largos y accidentes. Otro factor que se busca resolver con la propuesta es el flujo de los materiales y de las piezas, por eso se distribuye la maquinaria de tal manera que el ingreso a todas las áreas de trabajo sea flexible y que en caso de un siniestro u accidente se pueda evacuar sin ningún tipo de obstáculo.

Se propone también la distribución de los puntos ecológicos los cuales son de gran importancia para depositar los residuos generados en el proceso, donde se recomienda implementar instalar algunas canecas que solo sean para el tipo de residuo generado en el proceso y así evitar el recorrido de grandes distancias para depositar estos. Se plantea los puntos donde deben ir instalados los extintores de acuerdo a la propuesta de distribución de tal manera que queden ubicados estratégicamente en caso de un accidente. Otro factor que se plantea es la ruta de evacuación la cual es de vital importancia para evacuar efectivamente el área de trabajo en caso de un siniestro. Todos estos factores anteriores se observan en la figura 26.
Figura 23: Plano propuesta 1
Fuente: Los autores

Figura 24: Plano propuesta 2
Fuente: Los autores

Tabla 22. División de las áreas de la empresa

<table>
<thead>
<tr>
<th>ÁREA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavado</td>
<td>a</td>
</tr>
<tr>
<td>Bloques</td>
<td>b</td>
</tr>
<tr>
<td>Culatas</td>
<td>c</td>
</tr>
<tr>
<td>Cigueñales</td>
<td>d</td>
</tr>
<tr>
<td>Bielas</td>
<td>e</td>
</tr>
<tr>
<td>Alistamiento</td>
<td>f</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.

Tabla 23. Listado de los estantes

<table>
<thead>
<tr>
<th>Nº</th>
<th>ESTANTERÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Estantería culatas 1</td>
</tr>
<tr>
<td>b</td>
<td>Estantería culatas 2</td>
</tr>
<tr>
<td>c</td>
<td>Computador</td>
</tr>
<tr>
<td>d</td>
<td>Estantería bielas 1</td>
</tr>
<tr>
<td>e</td>
<td>Estantería bielas 2</td>
</tr>
<tr>
<td>f</td>
<td>Estantería cigueñales 1</td>
</tr>
<tr>
<td>g</td>
<td>Estantería bloques 1</td>
</tr>
<tr>
<td>h</td>
<td>Computador</td>
</tr>
<tr>
<td>i</td>
<td>Mesa de lavado 1</td>
</tr>
<tr>
<td>j</td>
<td>Mesa de lavado 2</td>
</tr>
<tr>
<td>k</td>
<td>Computador</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.

Tabla 24. Listado de la maquinaria

<table>
<thead>
<tr>
<th>Nº</th>
<th>MáQUINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rectificadora de culatas</td>
</tr>
<tr>
<td>2</td>
<td>Rectificadora de válvulas</td>
</tr>
<tr>
<td>3</td>
<td>Prueba hidrostática</td>
</tr>
<tr>
<td>4</td>
<td>Cepilladora</td>
</tr>
<tr>
<td>5</td>
<td>Desarmadora de culatas</td>
</tr>
<tr>
<td>6</td>
<td>Rectificadora de bielas</td>
</tr>
<tr>
<td>7</td>
<td>Ensambladora de bielas</td>
</tr>
<tr>
<td>8</td>
<td>Rectificadora de cigueñales 2.0</td>
</tr>
<tr>
<td>9</td>
<td>Rectificadora de cigueñales 1.4</td>
</tr>
<tr>
<td>10</td>
<td>Mandrinadora de cilindros #1</td>
</tr>
<tr>
<td>11</td>
<td>Mandrinadora de cilindros #2</td>
</tr>
<tr>
<td>12</td>
<td>Bruñidora de cilindros</td>
</tr>
<tr>
<td>13</td>
<td>Fresadora</td>
</tr>
<tr>
<td>14</td>
<td>Torno 1mt</td>
</tr>
<tr>
<td>15</td>
<td>Torno 1.5 mt</td>
</tr>
<tr>
<td>16</td>
<td>Circulo de bancada</td>
</tr>
<tr>
<td>17</td>
<td>Lavadora a ultrasonido</td>
</tr>
<tr>
<td>18</td>
<td>Lavadora de motores</td>
</tr>
<tr>
<td>19</td>
<td>Prensa hidráulica</td>
</tr>
<tr>
<td>20</td>
<td>Pulidor</td>
</tr>
<tr>
<td>21</td>
<td>Esmeriles</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.
Figura 25: Localización de puntos ecológicos, extintores y rutas de evacuación (Propuesta 1)
Fuente: Los autores

Figura 26: Localización de puntos ecológicos, extintores y rutas de evacuación (Propuesta 2)
Fuente: Los autores

Tabla 25.
Convenciones de la propuesta

<table>
<thead>
<tr>
<th>Convención</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Imagen]</td>
<td>Punto ecológico</td>
</tr>
<tr>
<td></td>
<td>Extintor</td>
</tr>
<tr>
<td>[Imagen]</td>
<td>Ruta de evacuación</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores.
Costos de las propuestas

En el dado caso que la empresa decida realizar alguna de las dos propuestas elaboradas, estaría incurriendo en algunos costos dependiendo la propuesta seleccionada, los cuales se mencionan a continuación.

Costo de transporte de maquinaria

En la empresa se tienen maquinas muy grandes y pesadas, la más pesada de ellas tiene un peso cercano a las 4 toneladas y media, por lo cual sería necesario contratar una empresa que tenga el servicio de montacargas, la cual debería soportar un peso de 5 a 6 toneladas, además de esto ser de aspas largas las cuales darán una mejor sujeción de la maquinaria para no golpearla.

El servicio de alquiler de montacargas es cobrado por hora por todas las empresas desde el momento en el que esta sale de las instalaciones hasta que vuelve a llegar, además de esto tienen un costo por hora general de 60.000, es decir lo único que daría una fluctuación en la cotización seria el tiempo de llegada a las instalaciones de CTR.

Teniendo en cuenta las comparaciones entre las empresas transportadoras y su tiempo de llegada a la empresa (Tabla 26), resulta ideal contratar la empresa transportadora 1 o 3, de la cual se asocian los costos aproximados en la tabla 27 para cada propuesta.

Tabla 26. Comparación empresas de servicio de montacargas

<table>
<thead>
<tr>
<th>Empresa transportadora</th>
<th>Costo del alquiler por hora</th>
<th>Costo de movilización de montacargas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportadora 1</td>
<td>60.000</td>
<td>90.000</td>
</tr>
<tr>
<td>Transportadora 2</td>
<td>60.000</td>
<td>120.000</td>
</tr>
<tr>
<td>Transportadora 3</td>
<td>60.000</td>
<td>90.000</td>
</tr>
<tr>
<td>Transportadora 4</td>
<td>60.000</td>
<td>120.000</td>
</tr>
</tbody>
</table>

Nota: Fuente: Los autores

Tabla 27. Costos de transporte de maquinaria

<table>
<thead>
<tr>
<th>Costos relacionados</th>
<th>Propuesta 1</th>
<th>Propuesta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo del alquiler por hora</td>
<td>60.000</td>
<td>60.000</td>
</tr>
<tr>
<td>Tiempo estimado de distribución</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Costo por tiempo de distribución</td>
<td>720.000</td>
<td>540.00</td>
</tr>
<tr>
<td>Costo por movilización del montacargas</td>
<td>180.000</td>
<td>180.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.200.000</td>
<td>780.000</td>
</tr>
</tbody>
</table>

Nota: Fuente: Los autores
Costo de almacenamiento de maquinaria

Para la propuesta 1 como para la propuesta 2, en el dado caso de su implementación sería necesario retirar toda la maquinaria de las instalaciones de la empresa o su gran mayoría, para luego ordenarla de manera adecuada, para lo cual se deberá almacenar en una bodega vecina temporalmente, lo que significaría un costo adicional para la propuesta.

Tabla 28. Costos de almacenamiento de maquinaria

<table>
<thead>
<tr>
<th>Costos relacionados</th>
<th>Propuesta 1</th>
<th>Propuesta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo de almacenamiento</td>
<td>3.000.000</td>
<td>3.000.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.000.000</td>
<td>3.000.000</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Costo de arreglos locativos

Los arreglos locativos a realizar en la empresa, sea cual sea la distribución a realizar, sería pintar el suelo de la planta de producción y demarcar cada una de las máquinas, áreas y rutas de evacuación, para lo cual serían necesarios los siguientes materiales con su respectivo costo aproximado en tres diferentes fábricas de pintura (Tabla 29), cuyas cotizaciones físicas se pueden observar en los anexos 26, 27 y 28.

Tabla 29. Costos de arreglos locativos

<table>
<thead>
<tr>
<th>Material</th>
<th>Cant.</th>
<th>Fabrica 1</th>
<th>Fabrica 2</th>
<th>Fabrica 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caneca de pintura tipo trafico azul</td>
<td>2</td>
<td>370.000</td>
<td>380.000</td>
<td>497.800</td>
</tr>
<tr>
<td>Galón de disolvente</td>
<td>2</td>
<td>20.000</td>
<td>20.000</td>
<td>20.000</td>
</tr>
<tr>
<td>Galón de pintura tipo trafico amarilla</td>
<td>1</td>
<td>38.000</td>
<td>45.000</td>
<td>49.900</td>
</tr>
<tr>
<td>Rodillo</td>
<td>6</td>
<td>42.000</td>
<td>30.000</td>
<td>32.400</td>
</tr>
<tr>
<td>Brocha 3”</td>
<td>3</td>
<td>18.000</td>
<td>18.000</td>
<td>18.300</td>
</tr>
<tr>
<td>Rollo de cinta de enmascarar</td>
<td>5</td>
<td>24.000</td>
<td>17.500</td>
<td>26.500</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>512.000</td>
<td>510.500</td>
<td>644.900</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Teniendo en cuenta las cotizaciones realizadas, se podría tomar como costo de arreglos locativos para cualquier propuesta el valor de 510.500 de la fábrica 2.

Costo de mano de obra

Para las dos propuestas es necesario el apoyo extra de personal de la empresa el cual si se llegara a implementar por recomendaciones de la empresa se realizaría un fin de semana festivo con el fin de no perder días de producción, se empezaría el sábado a mediodía. Como la
propuesta 1 es necesario el movimiento de toda la maquinaria se estima un apoyo de personal de 4, para la propuesta 2 teniendo en cuenta que alguna maquinaria no se sacara se estima un apoyo de personal de 3.

Teniendo en cuenta el sueldo de cada operario es de $800,000, una hora laboral ordinaria tiene un costo de $3400, en la siguiente tabla se pueden observar los costos aproximados de la mano de obra, teniendo en cuenta el tiempo estimado de duración de la distribución de la maquinaria y los arreglos locativos, además, el valor de la hora en la que se trabajara, desde la base que cada trabajador gana por hora laborada.

Tabla 30.
Costos de arreglos locativos

<table>
<thead>
<tr>
<th>Costos de mano de obra</th>
<th>Propuesta 1</th>
<th>Propuesta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de personas necesarias aproximadamente</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Valor hora extra diurna</td>
<td>4,250</td>
<td>4,250</td>
</tr>
<tr>
<td>Horas extra diurnas necesarias aproximadamente</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Recargo dominical y festivo</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Valor hora dominical diurna</td>
<td>6,800</td>
<td>6,800</td>
</tr>
<tr>
<td>Horas extras dominicales necesarias aproximadamente</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td>574,600</td>
<td>430,950</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Costos totales

En la siguiente tabla se pueden encontrar los costos aproximados de cada propuesta, teniendo en cuenta los costos anteriormente estudiados.

Tabla 31.
Costos totales

<table>
<thead>
<tr>
<th>Tipo de costo</th>
<th>Propuesta 1</th>
<th>Propuesta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo de transporte de maquinaria</td>
<td>1,200,000</td>
<td>780,000</td>
</tr>
<tr>
<td>Costo de almacenamiento de maquinaria</td>
<td>3,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Costo de arreglos locativos</td>
<td>510.500</td>
<td>510.500</td>
</tr>
<tr>
<td>Costo de mano de obra</td>
<td>574,600</td>
<td>430,950</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,285.100</td>
<td>4,721.450</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Evaluación de las propuestas

Para la evaluación de las alternativas se tendrá en cuenta los siguientes criterios los cuales corresponden a los principios de una adecuada distribución expuestos por Pierre (1975):

- Criterio 1: Integración en conjunto
- Criterio 2: Mínima distancia recorrida
- Criterio 3: Circulación o flujo de materiales
- Criterio 4: Seguridad y satisfacción
- Criterio 5: Flexibilidad

Para la calificación de estos criterios, se estableció un sistema de importancia mediante una ponderación, tomando como referente la calificación de Muther en la metodología SLP, donde propone que esta debe ser de 4 a -1 siendo: 4, casi perfecto; 3, especialmente bueno; 2, importante; 1, ordinario; 0, sin importancia; -1, no aceptable.

Criterio 1: Integración en conjunto

Este evaluó, si dada la propuesta, se tiene una buena integración de la maquinaria, los operarios, los materiales y las actividades auxiliares teniendo en cuenta unos parámetros de evaluación los cuales se pueden observar en la tabla 32.

<table>
<thead>
<tr>
<th>IMPORTANCIA</th>
<th>PUNTOS MATRICIALES</th>
<th>INDICADORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>4</td>
<td>Integra a los hombres, los materiales, la maquinaria, las actividades auxiliares.</td>
</tr>
<tr>
<td>Bueno</td>
<td>3</td>
<td>Integra a los hombres, los materiales, la maquinaria, pero no integra todas las actividades auxiliares.</td>
</tr>
<tr>
<td>Regular</td>
<td>2</td>
<td>Integra a los hombres, la maquinaria, pero no integra a los materiales y algunas actividades auxiliares.</td>
</tr>
<tr>
<td>Mala</td>
<td>1</td>
<td>Integra a los hombres, integra alguna maquinaria, pero no integra a los materiales y las actividades auxiliares.</td>
</tr>
<tr>
<td>Insuficiente</td>
<td>0</td>
<td>Se integra solo las maquinas con los hombres, los materiales y las actividades auxiliares no funcionan con coherencia al proceso que se lleva a cabo.</td>
</tr>
<tr>
<td>No aceptable</td>
<td>-1</td>
<td>No hay una integración adecuada.</td>
</tr>
</tbody>
</table>

Nota: Fuente: Los autores

Criterio 2: Mínima distancia recorrida

Este evaluó el porcentaje de reducción del recorrido con respecto al actual teniendo en cuenta los rangos de evaluación que se encuentran en la tabla 33.
Tabla 33.

Criterio 2: Mínima distancia recorrida

<table>
<thead>
<tr>
<th>IMPORTANCIA</th>
<th>PUNTOS MATRICIALES</th>
<th>INDICADORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>4</td>
<td>La distancia recorrida mejoró más de un 25%</td>
</tr>
<tr>
<td>Bueno</td>
<td>3</td>
<td>La distancia recorrida mejoró de 20 a 24.9%</td>
</tr>
<tr>
<td>Regular</td>
<td>2</td>
<td>La distancia recorrida mejoró de 15 a 19.9%</td>
</tr>
<tr>
<td>Mala</td>
<td>1</td>
<td>La distancia recorrida mejoró de 8 a 14.9%.</td>
</tr>
<tr>
<td>Insuficiente</td>
<td>0</td>
<td>La distancia recorrida mejoró de 0.1 a 7.49%.</td>
</tr>
<tr>
<td>No aceptable</td>
<td>-1</td>
<td>La distancia recorrida es la misma que se tenía o aumento</td>
</tr>
</tbody>
</table>

Nota: Fuente: Los autores

Para determinar el porcentaje de reducción de la distancia recorrida en cada propuesta, se realizaron una serie de cálculos los cuales se pueden observar en el anexo 29.

Criterio 3: Circulación o flujo de materiales

Este evaluó la distancia entre los pasillos para la adecuada circulación teniendo en cuenta unos rangos de evaluación los cuales se muestran en la tabla 34.

Tabla 34.

Criterio 3: Circulación o flujo de materiales

<table>
<thead>
<tr>
<th>IMPORTANCIA</th>
<th>PUNTOS MATRICIALES</th>
<th>INDICADORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>4</td>
<td>Están espaciados a una distancia mayor a 1,70 metros en promedio</td>
</tr>
<tr>
<td>Bueno</td>
<td>3</td>
<td>Están espaciados a una distancia entre 1,36 y 1,70 metros en promedio</td>
</tr>
<tr>
<td>Regular</td>
<td>2</td>
<td>Están espaciados a una distancia entre 1,15 y 1,359 metros</td>
</tr>
<tr>
<td>Mala</td>
<td>1</td>
<td>Están espaciados a una distancia entre 0,8 y 1,149 metros</td>
</tr>
<tr>
<td>Insuficiente</td>
<td>0</td>
<td>Están espaciados a una distancia menor a 0,79 metros en promedio</td>
</tr>
<tr>
<td>No aceptable</td>
<td>-1</td>
<td>Algunos de los pasillos no tienen la distancia mínima necesaria para transportar el material.</td>
</tr>
</tbody>
</table>

Nota: Fuente: Los autores

Criterio 4: Seguridad y satisfacción

Este evaluó la distancia necesaria a recorrer en su proceso en específico de las piezas más grandes del proceso (Bloques y cigüeñales), partiendo de la idea de que, al tener una menor distancia a recorrer, el proceso sería más seguro para los operarios. La evaluación de este criterio se realizó teniendo en cuenta unos rangos los cuales se pueden observar en la tabla 35.
Tabla 35.
Criterio 4: Seguridad y satisfacción

<table>
<thead>
<tr>
<th>IMPORTANCIA</th>
<th>PUNTOS MATRICIALES</th>
<th>INDICADORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>4</td>
<td>La distancia recorrida mejoró más de un 30% en promedio para los dos procesos.</td>
</tr>
<tr>
<td>Bueno</td>
<td>3</td>
<td>La distancia recorrida mejoró de 25 a 29.9% en promedio para los dos procesos.</td>
</tr>
<tr>
<td>Regular</td>
<td>2</td>
<td>La distancia recorrida mejoró de 15 a 24.9% en promedio para los dos procesos.</td>
</tr>
<tr>
<td>Mala</td>
<td>1</td>
<td>La distancia recorrida mejoró de 8 a 14.9% en promedio para los dos procesos.</td>
</tr>
<tr>
<td>Insuficiente</td>
<td>0</td>
<td>La distancia recorrida mejoró de 0.1 a 7.49% en promedio para los dos procesos.</td>
</tr>
<tr>
<td>No aceptable</td>
<td>-1</td>
<td>La distancia recorrida es la misma que se tenía o aumento en promedio para los dos procesos.</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Criterio 5: Flexibilidad

Este evaluó la accesibilidad a la maquinaria, dada una situación de redistribución total o parcial de la misma, venta, incorporación o mantenimiento, para lo cual se tendrán en cuenta unos parámetros de evaluación los cuales están en la tabla 36.

Tabla 36.
Criterio 5: Flexibilidad

<table>
<thead>
<tr>
<th>IMPORTANCIA</th>
<th>PUNTOS MATRICIALES</th>
<th>FLEXIBILIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>4</td>
<td>Es posible acceder con mucha facilidad a toda la maquinaria</td>
</tr>
<tr>
<td>Bueno</td>
<td>3</td>
<td>Es posible acceder con facilidad a la maquinaria más grande y la mayoría de las maquinas pequeñas</td>
</tr>
<tr>
<td>Regular</td>
<td>2</td>
<td>Es posible acceder a casi toda la maquinaria grande y algunas máquinas pequeñas</td>
</tr>
<tr>
<td>Mala</td>
<td>1</td>
<td>Es posible acceder con facilidad solo a algunas pocas maquinas grandes y algunas máquinas pequeñas</td>
</tr>
<tr>
<td>Insuficiente</td>
<td>0</td>
<td>Es posible acceder solo a algunas máquinas pequeñas</td>
</tr>
<tr>
<td>No aceptable</td>
<td>-1</td>
<td>Es muy complejo acceder a cualquier tipo de maquinaria</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

A cada uno de estos criterios se les otorgó un grado de importancia como lo muestra la tabla 37, con el fin de poder realizar una ponderación final y así seleccionar cual propuesta es mejor para la empresa.
Tabla 37.
Grado de importancia de los criterios

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>GRADO DE IMPORTANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Integración en conjunto</td>
<td>30%</td>
</tr>
<tr>
<td>2. Mínima distancia recorrida</td>
<td>20%</td>
</tr>
<tr>
<td>3. Circulación o flujo de materiales</td>
<td>20%</td>
</tr>
<tr>
<td>4. Seguridad y satisfacción</td>
<td>15%</td>
</tr>
<tr>
<td>5. Flexibilidad</td>
<td>15%</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Teniendo en cuenta la importancia de cada uno de los criterios se obtuvo la siguiente matriz de calificación:

Tabla 38.
Matriz de calificación de las propuestas

<table>
<thead>
<tr>
<th>CALIFICACIÓN</th>
<th>Propuesta</th>
<th>Criterio 1</th>
<th>Criterio 2</th>
<th>Criterio 3</th>
<th>Criterio 4</th>
<th>Criterio 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Propuesta 1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Propuesta 2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

Considerando el grado de importancia de cada criterio y la calificación dada se obtuvo la siguiente matriz ponderada:

Tabla 39.
Matriz de calificación ponderada

<table>
<thead>
<tr>
<th>CALIFICACIÓN</th>
<th>Propuesta</th>
<th>Criterio 1</th>
<th>Criterio 2</th>
<th>Criterio 3</th>
<th>Criterio 4</th>
<th>Criterio 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Propuesta 1</td>
<td>0,9</td>
<td>0,8</td>
<td>0,6</td>
<td>0,6</td>
<td>0,45</td>
<td>3,35</td>
</tr>
<tr>
<td></td>
<td>Propuesta 2</td>
<td>0,6</td>
<td>0,6</td>
<td>0,4</td>
<td>0,45</td>
<td>0,45</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Nota Fuente: Los autores

De acuerdo con la tabla anterior se puede establecer que la propuesta 1 se encuentra en un rango entre excelente y buena, en cuanto a la propuesta 2, se puede observar, que se encuentra en un rango entre regular y buena, teniendo en cuenta que la escala es de -1 hasta 4.
7. RELACIÓN COSTO- BENEFICIO

En el dado caso que la empresa, decida implementar alguna de las dos propuestas, estaría dispuesta a realizar una inversión significativa, la cual traerá beneficios para la misma, resultados que mejorarían las condiciones actuales en las que se encuentra la empresa. Por esta razón, se realizó una comparación del costo-beneficio de cada propuesta, para identificar las principales ventajas y mejoras que traería el aplicarlas. Dada la evaluación realizada en el capítulo anterior, esta sección detalla de forma cualitativa los beneficios percibidos, tanto a nivel interno como externo de cada propuesta realizada:

Tabla 40. *Relación costo-beneficio propuesta 1*

<table>
<thead>
<tr>
<th>Costo</th>
<th>Beneficios Internos</th>
<th>Beneficios Externos</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 5’285.100</td>
<td>Menos recorridos en los procesos.</td>
<td>Proporcionar un servicio superior a los clientes en un menor tiempo.</td>
</tr>
<tr>
<td></td>
<td>Aumento de la productividad.</td>
<td>Aumento de clientes potencia.</td>
</tr>
<tr>
<td></td>
<td>Mejora la calidad del trabajo.</td>
<td>Producir a menor costo.</td>
</tr>
<tr>
<td></td>
<td>Aumento de la seguridad en los procesos.</td>
<td>Mantener la certificación ISO 9001 y contribuir en el mejoramiento continuo de esta.</td>
</tr>
<tr>
<td></td>
<td>Facilidades de mando y control de los procesos.</td>
<td>Aumento de la visión de la cultura laboral, haciendo de la empresa un lugar agradable para trabajar.</td>
</tr>
<tr>
<td></td>
<td>Mejor circulación de materiales y personas.</td>
<td>Posibilidad de aumentar las líneas de negocio.</td>
</tr>
<tr>
<td></td>
<td>Mejora en las condiciones ambientales.</td>
<td>Responsabilidad social empresarial.</td>
</tr>
<tr>
<td></td>
<td>Aprovechamiento de los espacios horizontales y verticales.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aumento de la limpieza y orden.</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Fuente: Los autores
Tabla 41. Relación costo-beneficio propuesta 2

<table>
<thead>
<tr>
<th>Propuesta 2</th>
<th>Costo</th>
<th>Beneficios</th>
<th>Externos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internos</td>
<td></td>
<td>Externos</td>
</tr>
<tr>
<td></td>
<td>Mejor circulación de materiales y personas.</td>
<td>Aumento de la visión de la cultura laboral, haciendo de la empresa un lugar agradable para trabajar.</td>
<td>Aumento de clientes potenciales.</td>
</tr>
<tr>
<td></td>
<td>Aumento de la seguridad en los procesos.</td>
<td>Imagen corporativa.</td>
<td>Producir a un menor costo.</td>
</tr>
<tr>
<td></td>
<td>Aumento de la limpieza y orden.</td>
<td>Aumento de la productividad.</td>
<td>Aprovechamiento de los espacios horizontales y verticales.</td>
</tr>
<tr>
<td></td>
<td>Aprovechamiento de los espacios horizontales y verticales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mejora en las condiciones ambientales.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nota</td>
<td>Fuente: Los autores</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Como se puede observar en las tablas anteriores, realizar una adecuada distribución en planta, que tenga en cuenta factores como la relación de algunos procesos con otros, reducción de los recorridos de las piezas más grandes, una secuencia lógica de los procesos, agrupación de la maquinaria por proceso a realizar, entre otras, otorga grandes beneficios para las empresas, tanto a nivel interno en mejorar el funcionamiento general de la empresa, el flujo de las personas y los materiales, reduciendo el tiempo de producción generando así mayores ganancias, como también a nivel externo, fortaleciendo la imagen corporativa, respondiendo de manera eficiente a los requerimientos de los clientes, mejorando la capacidad competitiva.
8. RECOMENDACIONES

De acuerdo a los resultados obtenidos durante el desarrollo de la propuesta, se realizan algunas recomendaciones para que la empresa las tenga en cuenta durante y después del desarrollo de estas, las cuales generarían cambios significativos en la distribución, seguridad en las instalaciones, manejo ambiental, por ende se propone lo siguiente:

- Arrendar o comprar alguna de las bodegas vecinas, con el fin de aumentar el espacio del área de producción y poder reorganizar la maquinaria de acuerdo al proceso, ya que en el desarrollo de los cálculos del requerimiento del área para la distribución se evidencio que eran necesarios 223 m^2 en la planta y actualmente cuentan con $168,08 \text{ m}^2$.
- Usar estantería en la pared que permita reducir el espacio y aprovecharlo para una mejor circulación de las tareas.
- Cambiar el tejado del área de producción, por uno transparente, con el fin que permita el ingreso de luz natural a la planta y esta cuente con mayor iluminación natural, reduciendo así el uso de iluminación artificial en las áreas donde nos es necesario el uso de esta.
- Promover el uso obligatorio de EPP’s, de esta manera mitigando los posibles accidentes en los procesos de rectificación.
- Separar adecuadamente los residuos generados en el proceso y contribuir al mejoramiento ambiental.
- Construir un sistema de ventilación que permita el ingreso de aire para mejorar el clima laboral.
- Construir una chimenea para que los gases producidos en el proceso de lavado sean extraídos mitigando enfermedades respiratorias en los trabajadores.
- Diseñar zonas de aseo en el segundo piso de la empresa en las cuales los trabajadores se puedan asear después de terminar su jornada laboral.
- Poner señalización donde se encuentra los circuitos eléctricos y zonas peligrosas.
- Promover la cultura de aseo en el proceso.
9. CONCLUSIONES

- Se diseñaron dos propuestas de mejora del área de producción integrando los factores de diseño de las instalaciones, circulación de los materiales y del personal, seguridad, manejo ambiental, de acuerdo con la metodología SLP propuesta por Muther (1973).
- Se analizó el sistema productivo, el flujo de materiales con el fin de identificar las falencias que se tenían durante el proceso y así poder diseñar la propuesta, donde se determinó que las máquinas de acuerdo al proceso no estaban ubicadas estratégicamente, por ende, se tenían que recorrer distancias muy largas porque estas no pertenecían al área correspondiente. Se agrupó la maquinaria de acuerdo al proceso disminuyendo el recorrido desde el área de lavado, la cual es el área principal para la rectificación, y se diseñó la propuesta con el fin de que todas las áreas tuvieran ingreso a estas para el correcto flujo de materiales.
- De acuerdo a la naturaleza del proceso se identificó que los procesos de rectificación de cigüeñas y de bloques tienen un grado alto de accidentalidad por el tamaño y peso de las piezas, por tal motivo el diseño de las propuestas tuvieron un énfasis en este factor integrando cada una de estas áreas cerca al área de lavado reduciendo el recorrido y a su vez mitigando el grado de accidentalidad.
- Se identificaron factores de seguridad en los cuales la empresa tenía conocimiento pero no se estaban implementando adecuadamente, lo cual se hicieron recomendaciones en el uso adecuado de los EPP’s, ruta de evacuación, y la ubicación de los extintores.
- Se analizaron los factores medioambientales del proceso de rectificación, donde se identificaron falencias en el diseño de ductos que permitieran la extracción de los gases producidos en el proceso de lavado, el inadecuado manejo de los desechos. Como recomendación se propuso el diseño de una chimenea para la extracción de los gases, y se ubicaron los puntos ecológicos de acuerdo al proceso.
- Se realizó la comparación costo beneficio de cada una de las propuestas identificando las diferentes ventajas y mejoras que traería si se llegara a implementar cada una de estas.
BIBLIOGRAFÍA

Distribución en planta. (Octubre de 2010). Recuperado el 9 de Octubre de 2014, de unavdocs.files.wordpress.com:

http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=12672

ARL SURA. (s.f.). *Elementos de protección personal (EPP).* Recuperado el 24 de Julio de 2015, de arlsura.com: http://www.arlsura.com/index.php/component/content/article/75-centro-de-documentacion-anterior/equipos-de-proteccion-individual-/1194--sp-3393)

BERNAL, N., & DUARTE, A. (Octubre de 2004). IMPLEMENTACIÓN DE UN MODELO DE MRP EN UNA PLANTA DE AUTOPARTES EN BOGOTÁ, CASO SAUTO LTDA. Recuperado el 24 de Septiembre de 2014, de javeriana.edu.co:
http://www.javeriana.edu.co/biblos/tesis/ingenieria/tesis68.pdf

BLOG CULATA. (20 de Marzo de 2014). QUE ÉS RECTIFICAR LA CULATA. Recuperado el 18 de Julio de 2015, de blog.culatashop.com: http://blog.culatashop.com/que-es-rectificar-la-culata/

Cámara de Comercio de Bogotá. (s.f.). *Todo sobre el código CIIU.* Recuperado el 23 de 02 de 2015, de ccb.org.co: http://www.ccb.org.co/Inscripciones-y-renovaciones/Todo-sobre-el-codigo-CIIU

CÁMARA DE COMERCIO DE BOGOTÁ. (s.f.). *Todo sobre el código CIIU.* Recuperado el 23 de 02 de 2015, de ccb.org.co: http://www.ccb.org.co/Inscripciones-y-renovaciones/Todo-sobre-el-codigo-CIIU

DANE. (2012). CLASIFICACIÓN INDUSTRIAL INTERNACIONAL UNIFORME DE TODAS LAS ACTIVIDADES ECONÓMICAS. Bogotá D.C.

FINANZAS PERSONALES. (2015). ¿Cuánto cuestan sus horas extras? Recuperado el 02 de Octubre de 2015, de finanzaspersonales.com.co:
http://www.finanzaspersonales.com.co/trabajo-y-educacion/articulo/cuanto-cuestan-horas/53447

Giraldi, J. (1985). Reparación de Motores de Tractores Agrícolas. Obtenido de https://books.google.es/books?hl=es&lr=&id=qAVNtkCDi3YC&oi=fnd&pg=PR5&q=p partes+de+un+motor+que+se+rectifican+&ots=x7njD6jQ3Ngl_B_Z5 lIKn-N-C8#v=onepage&q=p partes%20de%20un%20motor%20que%20se%20rectifican&f=false

GOBIERNO DE CHILE. (s.f.). ¿Cuál es la cantidad mínima de excusados y lavatorios que debe existir en la empresa? Recuperado el 26 de mayo de 2015, de dt.gob.cl:
http://www.dt.gob.cl/consultas/1613/w3-article-60436.html

http://repository.lasalle.edu.co/bitstream/handle/10185/14979/T41.11%20G589f.pdf?sequence=1

Google maps. (s.f.). CTR - Centro Técnico de Rectificación de Motores. Recuperado el 27 de enero de 2015, de google.com: https://www.google.com/maps/place/CTR+-+Centro+T%C3%A9cnico+de+Rectificaci%C3%B3n+de+Motores/data=!4m2!3m1!1s0x8e3f9cedc378a0b9:0x4b29b455a06f4667?gl=CO&hl=es-419

INGENIERIA INDUSTRIAL ONLINE. (s.f.). DIMENSIONAMIENTO DE ALMACENES. Recuperado el 26 de mayo de 2015, de ingenieriaindustrialonline.com: http://www.ingenieriaindustrialonline.com/herramientas-para-el-ingeniero-industrial/gest%C3%B3n-de-almacenes/dimensionamiento-de-almacenes/

http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=1479

MINISTERIO DE AMBIENTE. (30 de 12 de 2005). DECRETO 4741 DEL 2005. Obtenido de:
http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=18718

http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=1177

http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=1177

Recuperado el 15 de Julio de 2015, de alcaldiabogota.gov.co:
http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=53565

http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=21982

Recuperado el 15 de Julio de 2015, de alcaldiabogota.gov.co:
http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=19983

Recuperado el 15 de Julio de 2015, de alcaldiabogota.gov.co:
http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=38899

MINISTERIO DE AMBIENTE. (2014). PROTOCOLO PARA EL MONITOREO, CONTROL Y VIGILANCIA DE OLORES OFENSIVOS. Recuperado el 18 de Julio de 2015, de minambiente.gov.co:
https://www.minambiente.gov.co/images/Atencion_y_participacion_al_ciudadano/Consulta_Publica/Protocolo_para_el_Monitoreo_Control_y_Vigilancia_de_Olores_Ofensiv.pdf

MINISTERIO DE AMBIENTE. (11 de Julio de 2015). LEY 1562 DE 2012. Recuperado el 15 de Julio de 2015, de alcaldiabogota.gov.co:
http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=48365

Recuperado el 15 de Julio de 2015, de alcaldiabogota.gov.co:
http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=18718

Palacios, L. (2009). Ingeniería de métodos, movimientos y tiempos. Colombia: ECOE.

UNIVERSIDAD DE CASTILLA - LA MANCHA. (s.f.). DISTRIBUCIÓN EN PLANTA. Recuperado el 24 de Septiembre de 2014, de uclm.es: http://www.uclm.es/area/ing_rural/asignaturaproyectos/tema5.pdf

ANEXOS

Anexo 1

Figura 27: Proceso de rectificación de un motor empresa CTR.
Fuente: Los autores, software utilizado ClickCharts
Anexo 2

Figura 28: procedimientos para la rectificación de una culata
Fuente: Los autores, software utilizado ClickCharts
Anexo 3

Figura 29: procedimientos para la rectificación de un cigüeñal
Fuente: Los autores, software utilizado ClickCharts
Figura 30: procedimientos para el proceso de lavado.
Fuente: Los autores, software utilizado ClickCharts
Figura 31: procedimiento para la rectificación de bloques
Fuente: Los autores, software utilizado ClickCharts
Figura 32: procedimiento para el verificado y probado
Fuente: Los autores, software utilizado ClickCharts
Figura 33: procedimiento para el alistamiento de culatas y cigüeñas
Fuente: Los autores, software utilizado ClickCharts
Anexo 8

Figura 34: procedimiento para los círculos
Fuente: Los autores, software utilizado ClickCharts
Figura 35: procedimiento para la rectificación de las bielas
Fuente: Los autores, software utilizado ClickCharts
Anexo 10

Figura 36: procedimiento para la rectificación de válvulas.

Fuente: Los autores, software utilizado ClickCharts
Anexo 11

Figura 37: Diagrama de recorrido, proceso de rectificación de culatas.
Fuente: Los autores, software utilizado Solid Edge

Anexo 12

Figura 38: Diagrama de recorrido, proceso de rectificación de cigüeñas.
Fuente: Los autores, software utilizado Solid Edge
Figura 39: Diagrama de recorrido, proceso de lavado.
Fuente: Los autores, software utilizado Solid Edge

Figura 40: Diagrama de recorrido, proceso de rectificación de bloques.
Fuente: Los autores, software utilizado Solid Edge
Anexo 15

Figura 41: Diagrama de recorrido, proceso de verificado y probado.
Fuente: Los autores, software utilizado Solid Edge

Anexo 16

Figura 42: Diagrama de recorrido, proceso de alistamiento de culatas y cigüeñas
Fuente: Los autores, software utilizado Solid Edge
Anexo 17

Figura 43: Diagrama de recorrido, proceso de círculos.
Fuente: Los autores, software utilizado Solid Edge

Anexo 18

Figura 44: Diagrama de recorrido, proceso de rectificación de bielas.
Fuente: Los autores, software utilizado Solid Edge
Anexo 19

Figura 45: Diagrama de recorrido, proceso de rectificación de válvulas.
Fuente: Los autores, software utilizado Solid Edge
Figura 46: Plano de las instalaciones de la planta de proceso CTR
Fuente: Los autores, software utilizado Solid Edge
LISTA DE CHEQUEO PARA LA EMPRESA CTR

Esta lista de chequeo tiene como propósito fundamental, analizar la distribución de la planta de la empresa CTR, incluyendo los aspectos ambientales y de seguridad asociados al diseño de instalaciones. Su aplicación permitirá identificar las fortalezas y oportunidades de mejora.

IDENTIFICACIÓN DEL ESTABLECIMIENTO

<table>
<thead>
<tr>
<th>Nombre del establecimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fecha de visita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

La lista de chequeo tiene una calificación de una escala de 1 a 4 siendo 4 el máximo y 1 el mínimo:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INSUFICIENTE: no cumple, no lo practica.</td>
</tr>
<tr>
<td>2</td>
<td>REGULAR: falta por implementar</td>
</tr>
<tr>
<td>3</td>
<td>BUENO: cumple, pero presenta fallas.</td>
</tr>
<tr>
<td>4</td>
<td>MUY BUENO: cumple</td>
</tr>
</tbody>
</table>

INSTALACIONES, INFRAESTRUCTURA Y DISTRIBUCIÓN EN PLANTA

Descripción: Vías de acceso a la planta se encuentran pavimentadas o adecuadamente compactadas y con drenaje adecuado para prevenir inundaciones.

Indicadores:

1. Las vías de acceso no están pavimentadas y sin drenaje
2. Las vías de acceso están pavimentadas y sin drenaje
3. Las vías de acceso están pavimentadas, pero sin drenaje cercano
4. Las vías de acceso están pavimentadas y con drenaje adecuado

Calificación:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Observaciones: las vías de acceso a la planta están pavimentadas pero las alcantarillas están retiradas, sin embargo, el sistema de drenaje con el que cuenta la planta es adecuado para evitar una inundación.
Descripción: El tejado está construido de manera que permitan el paso de luz natural a la planta.

Indicadores:
1. El tejado es de material opaco
2. El tejado es de material translúcido
3. El tejado es en su mayoría de material transparente
4. El tejado es de material transparente

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: La cubierta del tejado permite el paso de luz natural pero no lo suficiente ya que las tejas no son las adecuadas.

Descripción: Los pisos son de materiales óptimos para resistir el peso de las máquinas.

Indicadores:
1. El piso no resiste el peso de las máquinas, se encuentra en pésimo estado, presenta hundimientos o grietas
2. El piso se encuentra agrietado en algunas secciones por el peso de las máquinas
3. El piso se encuentra en buenas condiciones
4. El piso se encuentra en perfectas condiciones y resiste el peso de la maquinaria utilizada en la planta.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: los pisos están elaborados de concreto para que puedan resistir bastante peso, pero presenta deterioro ya que no se le ha realizado mantenimiento.

Descripción: La altura de la infraestructura, es adecuada para el tipo de maquinaria que se utiliza.

Indicadores:
1. Demasiada baja (Menor de 2,5 m)
2. Medianamente baja (Entre 2,5 y 3 m)
3. Demasiada alta (Mayor de 4 m)
4. Precisa (Entre 3 y 4 m)

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: en algunas áreas de la planta se presenta una altura mínima con respecto a la maquinaria que está allí.
PARÁMETRO 5

Descripción: Se cuenta con las ventanas, aberturas o sistemas de ventilación suficientes, para garantizar la adecuada ventilación de la planta.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 No se cuenta con ventanas, aberturas ni sistema de ventilación</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>2 Se cuenta con insuficientes ventanas y/o aberturas que no garantizan la adecuada ventilación de las instalaciones</td>
<td>X</td>
</tr>
<tr>
<td>3 Se cuenta con ventanas y/o aberturas que garantizan en unas cuantas áreas la ventilación.</td>
<td></td>
</tr>
<tr>
<td>4 Se cuenta con un sistema de ventilación adecuado para las instalaciones y/o con las ventanas o aberturas suficientes en planta</td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: Debido a la infraestructura de la empresa, no es posible adecuar ventanas, sin embargo, no cuenta con ningún sistema que garantice una ventilación adecuada como lo son ventiladores o aire acondicionado, extractores.

PARÁMETRO 6

Descripción: La empresa cuenta con las zonas adecuadas de aseo suficientes, teniendo en cuenta el número de trabajadores que allí laboran.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 No hay zona de aseo</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>2 Hay una sola zona de aseo, y hay más de 15 personas trabajando en la empresa</td>
<td>X</td>
</tr>
<tr>
<td>3 Hay una sola zona de aseo, y hay entre 10 y 14 personas trabajando en la empresa</td>
<td></td>
</tr>
<tr>
<td>4 Hay una zona de aseo por cada 10 trabajadores de la empresa</td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: Cuentan con una zona de vistieres, pero falta mejorar el área de los baños ya que no se encuentra en condiciones óptimas.

PARÁMETRO 7

Descripción: Existe iluminación adecuada y los equipos de iluminación están protegidos

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 La iluminación es inadecuada y no se encuentra protegida, no se hace uso de colores claros en las paredes y techos, donde es necesaria mayor iluminación</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>2 La iluminación es inadecuada pero no se encuentra protegida, se hace uso de colores claros en muy pocas paredes y techos, donde es necesaria mayor iluminación</td>
<td></td>
</tr>
<tr>
<td>3 La iluminación es adecuada, pero no se encuentra protegida, se hace uso de colores claros en la mayoría de paredes y techos, donde es necesaria mayor iluminación</td>
<td></td>
</tr>
<tr>
<td>4 La iluminación es adecuada y debidamente protegida, haciendo uso de colores claros en las paredes y techos, donde es necesaria mayor iluminación</td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: El sistema de iluminación no cuenta con protección para que no se ensucie de las sustancias que se generan en el proceso, pero se goza de una buena iluminación artificial.
PARÁMETRO 8

Descripción: La maquinaria que dispone la empresa está organizada adecuadamente según el proceso productivo que allí se lleva a cabo.

Indicadores:
1. La maquinaria se encuentra desordenada, no sigue una secuencia lógica del proceso, ni está agrupada según la tarea o función.
2. La maquinaria se encuentra desordenada, sigue una secuencia lógica solo en algunos procesos, o solo muy pocas máquinas están agrupadas según su función.
3. La maquinaria se encuentra ordenada de manera adecuada en casi todo el proceso siguiendo un orden lógico, o correctamente agrupada la mayoría según su función.
4. La maquinaria se encuentra ordenada de manera adecuada, siguiendo un orden lógico del proceso o correctamente agrupada según tarea o función.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: Falta implementar el estudio adecuado para su la distribución

PARÁMETRO 9

Descripción: La infraestructura con la que se cuenta es adecuada para el proceso que allí se lleva a cabo.

Indicadores:
1. La infraestructura con la que se cuenta no es adecuada, el espacio es muy restringido.
2. La infraestructura es adecuada para algunos procesos y al mismo tiempo el espacio es restringido.
3. La infraestructura es la adecuada, pero el espacio es limitado.
4. La infraestructura con la que se cuenta está adecuada para el proceso que allí se lleva a cabo, es muy espacioso.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: La infraestructura es adecuada, pero hay gran cantidad de maquinaria a la que no se le hizo un estudio para situarla donde actualmente está.

PARÁMETRO 10

Descripción: Los sistemas eléctricos, neumáticos, hidráulicos o con los que se cuenten, tienen la suficiente capacidad para el proceso que allí se lleva a cabo.

Indicadores:
1. Los sistemas no cuentan con la capacidad mínima necesaria,
2. Algunos de los sistemas tienen la capacidad suficiente, pero presentan fallas constantemente.
3. Los sistemas tienen la capacidad suficiente, pero se sufren algunos inconvenientes con estos.
4. Los sistemas tienen la capacidad suficiente, y funcionan sin ningún inconveniente.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:
PARÁMETRO 11

Descripción: Las maquinas se encuentran a una distancia adecuada para garantizar el buen flujo de materiales y trabajadores.

Indicadores:
1. Están espaciados a una distancia menor a 0,8 metros
2. Están espaciados a una distancia entre 0,8 y 1,15 metros
3. Están espaciados a una distancia entre 1,15 y 1,35 metros
4. Están espaciados a una distancia mayor a 1,35 metros

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: La distancia entre las maquinas no es la adecuada para el flujo correcto de los operarios y trabajadores, ya que el espacio de separación es muy limitado.

PARÁMETRO 12

Descripción: Se cuenta con una bodega de almacenamiento adecuada para las partes y motores

Indicadores:
1. No se cuenta con una bodega de almacenamiento
2. Se cuenta con una bodega de almacenamiento, pero esta no tiene el espacio suficiente para el adecuado flujo de material y de personal, ni la correcta demarcación de seguridad, ni tampoco la estantería suficiente para el almacenaje
3. Se cuenta con una bodega de almacenamiento adecuada, con el espacio justo para el flujo de material y de personal, pero no cuenta con la correcta demarcación de seguridad, ni con la estantería suficiente para el almacenaje.
4. Se cuenta con una bodega de almacenamiento adecuada, con el espacio suficiente para el adecuado flujo de material y de personal, con la correcta demarcación de seguridad, y con la estantería suficiente para el almacenaje

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: El espacio de la bodega es muy limitado por ende tienen que ocupar ciertas partes del área de proceso para almacenar partes.

PARÁMETRO 13

Descripción: Las máquinas de la empresa se encuentran en funcionamiento

Indicadores:
1. Más del 50% de la maquinaria disponible no está en funcionamiento
2. Entre el 25 y el 50% de la maquinaria no está en funcionamiento
3. Entre 1 y 25% de la maquinaria disponible no está en funcionamiento
4. Todas las máquinas están en funcionamiento

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Observaciones: Ciertas máquinas de la empresa solo son utilizadas cuando la demanda supera la capacidad del proceso.
PARÁMETRO 14

Descripción: La actual distribución con la que cuenta la empresa, permite el adecuado flujo del proceso evitando cruces.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Se presentan cruces en el flujo del proceso, de los materiales y las personas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Se presentan cruces en el flujo de los materiales y/o las personas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Se presentan cruces en el flujo de las personas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 No se presenta ningún cruce</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: Debido a la distribución actual hay procesos en los que se tienen que trasladar una gran distancia, y hay máquinas que no están ubicadas de acuerdo al proceso.

PARÁMETRO 15

Descripción: La maquinaria se encuentra sujeta al suelo de la planta.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Más del 50% de la maquinaria se encuentra sujeta al suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Entre el 25 y el 50% de la maquinaria se encuentra sujeta al suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Entre el 1 y 25% de la maquinaria se encuentra sujeta al suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Ninguna maquina se encuentra sujeta al suelo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: La maquinaria cuenta con flexibilidad para trasladarse ya que solo un porcentaje está sujeto al suelo.

PARÁMETRO 16

Descripción: Se utiliza eficientemente la superficie de las paredes de la planta

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 no tienen estanterías, el material lo almacenan en sitios no adecuados.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 cuenta con estanterías, pero no son utilizadas para el almacenamiento de materiales.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 cuenta con estanterías, pero no están cerca al lugar del proceso.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 cuenta con estanterías, con fácil acceso para los materiales, a una adecuada altura para realizar las funciones.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: solo un porcentaje del área de la planta es utilizada con estantería en las paredes para el almacenamiento de herramienta, no se cuenta con estantería suficiente para el almacenamiento de piezas.
MANEJO MEDIOAMBIENTAL

PARÁMETRO 17

Descripción: La planta cuenta con zonas de almacenamiento de residuos RESPEL, generados por el proceso.

Indicadores:
- 1 no cuentan con lugares específicos para la separación de residuos en la fuente y los depositan junto con los residuos peligrosos (RESPEL).
- 2 cuentan con lugares específicos para la separación de residuos en la fuente, pero no le dan un uso adecuado, no les dan un adecuado manejo a los residuos peligrosos.
- 3 cuentan con lugares específicos para la separación de residuos en la fuente, pero no les dan un adecuado manejo a los residuos peligrosos (RESPEL).
- 4 Cuenta con lugares específicos para la separación de residuos en la fuente, y le da el manejo adecuado a los residuos peligrosos (RESPEL).

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: Tienen los recipientes adecuados para la separación de los residuos y cuentan con una bodega para ello, pero revuelven los residuos peligrosos con otros.

PARÁMETRO 18

Descripción: los espacios ecológicos cuentan con los recipientes indicados por la normatividad correspondiente. (colores)

Indicadores:
- 1 Tienen recipientes para separar los desechos, pero no con el color adecuado, revuelven todos los desechos sin importar su clasificación.
- 2 Tienen recipientes, pero no con el color adecuado para la separación de los desechos, pero intentan separar los desechos según su clasificación.
- 3 Tienen algunos recipientes con los colores adecuados para la separación de los desechos, pero no le dan un uso moderado.
- 4 Tienen los recipientes de los colores adecuados para separar los diferentes desechos generados en el proceso y le dan el uso que debe ser.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones: cuentan con los recipientes adecuados pero no le dan un uso adecuado ya que los desechos son mezclados con otros sin tener en cuenta el tipo de desecho.

PARÁMETRO 19

Descripción: La empresa contrata a una empresa especializada para que le dé una disposición final a los residuos RESPEL.

Indicadores:
- 1 no contratan a ninguna empresa, y botan los residuos a la basura junto con los otros residuos.
- 2 No contratan a una empresa, pero se encargan de llevar los residuos a lugares de tratamiento adecuado.
- 3 Contrata a una empresa para que realice la disposición final, pero esta no cumple con la normatividad correspondiente.
- 4 Contrata a una empresa especializada que cumple la normatividad correspondiente.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:
<table>
<thead>
<tr>
<th>PARÁMETRO 20</th>
<th>Parámetro: El tiempo de exposición por parte de los trabajadores a la emisión atmosférica es mínima o nula.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 Están expuestos durante toda la jornada laboral</td>
</tr>
<tr>
<td></td>
<td>2 Están expuestos durante un periodo prolongado</td>
</tr>
<tr>
<td></td>
<td>3 Están expuestos durante un periodo mínimo</td>
</tr>
<tr>
<td></td>
<td>4 No están expuestos a alguna emisión</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETRO 21</th>
<th>Parámetro: La sustancia que es emitida no proporciona ninguna contaminación, ningún efecto adverso en la salud de los trabajadores, ni produce ningún olor ofensivo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 Produce contaminación, efectos adversos en la salud y olores ofensivos</td>
</tr>
<tr>
<td></td>
<td>2 Produce contaminación y olores ofensivos</td>
</tr>
<tr>
<td></td>
<td>3 Produce olores ofensivos</td>
</tr>
<tr>
<td></td>
<td>4 No produce contaminación, efectos adversos en la salud ni olores ofensivos</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETRO 22</th>
<th>Parámetro: El estado de alerta según el decreto 948 de 1995 en el que se encuentra la compañía por la emisión atmosférica es Nivel I (Normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 Nivel IV Emergencia: la concentración de contaminantes en el aire y su tiempo de exposición o duración, puede causar enfermedades agudas o graves u ocasionar la muerte a los seres vivos</td>
</tr>
<tr>
<td></td>
<td>2 Nivel III Alerta: la concentración de contaminantes en el aire y su duración o tiempo de exposición, puede causar alteraciones manifiestas en el medio ambiente, la salud humana especialmente en algunas funciones fisiológicas.</td>
</tr>
<tr>
<td></td>
<td>3 Nivel II Prevención: las concentraciones de contaminantes en el aire y su tiempo de exposición o duración, causan efectos adversos y manifiestos, aunque leves, en la salud humana o en el medio ambiente.</td>
</tr>
<tr>
<td></td>
<td>4 Nivel I Normal: la concentración de contaminantes en el aire y su tiempo de exposición o duración son tales, que no se producen efectos nocivos, directos ni indirectos, en el medio ambiente, o la salud humana.</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETRO 23</th>
<th>Parámetro: La empresa cuenta con una chimenea o ducto adecuado para el direccionamiento de la emisión al exterior de las instalaciones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 No se cuenta con una chimenea o ducto</td>
</tr>
<tr>
<td></td>
<td>2 La chimenea o el ducto con el que se cuenta está en pésimas condiciones y presenta muchas fugas</td>
</tr>
<tr>
<td></td>
<td>3 La chimenea o el ducto con el que se cuenta es adecuado, pero presenta algunas fugas</td>
</tr>
<tr>
<td></td>
<td>4 La chimenea o el ducto con el que se cuenta está en muy buenas condiciones.</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
</tr>
</tbody>
</table>
PARÁMETRO 24

Descripción: Los ductos o chimeneas utilizados tienen filtros, que permitan que las emisiones direccionadas al exterior disminuyan su impacto ambiental.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 No se cuenta con un ducto y la maquinaria no tiene ningún sistema que disminuya los contaminantes de las emisiones.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 No se cuenta con un ducto de ventilación, pero la maquinaria o equipos utilizados tienen algún sistema que permite descontaminar en un porcentaje la emisión.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 La chimenea o ducto cuenta con un filtro, pero que no descontamina la emisión en buena parte</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 La chimenea o ducto utilizado cuenta con filtros</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Indicadores:

1. No se cuenta con un ducto y la maquinaria no tiene ningún sistema que disminuya los contaminantes de las emisiones.
2. No se cuenta con un ducto de ventilación, pero la maquinaria o equipos utilizados tienen algún sistema que permite descontaminar en un porcentaje la emisión.
3. La chimenea o ducto cuenta con un filtro, pero que no descontamina la emisión en buena parte.
4. La chimenea o ducto utilizado cuenta con filtros.

Observaciones:

SEGUROS E HIGIENE INDUSTRIAL

Descripción: Los olores ofensivos solo se localizan en los límites del sitio.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 En una amplia localización (< 500 m)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 En las cercanías a receptores sensible (< 250 m)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 A corta distancia de los límites, pero no impacta ningún receptor sensible (< 25 m)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 En el sitio o en sus límites solamente</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Indicadores:

1. En una amplia localización (< 500 m).
2. En las cercanías a receptores sensible (< 250 m).
3. A corta distancia de los límites, pero no impacta ningún receptor sensible (< 25 m).
4. En el sitio o en sus límites solamente.

Observaciones: Los olores ofensivos se pueden percibir en toda la planta de producción de manera mínima, pero en cercanías al área de lavado, el olor ofensivo es bastante fuerte.

PARÁMETRO 26

Descripción: La planta cuenta con vías de transporte despejadas y señaladas.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 no tiene pasillos para el trasporte de materiales.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 cuenta con pasillos para el transporte de materiales, pero no son utilizados para su fin.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 cuenta con pasillos para el transporte de materiales, pero no están despejados, señalados, y solo permite el paso en un solo sentido.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 cuenta con pasillos para el transporte de materiales despejados a una distancia adecuada, señalados, y que permitan el transporte en doble sentido.</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Indicadores:

1. No tiene pasillos para el transporte de materiales.
2. Cuenta con pasillos para el transporte de materiales, pero no son utilizados para su fin.
3. Cuenta con pasillos para el transporte de materiales, pero no están despejados, señalados, y solo permite el paso en un solo sentido.
4. Cuenta con pasillos para el transporte de materiales despejados a una distancia adecuada, señalados, y que permitan el transporte en doble sentido.

Observaciones: Lo tienen implementado, pero no para todas las áreas de la planta, la señalización ya presenta deterioro (no se visualiza con claridad).

PARÁMETRO 27

Descripción: Se utilizan carros, carretillas u otros mecanismos provistos de ruedas, o rodillos, cuando se mueve material.

<table>
<thead>
<tr>
<th>Indicadores</th>
<th>Calificación</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 no cuenta con implementos de transporte, los trabajadores transportan la mercancía.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 cuenta con algunos implementos de transporte, pero no son utilizados por los empleados para su fin, tampoco cuenta con pallets, estibas para facilitar el almacenamiento y transporte de estos.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 cuenta con algunos implementos de transporte de materiales, y tiene estibas para almacenar la mercancía y facilitar su transporte.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 cuentas con carros, carretillas, vías con rodillos, para el trasporte de mercancía pesada y pallets, estibas para almacenar la mercancía y transportarla con mayor facilidad.</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Indicadores:

1. No cuenta con implementos de transporte, los trabajadores transportan la mercancía.
2. Cuenta con algunos implementos de transporte, pero no son utilizados por los empleados para su fin, tampoco cuenta con pallets, estibas para facilitar el almacenamiento y transporte de estos.
3. Cuenta con algunos implementos de transporte de materiales, y tiene estibas para almacenar la mercancía y facilitar su transporte.
4. Cuentas con carros, carretillas, vías con rodillos, para el trasporte de mercancía pesada y pallets, estibas para almacenar la mercancía y transportarla con mayor facilidad.

Observaciones: Cuentan con maquinaria para el transporte, pero podría mejorar.
PARÁMETRO 28

Descripción: Se usan ayudas mecánicas para levantar, depositar y mover los materiales pesados.

Indicadores:
1. no cuentan con herramienta para el descargue, levantar y mover materiales pesados.
2. cuenta con herramientas para el descargue, levantar y mover materiales pesados, pero no se usan por falta de mantenimiento.
3. cuentan con herramienta para el descargue, levantar y mover materiales pesados, pero no es el adecuado para todos los materiales.
4. cuentan con herramientas para el descargue, levantar y mover materiales pesados como lo son grúas, poleas mecánicas.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Observaciones: Podría mejorar

PARÁMETRO 29

Descripción: Los trabajadores cuentan con señalización que les indique que es necesario usar los elementos de protección personal EPP’s.

Indicadores:
1. el área de trabajo no cuenta con señalización que le indique al personal que es necesario el uso de EPP’s.
2. el área de trabajo tiene señalización de uso de EPP’s, pero no en el lugar indicado.
3. el área de trabajo cuenta solo con una parte de señalización que le indique al personal que es necesario el uso de EPP’s.
4. el área de trabajo cuenta con la suficiente señalización que les indique al personal que es necesario el uso de EPP’s.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Observaciones: Solo cuenta con señalización a la entrada del área de trabajo, debería tener señalización en todos los procesos.

PARÁMETRO 30

Descripción: Se cuenta con vías de evacuación, están adecuadamente demarcadas y libres de obstáculos.

Indicadores:
1. no cuentan con vías de evacuación.
2. cuenta con vías de evacuación, pero no están adecuadamente señalizadas por toda el área de trabajo, no se encuentran libres de obstáculos y no se encuentran visibles para los trabajadores.
3. cuenta con vías de evacuación adecuadamente señalizadas por toda el área de trabajo, libres de obstáculos, pero no se encuentran visibles para los trabajadores.
4. cuenta con vías de evacuación adecuadamente señalizadas por toda el área de trabajo, libres de obstáculos.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Observaciones: Falta señalización y un mapa que indique los puntos de encuentro en caso de un siniestro.

PARÁMETRO 31

Descripción: La empresa cuenta con señalización necesaria y fácilmente visible, referente a rutas de evacuación, puntos de encuentro, botiquines, extintores, utilización de EPP’s, etc.

Indicadores:
1. no tienen implementado ningún tipo de señalización.
2. cuenta con vías de evacuación debidamente señalizadas, puntos de encuentro, extintores, botiquines, y EPPs para mejorar el desarrollo de las actividades, pero no corresponde al orden de las actividades, artículos que allí se señalan.
3. cuenta con vías de evacuación debidamente señalizadas, puntos de encuentro, extintores, botiquines, y EPPs para mejorar el desarrollo de las actividades, pero no se encuentra visible para los trabajadores.
4. cuenta con vías de evacuación debidamente señalizadas, puntos de encuentro, extintores, botiquines, y EPPs para mejorar el desarrollo de las actividades.

Calificación:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Observaciones: cuentan con los equipos como botiquines, extintores y otros, pero no hay señalización que indique que estos están en ese lugar.
<table>
<thead>
<tr>
<th>PARÁMETRO 32</th>
<th>Descripción: Las máquinas cuentan con sistemas de seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 no tiene implementado ningún sistema de seguridad.</td>
</tr>
<tr>
<td></td>
<td>2 no tienen implementado un sistema de seguridad que les garantice a los trabajadores la protección total de accidentes, pero practican actividades para mitigar estos accidentes.</td>
</tr>
<tr>
<td></td>
<td>3 tienen implementado un sistema de seguridad que les garantice a los trabajadores la protección total de accidentes, pero se encuentran inactivas.</td>
</tr>
<tr>
<td></td>
<td>4 tienen implementado un sistema de seguridad en las máquinas que les garantice a los trabajadores la protección total de accidentes.</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETRO 33</th>
<th>Descripción: El lugar de trabajo se encuentra limpio, antes, durante y después del proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 no asean el área de trabajo.</td>
</tr>
<tr>
<td></td>
<td>2 el área de trabajo solo es aseada cuando ya es imposible trabajar a causa de los desechos.</td>
</tr>
<tr>
<td></td>
<td>3 el área de trabajo mantiene limpio solo ciertos días que tienen específicos para el aseo general de las máquinas y área.</td>
</tr>
<tr>
<td></td>
<td>4 el área de trabajo mantiene limpio, sin ningún tipo de obstáculos que impidan la realización de las actividades antes y después del proceso.</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Observaciones:</td>
<td>El área de trabajo constantemente está sucia, realizan el aseo general un sábado al mes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETRO 34</th>
<th>Descripción: Las paredes tienen colores claros para disponer de mayores niveles de iluminación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 no están pintadas con colores claros ni cuenta con rejas transparentes, ni ventanas para aprovechar la luz natural.</td>
</tr>
<tr>
<td></td>
<td>2 las paredes tienen colores claros, no están pintadas con pinturas que no generen brillo, y no cuentan con tejas y ventanas para la luz natural.</td>
</tr>
<tr>
<td></td>
<td>3 las paredes tienen colores claros, están pintadas con pinturas que no generen brillo y combinan con el techo para dar más laminación al área, pero no se cuenta con tejas transparentes ni ventanas que generen luz natural.</td>
</tr>
<tr>
<td></td>
<td>4 las paredes tienen colores claros, están pintadas con pinturas que no generen brillo y combinan con el techo para dar más laminación al área, se aprovecha la luz natural por medio de ventanas y tejas transparentes.</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Observaciones:</td>
<td>las paredes son de un tono azul claro que ayuda a generar más claridad, sin embargo, el tejado para la luz natural no es el adecuado.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARÁMETRO 35</th>
<th>Descripción: Se dispone de iluminación localizada para los trabajos de inspección o precisión.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores:</td>
<td>1 tienen iluminación, pero no es suficiente para las actividades que se generan.</td>
</tr>
<tr>
<td></td>
<td>2 cuenta solo iluminación para el área de trabajo, pero no cuentan con iluminación detallada para las máquinas y equipos con el fin de evitar el esfuerzo visual de los trabajadores.</td>
</tr>
<tr>
<td></td>
<td>3 las máquinas, equipos, y el área tiene iluminación para que los trabajadores realicen todas las actividades correspondientes al proceso, pero no es de gran proyección.</td>
</tr>
<tr>
<td></td>
<td>4 las máquinas, equipos, y el área tiene suficiente iluminación para que los trabajadores realicen todas las actividades correspondientes al proceso sin necesidad de esforzar su vista.</td>
</tr>
<tr>
<td>Calificación:</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Observaciones:</td>
<td>Solo un porcentaje de la maquinaria tiene luz adecuada para facilitar el trabajo preciso.</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.
Anexo 22

Tabla 42.
Cálculos para determinar h de los elementos móviles

<table>
<thead>
<tr>
<th>Elementos móviles</th>
<th>Altura promedio (h)</th>
<th>Superficie estática (Ss)</th>
<th>Cantidad (n)</th>
<th>hSsn</th>
<th>Ss*n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cigüeñales</td>
<td>1,3</td>
<td>0,9</td>
<td>1</td>
<td>1,17</td>
<td>0,90</td>
</tr>
<tr>
<td>Bloques</td>
<td>1,5</td>
<td>1,26</td>
<td>1</td>
<td>1,89</td>
<td>1,26</td>
</tr>
<tr>
<td>Culatas</td>
<td>1,1</td>
<td>0,7</td>
<td>1</td>
<td>0,77</td>
<td>0,70</td>
</tr>
<tr>
<td>Bielas</td>
<td>0,9</td>
<td>0,08</td>
<td>1</td>
<td>0,07</td>
<td>0,08</td>
</tr>
<tr>
<td>Operarios</td>
<td>1,71</td>
<td>0,49</td>
<td>16</td>
<td>13,41</td>
<td>7,84</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17,31</td>
<td>10,78</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores.

Tabla 43.
Cálculos para determinar h de los elementos estáticos

<table>
<thead>
<tr>
<th>Elementos estáticos</th>
<th>Altura (h)</th>
<th>Superficie estática Ss</th>
<th>Cantidad (n)</th>
<th>hSsn</th>
<th>Ss*n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectificadora de culatas</td>
<td>1,9</td>
<td>1,785</td>
<td>1</td>
<td>3,39</td>
<td>1,79</td>
</tr>
<tr>
<td>Rectificadora de válvulas</td>
<td>1,4</td>
<td>0,54</td>
<td>1</td>
<td>0,76</td>
<td>0,54</td>
</tr>
<tr>
<td>Prueba hidrostática</td>
<td>1,4</td>
<td>1,28</td>
<td>1</td>
<td>1,79</td>
<td>1,28</td>
</tr>
<tr>
<td>Cepilladora</td>
<td>1,7</td>
<td>1,488</td>
<td>1</td>
<td>2,53</td>
<td>1,49</td>
</tr>
<tr>
<td>Desarmadora de culatas</td>
<td>1,85</td>
<td>1,278</td>
<td>1</td>
<td>2,71</td>
<td>1,28</td>
</tr>
<tr>
<td>Mandrinadora de cilindros #1</td>
<td>1,98</td>
<td>6,784</td>
<td>1</td>
<td>13,43</td>
<td>6,78</td>
</tr>
<tr>
<td>Estantería culatas 1</td>
<td>1,9</td>
<td>0,55</td>
<td>1</td>
<td>1,05</td>
<td>0,55</td>
</tr>
<tr>
<td>Computador</td>
<td>1,3</td>
<td>0,21</td>
<td>1</td>
<td>0,27</td>
<td>0,21</td>
</tr>
<tr>
<td>Estantería culatas 2</td>
<td>1,4</td>
<td>0,472</td>
<td>1</td>
<td>0,66</td>
<td>0,47</td>
</tr>
<tr>
<td>Rectificadora de bielas</td>
<td>1,87</td>
<td>1,5895</td>
<td>1</td>
<td>2,97</td>
<td>1,59</td>
</tr>
<tr>
<td>Ensambladora de bielas</td>
<td>1,2</td>
<td>0,58</td>
<td>1</td>
<td>0,70</td>
<td>0,58</td>
</tr>
<tr>
<td>Prensa hidráulica</td>
<td>1,88</td>
<td>0,665</td>
<td>1</td>
<td>1,25</td>
<td>0,67</td>
</tr>
<tr>
<td>Estantería bielas 1</td>
<td>0,9</td>
<td>1,2</td>
<td>1</td>
<td>1,08</td>
<td>1,20</td>
</tr>
<tr>
<td>Estantería bielas 2</td>
<td>1,4</td>
<td>0,2275</td>
<td>1</td>
<td>0,32</td>
<td>0,23</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>128,74</td>
<td>72,90</td>
</tr>
</tbody>
</table>

Nota Fuente: los autores.
Anexo 23

Tabla 44.
Cálculos de superficie necesaria

<table>
<thead>
<tr>
<th>MAQUINA</th>
<th>SECCION</th>
<th>ANCHO</th>
<th>LARGO</th>
<th>GRAVITACIÓN</th>
<th>K</th>
<th>Ss (m²2)</th>
<th>Sg (m²2)</th>
<th>Se (m²2)</th>
<th>St (m²2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectificadora de culatas</td>
<td>Culatas</td>
<td>0,85</td>
<td>2,1</td>
<td>1</td>
<td>0,45</td>
<td>1,79</td>
<td>1,79</td>
<td>1,61</td>
<td>5,18</td>
</tr>
<tr>
<td>Rectificadora de válvulas</td>
<td>Culatas</td>
<td>0,6</td>
<td>0,9</td>
<td>1</td>
<td>0,45</td>
<td>0,54</td>
<td>0,54</td>
<td>0,49</td>
<td>1,57</td>
</tr>
<tr>
<td>Prueba hidrostática</td>
<td>Culatas</td>
<td>0,8</td>
<td>1,6</td>
<td>2</td>
<td>0,45</td>
<td>1,28</td>
<td>2,56</td>
<td>1,73</td>
<td>5,57</td>
</tr>
<tr>
<td>Cepilladora</td>
<td>Culatas</td>
<td>1,2</td>
<td>1,24</td>
<td>1</td>
<td>0,45</td>
<td>1,49</td>
<td>2,69</td>
<td>1,49</td>
<td>4,32</td>
</tr>
<tr>
<td>Desarmadora de culatas</td>
<td>Culatas</td>
<td>0,9</td>
<td>1,42</td>
<td>1</td>
<td>0,45</td>
<td>1,28</td>
<td>1,28</td>
<td>1,15</td>
<td>3,71</td>
</tr>
<tr>
<td>Mandrinadora de cilindros #1</td>
<td>Culatas</td>
<td>1,6</td>
<td>4,24</td>
<td>1</td>
<td>0,45</td>
<td>6,78</td>
<td>6,78</td>
<td>6,11</td>
<td>19,67</td>
</tr>
<tr>
<td>Estantería culatas 1</td>
<td>Estantería</td>
<td>0,5</td>
<td>1,1</td>
<td>1</td>
<td>0,45</td>
<td>0,55</td>
<td>0,55</td>
<td>0,50</td>
<td>1,60</td>
</tr>
<tr>
<td>Computador</td>
<td>Estantería</td>
<td>0,35</td>
<td>0,6</td>
<td>1</td>
<td>0,45</td>
<td>0,21</td>
<td>0,21</td>
<td>0,19</td>
<td>0,61</td>
</tr>
<tr>
<td>Estantería culatas 2</td>
<td>Estantería</td>
<td>0,4</td>
<td>1,18</td>
<td>1</td>
<td>0,45</td>
<td>0,47</td>
<td>0,47</td>
<td>0,42</td>
<td>1,37</td>
</tr>
<tr>
<td>Rectificadora de bielas</td>
<td>Bielas</td>
<td>0,85</td>
<td>1,87</td>
<td>1</td>
<td>0,45</td>
<td>1,59</td>
<td>1,59</td>
<td>1,43</td>
<td>4,61</td>
</tr>
<tr>
<td>Ensambladora de bielas</td>
<td>Bielas</td>
<td>0,58</td>
<td>1</td>
<td>1</td>
<td>0,45</td>
<td>0,58</td>
<td>0,58</td>
<td>0,52</td>
<td>1,68</td>
</tr>
<tr>
<td>Prensa hidráulica</td>
<td>Bielas</td>
<td>0,5</td>
<td>1,33</td>
<td>1</td>
<td>0,45</td>
<td>0,67</td>
<td>0,67</td>
<td>0,60</td>
<td>1,93</td>
</tr>
<tr>
<td>Estantería bielas 1</td>
<td>Estantería</td>
<td>0,8</td>
<td>1,5</td>
<td>1</td>
<td>0,45</td>
<td>1,20</td>
<td>1,20</td>
<td>1,08</td>
<td>3,48</td>
</tr>
<tr>
<td>Estantería bielas 2</td>
<td>Estantería</td>
<td>0,35</td>
<td>0,65</td>
<td>1</td>
<td>0,45</td>
<td>0,23</td>
<td>0,23</td>
<td>0,20</td>
<td>0,66</td>
</tr>
<tr>
<td>Rectificadora de cigüeñales 2.0</td>
<td>Cigüeñales</td>
<td>2,2</td>
<td>7,2</td>
<td>1</td>
<td>0,45</td>
<td>15,84</td>
<td>15,84</td>
<td>14,26</td>
<td>45,94</td>
</tr>
<tr>
<td>Rectificadora de cigüeñales 1.4</td>
<td>Cigüeñales</td>
<td>1,7</td>
<td>5,13</td>
<td>1</td>
<td>0,45</td>
<td>8,72</td>
<td>8,72</td>
<td>7,85</td>
<td>25,29</td>
</tr>
<tr>
<td>Estantería cigüeñales 1</td>
<td>Estantería</td>
<td>1,13</td>
<td>4,3</td>
<td>1</td>
<td>0,45</td>
<td>4,86</td>
<td>4,86</td>
<td>4,37</td>
<td>14,09</td>
</tr>
<tr>
<td>Mandrinadora de cilindros #2</td>
<td>Bloques</td>
<td>1,4</td>
<td>3,4</td>
<td>1</td>
<td>0,45</td>
<td>4,76</td>
<td>4,76</td>
<td>4,28</td>
<td>13,80</td>
</tr>
<tr>
<td>Bruñidora de cilindros</td>
<td>Bloques</td>
<td>1,92</td>
<td>2,39</td>
<td>1</td>
<td>0,45</td>
<td>4,59</td>
<td>4,59</td>
<td>4,13</td>
<td>13,31</td>
</tr>
<tr>
<td>Pulidor</td>
<td>Bloques</td>
<td>0,61</td>
<td>1,3</td>
<td>1</td>
<td>0,45</td>
<td>0,79</td>
<td>0,79</td>
<td>0,71</td>
<td>2,30</td>
</tr>
<tr>
<td>Círculo de bancada</td>
<td>Bloques</td>
<td>0,76</td>
<td>3,9</td>
<td>3</td>
<td>0,45</td>
<td>2,96</td>
<td>8,89</td>
<td>5,34</td>
<td>17,19</td>
</tr>
<tr>
<td>Esmeril</td>
<td>Estantería</td>
<td>0,5</td>
<td>0,82</td>
<td>1</td>
<td>0,45</td>
<td>0,41</td>
<td>0,41</td>
<td>0,37</td>
<td>1,19</td>
</tr>
<tr>
<td>Estantería bloques 1</td>
<td>Estantería</td>
<td>0,5</td>
<td>0,7</td>
<td>1</td>
<td>0,45</td>
<td>0,35</td>
<td>0,35</td>
<td>0,32</td>
<td>1,02</td>
</tr>
<tr>
<td>Estantería bloques 2</td>
<td>Estantería</td>
<td>0,5</td>
<td>0,7</td>
<td>1</td>
<td>0,45</td>
<td>0,35</td>
<td>0,35</td>
<td>0,32</td>
<td>1,02</td>
</tr>
<tr>
<td>Estantería bloques 3</td>
<td>Estantería</td>
<td>0,35</td>
<td>0,6</td>
<td>1</td>
<td>0,45</td>
<td>0,21</td>
<td>0,21</td>
<td>0,19</td>
<td>0,61</td>
</tr>
<tr>
<td>Lavadora a ultrasonido</td>
<td>Lavado</td>
<td>0,8</td>
<td>1,64</td>
<td>1</td>
<td>0,45</td>
<td>1,31</td>
<td>1,31</td>
<td>1,18</td>
<td>3,80</td>
</tr>
<tr>
<td>Lavadora de motores</td>
<td>Lavado</td>
<td>1,12</td>
<td>1,47</td>
<td>1</td>
<td>0,45</td>
<td>1,65</td>
<td>1,65</td>
<td>1,48</td>
<td>4,77</td>
</tr>
<tr>
<td>Mesa de lavado 1</td>
<td>Lavado</td>
<td>0,8</td>
<td>0,8</td>
<td>1</td>
<td>0,45</td>
<td>0,64</td>
<td>0,64</td>
<td>0,58</td>
<td>1,86</td>
</tr>
<tr>
<td>Mesa de lavado 2</td>
<td>Lavado</td>
<td>0,8</td>
<td>0,8</td>
<td>1</td>
<td>0,45</td>
<td>0,64</td>
<td>0,64</td>
<td>0,58</td>
<td>1,86</td>
</tr>
<tr>
<td>Fresadora</td>
<td>Alistamiento</td>
<td>1,45</td>
<td>1,58</td>
<td>2</td>
<td>0,45</td>
<td>2,29</td>
<td>4,58</td>
<td>3,09</td>
<td>9,97</td>
</tr>
<tr>
<td>Torno 1mt</td>
<td>Alistamiento</td>
<td>0,58</td>
<td>1,82</td>
<td>1</td>
<td>0,45</td>
<td>1,06</td>
<td>1,06</td>
<td>0,95</td>
<td>3,06</td>
</tr>
<tr>
<td>Torno 1.5 mt</td>
<td>Alistamiento</td>
<td>0,9</td>
<td>2,9</td>
<td>1</td>
<td>0,45</td>
<td>2,61</td>
<td>2,61</td>
<td>2,35</td>
<td>7,57</td>
</tr>
<tr>
<td>Estantería alistamiento 1</td>
<td>Estantería</td>
<td>0,35</td>
<td>0,6</td>
<td>1</td>
<td>0,45</td>
<td>0,21</td>
<td>0,21</td>
<td>0,19</td>
<td>0,61</td>
</tr>
</tbody>
</table>

TOTAL 72,90 82,40 69,88 225,18

Nota Fuente: los autores.
Figura 47: Plano propuesta 1
Fuente: Los autores, software utilizado Solid Edge
Figura 48: Plano propuesta 2
Fuente: Los autores, software utilizado Solid Edge
<table>
<thead>
<tr>
<th>Presupuesto y Cotización</th>
<th>CTR</th>
<th>Contacto: Eugenio Vázquez</th>
<th>312.437614 Electivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CG Tráfico Azul</td>
<td>24,990</td>
<td>4,894,900</td>
</tr>
<tr>
<td>1</td>
<td>Galón Tráfico Amarillo</td>
<td>4,990</td>
<td>15,490</td>
</tr>
<tr>
<td>1</td>
<td>Galón Diverso</td>
<td>2,060</td>
<td>2,060</td>
</tr>
<tr>
<td>6</td>
<td>Rectificador Epoxi</td>
<td>5,000</td>
<td>6,000</td>
</tr>
<tr>
<td>5</td>
<td>Envío: 1 x 3</td>
<td>6,200</td>
<td>6,200</td>
</tr>
<tr>
<td>8</td>
<td>Criterio</td>
<td>11,2</td>
<td>113,2</td>
</tr>
</tbody>
</table>

Figura 49: Cotización 1
Fuente: Los autores
Figura 50: Cotización 2

Fuente: Los autores

<table>
<thead>
<tr>
<th>Detalle</th>
<th>Cantidad</th>
<th>Precio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre en rollo de 1 metro</td>
<td>1</td>
<td>45.000</td>
</tr>
<tr>
<td>Enrollado de 1 metro</td>
<td>1</td>
<td>35.000</td>
</tr>
<tr>
<td>Rollos de 20 mmetros</td>
<td>2</td>
<td>24.000</td>
</tr>
<tr>
<td>Rollos de lona</td>
<td>5</td>
<td>20.000</td>
</tr>
</tbody>
</table>

Total: 532.000
Figura 51: Cotización 3
Fuente: Los autores
Anexo 29

En la actualidad el proceso de rectificación está compuesto de 9 procesos fundamentales, los cuales tienen una totalidad de 227, 13 metros de recorrido, como se observa en la tabla 45.

Tabla 45.
Distancias recorridos procesos distribución actual

<table>
<thead>
<tr>
<th>Procesos</th>
<th>Distancias recorridas m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavado</td>
<td>15,05</td>
</tr>
<tr>
<td>Rectificación de culatas</td>
<td>42,87</td>
</tr>
<tr>
<td>Rectificación de cigüeñas</td>
<td>12,42</td>
</tr>
<tr>
<td>Rectificación de bloques</td>
<td>25,7</td>
</tr>
<tr>
<td>Rectificación de bielas</td>
<td>55,86</td>
</tr>
<tr>
<td>Rectificación de válvulas</td>
<td>45,52</td>
</tr>
<tr>
<td>Alistamiento de culatas y cigüeñas</td>
<td>7,81</td>
</tr>
<tr>
<td>Probado y verificado</td>
<td>16,9</td>
</tr>
<tr>
<td>Círculos</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>227.13</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.

La siguiente tabla muestra las nuevas distancias de los procesos de acuerdo a las propuestas realizadas, donde en la propuesta 1 se tiene una totalidad de 168,12 metros y en la propuesta 2 de 180,28 metros.

Tabla 46.
Distancias de los recorridos de las propuestas

<table>
<thead>
<tr>
<th>Procesos</th>
<th>Propuesta 1</th>
<th>Propuesta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavado</td>
<td>16,82</td>
<td>15,75</td>
</tr>
<tr>
<td>Rectificación de culatas</td>
<td>21,75</td>
<td>23,88</td>
</tr>
<tr>
<td>Rectificación de cigüeñas</td>
<td>6,4</td>
<td>10,85</td>
</tr>
<tr>
<td>Rectificación de bloques</td>
<td>19,46</td>
<td>27,6</td>
</tr>
<tr>
<td>Rectificación de bielas</td>
<td>13,25</td>
<td>17,7</td>
</tr>
<tr>
<td>Rectificación de válvulas</td>
<td>42,7</td>
<td>30,67</td>
</tr>
<tr>
<td>Alistamiento de culatas y cigüeñas</td>
<td>19</td>
<td>31,7</td>
</tr>
<tr>
<td>Probado y verificado</td>
<td>22,39</td>
<td>14,68</td>
</tr>
<tr>
<td>Círculos</td>
<td>6,35</td>
<td>7,45</td>
</tr>
<tr>
<td>TOTAL</td>
<td>168,12</td>
<td>180,28</td>
</tr>
</tbody>
</table>

Nota: Fuente: los autores.

Porcentaje de mejora en distancia de los recorridos

Para hallar el porcentaje de mejora de las distancias de los recorridos se aplicó la siguiente fórmula:

\[
% \text{ de mejora} = 100 - \left(\frac{\text{distancia propuesta}}{\text{distancia actual}} \right) \times 100\%
\]
Propuesta 1

Aplicando la fórmula anteriormente mencionada a los datos obtenidos con la propuesta 1 se obtiene:

\[
\% \text{ de mejora} = 100 - \left(\frac{168,12 \, m}{227,13 \, m} \times 100\% \right)
\]

\[
\% \text{ de mejora} = 25,98 \%
\]

Con lo cual se puede deducir que al aplicar la propuesta 1 se tendrá una mejora en los recorridos en un 25,98%.

Propuesta 2

Aplicando la fórmula anteriormente mencionada a los datos obtenidos con la propuesta 1 se obtiene:

\[
\% \text{ de mejora} = 100 - \left(\frac{180,28 \, m}{227,13 \, m} \times 100\% \right)
\]

\[
\% \text{ de mejora} = 20,62 \%
\]

Con lo cual se puede deducir que al aplicar la propuesta 2 se tendrá una mejora en los recorridos en un 20,62%.